9
Title: Changes in plant species richness in some riparian plant communities as an result of their colonisation by taxa of Reynoutria (Fallopia) Author: Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik, Grzegorz Jenczała Citation style: Tokarska-Guzik Barbara, Bzdęga Katarzyna, Knapik Dagmara, Jenczała Grzegorz. (2006). Changes in plant species richness in some riparian plant communities as an result of their colonisation by taxa of Reynoutria (Fallopia). "Biodiversity Research and Conservation" (vol. 1/2 (2006), s. 123-130).

Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik

Title: Changes in plant species richness in some riparian plant communities as an result of their colonisation by taxa of Reynoutria (Fallopia)

Author: Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik, Grzegorz Jenczała

Citation style: Tokarska-Guzik Barbara, Bzdęga Katarzyna, Knapik Dagmara, Jenczała Grzegorz. (2006). Changes in plant species richness in some riparian plant communities as an result of their colonisation by taxa of Reynoutria (Fallopia). "Biodiversity Research and Conservation" (vol. 1/2 (2006), s. 123-130).

Page 2: Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik

© Adam Mickiewicz University in PoznaÒ (Poland), Department of Plant Taxonomy. All rights reserved.

BRCwww.brc.amu.edu.pl

Changes in plant species richness in some riparian plantcommunities as a result of their colonisation by taxa

of Reynoutria (Fallopia)

Barbara Tokarska-Guzik1, Katarzyna BzdÍga2, Dagmara Knapik& Grzegorz Jencza≥a

Department of Plant Systematics, Faculty of Biology and Environmental Protection, University of Silesia, JagielloÒska 28, 40-032 Katowice,Poland, e-mail: [email protected], [email protected]

Abstract: This study deals with the current issue of the synanthropisation of plant cover which manifests itself, amongst otherways, in the spreading of species outside the limits of their natural distribution range. The aim of the studies undertaken for thepresent report was to estimate the type and scale of threat posed by alien plant species to native plant diversity. The studieswere carried out using the example of Reynoutria (Fallopia) species (knotweeds), which are considered to be invasive in ourcountry as well as in other regions of the world. This is an attempt to determine the impact of these plants on the compositionand diversity of the natural components of the herb layer in floodplain forest. Investigations were performed on permanentstudy plots localised in patches of floodplain forest which have been preserved in the valleys of the So≥a, Bia≥a and Jasienicarivers. The results of the field studies have confirmed the hypothesis that Reynoutria species exert a negative influence on thenative components of the floodplain forest herb layer. This impact is, however, different with regard to the various life formsand ecological habitat groups of the plants. The increase of surface coverd by knotweeds does not significantly influence thedevelopment of early spring geophytes which are able to complete their full life cycle.

Key words: invasive species, Reynoutria, Fallopia, riverside floodplain forests, ecological impact

1. Introduction

The aim of the investigation was to estimate the typeand scope of threat posed by alien plant species to thenative biological diversity, especially in view of the factthat these problems have hitherto been rarely addressedin Poland. The studies were carried out on the exampleof Reynoutria (Fallopia) species (knotweed) which areconsidered to be invasive plants in Poland (Fojcik &Tokarska-Guzik 2000; Tokarska-Guzik 2002, 2005;Tokarska-Guzik & Dajdok 2004) as well as in otherregions of Europe and the world (e.g. Pyöek & Prach1993; Brock et al. 1995; Sukopp & Starfinger 1995;Bailey et al. 1995; Bailey 1999).

Taxa from the genus Reynoutria are conspicuousrhizomatous perennials of large dimensions, spreadingmainly through vegetative processes, which wereintroduced to Europe from Asia at the beginning of the19th century as ornamental plants with numerous usefulcharacteristics (Bailey & Conolly 2000). From sites of

cultivation, these plants have spread both to ruderalhabitats and to sites of natural character (river valleys,scrub margins and broadleaf forests). In Poland, as in otherparts of Central Europe, two species occur at present:Reynoutria (Fallopia) japonica Houtt. [Polygonumcuspidatum; Japanese Knotweed], Reynoutria (Fallopia)sachalinensis (F. Schmidt) Nakai [Polygonumsachalinense; Giant Knotweed], as well as the hybridbetween these two species described in the 1980s: R.◊bohemica Chrtek & Chrtkov·. Reynoutria japonica isfairly widespread over the whole national territory,especially in its southern part, while R. sachalinensis isscattered across the whole of Poland, locally rarer(Tokarska-Guzik 2001; Zajπc & Zajπc 2001). The exactdistribution of the hybrid remains to be investigated indetail (Fojcik & Tokarska-Guzik 2000).

The present study is an attempt to determine theimpact these plants have on the composition anddiversity of natural components of the floodplain forestherb layer.

Biodiv. Res. Conserv. 1-2: 123-130, 2006

EC

OL

OG

Y

Page 3: Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik

124

2. Material and methods

Field studies were carried out during the growingseasons of 2002-2004 in estuary segments of the So≥aand Bia≥a river valleys as well as in the middle sectionof the Jasienica river valley (Fig. 1).

Investigations were performed on permanent studyplots (20 m x 20 m) localised in patches of floodplainforest. The plots were selected to describe varyingdegree of surface coverage by knotweeds. The totalnumber of plots investigated was 36 and in each of them2 phytosociological relevËs were taken in differentgrowth seasons: one in spring and one in late summer.Additionally, within three study plots, measurementsof longitudinal Reynoutria shoot growth rate wereperformed on 30 shoots selected at random. The studieswere supplemented by a detailed inventory of thevascular flora occurring in the investigated sections ofthe river valleys.

3. Results and discussion

A total number of 451 vascular plant species werefound to occur in the study area: 420 species in thesection of the So≥a river valley, 211 in the Bia≥a rivervalley and 160 in the Jasienica stream valley. Thevascular flora of the river valleys investigated ischaracterised by the highest proportion of hemicrypto-phytes which account for 50% species on the So≥a, 51%on the Jasienica and 54.5% on the Bia≥a, respectively.

Fig. 1. Location of investigation plots

Geophytes and therophytes typically have also arelatively large share in the flora. Their high number isdue to the special characteristics of riverside habitats.A higher proportion of therophytes relative to geophytesin the Bia≥a and Jasienica river valleys is linked to theprogressive habitat transformation. Native speciesdominate in the flora of the river valleys investigated,constituting 85% of the Jasienica, 79% of the So≥a and76% of the Bia≥a, respectively. A characteristic featureof the flora and vegetation is the participation of taxafrom the genus Reynoutria, which in the case of theBia≥a river have invaded the river banks on a massivescale. Ecological habitat groups are the indicator whichvaries most between the river valley segments analysed.On the So≥a, species from fertile deciduous forests(Querco-Fagetea) and scrub communities, riverside for-ests and thickets (Salicetea purpureae) as well asmeadow communities (Molinio-Arrhenatheretea) aredominant. On the Bia≥a and Jasienica, ruderal andtherophytic communities occur more frequently.

The composition and diversity of species in the herblayer of the floodplain forests selected for the studywas dependent on the extent to which the investigatedplot was covered by knotweed shoots. The largest num-ber of vascular plant species was recorded from plotswithout any knotweeds (max. 28). In plots with increasingcoverage of the invasive species (up to 40% and 41%-70%), a gradual reduction of the number of other spe-cies was noted. Sudden and extensive decreases in thenumber of herb layer species (minimum 3 species) andtheir coverage coefficients was seen in plots with a highproportion of knotweed (71%-100%) (Fig. 2; comparealso Table 1 and 2). The number of species recordedon the study plots was different depending on the sea-son of the vegetative period (in spring, this number waslower than in summer). In early spring, spring geophyteswere recorded on the study plots (e.g. Ficaria verna,Symphytum tuberosum, Anemone nemorosa, Dentariaglandulosa, Primula elatior). Their development is not

Fig. 2. Species richness in plots grouped by % cover of Reynoutriaduring different seasons of growth

Barbara Tokarska-Guzik et al. Changes in plant species richness in some riparian plant communities ...

Page 4: Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik

125

Spor

adic

spe

cies

: Q

uerc

o-F

aget

ea ñ

Ath

yriu

m f

ilix-

fem

ina

20r;

Sta

chys

syl

vatic

a 25

(+);

Mol

inio

-Arr

hena

ther

etea

ñ F

ilipe

ndul

a ul

mar

ia 4

r; H

erac

leum

sph

ondy

lium

4r;

San

guis

orba

offi

cina

lis 4

(+);

Tar

axac

um o

ffici

nale

25r

;V

eron

ica

cham

aedr

ys 2

5(+)

; Art

emis

iete

a vu

lgar

is ñ

Cir

sium

vul

gare

4r;

Sol

idag

o ca

nade

nsis

25(

+.2)

; Sol

idag

o gi

gant

ea 1

1(1.

2)

Tab

le 1

. Cha

nges

in ri

paria

n pl

ant c

omm

uniti

es h

erb

laye

r com

posi

tion

and

cove

r as

a re

sult

of c

olon

izat

ion

by ta

xa o

f Re

ynou

tria

ñ s

prin

g as

pect

Biodiv. Res. Conserv. 1-2: 123-130, 2006

Page 5: Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik

126

significantly influenced by the growth of knotweedshoots during this period (Fig. 3). These species haveenough time to go through their full life cycle. In thecase of this group of plants, a decrease in the coveragecoefficient can only be seen in plots with a massiveoccurrence of knotweeds (Table 1). In the summer season,

Fig. 4. Cover of species characteristic of the Salicetea purpurea community relative to cover of Reynoutria

Barbara Tokarska-Guzik et al. Changes in plant species richness in some riparian plant communities ...

Fig. 3. The average rate of longitudinal growth of Reynoutria shoots measured on a sample of 30 shoots selected randomly

Aegopodium podagraria and Petasites hybridus.Characteristic and differentiating species for the classSalicetea purpureae had their most abundant occurrencein plots without any knotweed and with small andmedium coverage by knotweed plants (Fig. 4). Lack oflight and saturation of the soil with rhizomes on plots

the rapid growth of shoots and especially the developmentof knotweed leaves leads to a conspicuous reduction inthe vegetation of those species for which the peak ofthe life cycle falls in the summer period. The developmentof knotweed plants begins, depending on seasonalcondition variations, in mid-April with the appearanceof shoot tips which develop from subterraneous rhizomes.In the period between end of April and mid-May, rapid(very sudden) longitudinal growth of the shoots occurs(initially between 6 and 12 centimetres per 4 days;subsequently even as much as 40 cm per 4 days; Fig. 3)

with simultaneous development of leaves. In the laterperiod within the growth season, the rate of longitudinalshoot growth is significantly slower (during the firsthalf of June, the shoots reach their maximal height);lateral shoots develop during this time.

On the study plots, the proportion of the mostfrequently recorded species has been compared withregard to the coefficient of coverage by Reynoutriashoots. The following species were included: Ficariaverna, Symphytum tuberosum, Urtica dioica, Rubuscaesius, Phalaris arundinacea, Calystegia sepium,

�������������� ���

������������������������� �

����������������������� �

���������������������� �

Page 6: Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik

127Biodiv. Res. Conserv. 1-2: 123-130, 2006

from group IV (70-100% of Reynoutria) has effectivelyeliminated most characteristic species for this class. Theonly exceptions were Urtica dioica (a rhizome perennial)and Calystegia sepium (a creeper).

In the study plots without any knotweed or with lowcover by knotweed plants, the presence of the charac-teristic species for most of the ecological habitat groupswas confirmed. In these plots, a high proportion of spe-cies from thicket, scrub and forest facies was found.Their number drops conspicuously with an increase inthe share of knotweed plants (group III plots). A highshare of Reynoutria (70-100%) in group IV plots led toa reduction in most ecological habitat groups.

The gradual elimination of herb layer species ismainly caused by the expansion of knotweeds in thehabitat investigated. Their sudden growth at the verybeginning of the vegetative season with a simultaneousdevelopment of large leaves (their size in R. sachalinensisis 15-43 cm long and 10-27 cm broad; after Fojcik &Tokarska-Guzik 2000) causes strong shading of the soiland elimination of other species. Lack of light availabilitynear the surface of the ground is additionally aggravatedby the characteristics zigzag pattern of the leafarrangement along the knotweed stem. Furthermore,knotweed rhizomes thrive in the soil to an extent whichprevents many other species from taking root, germinatingand going through the entire life cycle.

The similar results were published by Sukopp &Sukopp (1988), Schepker (1998) and Schl¸pmann (2000),stated that one of the most serious problems is thatReynoutria modifies or expels the autochthonous veg-etation by shadowing. Investigations conducted byAlberternst (1998) show that the number of plant spe-cies in vegetation transects with Fallopia were lowerthan in transects without the species.

The biological properties of representatives of genusReynoutria cause these plants to have a definite reductionimpact on the native components of plant communities(Tokarska-Guzik & Dajdok 2004; Tokarska-Guzik2005). The enormous potential of these species forspreading by vegetative means, combined with theirrapid growth and a capacity to adapt to diverse or evenextreme habitat conditions, often invading and holdinglarge areas, have resulted in this species earning thestatus of invasive plant and nuisance íweedí (Tokarska-Guzik 2005).

The characteristics influencing the rate and successof alien plant invasions listed by FaliÒski (2004) includehigh fertility and reproductive potential of eachindividual, persistence of seeds (propagules); seedsequipped with devices which allow rapid long-distancetransport; accelerated growth at the juvenile stage, early

maturation to reproduction; resistance to extremeenvironmental conditions; dioecy, polygamy, self-pollination; ability to compete with other species (dueto height, production of allelopathic substances etc.);phenotypical variability, ability to form mutants,polyploids, hybrids with related species. Taxa from thegenus Reynoutria have many of the above-mentionedfeatures. Above all, they belong to the group of plantswith the most efficient mode of vegetative reproductionby rhizome segmentation (Alberternst et al. 1995; Child1999; Fojcik & Tokarska-Guzik 2000). Potentially,a rhizome fragment which is only 1 cm in length and0.7 g in weight may generate a new plant (Brock et al.1995). Any transformations of the environment causedby natural factors (e.g. floods) as well as in particularby anthropogenic factors (earthworks, river regulation)favour the spreading of rhizomes (Pyöek & Prach 1993).Regulation of the Bia≥a river and Jasienica stream aswell as earthworks conducted in the So≥a river valleyhave contributed to a major extent to the colonisationof large areas within the study zone by Reynoutria spe-cies. The growth rate of knotweed plants is especiallyhigh at the beginning of the vegetative season: 43.1 mm/day (Child 1999); 80 mm/day (Seiger 1997). Furthermorethe soil which is thickly occupied by knotweed shoots(down to 7 m in depth) does not allow the germinationof many species. According to the classification of lifestrategies (Grime 1979) knotweeds represent a C-typestrategy, which decisively increases their invasive po-tential (Pyöek & Prach 1993). The following speciesare able to compete successfully with knotweeds evenif the plants are present at high coverage coefficient:Aegopodium podagraria, Urtica dioica (rhizomeperennials with similar mode of growth), balsams:Impatiens parviflora and I. glandulifera (alien annualswith an R-type life strategy and shallow root systems)as well as Calystegia sepium (a creeper).

4. Conclusions

The results of field studies have confirmed thehypothesis that representatives of genus Reynoutriaexert a reducing influence on the native components offloodplain forest herb layer. This impact is, however,different with regard to various life forms and ecologicalhabitat groups of plants. Increase of surface coverageby knotweeds does not significantly influence thedevelopment of early spring geophytes which are ableto go through their entire life cycle. In the case of thisgroup of plants, a decrease in coverage coefficient canonly be seen in plots with massive occurrence of knot-weeds.

Page 7: Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik

128 Barbara Tokarska-Guzik et al. Changes in plant species richness in some riparian plant communities ...

Tab

le 2

. Cha

nges

in r

ipar

ian

plan

t com

mun

ities

her

b la

yer

com

posi

tion

and

cove

r as

a r

esul

t of

colo

niza

tion

by ta

xa o

f R

eyno

utri

a ñ

late

sum

mer

asp

ect

Num

ber

of th

e re

levè

Day

Mon

thY

ear

Loc

ality

and

num

ber

of p

lot

Cov

er o

f tr

ee la

yer

a1 in

%C

over

of

tree

laye

r a2

in %

Cov

er o

f sh

rub

laye

r b

in %

Cov

er o

f he

rb la

yer

c1 in

%C

over

of

herb

laye

r c2

in %

Cov

er o

f m

oss

laye

r d

in %

Num

ber

of s

peci

es in

the

rele

vèC

over

of

Rey

nout

ria

in %

Rey

nout

ria

japo

nica

Rey

nout

ria

xboh

emic

aR

eyno

utri

a sa

chal

inen

sis

Salic

etea

pur

pure

aeSa

lix f

ragi

lisSa

lix f

ragi

lisSa

lix f

ragi

lisSa

lix a

lba

Salix

alb

aSa

lix a

lba

Salix

alb

aP

opul

us n

igra

Pop

ulus

alb

aSa

lix p

urpu

rea

Salix

vim

inal

isR

ubus

cae

sius

Cal

yste

gia

sepi

umP

hrag

mite

tea

Pha

lari

s ar

undi

nace

aP

hrag

mite

s au

stra

lisC

arex

gra

cilis

Aln

o-U

lmio

nA

lnus

glu

tinos

aA

lnus

glu

tinos

aA

lnus

glu

tinos

aA

lnus

inc

ana

Pad

us a

vium

Urt

ica

dioi

caP

etas

ites

hybr

idus

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

11

118

88

1212

1211

1111

118

1212

1211

118

1717

2020

2017

1717

1717

2020

20

0909

0909

0909

0909

0909

0909

0909

0909

0909

0909

0909

0909

0909

0909

0909

0909

03

0303

0303

0404

0403

0303

0303

0404

0403

0303

0303

0404

0403

0303

0303

0404

04

5S6S

9S10

S12

S1J

2J3J

3S4S

7S8S

9S4J

5J6J

1S2S

13S

3B7B

7J8J

9J1B

2B4B

5B6B

10J

11J

12J

7050

7060

5060

7050

1060

1060

7070

4060

7050

2010

-50

3030

30-

5-

--

5-

-

--

--

--

-30

-40

5-

--

--

-20

30-

--

-10

55

--

--

-

55

205

55

205

5030

1030

1010

5030

305

2010

-5

2010

105

5

55

100

9080

9090

9080

8090

7090

3060

6090

7080

9010

010

010

090

100

100

100

100

100

100

100

100

100

100

--

--

--

--

8080

9080

9090

8080

9010

090

3040

100

9030

1010

--

--

--

-

10-

-20

--

--

--

--

--

--

--

--

--

--

--

--

--

-

2015

1519

2221

1820

1518

2018

1617

2018

2216

1314

2018

1714

98

115

37

116

Rey

nout

ria

abse

nt -

Gro

up I

up to

40%

- G

roup

II

41 to

70%

- G

roup

III

71 to

100

% -

Gro

up I

V

..

..

..

..

3.5

3.4

3.5

2.2

2.3

..

.3.

54.

55.

55.

55.

5.

..

5.5

5.5

5.5

5.5

5.5

..

.II

Ic 1

..

..

..

..

..

..

..

..

..

..

..

..

2.4

.2.

32.

32.

42.

32.

3.

Ic 1

..

..

..

..

..

..

.2.

33.

53.

4.

..

..

4.5

4.5

4.5

..

..

.5.

55.

55.

5II

a 14.

42.

24.

43.

33.

32.

23.

32.

2.

3.3

.3.

33.

32.

2.

2.2

3.3

3.3

.+

.2.

2.

+2.

2.

..

..

..

IVa 2

..

..

..

..

3.3

.3.

3.

..

2.2

..

.1.

12.

2.

.1.

11.

1.

..

..

..

.b

.+

1.2

+2.

2.

1.2

+3.

32.

2.

1.1

..

2.2

1.1

1.1

1.1

..

.1.

1.

..

..

..

..

.a 1

..

2.2

2.2

1.1

2.2

2.2

1.1

..

.1.

12.

22.

2+

+2.

22.

2.

..

1.1

..

..

..

..

..

III

a 2.

..

..

..

..

.3.

31.

1.

..

..

.1.

1.

..

..

..

..

..

..

b.

..

.+

..

+.

..

.+

+.

.1.

1.

..

..

1.1

..

.+

..

.+

.c

..

.+

..

..

..

..

..

..

..

..

..

..

..

..

..

..

a 1+

2.2

..

2.2

..

.2.

21.

1+

2.2

..

..

2.2

.2.

2.

..

..

..

..

..

..

IIa 1

+2.

2.

.2.

2.

..

..

..

..

..

..

..

..

..

..

..

..

..

Ib

..

..

+.

..

2.2

.1.

12.

2.

..

..

..

..

..

..

..

..

..

.I

b.

..

..

..

..

.2.

2.

..

..

..

..

..

..

..

..

..

..

I+

.2.

32.

23.

32.

21.

23.

31.

2r

+2.

22.

32.

31.

2r

2.2

1.2

.r

.1.

2.

rr

..

..

..

.IV

+.2

1.2

1.2

r1.

2r

+1.

2+

.2+

.2+

.21.

21.

21.

2+

.2+

.2r

1.2

+.2

+.

1.2

+.2

+.

.+

..

++

.II

I

3.3

3.3

2.3

3.4

3.3

3.3

1.2

2.2

1.2

2.2

4.4

2.2

3.3

2.2

1.2

1.2

2.2

3.3

+.

+.2

1.2

++

r.

+.

..

r.

III

..

..

..

..

..

+.

..

..

..

..

..

..

..

..

..

..

I.

..

..

..

..

..

..

..

..

+.

..

..

..

..

..

..

.I

a 1.

..

..

..

..

..

..

..

..

..

..

..

..

.+

..

..

.II

a 2.

..

.+

++

1.1

..

..

1.1

.r

..

..

..

..

..

..

..

.+

.b

..

..

..

..

..

..

1.1

..

..

..

..

..

..

..

..

..

.a 2

..

..

..

..

..

..

2.2

..

..

..

..

..

..

..

..

..

.I

b+

..

..

r.

.2.

2.

.1.

1.

.2.

2.

2.2

.1.

2.

..

1.2

..

..

..

..

.II

3.3

2.2

3.3

2.2

1.2

2.2

3.3

1.2

3.2

3.3

1.2

3.3

2.2

2.2

3.2

3.3

2.2

3.3

2.2

+.2

+.2

3.3

2.2

+.2

1.2

++

.2r

.r

+.2

rV

2.3

3.3

1.2

+2.

3+

1.2

2.3

2.2

2.2

.2.

22.

22.

22.

22.

22.

33.

31.

2r

.1.

21.

2r

..

..

..

..

IV

Constancy

Page 8: Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik

129

Spor

adic

spe

cies

: Que

rco-

Fage

tea

ñ Eq

uise

tum

syl

vatic

um 3

r; T

ilia

plat

yphy

llos

a 1 20

(+);

Mol

inio

-Arr

hena

ther

etea

ñ E

quis

etum

pal

ustr

e 4r

; D

aucu

s ca

rota

4r;

Lys

imac

hia

vulg

aris

5(+

.2);

Lyt

hrum

sal

icar

ia11

(+);

Art

emis

iete

a vu

lgar

is ñ

Ech

inoc

ystis

loba

ta 5

r; S

olid

ago

giga

ntea

11(

+.2)

; F

allo

pia

dum

etor

um 1

7(+.

2); A

ccom

pyin

g sp

ecie

s ñ

Rob

inia

pse

udac

acia

16r

; P

olyg

onum

per

sica

ria

21(+

.2);

Che

nopo

dium

albu

m 2

1(+.

2); C

heno

podi

um p

olys

perm

um 2

1(+.

2); L

ycop

ersi

con

escu

lent

um 2

1(+.

2); S

onch

us a

rven

sis

21r;

Cer

astiu

m a

rven

se 2

1r

Biodiv. Res. Conserv. 1-2: 123-130, 2006

Lam

ium

mac

ulat

umH

umul

us l

upul

usM

yoso

ton

aqua

ticum

Cir

caea

lut

etia

naM

atte

ucia

str

uthi

opte

ris

Que

rco-

Fag

etea

Que

rcus

rob

urQ

uerc

us r

obur

Fra

xinu

s ex

cels

ior

Sam

bucu

s ni

gra

Sam

bucu

s ni

gra

Cor

nus

sang

uine

aE

uony

mus

eur

opae

aA

egop

odiu

m p

odag

rari

aA

thyr

ium

fili

x-fe

min

aM

olin

io-A

rrhe

nath

eret

eaP

oa t

rivi

alis

Vic

ia c

racc

aSy

mph

ytum

offi

cina

leA

nthr

iscu

s sy

lves

tris

Fili

pend

ula

ulm

aria

Myo

sotis

pal

ustr

isA

rtem

isie

tea

vulg

aris

Impa

tiens

gla

ndul

ifera

Impa

tiens

par

viflo

raA

rtem

isia

vul

gari

sC

irsi

um a

rven

seR

umex

obt

ustif

oliu

sSo

lidag

o ca

nade

nsis

Ast

er n

ovi-

belg

iiTa

nace

tum

vul

gare

Mel

andr

ium

alb

umR

udbe

ckia

lac

inia

taA

ccom

pyin

g sp

ecie

sG

aleo

psis

spe

cios

aP

oa a

nnua

Pol

ygon

um h

ydro

pipe

rO

xalis

fon

tana

Cap

sella

bur

sa-p

asto

ris

Con

yza

cana

dens

isE

chin

ochl

oa c

rus-

galli

Gal

inso

ga c

iliat

aP

lant

ago

maj

or

.r

rr

.r

rr

rr

..

..

rr

+.2

.r

r.

.r

r.

rr

..

..

rII

I1.

2.

..

.r

..

1.2

1.2

rr

..

+1.

2.

..

1.2

..

..

.+

.+

.2+

.2.

..

IIr

r.

..

.r

r.

..

..

..

..

..

.r

..

..

..

..

..

.I

..

..

..

..

..

..

.r

rr

..

..

.r

..

..

..

..

..

I.

..

..

..

..

..

..

..

.2.

3.

..

..

..

..

..

..

..

I

a 1

..

..

..

..

..

..

..

..

..

.1.

1.

..

+.

..

..

..

.I

b.

..

..

..

..

..

1.1

..

..

2.2

..

..

..

..

..

..

..

.a 1

..

..

..

..

..

..

..

..

..

..

..

..

..

+.

..

..

Ib

..

.+

..

.+

2.2

1.2

.+

2.2

2.2

2.2

1.2

..

1.2

+.

.1.

2+

+1.

1.

..

..

1.1

III

c.

..

..

..

..

..

..

..

..

..

..

..

..

.r

..

..

.b

+.

..

.+

..

.1.

2.

1.1

..

1.1

1.2

..

..

..

..

..

..

..

..

Ib

++

..

.r

..

..

..

..

..

..

..

..

..

..

..

..

..

I1.

21.

21.

2+

1.2

+1.

21.

23.

32.

3r

2.2

2.2

2.2

3.3

2.3

3.3

2.3

+.2

+.

2.3

+.2

++

+.2

1.2

r.

rr

+.2

V.

..

..

..

..

..

..

..

..

..

r.

..

.r

..

..

..

.I

+

.2.

rr

1.2

rr

1.2

.+

.21.

2.

+.2

+.2

..

r1.

2.

..

1.2

..

..

..

..

..

III

..

..

+.2

.+

.2.

..

+.2

.r

rr

..

..

..

..

..

..

..

..

.I

1.2

1.2

..

..

..

r.

r.

..

..

.1.

2.

..

..

..

..

..

..

.I

..

..

.r

..

..

..

..

..

r.

..

.r

r.

..

..

..

..

I.

..

r+

.2.

..

..

..

..

..

..

..

..

..

..

..

..

..

I.

.+

+.

..

..

..

..

..

..

..

..

..

..

..

..

..

.I

r

r2.

33.

41.

22.

2+

.2+

.2.

+.2

.r

2.3

+.2

++

++

2.3

..

++

+.

..

..

..

.IV

..

..

.2.

21.

21.

2.

..

..

1.2

++

.2.

..

..

++

.2+

.r

..

.r

rr

III

rr

..

r.

.r

.r

..

..

..

r+

.2.

.+

.2+

.2.

..

..

..

.r

.II

+.2

..

.+

..

+.

.1.

2.

..

..

..

.r

.r

.r

..

..

..

..

II+

.2.

..

..

.r

.r

..

..

..

.+

..

r+

..

..

..

..

..

I.

..

..

..

..

..

r.

..

..

..

.r

..

..

+.

..

+.

.I

..

.+

.2r

..

..

.1.

2.

..

..

..

..

..

..

..

..

..

..

I.

..

..

..

..

..

.r

r.

.r

..

..

..

..

..

..

..

.I

..

..

..

..

..

..

..

.r

..

..

r.

..

..

..

..

..

I.

r.

..

..

..

+.2

..

..

..

..

..

..

..

..

..

..

..

I

..

r.

r+

rr

..

r.

.r

r.

..

..

..

..

..

..

..

..

II.

..

..

..

..

..

..

..

.r

r.

.r

rr

..

..

..

..

.I

..

2.3

+.2

.+

.2+

..

..

..

..

..

..

..

..

..

..

..

..

.I

..

.r

..

.r

..

..

..

..

..

..

r.

..

..

..

..

..

I.

..

..

..

..

..

..

..

..

..

.+

.r

..

..

..

..

.I

.

..

..

.r

..

..

..

..

.r

..

..

..

..

..

..

..

.I

.

..

..

..

..

..

..

..

..

..

.+

.2.

..

..

..

..

+.2

.I

.

..

..

r.

..

..

..

..

..

..

.r

..

..

..

..

..

.I

..

..

..

..

..

..

..

..

..

..

r.

r.

..

..

..

..

I

Page 9: Barbara Tokarska-Guzik, Katarzyna Bzdęga, Dagmara Knapik

130 Barbara Tokarska-Guzik et al. Changes in plant species richness in some riparian plant communities ...

References

ALBERTERNST B. 1998. Biologie, ÷kologie, Verbreitung undKontrolle von Reynoutria-Sippen in Baden-W¸rttemberg.Schr.-R. des Inst. Landespflege der Albert Ludwigs-Universit‰t Freiburg, Culterra 23, 198 pp.

ALBERTERNST B., BAUER M., BOECKER R. & KONOLD W. 1995.Reynoutria species in Baden-Wuerttemberg: Keys forthe determination and their distribution along freshwaters. Floristische Rundbriefe 29: 113-124.

BAILEY J. P. 1999. The Japanese Knotweed invasion of Europe:the potential for further evolution in non-nativeregions. In: E. YANO, K. MATSUO, M. SHIYOMI & D.A. ANDOW (eds.). Biological invasions of ecosystemby pest and beneficial organisms, pp. 27-37. NationalInstitute of Agro-Environmental Sciences, Tsukuba.

BAILEY J. P., CHILD L. E. & WADE M. 1995. Assessment ofthe genetic variation and spread of British populationof Fallopia japonica and its hybrid Fallopia◊bohemica. In: P. PYäEK, K. PRACH, M. REJM¡NEK &M. WADE (eds.). Plant invasions ñ general aspectsand special problems, pp. 141-150. SPB AcademicPublishing, Amsterdam.

BAILEY J. P. & CONOLLY A. P. 2000. Prize-winners to pariahsñ A history of Japanase Knotweed s.l. (Polygonaceae)in the Brithish Isles. Watsonia 23: 93-110.

BROCK J. H., CHILD L. E., DE WAAL L. C. & WADE M. P.1995. The invasive nature of Fallopia japonica isenhanced by vegetative regeneration from stemtissues. In: P. PYäEK, K. PRACH, M. REJM¡NEK &M. WADE (eds.). Plant invasions ñ general aspectsand special problems, pp. 131-139. SPB AcademicPublishing, Amsterdam.

CHILD L. 1999. Comparative vegetative regeneration poten-tial of Asiatic Knotweeds: observations from green-house trials. In: I. CAMARADA & G. BRUNDU (eds.).Proceedings 5th International Conference on the Ecologyof Invasive Alien Plants. 37 pp. 13-16 October 1999.La Maddalena-Sardinia-Italy.

FALI—SKI J. B. 2004. Inwazje w úwiecie roúlin: mechanizmy,zagroøenia, projekt badaÒ. Phytocoenosis 16 (N.S.)Semin. Geobot. 10: 5-31.

FOJCIK B. & TOKARSKA-GUZIK B. 2000. Reynoutria ◊bohemica(Polygonaceae) ñ nowy takson we florze Polski. Fragm.Flor. Geobot. Polonica 7: 63-71.

GRIME J.P. 1979. Plant strategies and vegetation processes.222 pp. J. Wiley and Sons, Chichester.

PYäEK P. & PRACH K. 1993. Plant invasions and role of riparianhabitats: a comparison of four species alien to centralEurope. Journal of Biogeography 20: 413-420.

SCHEPKER H. 1998. Wahrnehmung, Ausbreitung und Bewertungvon Neophyten ñ Eine Analyse der problematischennichteinheimischen Pflanzenarten in Niedersachsen.264 pp. Diss. Universit‰t Hannover.

SCHL‹PMANN M. 2000. Zur Neophyten-Flora der Volmeaueim Hagener Stadtgebiet (Regarding Volmeaue neophyteflora in the municipal area of Hagen). Decheniana(Bonn) 153: 37-49.

SEIGER L. A. 1997. The status of Fallopia japonica (Reynoutriajaponica; Polygonum cuspidatum) in North America.In: J. H. BROCK, M. WADE, P. PYöEK & D. GREEN (eds.).Plant invasions: studies from North America and Euro-pe, pp. 95-102. Backhuys Publishers, Leiden.

SUKOPP H. & STARFINGER U. 1995. Reynoutria sachalinensisin Europe and in the Far East: a comparison of thespecies ecology in its native and adentive distributionrange. In: P. PYäEK, K. PRACH, M. REJM¡NEK &M. WADE (eds.). Plant invasions ñ general aspectsand special problems, pp. 151-159. SPB AcademicPublishing, Amsterdam.

SUKOPP H. & SUKOPP U. 1988. Reynoutria japonica Houtt. inJapan und in Europa. Verˆffentl. GeobotanischeInstitut. ETH, Stiftung R¸bel, Z¸rich 98: 354-372.

TOKARSKA-GUZIK B. 2001. Reynoutria sachalinensis (F.Schmidt) Nakai. In: A. ZAJ•C & M. ZAJ•C (eds.).Distribution atlas of vascular plants in Poland, p. 449.Edited by Laboratory of Computer Chorology, Instituteof Botany, Jagiellonian University, Cracow.

TOKARSKA-GUZIK B. 2002. ÑZielone Widmoî i ÑNatrÍtnyMongo≥î ñ czyli o przybyszach przybyszach i przy-b≥Ídach we florze. In: M. NAKONIECZNY & P. MIGULA

(eds.). Problemy úrodowiska i jego ochrony, 10, pp.101-127. Centrum StudiÛw nad Cz≥owiekiem i årodo-wiskiem, Uniwersytet ålπski, Katowice.

TOKARSKA-GUZIK B. 2005. The Establishment and Spread ofAlien Plant Species (Kenophytes) in the Flora of Poland.Prace Naukowe Uniwersytetu ålπskiego, 2372, 192pp. Wyd. Uniw. ålπskiego, Katowice.

TOKARSKA-GUZIK B. & DAJDOK Z. 2004. Roúliny obcego po-chodzenia ñ udzia≥ i rola w szacie roúlinnej Opol-szczyzny. In: A. NOWAK & K. SPA£EK (eds.). Ochronaszaty roúlinnej ålπska Opolskiego, pp. 277-303. Wyd.Uniw. Opolskiego, Opole.

ZAJ•C A. & ZAJ•C M. (eds.). 2001. Distribution atlas of vascularplants in Poland. xii+714 pp. Edited by Laboratory ofComputer Chorology, Institute of Botany, Jagiello-nian University, Cracow.

View publication statsView publication stats