45
0 College of Information & Communications The world goes wireless! Prepared by Sung Ho Cho Hanyang University Bandpass Modulation and Demodulation

Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

0

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Bandpass Modulation and Demodulation

Page 2: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

1

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Contents1. Digital Bandpass Modulation Techniques2. Detection of Signals in Gaussian Noise3. Coherent Detection4. Noncoherent Detection5. Complex Envelope6. Error Performance for Binary Systems7. M‐ary Signaling and Performance8. Symbol Error Probability for M‐ary Systems

Page 3: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

2

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

1. Digital Bandpass Modulation Techniques

Page 4: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

3

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Digital Modulation 

Definition:The process by which digital symbols are transformed into waveforms that are compatible with the characteristics of the channel.

In the baseband modulation: The waveforms normally take the form of shaped pulses.

In the bandpass modulation:The shaped pulses modulate a sinusoid, called a carrier wave.

We need to use a carrier for the radio transmission for the purpose of Reducing the size of the antenna.

The size of antenna depends on the wavelength λ and the application.Typically, the size of the antenna is λ/4, and λ = c/f (c = 3x108 m/s).For example, for a 900 MHz carrier, the equivalent antenna diameter would be about 8 cm.

Frequency‐division multiplexing

Page 5: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

4

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Digital Bandpass Modulation

Definition:The process by which an information signal is converted to a sinusoidal waveform

The general form of carrier wave:

Two Basic Categories:Coherent Detection: 

The receiver needs knowledge of carrier’s phase to detect the signals.The receiver is said to be phase locked to the incoming signal.

Noncoherent Detection: The receiver does not utilize such phase reference information.Phase estimation is not required.Reduced complexity, but increased error probability.

Time‐varying amplitude Carrier frequency Phase

Page 6: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

5

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Digital Modulations (1/2)

Phase Shift Keying (PSK):

Frequency Shift Keying (FSK):Orthogonal signaling

Amplitude Shift Keying (ASK):

Amplitude Phase Keying (APK):

QAM if arranged in a rectangular constellation.

E: Symbol energyT: Symbol time duration

Page 7: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

6

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Digital Modulations (2/2)

Page 8: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

7

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

2. Detection of Signals in Gaussian Noise

Page 9: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

8

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Detection of Signals in Gaussian Noise

Two‐dimensional signal space with arbitrary equal‐amplitude vectors s1 and s2

The minimum error decision rule is equivalent to choosing the signal class such that                               is minimized.

Decision Rule:• Whenever the received signal r is located in Region 1, choose signal s1.

• Otherwise, choose signal s2.

Page 10: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

9

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Correlation Receiver (1/3)

Received Signal:

Correlator Output:The correlator attempts to match the incoming received signal r(t) with each of the candidate prototype waveforms si(t), known a priori to the receiver.

Decision Rule:Choose the waveform si(t), that best matches or has the largest correlation with r(t).

Step 1: Compute a set of random variables formed at the output of the demodulator and sampled at time t = T such that

Step 2:

Page 11: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

10

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Correlation Receiver (2/3)Correlator receiver with reference signals {si(t)}:

A bank ofM correlators

Page 12: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

11

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Correlation Receiver (3/3)Correlator receiver with reference signals {ψj(t)}:

A bank of N correlators“Cost effective for MPSK”

Page 13: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

12

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Example: Binary Correlator Receiver (1/2)

Using a Single Correlator:

Using Two Correlators:

Test Statistics (Gaussian random variable)

Page 14: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

13

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Example: Binary Correlator Receiver (2/2)Binary Decision Threshold:

Likelihood of s1:

Likelihood of s2:

Minimum error criterion:

For equal energy, equally likely antipodal signal case:

Page 15: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

14

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

3. Coherent Detection

Page 16: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

15

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Coherent Detection of MPSK (1/2)For typical coherent M‐ary PSK (MPSK) systems,

Transmitted signal:

Two basis functions:

Representation of the MPSK signal in terms of the basis functions:

Received signal:

Page 17: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

16

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Coherent Detection of MPSK (2/2)

Demodulation for MPSK signals

In‐phase component

Quadrature component

Which region does it belong to?

Signal space and decision regions for a QPSK system

Page 18: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

17

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Coherent Detection of MFSK (1/2)

For typical coherent M‐ary FSK (MFSK) systems,

Transmitted signal:

N (=M) basis functions:

Coefficients of the basis functions:

Distance between any two signal vectors for a given E:

Page 19: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

18

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Coherent Detection of MFSK (2/2)

Partitioning the signal space for a 3‐ary FSK

Page 20: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

19

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

4. Noncoherent Detection

Page 21: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

20

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Detection of Differential PSK (DPSK)Basic operations:

Differential encoding of the message sequence is required at the transmitter.The information is carried by the difference in phase between two successive waveforms.The carrier phase of the previous signaling interval is used as a phase reference for demodulation. In order to send i‐th message (i = 1, 2, …, M), the present signal waveform must have its phase advanced by φi=2πi/M (rad) over the previous waveform.The detector calculates the coordinates of the incoming signal by correlating it with locally generated sin and cos waveforms.The detector then measures the angle φi between the currently received signal vector and the previously received signal vector.

Signal space for DPSK:

Page 22: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

21

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Example: Binary Differential PSKSequence of encoded bits c(k):

Binary message data sequence

2’s complement

Module‐2 addition

or

Differential encoding Differential detection

Recovery: ( ) ( ) ( )kckckm ⊕−= 1

Optimum detectionReference carrier

Page 23: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

22

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Noncoherent Detection of FSK (1/2)Noncoherent detection of FSK waveforms:

Energy detectorwithout exploiting phase measurementsRequires twice as many channel branches as the coherent detector

Example: Quadrature receiver for noncoherent BFSK: 

Quadrature receiver

Detection of signalwith frequency ω1

Detection of signalwith frequency ω2

Page 24: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

23

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Noncoherent Detection of FSK (2/2)Noncoherent detection of FSK using envelope detectors:

The detectors are matched to the signal envelopes.The phase of the carrier is of no importance in defining the envelope.Looks functionally simpler than the quadrature receiver, but more expensive due to the existence of the analog bandpass filters.

Page 25: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

24

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Tone Spacing for Noncoherent Orthogonal FSK (1/2)FSK is usually implemented as orthogonal signaling, but not all FSK signaling is orthogonal.

Tones f1 and f2 manifest orthogonality if, for a transmitted tone at f1, the sampled envelope of the receiver output filter tuned to f2 is zero (i.e., no crosstalk).

In order to ensure such orthogonality between tones in an FSK signaling set states that any pair of tones in the set must have a frequency separation that is a multiple of 1/T (Hz).

T = symbol duration

Page 26: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

25

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Tone Spacing for Noncoherent Orthogonal FSK (2/2)Analytical description of the FSK tone:

Fourier transform of si(t):

The spectra of two such adjacent tones: Tone 1 with frequency f1Tone 2 with frequency f2

Required total bandwidth:(M+1)/THz

Minimum tone spacing for noncoherent orthogonal FSK signaling

Required total bandwidth

1 21f fT

− =

Page 27: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

26

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Tone Spacing for Coherent Orthogonal FSKMinimum tone spacing for noncoherently detected orthogonal FSK signaling:

Minimum tone spacing for coherently detected orthogonal FSK signaling:

Coherently detected FSK can occupy less bandwidth than noncoherently detected FSK, while still retaining orthogonality.Coherent FSK is more bandwidth efficient.

1 21f fT

− =

1 21

2f f

T− =

Page 28: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

27

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

5. Complex Envelope

Page 29: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

28

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Complex Representation of Bandpass Signals

Any real bandpass waveform s(t) can be represented as

Complex envelope g(t):Lowpass signalMagnitude & phase responses:

Therefore, 

Page 30: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

29

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

6. Error Performance for Binary Systems

Page 31: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

30

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Bit Error Probability for Coherent BPSKAssumption: 

The signals are equally likely.Received signal: 

Antipodal signals of the BPSK:

Decision rule: 

Bit error probability, PB:

(where n(t) = AWGN)

1

2

2 00 2

b

b

a E

a EN

σ

=

= −

=

Page 32: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

31

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Bit Error Probability for Coherent Orthogonal BFSKBit error probability, PB:

Here,ρ = cos θ = time cross‐correlation between s1(t) and s2(t) θ =  angle between signal vectors s1 and s2For orthogonal BFSK,  θ = π/2, and  ρ = 0.

Therefore, 

Page 33: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

32

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Bit Error Probabilities for Selected Binary Modulations

Page 34: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

33

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

7. M‐ary Signaling and Performance

Page 35: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

34

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Ideal Probability of Bit Error Performance

Ideal PB versus Eb/N0 curve over AWGN:

The Shannon limit represents the threshold Eb/N0 below which reliable communication cannot be maintained.

Page 36: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

35

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

M‐ary SignalingBit error probability for coherently detected M‐ary orthogonal signaling

Bit error probability for coherently detected M‐ary phase signaling:

Page 37: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

36

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Vectorial View of MPSK Signaling

MPSK signal sets for M = 2, 4, 8, 16The error performance of MPSK signaling degrades as M increases.

Minimum noise vectorthat makes a symbol error

Page 38: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

37

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

QPSK Has the Same PB as BPSK.For a given PB, the general relationship between Eb/N0 and S/N:

S = average signal powerR = bit rate

The QPSK system can be characterized as two orthogonal BPSK channels.The QPSK bit stream is usually partitioned into an even and odd (I and Q) stream.Each new stream modulates an orthogonal component of the carrier at half the bit rate of the original stream. The I stream modulates the cos(ω0t) term, and the Q stream modulates the sin(ω0t) term.If the original QPSK vector has the magnitude of A, then each of the I and Q component vectors has the magnitude of 0.707A, and thus has half of the average signal power of the original QPSK signal.If the original QPSK waveform has a bit rate of R bits/s and an average power of Swatts, then the quadrature partitioning results in each of the BPSK waveforms having a bit rate of R/2 bits/s and an average power of S/2 watts.

Therefore,  PB for QPSK = PB for BPSK

Symbol error probability for QPSK ≠ Symbol error probability for BPSKSymbol error probability for QPSK ≠ Symbol error probability for BPSK

Page 39: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

38

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Vectorial View of MFSK Signaling

MFSK signal sets for M = 2, 3The signal from the orthogonal set is not particularly more vulnerable to a given noise vector as M increases.

Minimum noise vectorthat makes a symbol error

Page 40: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

39

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

PB for MFSK Improves as M Increases.For a given PB, the general relationship between Eb/N0 and S/N:

W = detection bandwidthR = bit rateT = symbol duration

(i.e., R = k times symbol rate 1/T)

For FSK signaling, W ≈ 1/T (symbol rate) or WT ≈ 1

When we use orthogonal signaling with symbols containing more bits, we need more power (i.e., more S/N), but the requirement per bit(i.e., Eb/N0) is reduced.

When we use orthogonal signaling with symbols containing more bits, we need more power (i.e., more S/N), but the requirement per bit(i.e., Eb/N0) is reduced.

Page 41: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

40

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

8. Symbol Error Probability for M‐ary Systems

Page 42: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

41

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Symbol Error Probability, PE(M), for MPSK

PE(M) for coherent MPSK:Es = Eb(log2M)M = 2k

For large Es/N0 (energy‐to‐noise ratio ),

PE(M) for differentially coherent M‐ary DPSK:

For large Es/N0,

Page 43: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

42

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

Symbol Error Probability, PE(M), for MFSK

Upper bound of PE(M) for coherent MFSK:

PE(M) for noncoherent M‐aryorthogonal signaling:

For k > 7, there is almost no difference in performance between the two systems.

Page 44: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

43

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

PB versus PE for Orthogonal Signals

For equally likely orthogonal message symbols, Selecting any one of the (M‐1) erroneous symbol is equally likely.PB is always less than or equal to PE.

Example: Suppose “0 1 1” is transmitted for k=3.There are 2k‐1 = 7 ways of making a symbol error. Just because a symbol error is made does notmean that all the bits within the symbol will be in error.There are 2k/2 = 2k‐1 = 4 ways of making a bit error.Therefore, PB/PE = 4/7.

Symbol errors are equally likely.

Symbol errors are equally likely.

Page 45: Bandpass Modulation and Demodulationpds7.egloos.com/pds/200805/13/35/04_Bandpass_Modulation_and... · 3 College of Information & Communications The world goes wireless! Prepared by

44

College of Information & Communications

The world goes wireless! Prepared by Sung Ho Cho

Hanyang University

PB versus PE for MPSK Signals

For equally likely MPSK message symbols, Each signal vector is not equi‐distant from all of the others.PB is always less than or equal to PE.

Example: Suppose “0 1 1” is transmitted for k=3.

Utilizing the Gray code, we haveFor BPSK, PE = PBFor QPSK, PE = 2PB

Symbol errors are not equally likely.

Symbol errors are not equally likely.

Adjacent symbols differ from one another in only one bit position.

Adjacent symbols differ from one another in only one bit position.

Binary code Gray code