bain model

Embed Size (px)

Citation preview

  • 8/12/2019 bain model

    1/21

    Three-Dimensional Brain Model

    Laboratory for Product and Process Design

    Director: Andreas A. Linninger

    LPPD-Project Report: 04/30/2004

    Autors: !aade"a#arat.R. $o%ayaji& !. 'enos& $.

    (ondapa))i& P. Royce*ic+ and A. A. Linninger

    Re"ision ,.0 - icago& ,0/0/2004

    Re"ision 2.0 - icago& ,2/,/200

    Re"ie*ers:

    ,

  • 8/12/2019 bain model

    2/21

    Contents

    $u%%ary ....................................................................................................................................3

    ,,.,.1ntroduction.........................................................................................................................4

    ,,.2.eo%etry Reconstruction too) !i%ics .0 .....................................................................

    ,,.3. !a5ing tree-di%ensiona) objects in !i%ics................................................................Po)y)ines fro% !i%ics...........................................................................................................6

    De"e)op%ent of tree-di%ensiona) geo%etry using a%bit 2.,................................................6

    ,,.$i%u)ation of tree-di%ensiona) brain geo%etry using 7)uent..........................................,07)uent 8 a finite "o)u%e so)"er ...........................................................................................,0

    9a"ier-$to5es 9-$ ;uations............................................................................................,,

    $i%p)e A)gorit%.................................................................................................................,,7inite

  • 8/12/2019 bain model

    3/21

    Summary

    =e purpose of tis project is to capture te brain geo%etry of indi"idua) patients *it ig

    accuracy. =e brain is co%posed of porous tissues gray and *ite %atter as *e)) as f)uidscoup)ed *it co%p)e> f)uid structure interactions cerebrospina) f)uid-

    "entricu)ar/subaracnoid space and "ascu)ar syste%. 1n order to represent te tree-

    di%ensiona) geo%etry of te nor%a) u%an brain& data a"e been co))ected fro% a ig po*er3 =es)a !R1%acine in co))aboration *it te Depart%ent of 9eurosurgery and Depart%ent

    of Radio)ogy& ?ni"ersity of icago. =e e>act di%ensions of te brain geo%etry *idt suc

    as "entricu)ar si+e and subaracnoida) space are needed to de"ise patient specific treat%entstrategies in "arious %edia) prob)e%s diseases.

    1n order to estab)is co%p)e> f)o* patterns of te cerebrospina) f)uid $7& static pressure

    fie)ds and to ana)y+e te f)uid transport troug porous surfaces in te brain parency%a& *esou)d re)y on nu%erica) si%u)ation tecni;ues. 1t is ard for !R ana)ysis to foresee te rea)

    tree di%ensiona) ydrodyna%ics and te conditions of te brain in nor%a) and under se"ere

    disorders. !R ana)ysis cannot predict infor%ation beforeand *itout rea) in-fie)d ana)ysis as

    against si%u)ation tecni;ues. 1t cannot incorporate defor%ation effects of so)id brain %atri>&due to te reso)ution of te i%ages generated @,%%. n te oter and& co%putationa) f)uid

    dyna%ics 7D can e)aborate tis situation by so)"ing te go"erning e;uation for te f)uidand te defor%ation of te soft tissue.

    ?nder te abo"e considerations& te !R i%ages a"e been inserted into a geo%etryreconstruction too) !i%ics .0 in order to represent te co%p)e> structure of te "entricu)ar-

    subaracnoid syste% and of te brain %atri>. =ese too)s can pro"ide us *it te accurate

    geo%etry of te *o)e organ and can re"ea) te intricacies of eac brain structure ta5ing into

    consideration te "ariation bet*een indi"idua) u%an subjects. =e tree-di%ensiona)geo%etry is transfor%ed into co%putationa) %eses needed for nu%erica) ana)ysis by 7D

    so)"ers based on te finite "o)u%e discreti+ation. =is *as acie"ed by inserting te

    continuous geo%etry tat is representati"e of a ea)ty brain in state-of-te-art grid generators)i5e a%bit 2.,& a pre-processor to te nu%erica) so)"er. =e %ode) *as ten si%u)ated using

    7)uent ., so)"er to study te $7 f)o* "e)ocity and static pressure profi)es using different

    boundary conditions.

    =e objecti"e of te present si%u)ations is to study te pysics of $7 f)o* into te

    "entricu)ar syste% and in te subaracnoida) space $A$ in a nor%a) situation and to obtain a

    better insigt into te pu)sati)e $7 f)o* patterns as a first step. An e>tension of tis *or5*ou)d be te ana)ysis of an abnor%a) situation e.g. Bydrocepa)us& tat arises due to $7

    "o)u%e bui)d-up in te brain parency%a and is one of %ost co%%on pato)ogica) situations.

    =e resu)ts obtained fro% tese si%u)ations are in good agree%ent *it !R1 %easure%entsfor $7 f)o*. !ore precise)y it *as obser"ed tat te igest "e)ocity occurs in te a;ueduct

    of $y)"ius. =e static pressure drop bet*een $A$ and te "ascu)ar syste% *as found to be

    463 Pa *en porous boundary conditions *ere enab)ed.

    3

  • 8/12/2019 bain model

    4/21

    11.1. Introduction

    =e brain is co%posed of porous tissues gray and *ite %atter as *e)) as f)uids "ascu)ar

    syste%& $7. =e so)id structure of te brain is ca))ed parency%a and is co%posed fro%neuron and g)ia) ce))s. #et*een and around tese so)id structures tere are co%part%ents

    *ere te $7 f)o*s "entricu)ar syste%/subaracnoid space. =e "entricu)ar syste% in te

    center of te brain consists of four %ain co%part%ents tat are connected to eac oter bytiny a;ueducts s%a)) canne)s. =e )atera) "entric)es are considered as te biggest ca%bers

    in te "entricu)ar syste%. =ese are connected troug te fora%ina of !onro *it te tird

    "entric)e. =e tird "entric)e is connected *it te fourt troug te a;uaduct of $y)"ius*ic is te narro*est of a)) canne)s 7igure ,,.,. 7ina))y te *o)e "entricu)ar syste% is

    connected *it te subaracnoid space troug te fora%ina of !agendie and Lus5e at te

    end of fourt "entric)e. =e subaracnoid space surrounds te *o)e parency%a and )ies into

    te space bet*een so)id brain and te craniu% bone C,&C2.

    Cerebrospinal Fluid: =e brain parency%a is

    ydrau)ica))y protected by te cerebrospina) f)uid

    $7& *ic is produced in a pu)sating %anner atte coroids p)e>us in te center of te brain. =e

    p)e>us is for%ed as a resu)t of info)ding of teependy%a into te ca"ities by b)ood "esse)s of te

    pia %atter. =e rate of $7 for%ation "aries

    bet*een 0.3 to 0. %)/%in C3 at te p)e>us andcircu)ates fro% te "entricu)ar syste% to te

    subaracnoid space in te parency%a 7igure

    ,,.,.

    Functions of CSF: $7 is a bio%edica) f)uid& a *atery so)ution containing ions and oter

    species and ser"es as an intracerebra) transport %ediu% for nutrients. 1t as se"era) functionssuc as pysica) transport& e>cretory function& transport of bio%edica) e)e%ents& buffering of

    e>trace))u)ar f)uids and participation in brain signa)ing C,. $ince $7 is responsib)e for

    intracerebra) species transport& te f)uid is a)so usefu) for c)inica) researc.

    =e %ost pro%pting researc

    is te $7 f)o* dyna%ics and

    is responsib)e for a nu%ber ofbrain disorders& te for%ation

    of an ede%a C4& C. =e

    5no*)edge of $7 f)o*dyna%ics in a nor%a) brain

    *ou)d )ay foundation for

    researc in predictingabnor%a) situations C4& C

    and to propose appropriate

    7igure ,,.,. #rain Pysio)ogy

    7igure ,,.2. !R1 of te u%an brain )eft.

  • 8/12/2019 bain model

    5/21

    %etods for treat%ent. 1ntracrania) pressure 1P rises if production rate of $7 e>ceeds

    absorption rate. =is occurs if $7 is o"erproduced& resistance to $7 f)o* is increased& or

    "enous sinus pressure is increased. $7 production fa))s as 1P rises. Eene"er an i%ba)ancearises bet*een te $7 production and absorption rate& an Fede%aG tat is an increase in brain

    "o)u%e resu)ting fro% increased sodiu% and *ater content is for%ed. =ere are se"era) types

    of ede%a:

    Vasogenic: Arises due to )oca) disruption of te b)ood brain barrier ###. Hydrocephalic: ccurs *en tere is an accu%u)ation of e>trace))u)ar f)uid )eading to

    Bydrocepa)us.

    Cytotoxic: Arises due to ce)) s*e))ing a)ong *it reduction in te f)uid "o)u%e in tee>trace))u)ar space $.

    Hydrocephalus:Bydrocepa)us can be defined broad)y as a disturbance of for%ation& f)o*& or

    absorption of cerebrospina) f)uid $7 tat )eads to an increase in te "o)u%e occupied by

    tis f)uid in te centra) ner"ous syste% 9$. =is condition a)so cou)d be ter%ed a

    ydrodyna%ic disorder of $7. 1n ydrocepa)ic ci)dren& te rate of $7 for%ation isnor%a) or s)igt)y reduced& accounting to 0.30 %)/%in C2& C. =ere are se"era) types of

    Bydrocepa)us and it *ou)d be appropriate to reference te%:

    Communicating hydrocephalus: =is occurs *en fu)) co%%unication e>ists bet*een te"entric)es and subaracnoid space. 1t is caused by o"erproduction of $7 rare)y& defecti"e

    absorption of $7 %ost often& or "enous drainage insufficiency occasiona))y.

    Noncommunicating hydrocephalus: =is occurs *en $7 f)o* is obstructed *itin te

    "entricu)ar syste% or in its out)ets to te subaracnoid space& resu)ting in"entricu)ar/subaracnoid space non co%%unication.

    Obstructive hydrocephalus:=is resu)ts fro% obstruction of te f)o* of $7 intra"entricu)ar

    or e>tra"entricu)ar. !ost ydrocepa)us is obstructi"e& and te ter% is used to contrast te

    ydrocepa)us caused by o"erproduction of $7.

    Arrested hydrocephalus: =is is defined as stabi)i+ation of 5no*n "entricu)ar en)arge%ent&probab)y secondary to co%pensatory %ecanis%s. =ese patients %ay deco%pensate&

    especia))y fo))o*ing %inor ead injuries.

    $7 osci))atory f)o* resu)ts fro% cardiac pu)sations C4. =e pattern and ti%ing of $7

    %otion as been studied e>tensi"e)y *it !R1 tecni;ues CH. 9e"erte)ess& te causes and

    %ecanica) princip)es under)ying intracrania) dyna%ics are contro"ersia). $o%e autors )in5te $7 f)o* to te brain %otion. =is ypotesis is supported by carefu) %easure%ents of

    brain %otion using 19 pase-contrast !R1 CH. A co%peting "ie* attributes $7 %otion to

    a trans%ission of te arteria) pressure in te coroid p)e>us C& C6. =e si%u)ations in tis

    *or5 are based on te assu%ptions tat te pu)sati)e %otion of te $7 is due to tepu)sations of te coroid p)e>us& neg)ecting te %o"e%ent of te brain tissue surrounding te

    "entricu)ar syste%.

  • 8/12/2019 bain model

    6/21

    11.2. Geometry Reconstruction tool (Mimics 8.!

    !i%ics is a po*erfu) progra% designed to create co%p)e> geo%etries fro% standard !R1

    i%ages 7igure ,,.2. An e>a%p)e of a tree di%ensiona) %ode) of te cerebrospina) f)uidsyste% %ade using !i%ics is so*n in 7igure ,,.3. !R1 s)ices of a ea)ty u%an subject

    *ere i%ported into !i%ics. $)ices *ere disp)ayed of te fo))o*ing cuts:

    orona)superior to inferior $agita) )eft to rigt A>ia)anterior to posterior

    =e s)ices *ere co)ored %anua))y to a))o* te progra% to distinguis bet*een different parts

    of te brain. =e resu)ting infor%ation *as e>ported as tree di%ensiona) %ode)s and

    po)y)ines. =e fo))o*ing sections of te brain *ere %ode)ed:

    7igure ,,.3. 3-D %ode) of te "entricu)ar syste% anda)f of te subaracnoid space.

  • 8/12/2019 bain model

    7/21

    7igure ,,.4. 3-D reconstruction of te $7

    pat*ays: "entricu)ar/subaracnoid syste%.

    7igure ,,.. 3-D reconstruction of te u%an brain:

    gray and *ite %atter.

    H

  • 8/12/2019 bain model

    8/21

    11.". Ma#in$ three-dimensional o%&ects in Mimics

    ac object in !i%ics %ust be dra*n onto te s)ices tat te object spans. 7or eac object& a

    separate I)ayerJ %as5 %ust be used *it a different co)or fro% oter )ayers& 7igure ,,..

    Dra*ing on a )ayer %ay eiter be doneauto%atica))y or %anua))y by specifying a range

    of sades fro% te !R i%age to be co)ored. =e

    I=reso)dingJ button is used to specify terange of sades to be incorporated into a %as5

    by se)ecting te upper and )o*er )i%its of

    dar5ness in greysca)e. A)) dra*ings for tedifferent "entricu)ar sections *ere dra*n

    auto%atica))y. !anua) dra*ing *as ten

    re;uired since !i%ics *as not ab)e todifferentiate in so%e regions specific areas of te

    brain.

    7or te brain parency%a - due to its undu)ating nature - eac s)ice fro% te !R i%ages *asco)ored in by and using a co%puter %ouse& and a set of too)s *itin %i%ics. =e too)s

    inc)ude a brus *it "ariab)e si+e and sape& and a )asso *ic auto%atica))y fi))s in te area

    *itin a dra*n border. =ese too)s can be used to dra* and erase fro% te se)ected )ayers. =ocon"ert te %anua) dra*ings into a 3-D %ode)& te )ayer %ust be c)ic5ed fro% te I!as5sJ

    too)bar and te Ia)cu)ate 3DJ button %ust be se)ected. =ere are se"era) options to consider

    regarding te reso)ution and te s%ooting of te tree di%ensiona) object. bjects *it aig reso)ution and )o* s%ooting *i)) appear "ery jagged and %ay be discontinuous. n te

    oter and& infor%ation is )ost con"erting te dra*ings into )o* reso)ution and ig)y

    s%ooted objects. =ere is no ob"ious coice for te best co%bination of reso)ution ands%ooting& but te user as to try for te best fit.

    nce te 3-D objects a"e been created& tey can be e>ported for use *it oter progra%s as

    I.st)J $=L fi)es using te $=LK !odu)e. =o e>tract an $=L fi)e& first se)ect te I$=LKJbutton fro% te I!as5sJ too)bar& and ten coose te source for te $=L. =e $=L fi)e can be

    %ade direct)y fro% a %as5& or fro% an

    e>isting 3-D object. =e 3-D objects *ereused as te source of te $=L fi)es. After

    %a5ing te $=L fi)es& tey can be i%ported

    bac5 into %i%ics and disp)ayed in te 3D

    "ie*& 7igure ,,.H.

    7igure ,,..=ypica) "ie* *itin !i%ics.

    7igure ,,.H.$=L fi)e of te

    #rain $te%.

    7igure ,,..Po)y)ines of

    te #rain $te% in I3DJ

    "ie*.

  • 8/12/2019 bain model

    9/21

    'olylines rom Mimics

    ontours of te specific brain sections *ere e>tracted fro% te sagita) s)ices by se)ecting te

    desired I)ayerJ and coosing te Ia)c Po)yJ option. A set of )ines ten appeared on tescreen. #efore te )ines cou)d be e>tracted tey ad to be first se)ected by dragging te

    co%puter %ouse pointer o"er any part of te cur"e. =e po)y)ines cou)d ten be e>ported as

    I.igsJ fi)es by se)ecting te I1ges >portJ button 7igure ,,.. $e"era) options e>ist *enfitting te po)y)ines to te dra*ings& and again tere is no best *ay to fit te po)y)ines.

    De)elo*ment o three-dimensional $eometry usin$ Gam%it 2.1

    =e ne>t step is to introduce te $=L or 1$ fi)es into progra%s tat can gi"e to te user tediscreti+ation of te entire geo%etry. =e process of discreti+ation in"o)"es transfor%ing

    continuous infor%ation to discrete ones. A progra% tat is capab)e of acie"ing tis is a%bit

    C,,. a%bit 2., is a *e)) 5no*n pre-processor grid generator to 7)uent& te so)"er and isused to reconstruct geo%etry gi"en by !i%ics to 7)uent understandab)e for%& ca))ed te %es

    fi)e. btaining an ana)ytica) so)ution of te e;uations go"erning te $7 f)o* is i%possib)e.

    =e on)y *ay to so)"e tese set of partia) differentia) e;uations PDs& ca))ed 9a"ier-$to5es&

    is to di"ide te *o)e do%ain into subdo%ains. ac subdo%ain is ca))ed a FgridG or F%esG.

    =e syste% is no* so)"ed by app)ying te discreti+ed 9a"ier-$to5es e;uations in eac grid byappropriate se)ection of te boundary conditions. =e discreti+ation sce%e is discussed in

    9a"ier-$to5es e;uations section.

    7igure ,,.6. a%bit 2., 1nterface.

    6

  • 8/12/2019 bain model

    10/21

    7igure ,,.6& so*s te

    interface of te grid

    generator tat *as used.7igure ,,.,0& so*s te

    tree- di%ensiona)

    geo%etry of te"entricu)ar syste% and

    $A$ as reconstructed

    fro% !i%ics and afterte introduction in te

    post processor

    a%bit.

    =e 1$ fi)es obtained& need user *or5 in order to produce te 3-D geo%etry. nce teF"o)u%eG as been created by connecting FedgesG and FfacesG te *o)e 3-D geo%etry needsto be di"ided into grids. $pecifying te boundary conditions co%p)ete te pre-processing step.

    =e boundary conditions specified for te $7 f)o* in te brain as *e)) as te %esed

    geo%etry are so*n in 7igure ,,.,,.=e grid is constructed of tetraedra) e)e%ents and as640 tree-di%ensiona) finite "o)u%e e)e%ents and ,HH, nodes.

    Inflow boundaryconditions

    Symmetry boundaryconditions

    Outflow boundary

    condition (porous medium)

    Inflow boundaryconditions

    Symmetry boundaryconditions

    Outflow boundary

    condition (porous medium)

    7igure ,,.,,. #oundary conditions and %esed geo%etry of te "entricu)ar syste% and $A$

    11.+ Simulation o three-dimensional %rain $eometry usin$ ,luent

    ,luent a inite )olume sol)er

    7)uent is a nu%erica) so)"er based on finite "o)u%es approac tat so)"es f)uid f)o* prob)e%s

    under a gi"en situation by app)ying te go"erning e;uations of f)uid f)o* C,,. =e go"erninge;uations are described by continuity conser"ation of %ass and 9a"ier-$to5es e;uations

    conser"ation of %o%entu% and tus 7)uent app)ies tese e;uations to eac %es of te

    7igure ,,.,0. =ree di%ensiona) geo%etry of te "entricu)ar and

    $A$ of a nor%a) u%an brain fro% a%bit 2.,

    ,0

  • 8/12/2019 bain model

    11/21

    geo%etry. =e post-processor for data ana)ysis& based on te penL tecno)ogy is in-bui)t in

    7)uent and ta5es care of te "isua)i+ation of output "ariab)es. 7)uent is using te $1!PL

    a)gorit% de"e)oped by Patan5ar and $pa)ding in order to so)"e te syste% of e;uations C,2.

    a)ier-Sto#es (-S! /0uations

    =e 9a"ier-$to5es e;uations are te %ate%atica) state%ent of 9e*tonJs second )a* of%otion for "iscous 9e*tonian f)uids. =ey represent tat te su% of a)) forces acting on f)uid

    e)e%ent e;ua)s te %ass ti%es te acce)eration as app)ied to te f)uid e)e%ent for *ic te

    sear stress is )inear)y re)ated to te cange of te sear strain C,3.

    > > > > > > >

    > y +

    y y y y y y y

    > y +

    + + + + +

    > y +

    2 2 2

    2 2 2

    2 2 2

    2 2 2

    2 2

    2

    " " " " " " "K" " "

    t > y + > y +

    " " " " " " "K" " "

    t > y + > y +

    " " " " "K" " "t > y + >

    gx

    x

    gy

    y

    + + = + + +

    + + = + + +

    + + = +

    + +2

    2 2

    " "

    y +

    g!!

    + +

    ,,.

    ,

    =e )eft and side is te %ass per unit "o)u%e ti%es acce)eration of te f)uid. =e )oca)acce)eration is due to te unsteadiness of f)o* and te con"ecti"e acce)eration is a resu)t of

    spatia) "ariation of te "e)ocity fie)d. =e rigt and side represents te net force per unit

    "o)u%e acting on te f)uid. =ese forces are a resu)t of pressure& "iscosity and te forces o"er

    unit "o)u%e tat co%es fro% an e>terna) force fie)d acting trougout te f)uid e)e%ent e.g.gra"itationa) forces. =ese e;uations are non-)inear PDs and are genera))y "ery difficu)t to

    so)"e ana)ytica))y. Bo*e"er& by using %odern ig speed co%puters& ad"anced discreti+ation

    sce%es and state-of-te-art so)"ers it is possib)e to obtain nu%erica) so)utions to 9-$

    e;uations. =o do so& te continuous f)o* fie)d "e)ocity or pressure as a function of space andti%e is described in ter%s of discrete "a)ues at prescribed )ocations rater tan continuous

    "a)ues. #y tis tecni;ue& te differentia) e;uations are rep)aced by a set of a)gebraice;uations tat a co%puter can understand.

    Sim*le l$orithm

    $1!PL stands for $e%i 1%p)icit !etod for Pressure Lin5ed ;uations. =is a)gorit% is an

    iterati"e tecni;ue tat is used to so)"e te 9a"ier-$to5es e;uations.

    2, . u

    u u p u

    t

    + = +

    ,,.

    2

    0u v "

    t x y !

    + + + =

    ;uation 3 is te continuity e;uation and spea5s about te )a* of conser"ation of

    %ass and cou)d con"enient)y be represented by ;uation 4.

    ,,.

    3

    . 0u = ,,.4

    ,,

  • 8/12/2019 bain model

    12/21

    =e $1!PL a)gorit% is %ost)y suited to steady state prob)e%s and cou)d a)so be e>tendedto so)"e unsteady prob)e%s. =e a)gorit% begins by so)"ing te %o%entu% e;uations for a

    guess "a)ue of pressure p#. =e resu)ting "e)ocities are represented as u# and v# and "# in

    tree di%ensions and are ca))ed Istar velocitiesJ as tey are based on a guess "a)ue of

    pressureC,,&C,2. 1n addition& star "e)ocities are not true "e)ocities. =e %etod ten see5s tofind corrections to te guessed pressure. nce te pressure corrections are found& te pressure

    and "e)ocities are updated and te pressure is used for initia) guess "a)ue for ne>t iteration.

    =is iterati"e procedure ta5es p)ace unti) te true so)ution is obtained at te point ofcon"ergence. At tis point& te residua) error bet*een te true so)ution and te appro>i%ate

    so)ution is a)%ost +ero *it a difference gi"en by te to)erance "a)ue tat is usua))y in te

    order of ,0-,0. A reasonab)e re;uire%ent for con"ergence is satisfy te ;uation ,,.3.

    ,inite olume discreti3ation scheme

    A "ery ad"anced %etod for tediscreti+ation of te 9-$ e;uations is te

    7inite

  • 8/12/2019 bain model

    13/21

    du

    dx (

    =

    ,,.

    ;uation,,.is te one-di%ensiona)-DarcyJs La*. =e "ariab)es and para%eters in"o)"ed

    are )isted in =ab)e ,,.,.

    aria%le 'hysical Descri*tion ,ield 4nits

    static pressure CPa

    d

    dx

    static pressure drop across te %ediu% CPa

    ) f)uid "iscosity CPa sec( %ediu% per%eabi)ity %ateria) property C%2

    u fi)tration f)uid "e)ocity C%/sec

    =ab)e ,,.,.tended to anisotropic %ediu% too& constant f)uid density& non-

    defor%ab)e so)id %atri>& f)o* at )o* Reyno)ds nu%bers and for a"erage porosity up to 0C,H.

    on-Darcy eects

    =e )inear re)ationsip bet*een pressure drop and "e)ocity during f)uid f)o* troug porous

    %edia is affected by f)o* rate C,H& C,& C,6. At ig f)o* rates& te pressure drop predictedby DarcyJs )a* beco%es in"a)id and tis peno%enon is 5no*n as non-Darcy f)o*

    peno%enon. 1n suc cases& te f)uid "iscosity is )o* and te f)uid "e)ocity is ig. =erefore&

    inertia) effects cannot be neg)ected& )eading to te addition of non)inear ter%s to te Darcye;uation. =e %ost co%%on)y accepted corre)ation is 7orcei%erMs )a*& *ic introduces a

    second order ter% for "e)ocity as *e)) as a ne* roc5 property& te 7orcei%er coefficient or

    te inertia) para%eter or te non-Darcy f)o* coefficient C,6.

    7or an isotropic porous %edia& 7orcei%erJs )a* is:2uu

    (dx

    d

    += ,,.

    1n %any reser"oir roc5s& te per%eabi)ity depends on direction. ften& te "ertica)

    per%eabi)ity is %uc )ess tan te ori+onta) per%eabi)ity because of sa)e )ayers or oter

    sedi%entary features C,H& C,. =e per%eabi)ity %ay "ary ori+onta))y because of stresses&

    ,3

  • 8/12/2019 bain model

    14/21

    fracturing& or depositiona) processes. =e resu)t is tat one %ust consider different

    per%eabi)ities for f)o*s in tese different directions.

    1n a tree di%ensiona) syste%& te co%ponents of "e)ocity are:

    +

    +

    =

    +

    +

    =

    +

    +

    =

    +

    p5

    y

    p5

    >

    p5

    N

    ,u

    +

    p5

    y

    p5

    >

    p5

    N

    ,u

    +

    p5y

    p5>

    p5N

    ,u

    +++y+>+

    y+yyy>y

    >+>y>>>

    ,,.

    H

    1n anisotropic syste%s& per%eabi)ity is a tensor gi"en by te re)ation 5O

    +++y+>

    y+yyy>

    >+>y>>

    555

    555

    555

    Momentum /0uations or 'orous Media

    Porous %edia are %ode)ed by te addition of a %o%entu% source ter% to te standard f)uid

    f)o* e;uations. =e source ter% is co%posed of t*o parts: a "iscous )oss ter% Darcy& te terigt-and side of ;uation ,,.& and an inertia) )oss ter% te second ter% on te rigt-and

    side of ;uation ,,..

    3 3

    , ,

    ,

    2

    i i* * i* mag *

    * *

    S + v C v v

    = =

    = +

    ,,.

    *ere iS is te source ter% for te ith >& y& + %o%entu% e;uation& + and Care prescribed

    %atrices C,,. =is %o%entu% sin5 contributes to te pressure gradient in te porous ce))&

    creating a pressure drop tat is proportiona) to te f)uid "e)ocity or "e)ocity s;uared in te

    ce)).

    =o reco"er te case of si%p)e o%ogeneous porous %edia

    2

    ,

    2i i mag iS v C v v

    = +

    ,,.

    6

    *ere is te per%eabi)ity and 2C is te inertia) resistance factor& si%p)y specify + and

    Cas diagona) %atrices *it,

    and 2C & respecti"e)y& on te diagona)s and +ero for te

    oter e)e%ents.

    ,4

  • 8/12/2019 bain model

    15/21

    11.+ Results and Discussion

    =e crania) ca"ity is a c)osed space and tere e>ists e;ui)ibriu% bet*een te rate of for%ationand te rate of $7 absorption. !ost of te $7 absorption ta5es p)ace in te aracnoid "i))i

    tat is a eterogeneous anisotropic porous %ediu%. 1n case 2& *e i%pose porous boundary

    conditions to si%u)ate $7 absorption troug te aracnoid "i))i. =is $7 absorptionresistance to f)uid f)o* i%poses a pressure drop bet*een $7 and te "enous pressure tat

    is about 00 Pa in te u%an brain.

    Ee i%pose a pu)sating in)et boundary

    condition for $7 "e)ocity at te )eft& rigt&

    tird and fourt "entric)es *it user defined

    functions ?D7 see 7igure ,,.,,. ?D7pro"ides te abi)ity to prescribe a ti%e

    dependent boundary condition in te so)"er

    7)uent. =is boundary condition gi"es to

    te $7 te abi)ity to f)o* troug te"entric)es to te subaracnoid space troug

    te tird and fourt "entric)e *it apu)sating %anner si%i)ar to te *ay tat

    $7 f)o*s in te !R i%ages. =e pu)sati)e

    nature of $7 f)o* is ta5en care of by tesine *a"e input defined in ?D7. $7 f)o*s

    out of te subaracnoid space troug te

    porous %ediu% and te resistance to f)o*

    depends on te per%eabi)ity of te %ediu%.=is obstruction causes an additiona) pressure drop for f)o*. Ee a"e ta5en care to i%pose a

    pressure drop of 463 Pa by carefu))y defining te "a)ues for porous %ediu% properties suc as

    porosity& per%eabi)ity and inertia) factor in 7)uent.

    =e properties of te porous %ediu% deter%ine te conducti"ity of te f)uid across its )engt.Ee a"e %ode)ed te brain as:

    i. Bo%ogenous %ediu% in *ic te %ediu% properties suc as porosity is sa%e

    e"ery*ereii. 1sotropic *erein te per%eabi)ity is sa%e in a)) direction >& y& + in te preset study

    =e "a)ues for te properties are so*n in te #oundary conditions pane) =ab)e ,,.2 and7igure ,,.,3. =e

    in"erse of per%eabi)ity is ca))ed as te "iscous resistance and 7)uent uses tis ter% forca)cu)ations.

    7igure ,,.,3. Porous %edia boundary

    conditions enab)ed in 7)uent .,

    Geometric 'ro*erty aria%le aluePer%eabi)ity 5 3.3-,2 %2

    Porosity 0.4

    =ab)e ,,.2.

  • 8/12/2019 bain model

    16/21

    Case 15 'resence o 'orous medium as a re-a%sor%ance Boundary condition

    Ee *i)) present resu)ts concerning te contours of "e)ocity %agnitude& y-"e)ocity and static

    pressure. 1t is i%portant to "isua)i+e te y-"e)ocity tan te > and +-"e)ocities because itJs te

    basic $7 f)o* direction and gi"es infor%ation for te re"ersa) in "arious co%part%ents of

    te brain. =e input sine *a"es tat i%part te pu)sati)e nature to te f)o* are so*n in 7igure

    ,,.,4. 1n tis grap *e represent te di)ations of te coroid p)e>us in te )atera)

  • 8/12/2019 bain model

    17/21

    7igure ,,.,H.

  • 8/12/2019 bain model

    18/21

    As referenced pre"ious)y tere are so%e areas *ere f)o* recircu)ation occurs at eac cardiac

    cyc)e and eddy %otion is obser"ed in tese regions. =is %otion is ta5ing p)ace at te end of

    eac cardiac cyc)e and at te beginning of te ne>t one fro% ti%e 0.6 to ,.2 sec and atspecific )ocations. 7or "isua)i+ing tese areas *e *i)) use te "e)ocity "ectors co)ored by te

    y-"e)ocity since tis is te basic $7 f)o* direction.

    7igure ,,.20. Areas of bac5f)o* 7igure ,,.2,. #ac5f)o* areas in te "entricu)ar

    syste%

    1n 7igure ,,.20*e i))ustrate *it te b)ac5 arro*s te areas *ere bac5f)o* occurs. Ee can

    see tat te recircu)ation ta5es p)ace inside te fora%ina& a;ueduct of $y)"ius and in a s%a))

    region near te re-absorption area. Eit red *e "isua)i+e te positi"e and *it b)ue tenegati"e "e)ocity in te do%ain. 1n

    7igure ,,.2, *e +oo% in te

    "entricu)ar syste% for a better )oo5 of

    te bac5 f)o* in te fora%ina of!onroe and in te a;ueduct of

    $y)"ius. =e %a>i%u% "e)ocity in

    tese regions is 3.0,0-4%/sec for teend of cardiac cyc)e *ere te f)uid

    dece)erates and fina))y re"erses.

    7ina))y& in 7igure ,,.22*e i))ustratete bac5f)o* in te s%a)) region near

    te re-absorption area. 1n tis figure

    *e can see b)ue negati"e "e)ocityand green positi"e "e)ocity arro*s

    describing a recircu)ation of te f)o*in te specific )ocation.

    11.6 Conclusions

    =e report introduces a co%putationa) f)uid %ecanics %ode) of te cerebrospina) f)uid

    f)o* inside te brain. =e e;uations of %otion for $7 f)o* in te "entricu)ar and

    subaracnoida) pat*ays as *e)) as $7 seepage inside te porous brain parency%a *ere

    7igure ,,.22. Recircu)ation near te re-absorptionarea

    ,

  • 8/12/2019 bain model

    19/21

    so)"ed. =e boundary conditions for te co%p)e> brain geo%etry *ere for%u)ated. =e

    co%putations used patient-specific co%putationa) %eses obtained by i%age reconstruction

    too)s. =e syste%atic procedure for conducting a detai)ed 7D f)o* ana)ysis for indi"idua)patients based on !R1 data is reported for te first ti%e. =e si%u)ations proposed in tis

    *or5 accounts for indi"idua) differences in geo%etric features as *e)) as f)o* and pressure

    patters in eac patient. $tate-of-te-art ine pase contrast !R1 tecni;ues pro"ided accurate$7 f)o* "e)ocity %easure%ents in tree di%ensions. =e c)inica) in-"i"o f)o* %easure%ent

    *as used to "a)idate te proposed co%putationa) %ode). 1t %ay be possib)e in te future to

    deter%ine $7 production and reabsorption rates by a co%bination of ine-!R1 $7%easure%ent *it te co%putationa) %ode). =ere is a)so te possibi)ity of inferring

    bio%ecanica) properties of te brain suc as co%p)iance or per%eabi)ity using suc %etods.

    ur $7 %easure%ents and si%u)ations presented a co%p)ete picture of te pu)sati)e $7

    dyna%ics during te cardiac cyc)e in tree din%ensions. ine !R1 %easure%ents and 7Dsi%u)ations de%onstrated $7 f)o* re"ersa) in te "entricu)ar syste% as *e)) as in te pre-

    pontine subaracnoida) space. =e e>cange of $7 *it te spina) $A$ and its inf)uence

    spina) $A$ co%p)iance on intracrania) dyna%ics appears to be insufficient)y recogni+ed in te

    e>isting %ode)s of te brain as a c)osed ca"ity !onroe-(e))y doctrine.1n addition to predicting te f)o* fie)d& our first princip)es approac accurate)y ;uantifies

    te intracrania) pressure dyna%ics in a)) )ocations of te brain. =is 5no*)edge cou)d bei%portant for assessing te specific c)inica) state of a patient based on)y on a andfu) of

    5no*n pysica) and bio%ecanica) properties. =e 1P f)o* patterns cannot be %easured by

    !R1& yet %ay be i%portant in deter%ining te de"e)op%ent of nor%a) pressureydrocepa)us. ur 7D si%u)ations re"ea)ed s%a)) trans%ant)e pressure difference in te

    nor%a) patient and ydrocepa)ic patient.

    =e successfu) integration of te !R1-7D approac for studying intracrania) dyna%ics

    presented in tis artic)e o)ds pro%ise for considering patient-specific obser"ations in tedesign of treat%ent options in te future.

    ,6

  • 8/12/2019 bain model

    20/21

    Reerences

    C, L.P. Ro*)and& !.. 7in5& L. Rubin& erebrospina) 7)uid: #)ood-#rain #arrier& #rainde%a& and Bydrocepa)us& ed. . (ande) et a).& Princip)es of 9eura) $cience& App)eton

    Q Lange 3rdedition& pp. ,00-,00& ,66,.

    C2 $. A%%oura& A. Aroussi and !.

  • 8/12/2019 bain model

    21/21

    C, !. #raaten and E. $yy& FA study of reca)cu)ating f)o* co%putation using body-

    fitted coordinates: consistency aspects and %es s5e*nessG&Numerical Heat &ransfer& 7&pp. 6-H4& ,6.

    C,H T. #ear ,

    U. #ac%at&2ntroduction to 3odeling of &ransport henomena in orous3edia& ed. T. #ear& & Dordrect: ()u*er Acade%ic Pub)isers& ,660.

    C, 7.A.L. Du))ien, orous 3edia Fluid &ransport and ore Structure, Acade%ic Press&

    19& ,6H6.

    C,6 '. Eang& 7. =au"in& (.(. !oanty& Non/+arcy flo" through anisotropic porousmedia,e%ica) ngineering $cience& +& pp. ,6-,6& ,666.