25
Basic Dynamics-I John Thuburn Basic Dynamics - I Monday 2 June, 2008 Page 1

Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Basic Dynamics - I

Monday 2 June, 2008

Page 1

Page 2: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Bibliography

• An Introduction to Dynamic Meteorology, J.R. Holton, Elsevier /

Academic Press

• Atmosphere Ocean Dynamics, A.E. Gill, Academic Press

• Geophysical Fluid Dynamics, J. Pedlosky, Springer

• Lectures on Geophysical Fluid Dynamics, R. Salmon, OUP

Page 2

Page 3: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Outline

• The multiscale nature of atmospheric dynamics

• Dynamics in a rotating frame

• Governing equations

• Acoustic waves

• Inertio-gravity waves

• Phase velocity and group velocity

• Some key conservation properties

Page 3

Page 4: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

The multiscale nature of atmospheric dynamics

Page 4

Page 5: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Dynamics in a rotating frame

Let

A = AxI + AyJ + AzK

= axi + ayj + azk

Page 5

Page 6: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Time rate of change of an arbitrary vector

(DA

Dt

)

IF

= IDAx

Dt+ J

DAy

Dt+ K

DAz

Dt

= iDax

Dt+ j

Day

Dt+ k

Daz

Dt

+ ax

(Di

Dt

)

IF

+ ay

(Dj

Dt

)

IF

+ az

(Dk

Dt

)

IF

=

(DA

Dt

)

RF

+ Ω × A

Page 6

Page 7: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Apply to position vector

uIF = uRF + Ω × x

Apply to velocity vector

aIF = aRF + 2Ω × uRF + Ω× (Ω× x)

Page 7

Page 8: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Governing equations

Mass

∂ρ

∂t+ ∇.(ρu) = 0

Thermodynamics

Dt= Q

Momentum

Du

Dt+ 2Ω × u = −

1

ρ∇p −∇Φ + F

Page 8

Page 9: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

along with

p = RTρ

and

T =

(p

p00

θ = Π(p)θ

where κ = R/Cp.

Page 9

Page 10: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Some common approximations

• Spherical geoid: Φ = Φ(r)

• Quasi-hydrostatic: neglect Dw/Dt

• Anelastic: ∇(ρ0u) = 0

• Shallow atmosphere:

neglect Coriolis terms involving horizontal component of Ω;

replace 1/r by 1/a;

neglect some metric terms.

Page 10

Page 11: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Quasigeostrophicequations

Planetarygeostrophic

Sphericalgeoid

CompressibleEulerequations

Quasi−Shallowatmosphere

Hydrostaticshallowatmosphere

Anelastic

Boussinesq

waterequations

Quasigeostrophicshallow waterequations

Barotropicvorticityequation

Semi−geostrophic

Shallow

hydrostatic

Page 11

Page 12: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

The importance of waves

• Acoustic waves: very fast, energetically very weak

• Inertio-gravity waves: fast, energetically weak

• Rossby waves and balanced vortical motion: energetically dominant

But fast waves are crucial for adjustment towards balance.

Page 12

Page 13: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Acoustic waves

Neglect Coriolis and gravity

∂ρ

∂t+ ∇.(ρu) = 0

Du

Dt= −

1

ρ∇p

Page 13

Page 14: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Linearize about an isothermal state of rest

∂ρ

∂t+ ρ0∇.(u) = 0

∂u

∂t= −

1

ρ0∇p = −

c2

ρ0∇ρ

where c2 = ∂p/∂ρ|θ = RT0/(1 − κ)

∂2ρ

∂t2− c2∇2ρ = 0

Page 14

Page 15: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Seek wavelike solutions ∝ expik.x− ωt

to obtain the dispersion relation

ω2 = c2|k|2

Note u||k: waves are longitudinal

Also, acoustic waves are non-dispersive

Page 15

Page 16: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Inertio-gravity waves

Make the Boussinesq approximation: assume the fluid to be

incompresible ∇.u = 0, and neglect variations in density except where

they appear in a buoyancy term, i.e. multiplied by g.

Also neglect Coriolis terms involving the horizontal component of Ω.

Page 16

Page 17: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Du

Dt− fv = −

1

ρ0

∂p

∂x,

Dv

Dt+ fu = −

1

ρ0

∂p

∂y,

Dw

Dt= −

1

ρ0

∂p

∂z+ b,

∂u

∂x+

∂v

∂y+

∂w

∂z= 0,

Db

Dt+ wN2 = 0,

where

b = −gρ′

ρ0and N2 = −

g

ρ0

∂ρ0

∂z

Page 17

Page 18: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Linearize about a hydrostatic state of rest

∂u

∂t− fv = −

1

ρ0

∂p

∂x,

∂v

∂t+ fu = −

1

ρ0

∂p

∂y,

∂w

∂t= −

1

ρ0

∂p

∂z+ b,

∂u

∂x+

∂v

∂y+

∂w

∂z= 0,

∂b

∂t+ wN2 = 0.

Page 18

Page 19: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Seek wavelike solutions ∝ ei(kx+ly+mz−ωt) to obtain the dispersion

relation

ω2 =(k2 + l2)N2 + m2f2

k2 + l2 + m2

Note u ⊥ k: waves are transverse

For very deep waves, m2/(k2 + l2) ≪ 1, ω2 ≈ N2

For very shallow waves, (k2 + l2)/m2 ≪ 1, ω2 ≈ f2

Page 19

Page 20: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Phase velocity

If a wavelike disturbance is ∝ expiφ(x, t)

wave crests and troughs are surfaces of constant phase φ.

For a plane wave

φ = k.x− ωt

= k.(x− cpt)

where cp = kω/|k|2 is the phase velocity. Crests and troughs move

at velocity cp.

Page 20

Page 21: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Group velocity

How does a packet of waves propagate?

Consider a superposition of two 1D waves with similar wavenumber

and frequency, satisfying ω = ω(k)

q =1

2

(ei(k+δk)x−(ω+δω)t + ei(k−δk)x−(ω−δω)t

)

= cos(δk x − δω t)eikx−ωt (1)

Page 21

Page 22: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Individual crests and troughs propagate at the phase velocity

cp = ω/k

but wave packets propagate at the group velocity

cg = δω/δk → ∂ω/∂k

In 3D

cg = ∇kω =

(∂ω

∂k,∂ω

∂l,

∂ω

∂m

)

Page 22

Page 23: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Matlab demo of phase and group velocity

Page 23

Page 24: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Some key conservation properties

Some conservation properties can be expressed as

∂A

∂t+ ∇.(F) = 0

Mass

A = ρ and F = ρu

Angular momentum

A = ρz. [r × (u + Ω × r)] and F = uA + pz× r

Energy

A = ρ(u2/2 + CvT + Φ) and F = u(A + p)

Page 24

Page 25: Basic Dynamics - Iclasp-research.engin.umich.edu/.../4-Thuburn-Basic_Dynamics_I.pdf · Basic Dynamics-I John Thuburn Bibliography • An Introduction to Dynamic Meteorology, J.R

Basic Dynamics-IJohn Thuburn

Potential temperatureDθ

Dt= 0

Potential vorticityDQ

Dt= 0

where Q = ζ.∇θ/ρ

Potential enstrophy

A = ρQ2/2 and F = uA

Page 25