21
Basic concept of J - PARC - HI and conceptual detector design for high intensity heavy - ion beam experiments Hiroyuki Sako (ASRC, J - PARC, JAEA / U. Tsukuba) Anpha 2019 Symposium, Jeju (28 June 2019) Outline 1. Overview of J - PARC accelerators 2. J - PARC Heavy - Ion Project (J - PARC - HI) 3. Heavy - ion acceleration scheme 4. Experimental design 5. Summary and Prospect 1

Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion

beam experimentsHiroyuki Sako (ASRC, J-PARC, JAEA / U. Tsukuba)

Anpha 2019 Symposium, Jeju(28 June 2019)

Outline

1. Overview of J-PARC accelerators

2. J-PARC Heavy-Ion Project (J-PARC-HI)

3. Heavy-ion acceleration scheme

4. Experimental design

5. Summary and Prospect 1

Page 2: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

J-PARC-HI Collaboration103 members :

Experimental and Theoretical Nuclear Physicists and Accelerator Scientists

Experiment

J. K. Ahn, S. Ashikaga, O. Busch, M. Chu, T. Chujo, P. Cirkovic, T. Csorgo, D. Devetak, G. David, M. Djordjevic, S. Esumi, P. Garg, R. Guernane, T. Gunji, T. Hachiya, H. Hamagaki, S. Hasegawa, B. S. Hong, S. H. Hwang, Y. Ichikawa, T. Ichizawa, K. Imai, M. Inaba, M. Kaneta, H. Kato, B. C. Kim, E. J. Kim, X. Luo, Y. Miake, J. Milosevic, D. Mishra, L. Nadjdjerdj, S. Nagamiya, T. Nakamura, M. Naruki, K. Nishio, T. Nonaka, M. Ogino, K. Oyama, K. Ozawa, T. R. Saito, A. Sakaguchi, T. Sakaguchi, S. Sakai, H. Sako, K. Sato, S. Sato, S. Sawada, K. Shigaki, S. Shimansky, M. Shimomura, M. Stojanovic, H. Sugimura, Y. Takeuchi, H. Tamura, K. H. Tanaka, Y. Tanaka, K. Tanida, N. Xu, S. Yokkaichi, I. K. Yoo

Theory

Y. Akamatsu, M. Asakawa, K. Fukushima, H. Fujii, T. Hatsuda, M. Harada, T. Hirano, K. Itakura, M. Kitazawa, T. Maruyama, K. Morita, K. Murase, A. Nakamura, Y. Nara, C. Nonaka, A. Ohnishi, M. Oka

Accelerator

H. Harada, H. Hotchi, M. Kinsho, A. Kovalenko, J. Kamiya, H. Kuboki, Y. Kondo, Y. Liu, A. Miura, K. Moriya, T. Nakanoya, A. Okabe, M. Okamura, P. K. Saha, K. Shindo, Y. Shobuda, K. Suganuma, T. Takayanagi, F. Tamura, J. Tamura, N. Tani, Y. Watanabe, M. Yamamoto, M. Yoshii, M. Yoshimoto

ASRC/JAEA, J-PARC/JAEA, J-PARC/KEK, Tokyo Inst. Tech, Hiroshima U, Osaka U, U Tsukuba, Tsukuba U Tech, CNS, U Tokyo, Tohoku U, Nagasaki IAS, Kyoto U, RIKEN, Akita International U, Nagoya U, Sophia U, U Tokyo, YITP/Kyoto U, Nara Women’s U, KEK, BNL, Mainz U, GSI, Central China Normal U, Korea U, Chonbuk National U, Pusan National U, JINR, U Belgrade, Wigner RCP, KRF, Stony Brook U, Bhaba Atomic Research Centre, Far Eastern Federal U, Grenoble U 2

Page 3: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

Neutrino Beam to Super-Kamiokande(T2K)

Materials & Life Science Facility (MLF)

3 GeV Rapid Cycling

Synchrotron (RCS)

Hadron Experimental Facility (HD)

H- Linac (400MeV)

Main Ring Synchrotron (MR)

(30 GeV)

J-PARC(JAEA & KEK)

1 MW0.75 MW

3K. Hasegawa, LINAC14F. Naito, J-PARC PAC, July 2018 F. Naito, J-PARC PAC, Jan. 2019 3

Page 4: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

4K. Hasegawa, J-PARC ATAC, Feb. 2019

Page 5: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

H-

beam

Circumference350m

Ch

arge

exc

hag

efo

il

Pro

ton

be

am

MLF

Main Ring

Injection energy : 400MeVExtraction energy : 3 GeVRepetition : 25 HzInjection time : 0.5 ms (307 turns)Acceleration time : 20 ms (~15k turns)Beam power : 1MW (design)/0.5MW(user oper.)Number of protons/pulse : 8.33 x 1013

World’s highest levelbeam power of 1MW

High beam power test

Time (ms)

Nu

mb

er o

f Pa

rtic

les

(x 1

013

)

Inj. Ext.

8.41 x 1013 ppp : 1.01 MW-eq.

6.87 x 1013 ppp : 0.825 MW-eq.

4.73 x 1013 ppp : 0.568 MW-eq.

7.86 x 1013 ppp : 0.944 MW-eq.

5.80 x 1013 ppp : 0.696 MW-eq.

Acceleration

1MW-eq. beam powerachieved

Rapid-Cycling Synchrotron (RCS)

5

Page 6: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

Main Ring Synchrotron

Circumference 1567.5 mInjection energy 3 GeVExtraction energy 30 GeVNo. of bunch 8 (4 times inj. from RCS)Design beam power

FX (NU) 750 kWSX (HD) 100 kW

Injection Acceleration Slow extraction

MR user operationFX 500kW ~25×1013 pppSX 51kW ~5 ×1013 ppp

→High intensity performance proved

Extraction efficiency: 99.54%World’s highest level (↔GSI SIS18:~70%)

6

Page 7: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

Goals of J-PARC-HI

– Search for QCD Phase structures• 1st order phase transition, QCD Critical

Point

– EOS of dense matter• Structure of neutron star

– QCD vacuum property• Chiral symmetry restoration

7

Strangeness physics

Hadron

QGP

QCD Critical Point

ColorSuperconductor

J-PARC-HI

QCD Phase diagramExploring highest density matter

Initial Universe

Neutron Starand merger

LHC/RHIC

– Search for new multi-strangeness system• Hypernuclei, strangelet, dibaryons, etc.

– Study of hadron interactions• EOS of strangeness matter

Strangeness factory

Page 8: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

High energy (LHC,RHIC)

Nucleons penetrate each other

High T-low density matter(QGP)

Lower energy (J-PARC-HI)

Nucleons stop and compressed

High T-high density matter

J-PARC-HI: High density frontierMax. density 5-10r0 at 11 AGeV~Neutron star coreNet-proton rapidity distribution

Page 9: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

AGS-1996

SPS1994-2000

RHIC2000-

LHC2010-

RHIC-BES2010-

NICAFXT: 2019- 2010~

High-density frontierFAIR2025-

Pic

ture

of

fire

bal

l by

So

ush

iNo

nak

a

2010~

High-energy frontier

J-PARC-HI20xx-

Page 10: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

10

J-PARC-HI: High-intensity Frontier

Max baryon density

High rate beam * fixed target→World’s highest interaction rate : 108Hz

5-order higher than AGS / SPS

AGS, SPS1 year

J-PARC-HI5 min

1-order higher than FAIR

Page 11: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

HI acceleration scheme

3 GeV RCS

(p)0.4 → 3 GeV

MR

3→30 GeV (p)

H- Linac: 0.4 GeV

MLF

n beamproton (existing)

U92+

→ 11.2 AGeV

p/HI

HI (under plan)

11

Parallel oper.HI(MR)p(MLF)

U86+

→ 735 AMeV

stripping

⚫ HI Beam rate ~1011 Hz

⚫ Elab (U) = 1-19AGeV (Phase I: 1-12AGeV)

⚫ sNN (U) = 1.9-6.2 GeV (Phase I: 1.9-4.9 GeV)

U66+

→ 67 AMeV

strippingHI Lin

ac

U35+

→ 20 AMeV

HI Booster Ring

T2K

Hadron Experimental Facility

Page 12: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

Charge-exchange injection scheme to the booster ring

Conventional multi-turn injection scheme:20 times injection, 40% beam loss

3.2×1010 ppp (world record:GSI/SIS18)

J-PARC Booster (design :15-30 x 1010 ppp)⇒ No limit for injection times⇒ 1-order higher intensity beam accumulation

Frac

tio

n

Charge state

Chargeexchange

Charge number distribution

U35+ U35+

U66+ U66+

U35+(20AMeV)

Momentum shift Dp/p0:±3%

12

Page 13: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

Heavy-ion acceleration in RCS• RCS beam loss simulation

– U86+ ion 4×1011/cycle

Beam loss < 0.05%

• HI injection section

13

H-

H- strippinginjection

Stripperfoil

H-→H+

Extraction section

HI injection

Inj. beamdump

HI

From H- Linac

From HI Booster

Collimators section

Protonto MLF

Proton/HI to MR

Pulse Bending (PB) for beam switching

to MLFto MR

Page 14: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

High-density event trigger

Dilepton mass spectra→QCD vaccum

E-by-E fluctuations→QCD Critical point

Flow→High-density EOS

|S|>=3 HypernucleiHyperon correlation→EOS

De

nse

ma

tte

r

Strangeness

LL corr.

Net-proton 4th order fluc.

J-PARC-HI

dV1/dy

Sum of hadron pT

No measurement at AGS

J-PARC-HI

Thermal model

J-PARC-HI

Page 15: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

Event-by-event fluctuations

15X. Luo, Quark Matter 2015

M.A. Stephanov,PRL107, 052301 (2011).

J-PARC

Theory

High-order event-by-event fluctuations of conserved charge:Probe to search for the critical point

Enhancement of 4th-order fluctuations at low energiesIndications of the critical point?

(4-t

h o

rder

)

Stat. err at J-PARC<10-2 (1MHz x 1 day)

Page 16: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

DileptonsNo dilepton measurement at J-PARC energy

• Low mass region

r/w/f (M~10-3)

Study of chiral symmetry restoration

Spectra shape analysis

Direct comparison to theoretial models →quark and gluon condensate

(Hayano and Hatsuda, RMP82, 2949)

• Intermediate mass (M~10-8 )– Thermal radiation with low background

• High mass region

– J/y (M~10-7 )

16

10-3

10-8

High-statistics measurements at J-PARC-HI

Multiplicity/event

5-orderLower

Page 17: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

Strategy towards J-PARC-HI experiment

17

Extended area

Hadron Experimental Facility

Hadron Exp. Facility (present) Extended facility (planned)

High-p extended beamline

3. J-PARC-HI main experiment Large acceptanceHigh-rate experiments

2. J-PARC-HI pilot experimentUpgraded E16Low rate HIC experiment

1.p+A experiment (E16) (Feb. 2020-)Detector R&D for HICBaseline data for HIC

Page 18: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

Dipole hadron spectrometer• Charged particles + neutrons

• ~4p acceptance

• Silicon Pixel Tracker (SPT) (q < 4o)

• TPC (q > 4o)

• MRPC-TOF

• Rate : <=1 MHz interaction• Triggerless DAQ system

• Centrality : Multiplicity counter + Zero-degree calorimeter

18

E

B=1

.5T

Beam view

Magnet pole

2

2

3.4

5.6

3

38.7o

41.4o

6.8

ZCAL

TPCSPT

Target

Magnet yoke

Top view

2m

4o

MRPC-TOF

3.4m2

m

Neu

tro

n c

ou

nte

r

3.5

2.7

5m

45o

1.5

Ch

arge

veto

B=1.5TMC

Page 19: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

Hypernuclear SpectrometerClosed geometry : Add Sweeping magnet and collimator in upstream

• Hypernuclei at beam rapidity

• 1st dipole magnet + collimator → Only beam fragments reach 2nd dipole magnet

• Lifetime and Magnetic moment

• Hypernuclei, Strangelet search

• Interaction Rate : >=100 MHz

19

TPCSPT

Magnet yoke

Top view

2m

4o

MRPC-TOF

0.53.4m

2m

Neu

tro

n c

ou

nte

r

3.5

45o

1.5

Ch

arge

vet

o

B=1.5TMC

CollimatorSweeping magnet (5T)

2.4m

Decay of Hypernucleus p-

fragment

Target

Beam

1m

H. Tamura, J-PARC-HIWorkshop, Dec 2018

19Beam

Slits

Page 20: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

Summary and Prospect

20

• J-PARC-HI : Unique Lab to study QCD phase structures and EOS of dense matter

• World’s highest rate HI beam of 1011 Hz

• Measurements of fluctuations, dileptons, and multi-strangeness systems

– Large acceptance dipole spectrometers

Prospect• Letter-Of-Intent submitted to J-PARC PAC (2016)

(https://j-parc.jp/researcher/Hadron/en/pac_1607/pdf/LoI_2016-16.pdf)

• Proposal in Master Plan of Science Council of Japan (Mar 2019)

• HI injector as a joint project in JAEA (Upgrade of Tandem, RF cavity R&D for ADS Linac)

• Earliest possible start of the experiment (~2026)

Page 21: Basic concept of J-PARC-HI and conceptual detector design ......2019/06/28  · Basic concept of J-PARC-HI and conceptual detector design for high intensity heavy-ion beam experiments

21F. Naito, J-PARC PAC, July 2018 F. Naito, J-PARC PAC, Jan. 2019

High-intensity HI acceleration

New HI Injector

Dense nuclear matterand strangeness researchw/ HI beams

J-PARC-HI: High-density frontier facility in AsiaYour support and collaboration is appreciated!