128

B&AH nº 27 [2013]

Embed Size (px)

DESCRIPTION

Basic & Applied Herpetology. Número 27 de la Revista de la Asociación Española de Herpetología. Año 2013.

Citation preview

Amphibian BiologyVolume 11. Status of Conservation and Decline of Amphibians: Eastern Hemisphere

Part 2. Northern Africa

Editors: Stephen D. Busack, Harold Heatwole

Journal of the Spanish Herpetological Society (AHE)Volumen 27 (2013)

http://[email protected]

Revista Española de Herpetología

BASIC & APPLIED HERPETOLOGyREVISTA ESPAÑOLA DE HERPETOLOGÍA

Spanish Herpetological Society (AHE)

President: Juan Manuel Pleguezuelos GómezVice-President: Jaime Bosch PérezGeneral Secretary: Miguel Ángel Carretero FernándezVice-General Secretary: José Antonio Mateo MirasVocals: Enrique Ayllón López (Management)

César Ayres Fernández (Conservation) Francisco Javier Diego Rasilla (Web page and promotion)Andrés Egea Serrano (Editor, Boletín de la AHE)Gustavo A. Llorente Cabrera (Atlas)Adolfo Marco Llorente (Marine turtles)Alber Montori Faura (Atlas)Manuel E. Ortiz Santaliestra (Editor, Basic & Applied Herpetology)Ana Perera Leg (Editor, Basic & Applied Herpetology)Alex Richter Boix (Editor, Boletín de la AHE)Xavier Santos Santiró (Editor, Boletín de la AHE & Treasurer)Daniel Villero Pi (Atlas)

Basic & Applied Herpetology (Editors)Manuel E. Ortiz Santaliestra (Amphibians) Ana Perera Leg (Reptiles)

Institute for Environmental Sciences CIBIO-Universidade do Porto. University of Koblenz-Landau Campus Agrário de Vairão.

Fortstraße 7, Building C1, Room 101b Rua Padre Armando Quintas-Castro76829 Landau (Germany) 4485-661 Vairão (Portugal)

[email protected] [email protected]

Asociación Herpetológica EspañolaMuseo Nacional de Ciencias Naturales

Cl. José Gutiérrez Abascal, 228006 Madrid

http://www.herpetologica.es

ISSN 2255 - 1468 Depósito Legal: M-38882-2012Impresión: igrafic. Url: www.igrafic.com Maquetación: Marcos Pérez de Tudela. Url: www.marcos-pdt.com

BASIC & APPLIED HERPETOLOGyREVISTA ESPAÑOLA DE HERPETOLOGÍA

CONTENTSVolume 27 (2013)

Editorial

Chapter 23. IntroductionH. Heatwole, S.D. Busack

Chapter 24. Amphibian conservation in MauritaniaJ.M. Padial, P.-A. Crochet, P. Geniez, J.C.Brito

Chapter 25. Amphibians of Morocco, including Western Sahara: a status reportR. Reques, J.M. Pleguezuelos, S.D. Busack, P. de Pous

Chapter 26. Diversity and conservation of Algerian amphibian assemblagesJ.A. Mateo, P. Geniez, J. Pether

Chapter 27. Conservation status of amphibians in TunisiaN. Amor, M. Kalboussi, K. Said

Chapter 28. Amphibians in Libya: a status reportA.A. Ibrahim

Chapter 29. Amphibians of Egypt: a troubled resourceA.A. Ibrahim

Pag.

5

7

11

23

51

85

101

107

Cover illustration: Moroccan Spadefoot Toad (Pelobates varaldii) in the sand in Mamora Forest,Morocco (January, 2009) (see article by Reques et al. in this volume). Author: Philip de Pous.

BASIC & APPLIED HERPETOLOGyREVISTA ESPAÑOLA DE HERPETOLOGÍA

CONTENIDOSVolumen 27 (2013)

Editorial

Capítulo 23. IntroducciónH. Heatwole, S.D. Busack

Capítulo 24. Conservación de anfibios en MauritaniaJ.M. Padial, P.-A. Crochet, P. Geniez, J.C.Brito

Capítulo 25. Los anfibios de Marruecos, incluyendo Sáhara Occidental: Informe sobre su situaciónR. Reques, J.M. Pleguezuelos, S.D. Busack, P. de Pous

Capítulo 26. Diversidad y conservación del conjunto de anfibios argelinosJ.A. Mateo, P. Geniez, J. Pether

Capítulo 27. Estado de conservación de los anfibios en TúnezN. Amor, M. Kalboussi, K. Said

Capítulo 28. Anfibios en Libia: informe sobre su situaciónA.A. Ibrahim

Capítulo 29. Anfibios de Egipto: un recurso en problemasA.A. Ibrahim

Pag.

5

7

11

23

51

85

101

107

Ilustración de portada: Sapo de Espuelas marroquí (Pelobates varaldii) en la arena en el bosque de Mamora,Marruecos (Enero 2009) (véase artículo de Reques et al. en este volumen). Autor: Philip de Pous.

5

This year's volume of Basic & Applied Herpetology is dedicated entirely to publication of Part 2 of volume 11of the book series Amphibian Biology. In 2013, the editors of this part, Stephen Busack and Harold Heatwole,posed to the editorial board of Basic & Applied Herpetology the challenge of publishing the Status ofConservation and Decline of Amphibians in North Africa. After a long process of editing and revision we arehappy to present this treatise, organized in an introduction and six chapters, each chapter dedicated to a sin-gle North African country, including Mauritania, Morocco, Algeria, Tunisia, Libya, and Egypt, and writtenby some of the most relevant researchers in these countries.

The Spanish Herpetological Society, both as an institution and through some of its members in particular,has traditionally maintained an active focus on the North African herpetofauna. Now, we are proud to con-tribute to the publication of this work, which constitutes a valuable update for information regardingamphibians from this region as well as some novel information.

We wish to thank the authors of the chapters and the editors of the series for their understanding, patience,and effort in updating these manuscripts with the latest available information. We believe that members ofthe Spanish Herpetological Society and readers of the journal will appreciate the valuable information pre-sented in this volume.

The editorial board

6

Harold Heatwole1,*, Stephen D. Busack2

Chapter 23Introduction

1 Department of Biology, North Carolina State University, Raleigh, North Carolina, USA. 2 North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA.

*Correspondence: Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA. Phone: +1 (919) 515-3122,Email: [email protected]

Received: 10 January 2013; accepted: 10 January 2013.

Basic and Applied Herpetology 27 (2013): 7-10

Previous studies have treated the status of decline and conservation in amphibians, generally and on a coun-try-by-country basis, for the Western Hemisphere. The present volume presents a series of papers for theEastern Hemisphere, and this issue covers North Africa. An annotated checklist to current nomenclature ofregional taxa is also provided.

Key words: amphibians; conservation; decline; North Africa.

Introducción. En estudios anteriores se han tratado el declive y la conservación de los anfibios del hemisferiooccidental, tanto de manera general como país por país. El presente volumen presenta una serie de artículoscorrespondientes al hemisferio oriental, y este número en particular versa sobre el norte de África. Se aportaademás una lista con la nomenclatura actualizada de los taxones de la región.

Key words: anfibios; conservación; declive; norte de África.

This chapter should be cited as: Heatwole, H. & Busack, S.D. (2013). Introduction. Chapter 23 in Part 2. Mauritania, Morocco, Algeria, Tunisia, Libya andEgypt in Vol. 11. Conservation and Decline of Amphibians: Eastern Hemisphere of the series Amphibian Biology. Basic and Applied Herpetology 27: 7-10.

Amphibian skin is a bare, thin, and moistaccessory respiratory organ endowed with aplentiful blood supply, attributes that make it apoor barrier against desiccation, noxious chem-icals, and various other stresses (HEATWOLE etal., 1994). Exacerbating this basic ecologicalvulnerability is an emergent fungal disease,chytridiomycosis, that attacks the skin and lar-val mouthparts of amphibians and to whichmost species are highly susceptible (BERGER etal., 2009; MARTEL et al., 2013). Anthropogenicchanges to the environment, such as fragmenta-tion and destruction of habitat; pollution byendocrine disruptors and industrial, agricultur-al, and household waste; depletion of the ozonelayer and concomitant elevation of ultravioletradiation; acidification; climatic change; androad kills have contributed to the assault on

amphibians (HEATWOLE & WILKINSON, 2009,2012). As a result, populations of many speciesaround the world have been declining on anunprecedented scale, and many extinctionshave occurred (LANNOO, 2005; WILSON et al.,2010; HEATWOLE, 2013).

The series Amphibian Biology (HEATWOLE

et al., 1994 et seq.) variously published or inpress by Surrey Beatty & Sons (ChippingNorton, later Baulkham Hills, Australia);Natural History Press (Kota Kinabalu,Sabah); Pelagic Press (Exeter, UK);Herpetological Monographs; and the presentchapters by Basic and Applied Herpetology,has devoted three volumes to amphibiandecline and extinction, two of which(Volumes 8 and 10) treated causes and poten-tial remedies for these phenomena. Volumes

HEATWOLE & BUSACK8

9 and 11, being published in parts as chaptersbecome available, provide assessments ofdecline and extinction on a country-by-country basis for the Western and EasternHemispheres, respectively. Volume 9, Parts 1(Paraguay, Chile and Argentina [2010]), 2(Uruguay, Brazil, Ecuador and Colombia[2011]) and 3 (Venezuela, Guyana,Suriname, and French Guiana [2012]) havebeen issued (HEATWOLE et al. 2010, 2011,2013); Bolivia and Peru (Part 4) are underreview. Parts on Central America, theCaribbean, and North America are pending.

The present contribution to the AmphibianBiology series represents Part 2 (Mauritania,Morocco, Algeria, Tunisia, Libya, and Egypt) ofVolume 11. Part 1 covers all of Asia (HEATWOLE

& DAS, 2014) and Part 3 deals with WesternEurope (HEATWOLE & WILKINSON, 2013).

Various websites provide amphibian status atparticular times and places; these websites changeas population status of considered amphibianspecies changes. Without reference to previousconditions, however, it is not possible to assessthe extent and rate of amphibian decline.Amphibian Biology serves as an internationallyavailable historical reference with which futureassessment may be compared – a sort of timecapsule. In one sense, because species of amphib-ians are going extinct while chapters are beingwritten and put to press, any static publicationmay be out of date by the time it is published. Anestablished benchmark, however, is timeless andnecessary for temporal comparisons.

While some amphibian taxonomic rearrange-ments first proposed by FROST et al. (2006) havebeen widely accepted without argument, somerearrangements have been modified and othersremain controversial (for updates see FROST,2013). Until a more comprehensive consensus is

reached and nomenclature regarding all speciesbecomes stabilized, it seems unwise to dictate anyparticular scheme for use in the AmphibianBiology series and authors have been allowed toexercise professional judgment regarding choiceof nomenclature. As Part 2 of Volume 11 was infinal review one species was reassigned (Bufotesboulengeri is now the recommended name) andthe genus Barbarophryne was described (now therecommended name for Barbarophryne brongers-mai) (BEUKEMA et al., 2013). As taxonomic allo-cations in poorly-understood species assemblagescontinue to receive attention, additional realloca-tions are possible.

Because it is important that informationregarding conservation status be provided toherpetologists, government professionals inconservation and law enforcement, ecolo-gists, and other interested parties in an unam-biguous manner, the following annotated“checklist” to species in the areas covered inthis issue is presented by family and arrangedfollowing nomenclatural choice of theauthors. We hope it serves as a convenientchecklist for species treated in this issue.

ORDER ANURA

Family AlytidaeAlytes maurus Pasteur and Bons, 1962(Morocco, Algeria).Discoglossus pictus Otth, 1837 (Morocco,Algeria, Tunisia).Discoglossus scovazzi Camerano, 1878(Morocco, Algeria).

Family Bufonidae Amietophrynus kassasii (Baha El Din,1993) (Egypt).Amietophrynus mauritanicus (Schlegel,1841) (Morocco, Algeria, Tunisia).

9INTRODUCTION

Amietophrynus regularis (Reuss, 1833)(Mauritania, Egypt).Amietophrynus xeros (Tandy, Tandy, Keith& Duff-Mackay, 1976) (Mauritania,Morocco, Algeria, Libya).Barbarophryne brongersmai Hoogmoed,1972 (Morocco, Algeria).Bufo spinosus Daudin, 1803 (Morocco,Algeria, Tunisia) .“Bufo” pentoni Anderson, 1893 (Mauritania).Bufotes boulengeri (Lataste, 1879) (Morocco,Algeria, Libya, Tunisia, Egypt).Duttaphrynus dodsoni (Boulenger, 1895)(Egypt).

Family DicroglossidaeHoplobatrachus occipitalis (Günther, 1858)(Mauritania, Morocco, Algeria, Libya*).

Family HylidaeHyla meridionalis Boettger, 1874 (Morocco,Algeria, Tunisia).Hyla savignyi Audouin, 1827 (Egypt).

Family HyperoliidaeKassina senegalensis (Duméril & Bibron,1841) (Mauritania).

Family PelobatidaePelobates varaldii Pasteur and Bons, 1959(Morocco).

Family PhrynobatrachidaePhrynobatrachus natalensis (Smith, 1849)(Mauritania).

Family PtychadenidaePtychadena bibroni (Hallowell, 1845)(Mauritania).Ptychadena mascareniensis (Duméril &Bibron, 1841) (Mauritania, Egypt).Ptychadena trinodis (Boettger, 1881)(Mauritania).Ptychadena schillukorum (Werner, 1908) (Egypt).

Family PyxicephalidaePyxicephalus edulis Peters, 1854 (Mauritania)

Tomopterna cryptotis (Boulenger, 1907)(Mauritania).

Family RanidaePelophylax bedriagae (Camerano, 1882)(Egypt).Pelophylax saharicus (Boulenger, 1913)(Morocco, Algeria, Libya, Tunisia, Egypt).*Although historically cited, the current

presence of Hoplobatrachus occipitalis in Libyahas not been confirmed in recent surveys.

ORDER CAUDATA

Family Salamandridae Pleurodeles nebulosus (Guichenot, 1850)(Algeria, Tunisia).Pleurodeles poireti (Gervais, 1835) (Algeria)Pleurodeles waltl Michahelles, 1830(Morocco).Salamandra algira Bedriaga, 1883(Morocco, Algeria).

REFERENCES

BERGER, L.; LONGCORE, J.F.; SPEARE, R.;HyATT, A. & SKERRATT, L.F. (2009).Fungal diseases of amphibians, In H.Heatwole & J.W. Wilkinson (eds.)Amphibian Decline: Diseases, Parasites,Maladies and Pollution. Series:Amphibian Biology, vol. 8. Surrey Beatty& Sons, Baulkham Hills, Australia, pp.2986-3066.

BEUKEMA, W.; DE POUS, P.; DONAIRE-BARROSO, D.; BOGAERTS, S.; GARCIA-PORTA, J.; ESCORIzA, D.; ARRIBAS, O.J.; EL

MOUDEN, E.H. & CARRANzA, S. (2013).Review of the systematics, distribution, bio-geography and natural history of Moroccanamphibians. Zootaxa 3661: 1-60.

HEATWOLE & BUSACK10

FROST, D.R. (2013). Amphibian Species of theWorld: an Online Reference. Version 5.6 (9January 2013). American Museum of NaturalHistory, New york, USA. Available athttp://research.amnh.org/vz/herpetology/amphibia/index.html. Retrieved on 11/07/2013.

FROST, D.R.; GRANT, T.; FAIVOVICH, J.; BAIN,R.H.; HAAS, A.; HADDAD, C.F.B.; DE SA, R.O.;CHANNING, A.; WILKINSON, M.; DONNELLAN,S.C.; RAXWORTHy, C.J.; CAMPBELL, J.A.;BLOTTO, B.L.; MOLER, P.; DREWES, R.C.;NUSSBAUM, R.A.; LyNCH, J.D.; GREEN, D. M.& WHEELER, W.C. (2006). The amphibiantree of life. Bulletin of the AmericanMuseum of Natural History 297: 1-370.

HEATWOLE, H. (2013). Worldwide decline andextinction of amphibians, In K. Rohde (ed.)The Balance of Nature and Climate Change.Cambridge University Press, Cambridge,United Kingdom, pp. 259-278.

HEATWOLE, H. & DAS, I. (2014). Asia. Part 1 inStatus of Conservation and Decline ofAmphibians: Eastern Hemisphere. Series:Amphibian Biology, vol. 11, Natural HistoryPublications, Kota Kinabalu, Sabah.

HEATWOLE, H. & WILKINSON, J.W. (2009).Amphibian Decline: Diseases, Parasites,Maladies and Pollution. Series: AmphibianBiology, vol. 8. Surrey Beatty & Sons,Baulkham Hills, Australia.

HEATWOLE, H. & WILKINSON, J.W. (2012).Conservation and Decline of Amphibians:Ecological Aspects, Effect of Humans, andManagement. Series: Amphibian Biology, vol. 10.Surrey Beatty & Sons, Baulkham Hills, Australia.

HEATWOLE, H. & WILKINSON, J.W. (2013).Western Europe. Part 3 in Status of Conservationand Decline of Amphibians: Eastern Hemisphere.Series: Amphibian Biology, vol. 11, PelagicPublishing, Exeter, United Kingdom.

HEATWOLE, H.; BARTHALMUS, G.T. &HEATWOLE, A.y. (1994). The Integument.Series: Amphibian Biology, vol. 1. SurreyBeatty & Sons, Chipping Norton, Australia.

HEATWOLE, H.; BARRIO-AMORóS, C.L. &WILKINSON, J.W. (2010) Paraguay, Chileand Argentina. Part 1 in Status of Declineof Amphibians: Western Hemisphere. Series:Amphibian Biology, vol. 9, Surrey Beatty& Sons, Baulkham Hills, Australia.

HEATWOLE, H.; BARRIO-AMORóS, C.L. &WILKINSON, J.W. (2011) Uruguay, Brazil,Ecuador and Colombia. Part 2 in Status ofDecline of Amphibians: Western Hemisphere.Series: Amphibian Biology, vol. 9, SurreyBeatty & Sons, Baulkham Hills, Australia.

HEATWOLE, H.; BARRIO-AMORóS, C.L. &WILKINSON, J.W. (2013) Venezuela, Guayana,Suriname and French Guayana. Part 3 in Statusof Decline of Amphibians: Western Hemisphere.Series: Amphibian Biology, vol. 9, SurreyBeatty & Sons, Baulkham Hills, Australia.

LANNOO, M. (2005). Amphibian Declines.The Conservation Status of United StatesSpecies. University of California Press,Berkeley, California, USA.

MARTEL, A.; SPITzEN-VAN DER SLUIJS, A.;BLOOI, M.; BERT, W.; DUCATELLE, R.;FISHER, M.C.; WOELTJES, A.; BOSMAN,W.; CHIERS, K.; BOSSUyT, F. & PASMANS,F. (2013). Batrachochytrium salamandrivo-rans sp. nov. causes lethal chytridiomyco-sis in amphibians. Proceedings of theNational Academy of Sciences of the UnitedStates of America 110: 15325-15329.

WILSON, L.D.; TOWNSEND, J.H. &JOHNSON, J.D. (2010). Conservation ofMesoamerican Amphibians and Reptiles.Eagle Mountain Publishing Company,Eagle Mountain, Utah, USA.

José Manuel Padial1,*, Pierre-André Crochet2, Philippe Geniez3, José Carlos Brito4

Chapter 24Amphibian conservation in Mauritania

1 Section of Amphibians and Reptiles, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA.2 CNRS-UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France.3 EPHE-UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France.4 Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão,Vairão, Portugal.

*Correspondence: Section of Amphibians and Reptiles, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh,Pennsylvania, 15213-4080 USA. Phone: +1 412 622 4691, Email: [email protected]

Received: 10 January 2013; received in revised form: 30 September 2013; accepted: 1 October 2013.

Basic and Applied Herpetology 27 (2013): 11-22

Only eleven species of amphibians (all anurans) have been found in Mauritania so far. Nonetheless, largeareas of the country remain unexplored and the taxonomic status of several species remains uncertain, sug-gesting that additional species may be found in the future, especially in the Sahel savannahs of the southernpart of the country. Within the Saharan realm, amphibians occur in isolated springs, “wadis” (temporarystreams), and “gueltas” (ponds) in montane regions (Adrar and Tagant plateaus), while the Sahel savannahscontain innumerable bodies of water where all species listed in the country have been recorded despite onlya small portion of the area having been sampled. No information on population trends is available, but theSahel is threatened by intensive wood harvesting, agro-pastoral utilization, and uncontrolled use of pesticides.Mountain populations in the Sahara are isolated and likely small, with high vulnerability to drought andglobal warming. Priority research needs include: (1) data on distribution and diversity for action by local con-servation agencies; (2) determination of environmental change and the effect of population dynamics ongenetic diversity and local populations; and (3) clarification of the taxonomic status of existing populationsand the identification of reservoirs of genetic diversity.

Key words: amphibians; conservation; decline; distribution; Mauritania.

Conservación de anfibios en Mauritania. Hasta la fecha sólo once especies de anfibios (todas ellas anuros) hansido citadas en Mauritania. Sin embargo, todavía quedan en el país áreas extensas sin explorar y el estatus tax-onómico de algunas especies es incierto, lo que sugiere que en el futuro podrían sumarse más especies, sobretodo en las sabanas del Sahel en la parte sur del país. En el área del Sáhara, los anfibios aparecen en manan-tiales aislados, “wadis” (arroyos temporales) y “gueltas” (charcas) en zonas de montaña (mesetas de Adrar yTagant), mientras que las sabanas del Sahel contienen numerosas masas de agua en las que se han halladotodas las especies presentes en el país pese a que sólo se ha muestreado una pequeña parte de este área. Nohay información disponible acerca de las tendencias poblacionales, pero el Sahel está amenazado por laexplotación maderera intensiva, el uso agro-pastoral y la aplicación incontrolada de plaguicidas. Las poblacionesmontanas en el Sáhara aparecen aisladas y probablemente son pequeñas y con una elevada vulnerabilidad a lasequía y el calentamiento global. Las necesidades prioritarias en cuanto a investigación incluyen: (1) toma dedatos de distribución y diversidad para promover acciones por parte de las agencias locales de conservación,(2) determinación de cambios ambientales y del efecto de las dinámicas poblaciones sobre la diversidadgenética y las poblaciones locales, y (3) aclaración del estado taxonómico de las poblaciones existentes e iden-tificación de reservorios de diversidad genética.

Key words: anfibios; conservación; declive; distribución; Mauritania.

This chapter should be cited as: Padial, J.M., Crochet, P-A, Geniez, P. & Brito, J.C. (2013). Amphibian conservation in Mauritania. Chapter 24 in Part2. Mauritania, Morocco, Algeria, Tunisia, Libya and Egypt in Vol. 11. Conservation and Decline of Amphibians: Eastern Hemisphere of the series AmphibianBiology. Basic and Applied Herpetology 27: 11-22. DOI: http://dx.doi.org/10.11160/bah.13002/

PADIAL ET AL.12

Three quarters of Mauritania’s one mil-lion square kilometers belong to the SaharaDesert, which translates into low amphib-ian diversity relative to adjacent areas suchas the Mediterranean and the Sahel. Onlyeleven widely-distributed anuran specieshave been so far recorded for the country(Table 1) (NICKEL, 2003; PADIAL & DE LA

RIVA, 2004), and all of them are catego-rized as species of Least Concern by theIUCN (2013). Large areas of theMauritanian territory remains, however,poorly explored, especially in the north,east, and south of the country. Consideringthe distribution of amphibians in adjacentareas of neighbouring countries, at least 17additional species might occur in theseunexplored areas of Mauritania. In addi-tion, the taxonomy of some species cur-rently considered broadly-distributed,including those cited for Mauritania(Ptychadena spp. [Ptychadenidae],Hoplobatrachus occipitalis [Dicroglossidae],Tomopterna spp. [Pyxicephalidae], andPhrynobatrachus spp. [Phrynobatrachidae]),is often unreliable. Resolution of taxonom-ic problems may change the compositionof the species-list and some species current-ly considered widely-distributed may even-tually be found to consist of species com-plexes, each component species of whichexhibiting a more restricted distribution.

Saharan Mauritania harbours relictpopulations of some Afrotropical species,several hundred kilometres distant fromthe closest area with large populations ofsuch species, the Senegal basin. These now-isolated populations were likely connectedto source populations as recently as 4000years ago when more benign conditions

supported continuous savannah extendingfurther north to southern Morocco,Western Sahara, and northern Mauritania,and where the now-relict anuran popula-tions dwelled among elephants, giraffes,and lions (LE HOUéROU, 1997). As rela-tively recent, and extremely rapid, climaticchange led to desertification (GASSE, 2000;FOLEy et al., 2003), most large mammalsdisappeared from arid areas, while someamphibian, reptilian, and fish populationsbecame isolated along basins of retreatingrivers and interior water courses, formingpockets of local survivors (PADIAL & DE LA

RIVA, 2004; PADIAL, 2006; TRAPE, 2009;BRITO et al., 2011). At least 20 localitieswithin the Mauritanian Sahara, many con-nected by fossil river basins that may haveacted as corridors for exchange of individ-uals during wet periods, are still inhabitedby two to three anuran species. Anuransinhabiting other localities, particularlythose on the Adrar and Tagant plateaus, arecompletely isolated by dunes or expanses ofrock from conspecific populations. Theseareas constitute a natural laboratory forstudying effects of climatic change on nat-ural populations (DUMONT, 1982). Topicssuch as the effect of population size anddegree of isolation on genetic diversity andsurvival, the effect of species-specific phys-iological plasticity to environmentalchange, and the effect of allopatry andlocal adaptation in diversification, could beoptimally studied in Saharan isolates(WARD, 2009).

Biodiversity is usually managed at thelevel of nations and more inclusive admin-istrative units (PLEGUEzUELOS et al., 2010)and it is therefore important to maintain as

AMPHIBIAN CONSERVATION IN MAURITANIA 13

much genetic diversity as possible withinnational borders. Recent surveys of fishes incentral Mauritania indicate that localitiessupporting populations of several species inthe 1950s (DEKEySER & VILLIERS, 1956)have now completely dried, leading to local

extirpations (TRAPE, 2009). Although anu-rans are more tolerant than fish to periodsof drought, populations of some anuransmay have been extirpated while others mayhave already crossed the population sizethreshold necessary for long-term survival.

Table 1: Geographical areas (see also Fig. 1) and taxonomic status of anuran species recorded fromMauritania. Nomenclature and classification follow FROST (2013); taxonomic status follows RöDEL (2000).

Stable.

Unstable; several synonymsacross its broad distribution,coupled with large geneticdivergence between EastAfrica versus Central and WestAfrica (VASCONCELOS et al.,2010) present the possibilityof future change in status.Unstable; several synonymsacross its broad distributionpresent the possibility of futurechange in status.Unstable; possible speciescomplex.

Unstable; possible speciescomplex.Unstable; possible speciescomplex.

Stable.

Unstable; possible speciescomplex.

Stable.

Unstable; possible speciescomplex.

Unstable, possible speciescomplex.

Scattered localities across theSahelian savannah; locallyabundant.Scattered localities across theSahelian savannah and alongthe coast; locally abundant.

Most Saharan bodies of water;locally abundant.

Most Saharan bodies of waterand across the Sahelian savannah;locally abundant but possiblelocal extirpations have occurred.Scattered localities across theSahelian savannah; scarce.Known only from a singlelocality in the Sahelian savannah;no data on abundance.Known from two localities inthe Sahelian savannah; no dataon abundance.Known only from a singlelocality in the Sahelian savannah;no data on abundance.Known from two localities inthe Sahelian savannah; no dataon abundance.Scattered localities across theSahelian savannah; probablylocally abundant.Scattered localities across theSahelian savannah; also recordedfrom the coast and in someSaharan bodies of water; rare.

“Bufo” pentoni

Amietophrynus regularis

Amietophrynus xeros

Hoplobatrachus occipitalis

Kassina senegalensis

Phrynobatrachus natalensis

Ptychadena bibroni

Ptychadena mascareniensis

Ptychadena trinodis

Pyxicephalus edulis

Tomopterna cryptotis

Bufonidae

Dicroglossidae

Hyperoliidae

Phrynobatrachidae

Ptychadenidae

Pyxicephalidae

Taxonomic statusDistribution and population statusSpeciesFamily

PADIAL ET AL.14

DIVERSITy AND DISTRIBUTION

All species occurring in Mauritania arepresent in the Sahelian savannah (Table 1;Figs. 1-2), a pattern partially explained byhumidity and temperature conditions. Speciespresent in Saharan isolates occur alongsprings, “wadis” (temporary streams), and“gueltas” (ponds) in montane regions, and arealso generally abundant and widely-distribut-ed in the Sahel (Fig. 1), a pattern alsoexplained by humidity and temperature butcoupled with elevation. This simple patternsuggests that the Saharan populations are notSaharan in origin but are instead the productof colonization from the Sahelian savannah.In contrast to the situation of other Saharanmassifs further north, such as Hoggar orTassili N’Ajjer, no amphibian species ofMediterranean affinities reaches Mauritania.

Within the Saharan realm of Mauritania,H. occipitalis (Dicroglossidae) and Amietophrynusxeros (Bufonidae) are the most conspicuous rep-resentatives, although Tomopterna cryptotis(Pyxicephalidae) can also be found in a fewSaharan localities. Amietophrynus regularis, A. xeros(Bufonidae), and T. cryptotis are also found alongthe Saharan Atlantic coast, although large popu-lations occur only in the Sahelian wetlands ofDiawling National Park, near the mouth ofthe Senegal River. Kassina senegalensis(Hyperoliidae), Phrynobatrachus natalensis(Phrynobatrachidae), Ptychadena mascareniensis,Ptychadena trinodis, Ptychadena bibroni(Ptychadenidae), and Pyxicephalus edulis(Pyxicephalidae) are restricted to the Saheliansavannah (Fig. 2) of southern Mauritania.

Important areas for Saharan populationsare on the Adrar and Tagant plateaus (Fig. 1),where rocky areas form networks of seasonal

rivers (“wadis”) with many temporary and per-manent springs and small pools (“gueltas”)along streams (CAMPOS et al., 2012) (Fig. 3).The Adrar plateau contains more than 20 suchpermanent bodies of water (Fig. 1). TheTagant plateau, situated south of the Adrarplateau, is transitional between Saharan andSahelian environments. This mountainousarea of about 2000 km2 forms an innerdrainage that empties into a marshlandformed by Gabou Lake (Fig. 3c) and otherminor lakes, or into several “wadis” in theSenegal River basin. This area harbours moresuitable sites for amphibians than does theAdrar, and includes typical components of theSahelian savannah such as K. senegalensis.Many other montane areas remain poorlyexplored in Mauritania. Sampling has been mostintense in the Adrar and Tagant areas, especiallybecause they are more easily accessible by car.Nonetheless, other montane areas of Mauritaniahave been comparatively less sampled than theTagant and the Adrar and may contain impor-tant populations of amphibians. The Assaba andAfollé Mountains, located south and east of theTagant, respectively, also hold important popu-lations of H. occipitalis, A. xeros, K. senegalensis,and T. cryptotis.

The savannah in southern Mauritaniacontains innumerable bodies of water(CAMPOS et al., 2012) (Fig. 3). In addition tothe eleven species recorded from this mostdiverse area of the country, PADIAL & DE LA

RIVA (2004) suggested that several specieswere expected to occur in the countrybecause they had been reported in neigh-bouring areas of Mali or Senegal. While noneof these species has yet been recorded forMauritania, we report this (taxonomicallyupdated) list of expected species here:

AMPHIBIAN CONSERVATION IN MAURITANIA 15

Figure 1: Localities for Mauritanian anurans occurring in both Saharan isolates and Sahelian savannahsdepicted over (top) elevation, and (bottom) environmental variability derived by Principal ComponentsAnalysis, where PC1 (red; 48.1% of variation): annual average temperature and maximum temperatureof the hottest month; PC2 (green; 20.7%): minimum temperature of the coldest month; and PC3(blue; 16.4%): slope. Environmental factors from Worldclim database (www.worldclim.org) at 2.5 arc-second resolution. Photograph of Amietophrynus regularis courtesy of Mark-Oliver Rödel.

PADIAL ET AL.16

Hemisotidae (Hemisus marmoratus);Hyperoliidae (Afrixalus fulvovittatus, Afrixalusweidholzi, Hyperolius spatzi, Kassina cassinoides,and Kassina fusca); Arthroleptidae (Leptopelisbufonides); Microhylidae (Phrynomantis microps);Pipidae (Xenopus muelleri); Ranidae (Hylaranagalamensis); Phrynobatrachidae (Phrynobatrachuslatifrons, Phrynobatrachus francisci, andPhrynobatrachus natalensis); Ptychadenidae(Ptychadena schillukorum, Ptychadenaoxyrhynchus, Ptychadena pumilio, andPtychadena tellinii).

CONSERVATION STATUS

Although amphibians are decliningworldwide, and amphibian extinctions are amajor source of concern in many tropicalcountries (STUART et al., 2004), none of theanurans currently known in Mauritania isconsidered globally endangered (IUCN,2013). This conclusion is, however, based onan incomplete survey of most Africanregions, and utilizes incomplete taxonomicknowledge. There is evidence suggesting thatmany African nominal species of the generaPtychadena, Tomopterna, and Phrynobatrachuscould in fact constitute species complexes(VENCES et al., 2004; PICKERSGILL, 2007;RöDEL et al., 2009). Future taxonomicresearch may well lead to changes in the per-ception of the level of endemicity and, hence,in the conservation needs of many species,including those occurring in Mauritania.

Although no evidence was found to indi-cate any population decline of anurans inMauritania due to human pressure, an ade-quate assessment cannot be made because therelevant data are lacking. Some populations inthe Sahel might be suffering negative effects

from intense harvesting of wood and fromagro-pastoral use, two activities that enhancedesertification, as well as from the uncon-trolled use of pesticides (NATIONAL RESEARCH

COUNCIL, 1981). Other important conse-quences for amphibians of agro-pastoral use inMauritania could be the contamination ofwater by cattle faeces and the exploitation ofbodies of water. Availability of many bodies ofwater within the Sahel Plateau (CAMPOS et al.,2012), however, should continue to providerefuge for healthy populations of anurans, atleast in the short term.

Most Saharan populations are nonethelessvulnerable to extirpation. In fact, there hasbeen a decline of relict fish populations in theAdrar Mountains related to intense drought(35% reduction in precipitation) since the1970s (FOLEy et al., 2003), and some of themalready have disappeared (TRAPE, 2009), sug-gesting that some local Saharan anuran popu-lations may also be declining. While onemight expect that a much higher tolerance toaridity would help anurans survive episodes ofsevere drought, and that metapopulation con-nectivity may be enhanced during favourableyears, Saharan isolates of H. occipitalis, A.xeros, and T. cryptotis should be consideredlocally endangered, as well as other water-dependent reptiles and mammals (BRITO et al.,2011; VALE et al., 2012). Especially vulnerableare the northernmost populations of the AdrarPlateau. In fact, the permanent and deep (5 m)Guelta of Molomhar (near Atar) dried com-pletely in March 2008, an unprecedentedevent according to local guides. This “guelta”had been historically inhabited by A. xeros,H. occipitalis, and at least three species of fish(Clarias anguillaris, Afropuntio pobeguini, andTilapia zillii); all may have disappeared.

AMPHIBIAN CONSERVATION IN MAURITANIA 17

Figure 2: Localities for Mauritanian anurans occurring exclusively in the savannahs of the Sahel. SeeFig. 1 for an explanation of Principal Components Analysis. All symbols for Ptychadena species arein blue because identifications in the literature are ambiguous.

PADIAL ET AL.18

The major factor determining survival ofSaharan amphibian populations is theircapacity to resist episodic drought and theirchance to experience occasional episodes of

populational connectivity during favourableyears. Use of water by humans, especially forwatering cattle, may increase the risk of localextirpation, especially during extremely dry

Figure 3: Representative localities occupied by anurans in Mauritania. (a) Guelta Toumbahjît (Adrar) supportsrelict populations of Amietophrynus xeros and Hoplobatrachus occipitalis. (b) Guelta Molomhar (Adrar), previ-ously supported A. xeros and H. occipitalis but was found to be completely dry in March 2008 (see text).(c) Gabou Lake (Tagant) contains populations of A. xeros, H. occipitalis, Tomopterna cryptotis, and Kassinasenegalensis. (d) Tâmoûrt Goungel (Hodh el Gharbi) where H. occipitalis, K. senegalensis, Ptychadena spp., andT. cryptotis are frequently found. (e) Mountainous areas of the Sahel south of Kiffa (Assaba), and Guelta OummLebare where Ptychadena trinodis was found. (f ) Tamourt Bougari (Assaba), a swamp inhabited by A. xerosand H. occipitalis, and probably Amietophrynus regularis, T. cryptotis, and K. senegalensis.

a b

c d

e f

19AMPHIBIAN CONSERVATION IN MAURITANIA

periods. The most effective conservationmeasure in this case is the provision of guid-ance for better management of waterresources in oases, “wadis”, “gueltas”, andsprings. Human populations have been his-torically living in close contact with anuranpopulations, and despite the intense droughtsof the 1970s some amphibian populationssurvived. Nonetheless, human populationsare increasingly relying on ground water foragriculture, including the raising of cattle,and for domestic use, which may eventuallyreduce the impact they may have had to dateon some surface water.

Conservation measures for Saharan popu-lations may be desirable because they presentan ideal scenario for studying and testinghypotheses on effects of on-going environ-mental change on survival, local adaptation,and genetics of small and isolated popula-tions. The Sahara Desert has probably suf-fered gradual xerification (with intermediatewet periods) since the Holocene, that, whenconsidered along with more recent episodes ofdramatic climatic change (GASSE, 2000;FOLEy et al., 2003), could be behind the cur-rent genetic and population structure ofwater-dependent organisms. Comparing thegenetic structure of anurans in Saharan iso-lates with those of more continuously dis-tributed populations in the Sahel should pro-vide information about the role of populationsize, population dynamics, distance amongpopulations, and time since separation, on thegenetic structure of species in isolated popula-tions. The current scenario available inMauritania provides a perfect opportunity tostudy how population size, gene flow, species-specific characteristics, and environmentalchange affect local adaptation and extinction.

RECOMMENDATIONS

A list of localities important to anurans inMauritania is provided in Table 2. The con-servation status and population trends of thisfauna are currently unknown but we list thefollowing series of actions that should lead tobetter understanding of the situation ofamphibian populations and provide a frame-

Table 2: Important localities for anurans inMauritania (coordinates in decimal degrees[WGS84 datum]).

N20.323193 W13.142101N20.580946 W13.136361N20.061001 W13.132806N20.516667 W13.050000N20.303600 W13.197283N20.252804 W13.088188N20.236826 W13.004978

N17.152482 W12.199115N17.126067 W10.990067N16.546667 W10.792333N16.579150 W10.704550N16.538033 W10.741550N17.070297 W12.207848

N17.053333 W13.916117

N16.499483 W7.715183

N16.691103 W9.716622N16.515562 W10.452908N16.654987 W9.707835N17.249855 W10.667613N16.403148 W9.559860

N18.260000 W12.360000N17.834850 W11.557833N17.737962 W12.245253N18.015850 W12.174967N17.451667 W12.394850N17.887298 W12.110844

N16.440000 W16.340000

Wilaya AdrarGuelta HandoumGuelta MolomharGuelta ToûngâdIrijiKanoal, Oued SéguelilTerjîtToumbahjît

Wilaya AssabaAouînet NanâgaBou Bleï'îneBougariGuelta Oumm LebareGuelta MetrauchaOumm Icheglâne

Wilaya BraknaAleg

Wilaya Hodh Ech CharguiMahmûdé Lake

Wilaya Hodh El GharbiAin El BerberaChegg el Mâleh sourceGuelb SambaTâmchekketTâmoûrt Goungel

Wilaya TagantGabou LakeGuelta el GheddiyaEl HousseînîyaGuelta FanarGuelta GaraouelGuelta Matmata

Wilaya TrarzaDiawling National Park

CoordinatesLocality

PADIAL ET AL.20

work for defining future research and conser-vation priorities: (1) evaluate the status ofSaharan isolates, especially the more vulnera-ble northern populations (i.e. Adrar and his-torical localities in Tiris zemmour), andextend field surveys to Saharan localities hav-ing a potential for supporting amphibianpopulations, e.g., Wilayas Assaba, Brakna,Guidimaka, Gorgol, Hodh El Gharbi, HodhEch Chargui, and Trarza in the Senegal basinand, especially, in the mountain ranges ofAssaba and Gorgol in the Sahel, regions sus-pected of having the highest anuran diversityin Mauritania; (2) inventory amphibian pop-ulations, with special emphasis on explo-ration of poorly known areas (eastern Atar,Tagant, Tiris zemmour, and Hodh EchChargui), and provide resultant data regard-ing anuran distribution and diversity tonational and international conservation agen-cies for use in future proposals regardingwildlife management and conservation; (3)conduct assessments of water quality andthreats to populations, particularly in popu-lations restricted to isolated montane pools;(4) from all populations collect tissue samplesfor molecular studies aimed at (a) assessingthe effect of environmental change and pop-ulation dynamics on genetic diversity andlocal extinction, (b) evaluate the phylogeo-graphic structure of all anuran species presentin Mauritania in order to identify large-scalepatterns of genetic diversity, isolation, andgene flow, and (c) clarify the taxonomic sta-tus of Mauritanian populations through inte-gration of Mauritanian samples into system-atic studies of African anurans. In addition, aconservation measure that could potentiallyhave an important impact on the conserva-tion of amphibians would consist of the pro-

vision of guidance to local inhabitants forbetter management of water resources inoases, “wadis”, “gueltas”, and springs.

Acknowledgement

José M. Padial received financial assis-tance for fieldwork from Asociación Amigosde Doñana; the drafting of this manuscriptwas made possible by a Gerstner PostdoctoralFellowship through the Richard GilderGraduate School of AMNH. José C. Brito’swork was supported by the Fundação para aCiência e Tecnologia (Programme Ciência2007), Portugal, by grants 7629-04 and8412-08 from the National GeographicSociety, and by project PTDC/BIA-BEC/099934/2008 (EU Programme COM-PETE). Mark-Oliver Rödel critically read anearlier draft of the manuscript and kindlyprovided photographs.

REFERENCES

BRITO, J.C.; MARTíNEz-FREIRíA, F.; SIERRA,P.; SILLERO, N. & TARROSO, P. (2011).Crocodiles in the Sahara desert: an updateof distribution, habitats and populationstatus for conservation planning inMauritania. PLoS ONE 6: e14734.

CAMPOS, J.C.; SILLERO, N. & BRITO J.C.(2012). Normalized Difference WaterIndexes have dissimilar performances indetecting seasonal and permanent waterin the Sahara-Sahel transition zone.Journal of Hydrology 464-465: 438-446.

DEKEySER, P.L. & VILLIERS, A. (1956).Contribution à l’étude du peuplement dela Mauritanie. Notations écologiques etbiogéographiques sur la faune de l’Adrar.

21AMPHIBIAN CONSERVATION IN MAURITANIA

Mémoires de l’Institut Français d’AfriqueNoire 44: 1-222.

DUMONT, H.J. (1982). Relict distributionpatterns of aquatic animals: another toolin evaluating late Pleistocene climatechanges in the Sahara and Sahel.Palaeœcology of Africa 14: 1-24.

FOLEy, J.A.; COE, M.T.; SCHEFFER, M. &WANG, G. (2003). Regime shifts in theSahara and Sahel: interactions betweenecological and climatic systems inNorthern Africa. Ecosystems 6: 524-539.

FROST, D.R. (2013). Amphibian Species of theWorld: an Online Reference. Version 5.6.American Museum of Natural History;New york, USA. Available athttp://research.amnh.org/herpetology/amphibia/index.html. Retrieved on01/09/2013.

GASSE, F. (2000). Hydrological changes inthe African tropics since the last glacialmaximum. Quaternary Science Reviews19: 189-211.

IUCN (2013). The IUCN Red List ofThreatened Species, v. 2013.2. InternationalUnion for Nature Conservation andNatural Resources, Gland, Switzerland.Available at http://www.iucnredlist.org.Retrieved on 02/03/2014.

LE HOUéROU, H.N. (1997). Climate, floraand fauna changes in the Sahara over thepast 500 million years. Journal of AridEnvironments 37: 619-647.

NATIONAL RESEARCH COUNCIL (1981).Environmental Degradation inMauritania. National Academy Press,Washington, DC, USA.

NICKEL, H. (2003). Ökologische Untersuchungenzur Wirbeltierfauna im südöstlichenMauretanien: zwei Fallstudien unter beson-

derer Berücksichtigung der Krokodile.Deutsche Gesellschaft für Technischezusammenarbeit, Eschborn, Germany.

PADIAL, J.M. (2006). Commented distributionallist of the reptiles of Mauritania. Graellsia 62:159-178.

PADIAL, J.M. & DE LA RIVA, I. (2004).Annotated checklist of the amphibians ofMauritania (West Africa). RevistaEspañola de Herpetología 18: 89-99.

PICKERSGILL, M. (2007). Frog search. Resultsof expeditions to southern and easternAfrica from 1993-1999. FrankfurtContributions to Natural History 28: 1-575.

PLEGUEzUELOS, J.M.; BRITO, J.C.; FAHD, S.;FERICHE, M.; MATEO, J.A.; MORENO-RUEDA, G.; REQUES, R. & SANTOS, X.(2010). Setting conservation priorities forthe Moroccan herpetofauna: the utility ofregional red listing. Oryx 44: 501-508.

RöDEL, M.-O. (2000). Herpetofauna of WestAfrica, Vol. I: Amphibians of the WestAfrican Savanna. Edition Chimaira,Frankfurt am Main, Germany.

RöDEL, M.-O.; BOATENG, C.O.; PENNER, J.& HILLERS, A. (2009). A new crypticPhrynobatrachus species (Amphibia:Anura: Phrynobatrachidae) from Ghana,West Africa. Zootaxa 1970: 52-62.

STUART, S.N.; CHANSON, J.S.; COX, N.A.;yOUNG, B.E.; RODRIGUES, A.S.L.;FISCHMAN, D.L. & WALLER, R.W.(2004). Status and trends of amphibiandeclines and extinctions worldwide.Science 306: 1783-1786.

TRAPE, S. (2009). Impact of climate changeon the relict tropical fish fauna of CentralSahara: threat for the survival of Adrarmountains fishes, Mauritania. PLoS ONE4: e4400.

PADIAL ET AL.22

VALE, C.G.; ÁLVARES, F. & BRITO, J.C. (2012).Distribution, suitable areas and conservationstatus of the Felou gundi (Felovia vae Lataste1886). Mammalia 76: 201-207.

VASCONCELOS, R.; FROUFE, E.; BRITO,J.C.; CARRANzA, S. & HARRIS, D.J.(2010). Phylogeography of the Africancommon toad, Amietophrynus regu-laris, based on mitochondrial DNAsequences: inferences regarding theCape Verde population and biogeo-

graphical patterns. African Zoology 45:291-298.

VENCES, M.; KOSUCH, J.; RöDEL, M.-O.;LöTTERS, S.; CHANNING, A.; GLAW, F. &BöHME, W. (2004). Phylogeography ofPtychadena mascareniensis suggeststransoceanic dispersal in a widespreadAfrican-Malagasy frog lineage. Journal ofBiogeography 31: 593-601.

WARD, D. (2009). The Biology of Deserts.Oxford University Press, New york, USA.

Ricardo Reques1,*, Juan M. Pleguezuelos2, Stephen D. Busack3, Philip de Pous4

Chapter 25Amphibians of Morocco, including Western Sahara: a status report

1 Departamento de Ecología Evolutiva, Estación Biológica de Doñana, Sevilla, Spain.2 Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain.3 North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA.4 Faculty of Life Sciences and Engineering, Departament de Producció Animal (Fauna Silvestre), Universitat de Lleida, Lleida, Spain.

* Correspondence: Departamento de Ecología Evolutiva, Estación Biológica de Doñana, Cl. Americo Vespucio, s/n, 41092, Isla de la Cartuja,E-41092 Sevilla, Spain. Phone: +34 616810551, Email: [email protected]

Received: 10 January 2013; received in revised form: 30 September 2013; accepted: 21 October 2013.

Basic and Applied Herpetology 27 (2013): 23-50

Morocco has one of the highest rates (28.6%) of amphibian endemism among countries bordering theMediterranean Sea and, while large areas of Morocco are crucial for conserving amphibian biodiversity, someareas are not afforded legal protection. We examine biodiversity, identify immediate anthropogenic threats, dis-cuss critical habitat for the conservation of amphibian diversity and the role of currently protected areas in meet-ing conservation goals within Morocco, Western Sahara included. The study area harbours 14 amphibianspecies, eight of which are assigned to the categories of Endangered (Pelobates varaldii), Vulnerable (Salamandraalgira, Amietophrynus xeros, and Hoplobatrachus occipitalis) or Near Threatened (Pleurodeles waltl, Alytes maurus,Bufo spinosus, and Barbarophryne brongersmai) using IUCN criteria at the regional level of the study area.Habitat loss and degradation due to conversion of land for agriculture, urbanization, or industry are majorthreats, but infrastructure for tourism, freshwater pollution by chemicals, introduction of non-native species toaquatic ecosystems (Gambusia holbrooki), pathogens (Batrachochytrium dendrobatidis), road-kills, and naturaldisasters (drought), are also rapidly increasing threats. In addition, consequences from global warming must alsobe considered. The present Conservation Area Network (CAN) does not include distributional ranges of someamphibian species, and a more complete CAN in Atlantic and desert areas is suggested. The northwesternAtlantic, Rif-Middle Atlas, Central Atlantic, and Tiris regions should be considered priorities for conservationbecause of amphibian endemism and/or the existence of isolated amphibian populations.

Key words: amphibian decline; conservation planning; Morocco; survival threats; Western Sahara.

Los anfibios de Marruecos, incluyendo Sáhara Occidental: Informe sobre su situación. Marruecos posee una de lastasas más elevadas de anfibios endémicos (28.6%) entre los países de la cuenca mediterránea y, a pesar de que exten-sas áreas de Marruecos son fundamentales para la conservación de la biodiversidad de anfibios, otras zonas no gozande protección legal. En este estudio examinamos la biodiversidad, identificamos las amenazas antropogénicas másinmediatas y discutimos el hábitat crítico para la conservación de la diversidad de anfibios y el papel de las áreasactualmente protegidas en el cumplimiento de los objetivos de conservación en Marruecos, Sáhara Occidental inclu-ido. El área de estudio alberga 14 especies de anfibios, ocho de las cuales se asignan a las categorías de En Peligro(Pelobates varaldii), Vulnerable (Salamandra algira, Amietophrynus xeros y Hoplobatrachus occipitalis) o CasiAmenazada (Pleurodeles waltl, Alytes maurus, Bufo spinosus y Barbarophryne brongersmai), utilizando criterios de laUICN a nivel regional en la zona de estudio. La pérdida de hábitat y la degradación debido a la conversión de ter-renos para la agricultura, urbanismo o industria son las principales amenazas, pero las infraestructuras relacionadas conel turismo, la contaminación de agua dulce por productos químicos, la introducción de especies exóticas en los ecosis-temas acuáticos (Gambusia holbrooki), la llegada de patógenos (Batrachochytrium dendrobatidis), los atropellos y losdesastres naturales (sequía), también son amenazas en rápido aumento. Del mismo modo, también deben tenerse encuenta las consecuencias del calentamiento global. La actual Red de Áreas de Conservación (CAN) no incluye ran-

This chapter should be cited as: Reques R., Pleguezuelos J.M., Busack S.D. & de Pous, P. (2013). Amphibians of Morocco, including Western Sahara:A Status Report. Chapter 25 in Part 2. Mauritania, Morocco, Algeria, Tunisia, Libya and Egypt in Vol. 11. Conservation and Decline of Amphibians: EasternHemisphere of the series Amphibian Biology. Basic and Applied Herpetology 27: 23-50. DOI: http://dx.doi.org/10.11160/bah.13003/

REQUES ET AL.24

Morocco (including Western Sahara),with an area of 705 850 km2, is biogeograph-ically within the Maghreb. In the north, mildand wet winters alternate with long, hot andincreasingly dry summers as one progressessouthward and eastward. Annual rainfall averages950 mm in the north (Tangier), 430 mm alongthe Atlantic Coast (Casablanca), and lessthan 100 mm in most of the Western Sahara.Four mountain ranges, the Rif (JebelTidighine, 2456 m), the Middle Atlas (JebelBou Naceur, 3356 m), the High Atlas (JebelToubkal, the highest peak in North Africa at4167 m) and the Anti-Atlas (Jebel Siroua,3304 m) traverse the country from north tosouth. The Sahara Desert begins south of theAnti-Atlas and High Atlas and extends eastfor more than 800 km and south for morethan 1000 km to 21º N latitude.

Morocco probably has the most completedataset regarding amphibian distribution andstatus across northern Africa, and BONS &GENIEz (1996), SCHLEICH et al. (1996),MATEO et al. (2003), and GENIEz et al. (2004)have been relied upon heavily for summariesof distribution and habitat preferences. Whilethis manuscript was in review BEUKEMA et al.(2013) described a third subspecies withinSalamandra algira (S. a. splendens) and provid-ed natural history data separately for the threeMoroccan subspecies; supplemental naturalhistory data for other amphibian taxa are alsoprovided throughout this paper.

Morocco has only 14 of Africa’s 993amphibian species (Table 1) (IUCN, 2009).One of these species, Pelobates varaldii, isendemic but three other species, Discoglossus sco-vazzi, Alytes maurus, and Barbarophrynebrongersmai, may be considered quasi-endemicbecause most of their distributional area is with-in Morocco and only isolated populations areknown from within Algeria. Morocco, therefore,has almost exclusive responsibility for global

CAUDATASalamandridae

Pleurodeles waltl Michahelles, 1830Salamandra algira Bedriaga, 1883

ANURAAlytidae

Alytes maurus Pasteur and Bons, 1962Discoglossus pictus Otth, 1837Discoglossus scovazzi Camerano, 1878

PelobatidaePelobates varaldii Pasteur and Bons, 1959

HylidaeHyla meridionalis Böttger, 1874

BufonidaeAmietophrynus mauritanicus (Schlegel, 1841)Amietophrynus xeros (Tandy, Tandy, Keith and

Duff-Mackay, 1976)Bufotes boulengeri Lataste, 1879Barbarophryne brongersmai (Hoogmoed, 1972)Bufo spinosus Daudin, 1803

DicroglossidaeHoplobatrachus occipitalis (Günther, 1858)

RanidaePelophylax saharicus (Boulenger, 1913)

Table 1: Moroccan amphibian species.

gos de distribución de algunas de las especies de anfibios, por lo que se sugiere una red de conservación más comple-ta incluyendo zonas del Atlántico y el desierto. Las regiones del Atlántico Noroeste, Rif-Atlas Medio, AtlánticoCentro y Tiris deben ser consideradas prioridades de conservación debido a los endemismos presentes y/o la existen-cia de poblaciones aisladas de anfibios.

Key words: amenazas para la supervivencia; declive de anfibios; Marruecos; planificación de conservación,Sáhara Occidental.

STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS 25

conservation of these four amphibians.Proximity to the Iberian Peninsula has providedMorocco with the greatest European influenceon its amphibian fauna among all Africancountries; two species (Pleurodeles waltl and Bufospinosus) and some genera (Salamandra,Discoglossus, Alytes, Pelobates, Pelophylax) are ofEuropean origin. Because of greater habitatdiversity, higher rainfall, and lower rates of evap-oration, amphibian species richness is highest inthe north while large areas within the Saharalack amphibians (BAHA EL DIN et al., 2008).

The global conservation status of Moroccanamphibians has been assessed quite recently(Table 2; see also COX et al., 2006) and whilelarge areas of Morocco are crucial to conservingamphibian biodiversity (Table 3), many signifi-cant areas are not afforded legal protection(RONDININI et al., 2006; DE POUS et al., 2011).Threatened amphibian species and populationsare found in southern desert and savannah, and

in northern wetlands and mountains, but thesehabitat types are not always well-represented inthe current Conservation Area Network (CAN,MINISTèRE DE L’AGRICULTURE, 1994).Currently, no amphibian species is legally pro-tected in Morocco.

Morocco, AnuraMorocco, CaudataMorocco, AmphibiaMediterranean, Amphibia

CR

2

EN

1

113

VU

21313

NT

31417

LC

6

661

NSp

12214106

End

10168

Table 2: Red List status (IUCN categories) foramphibians of Morocco (PLEGUEzUELOS et al.,2010). CR=Critically Endangered; EN=Endangered;VU=Vulnerable; NT=Near Threatened; LC=LowConcern; NSp=number of species; End=number ofendemic species; for comparative purposes globaldata for the amphibians of the Mediterranean Basinare included (COX et al., 2006).

Table 3: Precipitation and attributes of the distributional ranges of amphibians in Morocco (includingWestern Sahara). See text for procedure.

Species

Alytes maurusAmietophrynus mauritanicusAmietophrynus xerosBarbarophryne brongersmaiBufo spinosusBufotes boulengeriDiscoglossus pictusDiscoglossus scovazziHoplobatrachus occipitalisHyla meridionalisPelobates varaldiiPelophylax saharicusPleurodeles waltlSalamandra algiraAll SpeciesMorocco

Range withinMorocco (km2)

5 500395 30012 30095 100

183 200438 600

5 300190 600

525240 900

7 000398 30060 50010 800

Percentage of globalrange within Morocco

~9547.880.21

~ 951.16

22.442.22

~ 95 0.01

31.6710028.2114.1148.74

Maximum

> 20002000

600> 2000> 2000

6002000

2000800

20002000

> 2000

Minimum

700< 100

250500250150350

300600

< 100500800

Mean

995.7466.1

< 100293.7541.9441.9270.6614.9

< 100580.8710.7463.7733.2943.9441.8413.1

Precipitation

REQUES ET AL.26

In the following pages amphibian biodiver-sity in Morocco is examined, the most impor-tant habitats (Fig. 1) and the role of protectedareas are discussed, and immediate threats tothis biodiversity are identified. It is hoped thatthis information will assist environmental andconservation planning in Morocco by identify-ing non-random threats to diversity in terms ofspecies’ associations or ecological preferences.In addition, this treatment provides importantinformation on a group of terrestrial verte-brates under-represented in the CAN of mostcountries and frequently neglected in conserva-tion policy (MILNER-GULLAND et al., 2006).

IUCN RED LIST STATUS OF MOROCCAN

AMPHIBIANS (2009)

Endangered

Pelobates varaldii: The Moroccan spadefoottoad (Fig. 2a), an endemic, is locally distributedwithin the northwestern coastal plain amongcork oak and other forested habitat and in areas

of uncultivated sandy soil next to temporaryponds; DE POUS et al. (2012) provided 134 geo-referenced localities. Spawning sites are ephemer-al ponds and dayas (Fig. 3a); modified habitatsare avoided, and it is the most stenoeciousMoroccan amphibian (BEUKEMA et al., 2013).The northernmost locality is a small, forestedarea just south of the Tangier airport, easternmostlocalities are Khemisset and south of Ouezzane,and the southernmost locality is in the vicinity ofOualidia. Suitable areas for this species alongmost of the Moroccan Atlantic coastline, into theSouss Valley and southwards, and discontinuous-ly along the Mediterranean coast east to theAlgerian border, potentially do exist.

ESCORIzA & BEN HASSINE (2013) havereported a newly-discovered population ofPelobates varaldii, represented by a tadpolefrom one of 21 ponds surveyed in March2013, in the Ben Slimane region. They sug-gest this population likely demonstrates therelictual nature currently found in a formerlycontinuous distribution through northernMorocco’s Atlantic coastal plain.

Figure 1: Major habitats utilized by amphibians at the regional level (from PLEGUEzUELOS et al., 2010).

STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS 27

Current major threats to survival derivefrom loss and degradation of habitat due toconversion of suitable land to pasture for,and water pollution by, livestock. Survival iscontingent upon sandy soil, and industrialfarming is expanding into coastal areas (DE

POUS et al., 2012). Populations are oftenrestricted to temporal ponds where hydro-periods may not be sufficient for comple-tion of larval development (developmentalperiod is unstudied, but is dependent uponwater depth, temperature, and availability offood; four to six months is likely). Tadpolesremaining in permanent bodies of water aredisappearing because of introduced predato-ry fish (Gambusia holbrooki; see alsoSALVADOR, 1996 and STUART et al., 2008)and sudden draining during the larval peri-od. Additional discovery (November 2008,DE POUS et al., 2012) of an indeterminatespecies of Procambarus (photographic docu-mentation is suggestive of P. [Ortmannicus]

lophotus rather than P. clarkii [fide JohnCooper, North Carolina State Museum, inlitt., October 2010]) in a pond east ofLarache (35.08122°N, 6.06908°W) signalsan additional threat to this and otherspecies. Invasive crayfish present anincreasingly serious threat to aquaticorganisms, including amphibian larvae,wherever they become established (COOPER

& ARMSTRONG, 2007).Batrachochytrium dendrobatidis, a globally

distributed fungus responsible for chytrid-iomycosis and mass mortality among amphib-ians worldwide (HEATWOLE, 2013), hasrecently been reported from P. varaldii inMorocco. One of ten larvae sampled in April2009, from ± 20.5 km SE Larache(35.038110°N, 6.029248°W) demonstrated a0.4-genome equivalent infection intensity of thispathogen (EL MOUDEN et al., 2011). This finding,while suggesting a low prevalence of infection,warrants additional investigation. Populations of

Figure 2: Portraits of some Moroccan amphibians: (a) Pelobates varaldii (Mamora cork oak forest). (b)Salamandra algira (yebel Musa). (c) Alytes maurus (Chefchaouen). (d) Discoglossus scovazzi (Beni Snassene). (e)Amietophrynus xeros (Atar, Mauritania). (f) Bufotes boulengeri (Aïn Leuh). Photo credits: (a) P. de Pous, (b) S.yubero, (c) S.D. Busack, (d) R. Reques and (e & f) J.M. Pleguezuelos.

a b c

d e f

REQUES ET AL.28

a b

c d

e f

g h

STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS 29

these amphibians are decreasing and there isurgent need for conservation and manage-ment; additional protected areas within itscurrent range, coupled with managementactions for conservation, are needed to miti-gate continued population reduction.

The Evolutionary Distinct and GloballyEndangered (EDGE) program at the zoologicalSociety of London (http://www.edgeofexistence.org/) recently listed P. varaldii at number 36 ontheir global amphibian top 100.

Vulnerable

Salamandra algira: The range of theNorth African fire salamander (Fig. 2b) iswidely fragmented throughout northern,rather wet, mountain ranges in Morocco andCeuta, Spain (MARTíNEz et al., 1997; ESCORIzA

et al., 2006; BOGAERTS et al., 2007; ESCORIzA

& COMAS, 2007; BEUKEMA et al., 2010,2013). Recent morphological, genetic, andecological studies suggest that there are dif-ferent genotypes and phenotypes with parap-atric distributions within MoroccanSalamandra, and further taxonomic study is

warranted (STEINFARTz et al., 2000; DUBOIS

& RAFFAëLLI, 2009; BEUKEMA et al., 2010,2013). Salamandra algira populations occur-ring within the Rif and northern border ofthe Middle Atlas have been partitioned intotwo subspecies, S. a. splendens Beukema, dePous, Donaire-Barroso, Bogaerts, Garcia-Porta, Escoriza, Arribas, El Mouden &Carranza 2013 and S. a. tangitana Donaire-Barroso & Bogaerts 2003. Some populationsof Salamandra are ovoviviparous (DONAIRE-BARROSO & BOGAERTS, 2003a; BEUKEMA etal., 2013). Viviparous populations from theTingitane Peninsula have also been proposedfor species status (as S. tingitana; DUBOIS &RAFFAëLLI, 2009). The population in BeniSnassen is assigned to S. algira spelaea, whichis more related to the Algerian populations.The species is locally common in the westernand central Rif Mountains as well as in theMiddle Atlas (FAHD et al., 2006; BEUKEMA etal., 2010, 2013), in habitat associated withhumid, montane areas of Atlas Cedar(Cedrus atlantica), Pyrenean Oak (Quercuspyrenaica), and mixed forest (Abies, Cedrus,Pinus, and Quercus) with an abundance ofmontane streams (MARTíNEz-MEDINA,2001) (Fig. 3b), and has been cited in caves(AELLEN, 1951; DONAIRE BARROSO &BOGAERTS, 2001). Salamandra algira occursbetween 100 and 2100 m above sea level.

Populations are threatened by habitat lossdue to the agriculture of Cannabis sativa inthe Rif, deforestation, alteration and chan-nelization of water, overgrazing by livestockthroughout its range and, locally, by road-kill(TAIQUI, 1997; TAIQUI & MARTíN-CANTARINO, 1997). The pet trade, climaticchange, and the chytrid fungus are emergingconcerns (BOGAERTS, 2007).

Figure 3: Habitats for some of Morocco’s amphibianspecies. (a) Nufar pool, Kasr-el-Kebir; P. varaldii. (b)Stream, Talassemtane, Bab Taza; S. algira, A. maurus,and B. spinosus. (c) Temporary pond, Asilah.Breeding habitat, P. waltl. (d) Urban habitat,Chefchaouen, S. algira, A. maurus, D. scovazzi,and P. saharicus. (e) Spur of the Anti-Atlas, westof Agdz; B. brongersmai. (f ) Lanasser pool, RifMountains, H. meridionalis, A. mauritanicus,and P. saharicus. (g) Fort Bou Cherif, B. boulengeri.(h) Dayet Sjri, Merzouga, Tafilalt, A. mauritanicus.

Photo credits: (a) D. Donaire, (b & f ) R. Reques,(c & d) S.D. Busack, (e, g, & h) J.M. Pleguezuelos.

REQUES ET AL.30

Near Threatened

Pleurodeles waltl: The Sharp-ribbed newt isdistributed mainly throughout the coastal plainof northwestern Morocco (GARCíA-PARIS et al.,2004; BEUKEMA et al., 2013) within a roughlytriangular area connecting the TingitanePeninsula, Souk Jemaa des Oulad Abbou, andAnosseur, but three recorded localities(Talamrhecht, Safi, Île d'Mogador) fall outsidethis area. In general, P. waltl inhabits ponds,lakes, ditches, and slow-moving streams withnon-permanent water (Fig. 3c) and adjuststo habitat modified by cultivation (BEUKEMA

et al., 2013); populations are quite fragmentedand are declining throughout the country(BEJA et al., 2009).

This species is Near Threatened becauseof a general decline in population numbers(almost 30% over ten years) and widespreadloss of habitat (BEJA et al., 2009). Mainthreats to survival are agrochemical pollutionand eutrophication caused by livestock, lossof aquatic habitat through drainage, and lossand fragmentation of terrestrial habitats(BAHA EL DIN et al., 2008).

Alytes maurus: The Moroccan midwifetoad (Fig. 2c) is often found in associationwith larvae-bearing populations of S. algira(DONAIRE-BARROSO et al., 2006; BEUKEMA et al.,2013). It has a discontinuous distributionthroughout humid areas in montane-karstand forested areas (mainly Q. pyrenaica) closeto water sources in the western and centralRif Mountains (Fig. 3b) between 200 and2050 m above sea level (Jebel Tazekka) (seeDE POUS et al., 2013). Its distribution in theMiddle Atlas is poorly known (LIBIS, 1985;DONAIRE-BARROSO et al., 2006). A recent

genetic analysis shows that A. maurus pre-sents low levels of mtDNA variability withno clear geographical structuring (DE POUS

et al., 2013). Its current, fragmented range islikely a result of increasing temperaturesthroughout the Quaternary, as a fossil recordlikely attributable to A. maurus suggests amuch wider historical distribution (BEUKEMA

et al., 2013; DE POUS et al., 2013).Populations in the Chefchaouen district

are threatened by pollution due to humanactivity (Fig. 3d) and by introduction of theinvasive Eastern mosquito fish (Gambusiaholbrooki) (DONAIRE-BARROSO et al., 2009a).In the Middle Atlas some breeding localitiesin the Jebel Bou Iblane region are within pro-tected areas (site of bio-ecological interest,priority 1) but pressure from cattle grazing,deforestation, canalization of mountain-water, and soil erosion are increasing threatsoutside of protected areas (DONAIRE-BARROSO et al., 2006). Additional threats tothis species include the potential spread ofrecently detected chytrid fungus (EL

MOUDEN et al., 2011) as well as the effects ofclimatic change. Due to its reduced distribu-tion (about 30 known localities in an area ofless than 5000 km2), the species has been list-ed as Near Threatened (DONAIRE-BARROSO

et al., 2009a).

Barbarophryne brongersmai: The genusBarbarophryne was recently published(BEUKEMA et al., 2013) to reduce polyphylywithin the “green toad group” by removingthis species from the genera Bufo, Bufotes, orPseudepidalea to which it has been variouslyassigned. Brongersma’s toad is found from 5 mto 1000 m above sea level in suitable habitatsouth of Casablanca (HOOGMOED, 1972;

STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS 31

GENIEz et al., 2000; BEUKEMA et al., 2013)where it inhabits semiarid areas of Arganiaspinosa, Euphorbia, grass-like vegetation, andploughed fields. Temporary ponds where itbreeds are generally located in rocky areas(Fig. 3e), and the species has been observedin artificial bodies of water (GARCíA-MUñOz

et al., 2009). It is threatened by increasedaridity and pollution and drainage of breed-ing habitat throughout much of its range.Although present in the Parc National deSouss-Massa, the species is probably indecline, and at a loss rate of almost 30% overten years makes it close to qualifying forVulnerable status (SALVADOR et al., 2006).

Populations in the Souss Valley, Ifni, andLow Draa and Tekna regions, and those innorthern Western Sahara, are being nega-tively affected by the proliferation of cisternsbeing built to water cattle. Toads, attractedby the humidity, fall into these undergroundcisterns and die when these watering struc-tures dry up (GARCíA-MUñOz et al., 2009).One-meter-deep decantation chambers linkedto these cisterns are frequently used bybreeding toads and, while post-metamorphictoads can probably climb the verticalwalls, adults are less likely to escape in thismanner (L. García-Cardenete, personalcommunication).

Least Concern

Discoglossus scovazzi: The white-belliedpainted frog (Fig. 2d) inhabits suitable habitatin Morocco and the Spanish territory ofCeuta at elevations from near sea level to2650 m above sea level in the High AtlasMountains (see Fig 9 in BEUKEMA et al.,2013) (DUBOIS, 1982; MARTíNEz-MEDINA,

2001; zANGARI et al., 2006). Abundant insub-humid and humid bioclimatic zones, butalso in semiarid zones around Casablanca,this frog inhabits temporal and ephemeralponds of fresh or slightly brackish water andmontane streams (BEUKEMA et al., 2013).Localized loss of breeding sites through agri-cultural development in inland areas andincreasing salinity in lagoons are the mainthreats (SALVADOR et al., 2009); it is pre-sumed that the species can resist light modi-fication of its habitat by deforestation.Chytrid fungus, B. dendrobatidis, recently hasbeen reported from D. scovazzi at two locali-ties in Tétouan Préfecture. One metamorphicindividual sampled in November, 2006, fromAgnane (near Tétouan at 35.535881°N,5.386177°W) presented an infection intensi-ty of 29.9 genome equivalents and one adultsampled in February, 2007, approximately18.5 km SE Larache (35.043940°N,6.046156°W) presented an infection intensityof 60.3 genome equivalents (EL MOUDEN et al.,2011). Additional research regarding theactual extent of the distribution of this fun-gus is of paramount importance.

Discoglossus pictus: The western limit ofdistribution for the common painted frog isunclear. In Morocco apparently it is limitedto a strip from the Cap des Trois FourchesPeninsula (Melilla included) to Morocco’snorthern border with Algeria and possiblyextending westward beyond the MoulouyaBasin (BEUKEMA et al., 2013). It breeds inmost types of still water, including temporalponds, marshes, and brackish water. Habitatalteration, including changes in traditionalland-use and urbanization (BOSCH et al.,2009), is its principal threat.

REQUES ET AL.32

Hyla meridionalis: Mediterranean treefrogsare widely distributed throughout the westernMediterranean (TEJEDO & REQUES, 2002);northern Mediterranean locations appear tohave been colonized recently from Africa(RECUERO et al., 2007; but see STöCK et al.,2012). Widespread in Morocco from coastalwetlands to montane habitats, it inhabits mostareas adjacent to still or moving water (Fig. 3f);current gaps in its apparent range in manyparts of northeastern Morocco and theMiddle-Atlas and High Atlas are likely due toa lack of distributional research (BEUKEMA et al.,2013). Loss of terrestrial and aquatic habitatsis the major threat, but populations remainlocally abundant. One of ten H. meridionalislarvae sampled in April, 2009, approximately18.5 km SE Larache (Tétouan Préfecture;35.043940°N, 6.046156°W) demonstrated a395.9 genome equivalent infection intensityof the fungus B. dendrobatidis (EL MOUDEN

et al., 2011).

Amietophrynus xeros: The desert toad (Fig. 2e)has been recorded from the extreme south ofWestern Sahara. The population found intemporal pools at Aouadi, a well close to WadiAïn Ascaf, is probably relictual and adverselyimpacted by regional drought; in areas nearand within Adrar Atar (Mauritania) the speciesis always present around natural, temporal,small reservoirs. Listed as Least Concern atthe global level, at the regional level ofMorocco it could be considered Vulnerable(PLEGUEzUELOS et al., 2010).

Bufotes boulengeri: Previously considered amember of the Palearctic green toad complexas Bufo viridis, this toad (Fig. 2f) has beenrecently reassigned independent species sta-

tus based on mitochondrial DNA (see STöCK

et al., 2006, 2008; BEUKEMA et al., 2013).Inhabiting forested areas, shrubland, drygrassland, semi-desert, and desert at eleva-tions from near sea level to 2670 m above sealevel (Fig. 3g), Boulenger’s toad is one ofthe most widespread amphibians inMorocco. The main threat facing the speciesappears to be loss of breeding habitat throughdrainage of wetlands, management of naturalwater sources, and water pollution (IUCN,2006). In the southern belt of its Moroccandistribution B. boulengeri is the species mostlikely to die inside modern underground cis-terns built for watering cattle (L. García-Cardenete, personal communication).

Bufo spinosus: The common toad is aEuropean species with genetically distinctrelictual populations in Morocco (GARCíA-PORTA et al., 2012). Isolated populations arefound along Mediterranean mountains andin other mountains except the Anti-Atlas(FAHD et al., 2006; BEUKEMA et al., 2013). Itinhabits very humid areas near permanentwater, mostly in mountainous regions (Fig. 3b),and attains an elevation of 2750 m on JebelTinergouet in the High Atlas. Populationsmight be locally impacted by deforestation,water pollution, and draining of traditionalbreeding places (IUCN, 2006). While notthreatened at the global level (AGASyAN et al.,2009), at the regional level of Morocco itcan be considered Near Threatened(PLEGUEzUELOS et al., 2010).

Amietophrynus mauritanicus: The Mauritaniantoad is a Maghrebian endemic with a widedistribution from the northern Sahara Desertto the Mediterranean coast, but its presence

33STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS

in Western Sahara is unconfirmed (DONAIRE-BARROSO et al., 2009b). It frequents nearlyany water source (Figs. 3f, 3h), includingtemporary ponds used for crops or cattle atelevations from sea level to 2650 m above sealevel in the High Atlas (DUBOIS, 1982). Thismay be the most abundant and widely dis-tributed amphibian in Morocco and it cur-rently does not require conservation action.Some populations, however, are affected byhabitat loss and casualties due to motor vehi-cles (FAHD et al., 2002) and, attracted byhumidity, some individuals die inside under-ground cisterns in the southern limit of itsMoroccan distribution (J.M. Pleguezuelos,personal observation).

Hoplobatrachus occipitalis: The groove-crowned bullfrog, widely distributed furthersouth in Africa, recently has been found inWestern Sahara. Known only from the south-western margin of Western Sahara (GleïbLadjir) it survives in temporary ponds offresh water in regions with a Sahelian climate.The principal threat to Western Saharan pop-ulations is its dependence on water; at theregional level of Morocco it could be consid-ered Vulnerable (PLEGUEzUELOS et al., 2010).

Pelophylax saharicus: Populations of theSaharan green frog are generally widespreadin Morocco from sea level to 2670 m abovesea level in the Middle Atlas but fragmentedin the desert because of patchy availability ofhabitat (oases). Locally abundant where wet-land habitat exists, P. saharicus is one of themost commonly recorded amphibians inMorocco. An aquatic species that inhabitsirrigation ditches, ponds, springs, rivers, andtemporary pools, and with high tolerance to

alteration of its habitat (Figs. 3d, 3g), thisspecies is presumed to have no major threatsto survival. Survival, in fact, appears assistedin some regions by artificial ponds installedfor agricultural purposes.

ECOLOGICAL FACTORS AFFECTING

DISTRIBUTION

Understanding environmental factors andecological requirements for survival ofamphibian populations is key to developingmanagement strategies for conservation(SEMLITSCH & ROTHERMEL, 2003).Amphibian species richness is influenced bylatitude within Africa, with maximum valuesat the Equator and minimum values at north-ern and southern continental extremes(RONDININI et al., 2006). Other factorsaccounting for African amphibian richness arethe presence of suitable breeding places, rain-fall, and terrestrial habitats used during non-breeding periods; below we review these fac-tors within Morocco.

With the exception of the ovoviviparousS. a. tingitana in mountains north and west ofTétouan (DONAIRE BARROSO & BOGAERTS,2001; BEUKEMA et al., 2010), the presence ofevery native species is contingent upon aquatichabitat for larval development. Mediterraneanwetlands and other suitable breeding areas arehighly temporal and unpredictable, andMorocco has suffered considerable degradationand loss of wetlands (RAMDANI et al., 2009);ecological monitoring of 24 wetlands and adja-cent habitat (4529 ha) recorded a shrinkage inarea of 25% from 1978 to 1999 (MORGAN,1982; BIRKS et al., 2001; RAMDANI et al., 2001;GREEN et al., 2002). Oligohaline ponds (alongthe Atlantic coast), montane lakes (in the

REQUES ET AL.34

Middle Atlas) and temporal wetlands (both inSaharan and coastal areas), habitats consideredmost threatened, are precisely the habitats mostimportant for amphibian reproduction.Degradation resulting from hydrological alter-ation (in Atlantic plains), siltation (in someeastern semiarid areas), pollution by cattle anddomestic sources (mainly in Atlantic plains) viaprocesses very similar to those which haveoccurred in southern Spain (GREEN et al., 2002;REQUES, 2009) are common, yet only 10 of 47wetlands with areas greater than two hectaressurveyed between 1997 and 1999 by GREEN et al.(2002) have been provided legal protection.

Alteration or loss of pools, streams, andgullies suitable for amphibian reproductionfrequently goes unnoticed because of the smallsize and temporal character of these areas(OERTLI et al., 2005; REQUES, 2009) yet tem-porary wetlands with extended hydroperiodsfacilitate breeding success for most amphibians(PECHMANN et al., 1989; ROWE & DUNSON,1995; WEyRAUCH & GRUBB, 2004).Permanent wetland habitat is threatened byfrequent introduction of non-native species(mainly fish) that feed upon amphibian eggs

and tadpoles (STUART et al., 2004), and desic-cation of temporal pools results in loss of eggsand tadpoles (PECHMANN et al., 1991) inamphibian populations in arid regions(SEMLITSCH et al., 1996; BEJA & ALCAzAR,2003). In general, all habitat modificationreducing hydroperiod in breeding areas affectssurvival of amphibian populations.

Annual rainfall influences distribution andabundance (BORKIN, 1999) and in Moroccoannual average rainfall is approximately 400mm for most of the country, increasing tobetween 1500 mm and 2000 mm in northernmountains and decreasing to about 50 mm inthe Sahara. Data on rainfall were obtainedfrom GLOBCOVER (2008; full resolutionmode, spatial resolution of 300 m), amphib-ian distributional data were obtained from theGlobal Amphibian Assessment (IUCN,2006) and both datasets were entered intoArcGIS 9.2® (ENVIRONMENTAL SySTEMS

RESEARCH INSTITUTE, 2006) to obtain precip-itation ranges and means for distributionalareas of the 14 species in Morocco. As theboundaries between D. pictus and D. scovazziare currently not clear (see Fig. 9 in BEUKEMA

et al. 2013), we deal with this uncertainty byconsidering all populations of painted frogsfrom Cap des Trois Fourches Peninsula east toAlgeria (including the Beni Snassen) as D. pic-tus. Most species are distributed throughoutnorthern and western Morocco in localitieswhere annual precipitation ranges between400 mm and 1000 mm. Only two species,H. occipitalis and A. xeros in the extreme south,are found in localities with an annual rainfall ofless than 150 mm. Together with A. mauritan-icus, B. boulengeri, B. brongersmai, and P. sahar-icus, these species represent the only Moroccanspecies inhabiting the desert. At the opposite

Figure 4: Amphibian species richness in relationto rainfall classes. See text for data collection pro-tocol.

35STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS

extreme, S. algira and A. maurus inhabit areaswith an annual precipitation greater than 600 mm(DONAIRE-BARROSO & BOGAERTS, 2003b)(Table 3, Fig. 4).

With the exception of P. saharicus andmost populations of P. waltl, Moroccanamphibians can be considered terrestrial, andthat is significant for conservation. Little isknown about microhabitat use by mostMoroccan amphibians (but see EL HAMOUMI

et al., 2007; DE POUS et al., 2012; BEUKEMA

et al., 2013) and any analysis must be per-formed within the framework of major habi-tats. Landscape ecology can highlight rela-tionships among species and landscapes, fol-low shifts in relationships through time, andmonitor the influence of anthropogenicchanges in the landscape (NAUGLE et al.,2005). Data on the distributional area ofmajor habitat types within the range of eachspecies were obtained from GLOBCOVER

(2008; see above), and the frequency of habi-tat use for each amphibian species analyzedby correspondence analysis (STATSOFT,2001), which allowed assessment of relation-ships between landscape variables andamphibian species (PéREz-LóPEz, 2005)(Fig. 5). Hoplobatrachus occipitalis and A. xeros,associated with barren areas typical of desertregions, were again identified as isolated fromthe remaining species. At the oppositeextreme were A. maurus and S. algira, bothof which occur in forested or shrublandareas of northern Morocco. Other associa-tions of conservation interest were those ofP. varaldii with P. waltl, and of D. scovazziand/or D. pictus with H. meridionalis.Anurans of the genera Bufo, Bufotes,Barbarophryne, and Pelophylax utilized thelandscape in an eclectic manner.

PROSPECTS FOR CONSERVATION

Synthesis of Threats to Amphibian Assemblages

Survival problems faced by Moroccanamphibians can be attributed to environmen-tal change of anthropogenic origin (IUCN,2009); habitat loss is the major threat (Fig. 6).The negative effect of human replacement ofnatural habitats with agricultural, urban, orindustrial sites involves loss both of suitablehabitat for breeding and of connectivity

Figure 5: Correspondence between amphibian dis-tribution and habitat type. Rc = Rainfed croplands;Ba =Bare areas; Mo1 = Mosaic cropland, 50-70%vegetation/20-50% grassland-shrubland-forest;Mo2 = Mosaic vegetation, 50-70% grassland-shrubland-forest/20-50% cropland; Co: Closed toopen, >15% broadleaved or needle-leaved evergreenor deciduous, <5m shrubland; Sp = Sparse, <15%vegetation; Ot= Other. Data from GlobCoverdataset (GLOBCOVER, 2008). Alymau = Alytesmaurus; Amimau = Amietophrynus mauritanicus;Amixe = Amietophrynus xeros; Barbro = Barbarophrynebrongersmai; Bufspi = Bufo spinosus; Bufbou = Bufotesboulengeri; Dispic = Discoglossus pictus; Dissco =Discoglossus scovazzi; Hopocc = Hoplobatrachus occip-italis; Hylmer = Hyla meridionalis; Pelvar = Pelobatesvaraldii; Pelsah = Pelophylax saharicus; Plewal = Pleurodeleswaltl; Salalg = Salamandra algira.

REQUES ET AL.36

between patches of suitable habitat(LAURANCE, 2001; STUART et al., 2008); thelast is an increasing threat in Morocco,because of the spreading network of pavedroads. These threats are particularly harmfulto species with restricted distributions orecological requirements, such as S. algira,P. varaldii, and A. maurus. Some species,however, do benefit from anthropogenicchange; deforestation increases open habitatthat may be rapidly colonized by generalistspecies such as A. mauritanicus and H. meridionalis.Anurans also adapt well to agricultural land-scapes if habitat change is not extreme; newand modified habitats can provide artificial,but suitable, breeding habitat in the form ofirrigation ponds for P. saharicus and A. mau-ritanicus (STUART et al., 2004). Currentlyonly four amphibian species, A. mauritanicus,B. boulengeri, P. saharicus and, to a lesserextent, H. meridionalis (because of overallresilience) exhibit relatively high tolerance tohuman-induced change to the landscape(deforestation and agriculture in particular).

Other recent threats include loss of suitablecoastal habitat due to increasing developmentfor tourism (affecting mainly P. varaldii alongthe Atlantic and Discoglossus species along theMediterranean), and spread of other develop-

ments that modify natural water sources. Sinceconstruction of the Ouarzazate reservoir on theOued Drâa, regular flooding ceased and oasesthat formerly provided suitable breeding placesfor A. mauritanicus, B. brongersmai, H. merid-ionalis, and B. boulengeri disappeared. Due tothe high number of species affected, four ofthem threatened, intrinsic factors of the speciesshould be considered the second major threatto Moroccan amphibians (Fig. 6). Restricteddistributional area and low population densi-ty place Moroccan populations of S. algira,P. waltl, A. maurus, P. varaldii, A. xeros, B. spinosus,and H. occipitalis, all species with reduced disper-sal capacity, in very sensitive situations.

Amphibians cannot escape natural effectsresulting from climatic change (PARMESAN etal., 1999; CAREy & ALEXANDER, 2003) aschanges in temperature and humidity affectphysiology and phenology of the reproductiveprocess (WALTHER et al., 2002; ROOT et al.,2003; READING, 2007) in addition to pro-moting loss and fragmentation of habitat(TEWKSBURy et al., 2008). Earlier estimatesthat at least four Endangered species and 13Vulnerable species within Africa, most inhab-iting the northern half of the continent,would be affected by climatic change (IPCC,2007) have been reinforced by MARTíNEz-FREIRíA et al. (2013) who predict a reductionin suitable area for 50% of Moroccan reptil-ian species in the future, suggesting a seriouspotential threat to amphibians as well.Natural disasters like the current droughtaffecting Western Sahara (BENASSI, 2008)could hamper survival of A. xeros and H. occipi-talis, species living in desert habitats at thesouthern extreme of Western Sahara.

Batrachochytrium dendrobatidis, the glob-ally distributed fungus responsible for

Figure 6: Major threats to Moroccan amphibians(from PLEGUEzUELOS et al., 2010).

37STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS

chytridiomycosis and mass mortality amongamphibians worldwide (HEATWOLE, 2013),has recently been reported in populations ofP. varaldii, D. scovazzi, and H. meridionalisfrom Tétouan Préfecture. While opportunis-tically sampling 51 sites on the Gharb plainand in the Rif and Middle Atlas mountainsbetween 2005 and 2009, EL MOUDEN et al.(2011) examined 203 amphibian specimensfor presence of chytrid fungus. Three sites(6%; all north of latitude 35.038°N) provedpositive for chytrid fungus. While samplesizes for individuals determined to carry thefungus were low (one P. varaldii tadpole of10 sampled, one adult H. meridionalis offour sampled, and two D. scovazzi [a meta-morph and an adult] from each of two sites;see IUCN Red List Status, above) and infec-tion rates cannot be accurately determinedfrom the data obtained, the presence of thisfungus in northern Morocco introducesanother serious threat to the survival ofnative amphibians.

When ranked by number of species affectedby each major threat to Moroccan amphibians,pollution placed third (Fig. 6). Chemical pol-lution of freshwater has been recognized as aserious global threat to amphibian popula-tions (BRIDGES & SEMLITSCH, 2000;SPARLING et al., 2000) but while there aredata concerning the effect of some pesticideson the Northern Bald Ibis (Geronticus eremita;ARMESTO et al., 2006) in Morocco, data arelacking on the effect of pesticides uponamphibians. Pollutants in favourable breed-ing habitat in Morocco are generally nitroge-nous derivatives from agricultural fertilizer,but urban and cattle waste also contribute.Although the relationship between pollutantlevel and amphibian richness is generally neg-

ative (BOONE & BRIDGES, 2003), differentspecies do respond differently (BRIDGES &SEMLITSCH, 2000). Low pollution levels canincrease trophic resources (BOONE & JAMES,2005), and the relative abundance of somegeneralist species (P. saharicus, A. mauritanicus,and H. meridionalis) residing on the out-skirts of urban areas, such as Chefchaouen,Ifrane, Goulimine, and Ouarzazate (FAHD

et al., 2006, 2007) may be artificially highbecause of pollution. Species such as S. algira,however, cannot tolerate this kind of pollution(DONAIRE-BARROSO & BOGAERTS, 2003a).

Non-native species in aquatic ecosystemscan pose serious threats to native amphibianpopulations (MOUSLIH, 1987; KATS &FERRER, 2003; KIESECKER, 2003). Mosquitofish (G. holbrooki), for example, are known tobe detrimental to amphibian breeding success(SEGEV et al., 2009) and recent introductionsof mosquito fish into numerous montane springsmay compromise populations of A. maurus andother species (DONAIRE-BARROSO & BOGAERTS,2003b; BEUKEMA et al., 2013). Discovery ofNew World crayfish Procambarus cf lophotus(DE POUS et al., 2012) suggests impendingthreats to aquatic amphibians in this area aswell. “Once established, no methods exist bywhich a non-indigenous crayfish can beexterminated without unacceptable harm tonative crayfishes and other organisms”(LODGE et al., 2000).

Road-kills may cause local extirpation ofpopulations when traffic levels in proximityto breeding areas are high (DODD & SMITH,2003; HOULAHAN et al., 2006). There are nodata on such an impact on Moroccanamphibians, but the threat from traffic is pre-sumed to be increasing because the numberof roads and vehicles continues to increase.

REQUES ET AL.38

An increasing threat to amphibian assem-blages in arid areas of the south (Souss Valley,Ifni, Low Draa, Tekna) is the building of moreand more reinforced concrete cisterns by shep-herds. These deep, underground and coveredstructures with one or two uncovered decanta-tion chambers positioned at the bottom oflightly sloping valleys accumulate humidity andattract amphibians. Individuals fall intodecantation chambers or cisterns, both of whichserve as death-traps (e.g. GARCíA-MUñOz et al.,2009). Although some B. brongersmai maybreed in decantation chambers, others are sub-jected to predation or to dehydration as thesestructures become empty (L. García-Cardenete,personal communication). This increasingthreat could rapidly deplete Saharan popula-tions of A. mauritanicus, B. brongersmai and,particularly, B. boulengeri, in regions where theycurrently are scarce because of arid conditions.This hazard can be corrected easily by installa-tion of evacuation slides.

Priority Areas

The Mediterranean Basin is considered aglobal hotspot for amphibian diversity andendemism (STUART et al., 2008).Biogeographically, this eco-region includes fourmountain chains and the northern half of theMoroccan lowlands and, as with otherMediterranean areas, Moroccan habitats arehighly degraded and scarcely protected (BROOKS

et al. 2004; WILSON et al., 2007; DE POUS et al.,2011). Gap analysis of diversity and distributionof amphibians, mammals, and protected areas inAfrica illustrated the convenience of broadeningprotected areas around the western Rif, westernMiddle Atlas, and some localities along theAtlantic coast (RONDININI et al., 2005, 2006).

Protection of places of interest, with amphibiansacting as umbrella species, would conserve othervertebrates as well (RONDININI & BOITANI,2006). Using models for 11 amphibian and 86reptilian species, DE POUS et al. (2011) definedpriority areas into which the existing protectedareas could be extended.

Amphibians occur in most major habitatsin Morocco, and threatened species are notablypresent in wetlands as expected, but also inshrublands, savannahs, and deserts (Fig. 1).Threatened Moroccan amphibians have veryrestricted ranges, but ranges of the most threat-ened species include portions of the ranges ofmost other remaining species. Well-designedconservation area networks (CAN) will includemost threatened species and much ofMorocco’s amphibian species richness (Fig. 7;see also DE POUS et al., 2011). In northernMorocco, for example, protection of the entirerange of A. maurus will protect eight addition-al species; DE POUS et al. (2011) showed thatonly about 7% of the distribution of A. maurusfalls inside protected areas (e.g. National andNatural Parks of Jebel Bou Hachem, BouIblane, Talassemtane, Koudiat Tidighine, Al

Figure 7: Priority areas (shaded) for amphibian con-servation (see text).

39STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS

Jabha Tazekka), although remaining popula-tions are in areas so rugged that alteration is notimminent (DONAIRE-BARROSO & BOGAERTS,2003b). In western Morocco, protection of therange of P. varaldii would include partial rangesof six additional species. This CAN would notinclude B. brongersmai, A. xeros, or H. occipitalis;conservation of the latter two species requiresmanagement action in the southern extreme ofWestern Sahara, areas currently sufferingextreme drought and political problems.

Expansion of areas under protectionwould benefit A. maurus and other speciesof concern in Morocco, e.g. S. algira andB. spinosus. Because P. varaldii has not beenconfirmed within limits of the Merja zergaBiological Reservation recently, it apparently

does not occur in any protected area (DE

POUS et al., 2011, 2012). The Mamora corkoak forest and surrounding area is the onlylocality where it is still common, and here itis highly threatened by overgrazing, logging,exotic tree plantations, and industrial devel-opment. Reduction of these negative effectsand avoidance of further fragmentation(DE POUS et al., 2012) is essential, whileestablishing protected areas within this partof the range is urgent. Such action would alsobenefit P. waltl, D. scovazzi, H. meridionalis,B. boulengeri, A. mauritanicus, and P. saharicus.

The CAN in Morocco does not currentlyinclude all amphibian species, and a more com-plete network including remaining species isadvisable (DE POUS et al., 2011). Some threat-

Table 4: Characteristics of regions having priority for amphibian conservation. For approximate regional areas,currently-protected areas, and percentages of major habitats within regions, see GLOBCOVER (2008) andtext for details. Cost.A.R. = Coastal Atlantic Region; R.A.M.R. = Rif-Middle Atlas Mountain Region;Cent.A.R. = Central Atlantic Region; T.R. = Tiris Region.

Approximate regional area (km2)

Currently-Protected areas

Rainfed cropland

Mosaic cropland (50-70%) / other vegetation (grass-land / shrubland / forest) (20-50%)

Mosaic vegetation (grassland / shrubland / forest)(50-70%) / cropland (20-50%)

Closed broadleafed deciduous forest (> 40% of thearea with trees > 5m in height)

Mosaic forest or shrubland (50-70%) / grassland(20-50%)

Closed to open (> 15%) (broad-leafed or needle-leafed,evergreen or deciduous) / shrubland (< 5 m)

Sparse (< 15% cover) vegetation

Bare areas

Cost.A.R.

5782

Merja zerga,Sidi Boughaba

15.8

36.3

25.7

0.7

4.4

11.7

2.4

0.6

R.A.M.R.

15 608

Talassantane,Tazekka

6.9

24.0

23.0

6.0

10.6

19.3

4.3

2.2

T.R.

> 211 576

None

0

0

0

0

0

0

100

0

Cent.A.R.

15 416

Souss-Massa

13.1

16.0

26.2

0

8.4

4.6

20.7

9.4

REQUES ET AL.40

ened species are found in desert and savannahbut neither habitat type is well represented inthe current CAN. Areas of high priority forprotection are those in which historical eco-logical processes continue to function and inwhich climatic changes forecasted for thefuture may be mitigated (PARRISH et al., 2003;LOVEJOy, 2006; DE POUS et al., 2011). It isproposed here that the northwesternAtlantic, Rif-Middle Atlas, central Atlantic,and Tiris regions be considered as prioritiesfor amphibian conservation (Fig. 7; see alsoRONDININI et al., 2005, 2006; CARVALHO et al.,2011; DE POUS et al., 2011). Currently pro-tected areas in the first three regions shouldbe enlarged (Table 4) and protection shouldbe established for the Tiris region. Each ofthese regions contains habitat meeting eco-logical requirements (GLOBCOVER, 2008; seeabove) for the survival of Moroccan amphib-ians (Table 4).

NEW ECOLOGICAL STAGES AFFECTING

MOROCCAN AMPHIBIANS

Morocco will achieve significant humanpopulation increase and economic ameliora-tion in the near future (AFRICAN DEVELOPMENT

BANK, 2012), both of which likely will havenegative effects on natural ecosystems.Predicting how these changes will affect theamphibian fauna is difficult. One cannot relyupon modelling because time-series data forthese effects on amphibian populations are notavailable, and one can only hypothesize futurerelationships between environmental changeand amphibian populations. Knowledge of theability of Moroccan amphibians to adapt to,and survive, human-induced environmentalchange is also lacking; some degraded habitats,

abandoned quarries, or deforested areas forexample, may become suitable habitat for someamphibian species.

Besides foreseeable change in land use andpollutant levels, consequences from climaticchange must also be considered. TheIntergovernmental Panel on Climate Change(IPCC) predicts Morocco will be severelyaffected by an increase in temperature and adecrease in rainfall in the near future (HULME etal., 2001; IPCC, 2007; KLAUSMEyER & SHAW,2009; LOARIE et al., 2009; MARTíNEz-FREIRíA

et al., 2013). A 15% decrease in average annualrainfall has been recorded in Morocco duringthe past 30 years, with periods of droughtincreasing in duration and intensity (BENASSI,2008). Following this scenario, Mediterraneanwetlands will face altered hydroperiods, andwetlands currently permanent will become sea-sonal while wetlands currently temporal willdisappear (REQUES, 2005; IPCC, 2007).Shortening of the hydroperiod would affectspecies like P. varaldii, a threatened species witha relatively long larval period. It would also havenegative consequences for other species throughpopulation and community effects(SCHNEIDER, 1997; MOREy, 1998). Scarcity offreshwater would hardly affect availability ofwater for humans (IPCC, 2007); competitionfor available water will increase betweenhumans and amphibians and the loser in thiscompetition will always be the non-humans.

Many aspects of the biology and ecology ofMoroccan amphibians remain unknown(BEUKEMA et al., 2013); to foresee climatic andanthropogenic effects of global change uponamphibians it is necessary to understand thenatural history and tolerance of each species toenvironmental change. Amphibian declineoccurring on the southern Iberian Peninsula

41STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS

because of increasing aridity (unpublisheddata) is probably very similar to that occurringin Morocco. Effective measures in Spainincluded restoring habitat in important breed-ing areas and creating new breeding areas(BEEBEE, 1996; SEMLITSCH & ROTHERMEL,2003; REQUES & TEJEDO, 2008). The mostsuitable breeding places for amphibians inMediterranean regions are temporal, spatiallyheterogeneous, and with extended hydroperi-ods (BEJA & ALCAzAR, 2003; TEWS et al.,2004). Species-specific conservation effort isneeded in several cases, such as in the tempo-rary coastal breeding ponds of P. varaldii andfor some marginal, isolated, and scarce popula-tions of S. algira and A. maurus (DE POUS et al.,2012, BEUKEMA et al., 2013).

Amphibians have survived dramaticepisodes of climatic change for millions ofyears. Their future now depends upon humans.If measures are not undertaken to minimize theimpact of humans and the harsh effect of cli-matic change on amphibians, some species willnot survive, particularly those in countries withlarge arid areas like Morocco.

Acknowledgement

P. de Pous received financial support fromFI-DGR grant 2013FI_B1 00110, Generalitatde Catalunya, Spain, during preparation ofthis manuscript. We thank L. Boyero, J.E.Cooper, D. Donaire-Barroso, S. Fahd, J.Fetzner, L. García-Cardenete, and J.A. Mateo,whose comments improved the manuscript,and extend our appreciation to those whocame before us, to those who continue torespect and study the amphibians of Morocco,and to those currently engaged in protectingthis most unique and valuable resource.

REFERENCES

AELLEN, V. (1951). Contribution à l’herpé-tologie du Maroc. Bulletin de la Société desSciences Naturelles du Maroc 31: 153-199.

AFRICAN DEVELOPMENT BANK (2012).Morocco: Country Strategy Paper 2012-2016. Operations Department-North B(ORNB). Available at http://www.afdb.org.Retrieved on 01/17/2014.

AGASyAN, A.; AVISI, A.; TUNIyEV, B.; ISAILOVIC,J.C.; LyMBERAKIS, P.; ANDRéN, C.;COGALNICEANU, D.; WILKINSON, J.;ANANJEVA, N.; ÜzÜM, N.; ORLOV, N.;PODLOUCKy, R.; TUNIyEV, S. & KAyA, U.(2009). Bufo bufo, In IUCN (ed.) IUCN RedList of Threatened Species. Version 2012.1.International Union for NatureConservation and Natural Resources, Gland,Switzerland. Available at http://www.iuc-nredlist.org. Retrieved on 8/24/2012.

ARMESTO, M.J.J.; BOEHM, C. & BOWDEN, C.(2006). International single species actionplan for the conservation of the northernbald ibis Geronticus eremita. African-Eurasian Waterbird Agreement (AEWA)Technical Series 10: 1-54.

BAHA EL DIN, S.; BöHME, W.; CORTI, C.;ISAILOVIC, J.C.; LyMBERAKIS, P.; MÁRQUEz,R.; MIAUD, C.; SLIMANI, T.; UGURTAS, I. &WERNER, y.L. (2008). The status and distri-bution of amphibians in the Mediterraneanbasin. Essay 10.3, In S.N. Stuart, M.Hoffmann, J.S. Chanson, N. Cox, R.Berridge, P. Ramani & B.E. young (eds.)Threatened Amphibians of the World.International Union for NatureConservation and Natural Resources, Gland,Switzerland & Conservation International,Arlington, Virginia, USA, p. 113.

REQUES ET AL.42

BEEBEE, T.J.C. (1996). Ecology and Conservationof Amphibians. Chapman & Hall, London,United Kingdom.

BEJA, P. & ALCAzAR, R. (2003). Conservationof Mediterranean temporary ponds underagricultural intensification: an evaluationusing amphibians. Biological Conservation114: 317-326.

BEJA, P.; BOSCH, J.; TEJEDO, M.; EDGAR, P.;DONAIRE-BARROSO; D.; LIzANA, M.;MARTíNEz-SOLANO, I.; SALVADOR, A.;GARCíA-PARíS, M.; RECUERO, E.; SLIMANI,T.; EL MOUDEN, E.H. & GENIEz, P.(2009). Pleurodeles waltl, In IUCN (ed.)IUCN Red List of Threatened Species.Version 2012.1. International Union forNature Conservation and NaturalResources, Gland, Switzerland. Availableat http//:www.iucnredlist.org/. Retrievedon 10/16/2012.

BENASSI, M. (2008). Drought and climatechange in Morocco. Analysis of precipita-tion field and water supply, In A. López-Francos (ed.) Drought Management:Scientific and Technological Innovations.Options Méditerranéennes: Série A,Séminaires Méditerranéens 80, InternationalConference, zaragoza, Spain, pp. 83-86.

BEUKEMA, W.; DE POUS, P.; DONAIRE, D.;ESCORIzA, D.; BOGAERTS, S.; TOXOPEUS,A.G.; DE BIE, C.A.J.M.; ROCA, J. &CARRANzA, S. (2010). Biogeography andcontemporary climatic differentiationamong Moroccan Salamandra algira.Biological Journal of the Linnean Society101: 626-641.

BEUKEMA, W.; DE POUS, P.; DONAIRE, D.;BOGAERTS, S.; GARCIA-PORTA, J.;ESCORIzA, D.; ARRIBAS, O.J.; EL

MOUDEN, E.H. & CARRANzA, S. (2013).

Review of the systematics, distribution, bio-geography and natural history of Moroccanamphibians. Zootaxa 3661: 1-60.

BIRKS, H.H.; PEGLAR, S.M.; BOOMER, I.;FLOWER, R.J.; RAMDANI, M.; APPLEBy,P.G.; BJUNE, A.E.; PATRICK, S.T.; KRAIEM,M.M.; FATHI, A.A. & ABDELzAHER,H.M.A. (2001). Palaeolimnological respons-es of nine North African lakes in the CAS-SARINA project to recent environmentalchanges and human impact detected byplant macrofossil, pollen, and faunal analy-ses. Aquatic Ecology 35: 405-430.

BOGAERTS, S. (2007). Salamanders houden enkweken anno 2007. Lacerta 65: 236-247.

BOGAERTS, S.; VALKENBURG, K.; DONAIRE-BARROSO, D. & ESPALLARGAS, G. (2007).New localities of the North African fire sala-mander (Salamandra algira) at the southernlimit of its distribution in Morocco.Zeitschrift für Feldherpetologie 14: 238-241.

BONS, J. & GENIEz, P. (1996). Amphibiens etReptiles du Maroc (Sahara OccidentalCompris). Atlas Biogéographique / Anfibios yReptiles de Marruecos (Incluido SáharaOccidental). Atlas Biogeográfico. AsociaciónHerpetológica Española, Barcelona, Spain.

BOONE, M. & BRIDGES, C.M. (2003). Effects ofpesticides on amphibian populations, In R.D.Semlitsch & D.B. Wake (eds.) AmphibianConservation. Smithsonian Institution,Washington, DC, USA, pp. 152-167.

BOONE, M.D. & JAMES, S.M. (2005).Aquatic and terrestrial mesocosms inamphibian ecotoxicology. AppliedHerpetology 2: 231-257.

BORKIN, L.J. (1999). Distribution of amphib-ians in North Africa, Europe, western Asia,and the former Soviet Union, In W.E.Duellman (ed.) Patterns of Distribution of

43STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS

Amphibians: a Global Perspective. JohnsHopkins University Press, Baltimore,Maryland, USA, pp. 329-420.

BOSCH, J.; ANDREONE, F.; TEJEDO, M.; DONAIRE-BARROSO, D.; LIzANA, M.; MARTíNEz-SOLANO; I.;SALVADOR, A.; GARCíA-PARíS, M.;RECUERO, E.; SLIMANI, T.; EL MOUDEN, E.H.;JOGER, U.; GENIEz, P. & CORTI, C. (2009).Discoglossus pictus, In IUCN (ed.) IUCN RedList of Threatened Species. Version 2012.2.International Union for Nature Conservationand Natural Resources, Gland, Switzerland.Available at http//:www.iucnredlist.org/.Retrieved on 16/10/2012.

BRIDGES, C.M. & SEMLITSCH, R.D. (2000).Variation in pesticide tolerance of tadpolesamong and within species of Ranidae andpatterns of amphibian decline. ConservationBiology 14: 1490-1499.

BROOKS, T.M.; BAKARR, M.I.; BOUCHER, T.;DA FONSECA, G.A.B.; HILTON-TAyLOR,C.; HOEKSTRA, J.M.; MORITz, T.;OLIVIER, S.; PARRISH, J.; PRESSEy, R.L.;RODRIGUES, A.S.A.; SECHREST, W.;SATTERSFIELD, A.; STRAHM, W. &STUART, S.N. (2004). Coverage providedby the global protected-area system: is itenough? Bioscience 54: 1081-1091.

CAREy, C. & ALEXANDER, M.A. (2003). Climatechange and amphibian declines: is there alink? Diversity and Distributions 9: 111-121.

CARVALHO, S.B.; BRITO, J.C.; CRESPO, E. &POSSINGHAM, H.P. (2011). Incorporatingevolutionary processes into conservationplanning using species distribution data: acase study with the Western Mediterraneanherpetofauna. Diversity and Distributions17: 408-421.

COOPER, J.E. & ARMSTRONG, S.A. (2007).Locality records and other data for inva-

sive crayfishes (Decapoda: Cambaridae)in North Carolina. Journal of the NorthCarolina Academy of Science 123: 1-13.

COX, N.; CHANSON, J. & STUART, S.N. (2006).The Status and Distribution of Reptiles andAmphibians of the Mediterranean Basin.IUCN, Gland, Switzerland & Cambridge,United Kingdom.

DE POUS, P.; BEUKEMA, W.; WETERINGS, M.;DÜMMER I. & GENIEz, P. (2011). Areaprioritization and performance evaluationof the conservation area network for theMoroccan herpetofauna: a preliminaryassessment. Biodiversity and Conservation20: 89-118.

DE POUS, P.; BEUKEMA, W.; DINGEMANS, D.;DONAIRE, D.; GENIEz, P. & EL MOUDEN,E.H. (2012). Distribution review, habitatsuitability and conservation of the endan-gered and endemic Moroccan spadefoottoad (Pelobates varaldii). Basic and AppliedHerpetology 26: 57-71.

DE POUS, P.; METALLINOU, M.; DONAIRE-BARROSO, D.; CARRANzA, S. & SANUy, D.(2013). Integrating mtDNA analyses andecological niche modelling to infer theevolutionary history of Alytes maurus(Amphibia, Alytidae) from Morocco.Herpetological Journal 23: 153-160.

DODD, C.K., JR. & SMITH, L.L. (2003).Habitat destruction and alteration: histor-ical trends and future prospects foramphibians, In R.D. Semlitsch & D.B.Wake (eds.) Amphibian Conservation.Smithsonian Institution, Washington,DC, USA, pp. 94-112.

DONAIRE BARROSO, D. & BOGAERTS, S.(2001). Observations on viviparity ofSalamandra algira in North Morocco, InP. Lymberakis, E. Valakos, P. Pafilis & M.

REQUES ET AL.44

Mylonas (eds.) Herpetologia Candiana.Societas Europaea Herpetologica, Irakleio,Greece, pp. 147-151.

DONAIRE-BARROSO, D. & BOGAERTS, S.(2003a). A new subspecies of Salamandraalgira Bedriaga, 1883 from northernMorocco. Podarcis 4: 84-100.

DONAIRE-BARROSO, D. & BOGAERTS, S.(2003b). Datos sobre taxonomía, ecologíay biología de Alytes maurus (Pasteur &Bons, 1962) (Anura; Discoglossidae).Butlletí de la Societat Catalanad’Herpetologia 16: 25-41, 139-140.

DONAIRE-BARROSO, D.; EL MOUDEN; E.H.;SLIMANI, T. & GONzALEz DE LA VEGA,J.P.G. (2006). On the meridional distri-bution of Alytes maurus Pasteur and Bons,1962 (Amphibia, Discoglossidae). TheHerpetological Bulletin 96: 12-14.

DONAIRE-BARROSO, D.; SALVADOR, A.; SLIMANI,T.; EL MOUDEN, E.H. & MARTíNEz-SOLANO, I. (2009a). Alytes maurus, In IUCN(ed.) IUCN Red List of Threatened Species.Version 2012.2. International Union forNature Conservation and Natural Resources,Gland, Switzerland. Available at http://www.iucnredlist.org/. Retrieved on 10/17/2012.

DONAIRE-BARROSO, D.; SALVADOR, A.;MARTíNEz-SOLANO, I.; GARCíA-PARíS, M.;RECUERO-GIL, E.; SLIMANI, T.; EL

MOUDEN, E.H.; SLIMANI, T.; GENIEz, P. &JOGER, U. (2009b). Bufo mauritanicus, InIUCN (ed.) IUCN Red List of ThreatenedSpecies. Version 2012.1. International Unionfor Nature Conservation and NaturalResources, Gland, Switzerland. Available athttp://www.iucn.redlist.org/. Retrieved on8/24/2012.

DUBOIS, A. (1982). Les amphibiens de la sta-tion d’altitude d’Oukaimeden (Haut-

Atlas, Maroc). Bulletin Mensuel de laSociété Linnéenne de Lyon 51: 329-333.

DUBOIS, A. & RAFFAëLLI, J. (2009). A newergotaxonomy of the family SalamandridaeGoldfuss, 1820 (Amphibia, Urodela).Alytes 26: 1-85.

EL HAMOUMI, R.; DAKKI, M. & THEVENOT,M. (2007). Etude écologique des larvesd’anoures du Maroc. Bulletin de l’InstitutScientifique, Rabat, Section Sciences de laVie 29: 27-34.

EL MOUDEN, E.H.; SLIMANI, T.; DONAIRE, D.;FERNÁNDEz-BEASKOETXEA, S.; FISHER,M.C. & BOSCH, J. (2011). First record ofthe Chytrid fungus Batrachochytrium den-drobatidis in North Africa. HerpetologicalReview 42:71-75.

ENVIRONMENTAL SySTEMS RESEARCH

INSTITUTE (2006). ArcMap 9.2.Environmental Systems Research Institute,Inc., Redlands, California, USA. Available athttp://www.esri.com/.

ESCORIzA, D. & BEN HASSINE, J. (2013). Newrecord of Pelobates varaldii in the region ofBen Slimane (northern Morocco).Herpetological Bulletin 124: 26-27.

ESCORIzA, D.; COMAS, M.M.; DONAIRE, D. &CARRANzA, S. (2006). Rediscovery ofSalamandra algira Bedriaga, 1833 from theBeni Snassen Massif (Morocco) and phylo-genetic relationships of North AfricanSalamandra. Amphibia-Reptilia 27: 448-455.

ESCORIzA, D. & COMAS, M.M. (2007).Description of a new subspecies ofSalamandra algira Bedriaga, 1883(Amphibia: Salamandridae) from theBeni Snassen Massif (northeast Morocco).Salamandra 43: 77-90.

FAHD, S.; MARTíNEz-MEDINA, F.J.; MATEO,J.A. & PLEGUEzUELOS, J.M. (2002).

45STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS

Anfibios y reptiles en los territorios trans-fretanos (Ceuta, Melilla e islotes en elnorte de África), In J.M. Pleguezuelos; R.Márquez & M. Lizana (eds.) Atlas y LibroRojo de los Anfibios y Reptiles de España.Dirección General de Conservación de laNaturaleza-Asociación HerpetológicaEspañola (2ª impresión), Madrid, Spain,pp. 382-415.

FAHD, S.; BENíTEz, M.; BRITO, J.C.; CARO, J.;CHIROSA, M.; FERICHE, M.; FERNANDEz-CARDENETE, J.R.; MARTíNEz-FREIRA, F.;MÁRQUEz-FERRANDO, R.; NESBITT, D.;PLEGUEzUELOS, J.M.; REQUES, R.;RODRIGUEz, M.P.; SANTOS, X. & SICILIA,M. (2006). Distribución de Vipera latasti enel Rif y otras citas herpetológicas para elnorte de Marruecos. Boletín de la AsociaciónHerpetológica Española 16: 19-25.

FAHD, S.; BARATA, M.; BENíTEz, M.; BRITO,J.C.; CARO, J.; CARVALHO, S.; CHIROSA, M.;FERICHE, M.; HERRERA, T.; MÁRQUEz-FERRANDO, R.; NESBITT, D.; PLEGUEzUELOS,J.M.; REQUES, R.; RODRíGUEz, R.; SANTOS,X.; SICILIA, M. & VASCONCELOS, R.(2007). Presencia de la víbora hocicudaVipera latastei en el Atlas Medio (Marruecos)y otras citas herpetológicas para la región.Boletín de la Asociación HerpetológicaEspañola 18: 26-34.

GARCíA-MUñOz, E.; CEACERO, F. &PEDRAJAS, L. (2009). Notes on the repro-ductive biology and conservation ofPseudoepidalea brongersmai. HerpetologyNotes 2: 231-233.

GARCíA-PARIS, M.; MONTORI, A. & HERRERO,P. (2004). Amphibia, Lissamphibia. Series:Fauna Ibérica, vol. 24 (M.A. Ramos,coord.). Museo Nacional de CienciasNaturales, CSIC, Madrid, Spain.

GARCIA-PORTA, J., LITVINCHUK, S.N.,CROCHET, P.A., ROMANO, A., GENIEz, P., LO

VALVO, M., LyMBERAKIS, P. & CARRANzA, S.(2012). Molecular phylogenetics and his-torical biogeography of the west-palearc-tic common toads (Bufo bufo species com-plex). Molecular Phylogenetics and Evolution63: 113-130.

GENIEz, P.; MATEO, J.A. & BONS, J. (2000).A checklist of amphibians and reptiles ofWestern Sahara (Amphibia, Reptilia).Herpetozoa 13: 149-163.

GENIEz, P.; MATEO, J.A.; GENIEz, M. &PETHER, J. (2004). The Amphibians andReptiles of Western Sahara. Chimaira,Frankfurt am Main, Germany.

GLOBCOVER (2008). Land Cover v.2 2008(ESA). Available at: http://geoserver.isciences.com:8080/geonetwork/srv/en/metadata.show?id=228. Retrieved on 01/20/2013.

GREEN, A.J.; EL HAMzAOUI, M.; EL AGBANI,M.A. & FRANCHIMONT, J. (2002). Theconservation status of Moroccan wetlandswith particular reference to waterbirdsand to changes since 1978. BiologicalConservation 104: 71-82.

HEATWOLE, H. (2013). Worldwide declineand extinction of amphibians, In K.Rohde (ed.) The Balance of Nature andHuman Impact. Cambridge UniversityPress, Cambridge, UK, pp. 259-278.

HOOGMOED, M.S. (1972). On a new speciesof toad from southern Morocco.Zoologische Mededelingen 47: 49-64.

HOULAHAN, J.E.; FINDLAy, C.S. & JACOBS,L. (2006). Estimating the effect of roadproximity on the road density - wetlanddiversity relationship. Naturschutz undLandschaftsplanung 38: 308-313.

HULME, M.; DOHERTy, R.; NGARA, T.; NEW,

REQUES ET AL.46

M. & LISTER, D. (2001) African climatechange: 1900-2100. Climate Research17:145-168.

IUCN (2006). Global Amphibian Assessment.Conservation International, InternationalUnion for Conservation of Nature &NatureServe, Washington, DC, USA andGland, Switzerland. Available athttp://www.globalamphibians.org.Retrieved on 05/04/2006.

IUCN (2009). IUCN Red List of ThreatenedSpecies (ver. 2009.6). International Unionfor Conservation of Nature, Gland,Switzerland. Available at http://www.iucnredlist.org. Retrieved on 09/19/2009.

IPCC (2007). Contribution of WorkingGroups I, II and III to the FourthAssessment Report of the IntergovernmentalPanel on Climate, In R.K. Pachauri & A.Reisinger (eds.) Climate Change 2007.Intergovernmental Panel on ClimateChange, Geneva, Switzerland.

KATS, L.B. & FERRER, R.P. (2003). Alien predatorsand amphibian declines: review of two decadesof science and the transition to conservation.Diversity and Distributions 9: 99-110.

KIESECKER, J.M. (2003). Invasive species as aglobal problem. Toward understanding theworldwide decline of amphibians, In R.D.Semlitsch & D.B. Wake (eds.) AmphibianConservation. Smithsonian Institution,Washington, DC, USA, pp. 113-126.

KLAUSMEyER, K.R. & SHAW M.R. (2009).Climate change, habitat loss, protectedareas and the climate adaptation potentialof species in Mediterranean ecosystemsworldwide. PLoS ONE 4: e6392.

LAURANCE, W.F. (2001). Future shock: fore-casting a grim fate for the earth. Trends inEcology & Evolution 16: 531-533.

LIBIS, B. (1985). Nouvelle donnée sur la répar-tition au Maroc du crapaud accoucheurAlytes maurus Pasteur et Bons 1962(Amphibia:Discoglossidae). Bulletin de laSociété Herpetologique de France 33: 52-53.

LOARIE, S.R.; DUFFy, P.B.; HAMILTON, H.;ASNER, G.P.; FIELD, C.B. & ACKERLy,D.D. (2009). The velocity of climatechange. Nature 462: 1052-1055.

LODGE, D.M.; TAyLOR, C.A.; HOLDICH, D.M.& SKURDAL, J. (2000). Reducing impactsof exotic crayfish introductions: new poli-cies needed. Fisheries 25: 212-213.

LOVEJOy, T.E. (2006). Protected areas: aprism for a changing world. Trends inEcology and Evolution 21: 329-333.

MARTíNEz, F.J.; RUIz, J.L. & MOHAMED, L.(1997). Una nueva especie para la herpeto-fauna de Ceuta (España, Norte de Africa):Salamandra salamandra algira. Boletín de laAsociación Herpetológica Española 8: 6-8.

MARTíNEz-FREIRíA, F.; ARGAz, H.; FAHD, S.& BRITO, J.C. (2013). Climate change ispredicted to negatively influenceMoroccan endemic reptile richness.Implications for conservation in protectedareas. Naturwissenschaften 100: 877-889.

MARTíNEz-MEDINA, F.J. (2001). Nuevos regis-tros de anfibios y reptiles en la Sierra deHaus (NW de Marruecos). Boletín de laAsociación Herpetológica Española 12: 2-5.

MATEO, J.A.; PLEGUEzUELOS, J.M.; FAHD, S.;GENIEz, F. & MARTíNEz-MEDINA, F.J.(2003). Los Anfibios, los Reptiles y elEstrecho de Gibraltar. Un Ensayo Sobre laHerpetofauna de Ceuta y su Entorno. Institutode Estudios Ceutíes, Ceuta, Spain.

MILNER-GULLAND, E.J.; KREUzBERG-MUKHINA, E.; GREBOT, B.; LING, S.;ByKOVA, E.; ABDUSALAMOV, I.; BEKENOV,

47STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS

A.; GäRDENFORS, U.; HILTON-TAyLOR,C.; SALNIKOV, V. & STOGOVA, L. (2006).Application of IUCN red listing criteria atthe regional and national levels: a casestudy from Central Asia. Biodiversity andConservation 15: 1873-1886.

MINISTèRE DE L’AGRICULTURE (1994). PlanDirecteur des Aires protégées. Projet Etude etPlan de Gestion des Aires Protégées du Maroc.Unpublished report, Rabat, Morocco.

MOREy, S.R. (1998). Pool duration influ-ences age and body mass at metamorpho-sis in the western spadefoot toad: implica-tions for vernal pool conservation, InC.W. Witham, E.T. Bauder, D. Belk,W.R. Ferren Jr. & R. Ornduff (eds.)Ecology, Conservation and Management ofVernal Pool Ecosystems. Proceedings from a1996 Conference, California Native PlantSociety, Sacramento, California, USA, pp.86-91.

MORGAN, N.C. (1982). An ecological surveyof standing waters in Northwest Africa. 3.Site descriptions for Morocco. BiologicalConservation 24: 161-182.

MOUSLIH, M. (1987). Fish and crayfishintroductions in Morocco. Revued’Hydrobiologie Tropicale 20: 65-72.

NAUGLE, D.E.; HIGGINS, K.F.; JOHNSON,R.R.; FISCHER, T.D. & QUAMEN, F.R.(2005). Landscape ecology, In M.J.Lannoo (ed.) Amphibian Declines: theConservation Status of United StatesSpecies. University of California Press,Berkeley, California, USA, pp. 185-192.

OERTLI, B.; BIGGS, J.; CEREGHINO, R.;GRILLAS, P.; JOLy, P. & LACHAVANNE, J.-B.(2005). Conservation and monitoring ofpond biodiversity: Introduction. AquaticConservation 15: 535-725.

PARMESAN, C.; RyRHOLM, N.; STEFANESCU,C.; HILL, J.K.; THOMAS, C.D.;DESCIMON, H.; HUNTLEy, B.; KAILA, L.;KULLBERG, J.; TAMMARU, T.; TENNENT,W.J.; THOMAS, J. A. & WARREN, M.(1999). Poleward shifts in geographicalranges of butterfly species associated withregional warming. Nature 399: 579-583.

PARRISH, J.D.; BRAUN, D.P. & UNNASCH, R.S.(2003). Are we conserving what we say weare? Measuring ecological integrity withinprotected areas. Bioscience 53: 851-860.

PECHMANN, J.H.K.; SCOTT, D.E.; GIBBONS,J.W. & SEMLITSCH, R.D. (1989).Influence of wetland hydroperiod ondiversity and abundance of metamor-phosing juvenile amphibians. WetlandsEcology and Management 1: 3-11.

PECHMANN, J.H.K.; SCOTT, D.E.;SEMLITSCH, R.D.; CALDWELL, J.P.; VITT,L.J. & GIBBONS, J.W. (1991). Decliningamphibian populations: the problem ofseparating human impacts from naturalfluctuations. Science 253: 892-895.

PéREz-LóPEz, C. (2005). Métodos EstadísticosAvanzados con SPSS. Thomson, Madrid, Spain.

PLEGUEzUELOS, J.M.; BRITO, J.C.; FAHD, S.;FERICHE, M.; MATEO, J.A.; MORENO-RUEDA, G.; REQUES, R. & SANTOS, X.(2010). Setting conservation priorities forthe Moroccan herpetofauna: the utility ofregional red listing. Oryx 44: 501-508.

RAMDANI, M.; FLOWER, R.J.; ELKHIATI, N.;KRAIEM, M.M.; FATHI, A.A.; BIRKS, H.H.& PATRICK, S.T. (2001). North Africanwetland lakes: characterization of ninesites included in the CASSARINA pro-ject. Aquatic Ecology 35: 281-302.

RAMDANI, M.; ELKHIATI, N; FLOWER, R.J.;THOMPSON, J.R.; CHOUBA, L.; KRAIEM,

REQUES ET AL.48

M.M.; AyACHE, F. & AHMED, M.H.(2009). Environmental influences on thequalitative and quantitative compositionof phytoplankton and zooplankton inNorth African coastal lagoons. Hydrobiologia622: 113-131.

READING, C.J. (2007). Linking global warm-ing to amphibian declines through itseffects on female body condition and sur-vivorship. Oecologia 151: 125-131.

RECUERO, E.; IRAOLA, A.; RUBIO, X.;MACHORDOM, A. & GARCíA-PARíS, M.(2007). Mitochondrial differentiationand biogeography of Hyla meridionalis(Anura: Hylidae): an unusual phylogeo-graphical pattern. Journal of Biogeography34: 1207-1219.

REQUES, R. (2005). Conservación de laBiodiversidad en los Humedales de Andalucía,2ª ed. Consejería de Medio Ambiente de laJunta de Andalucía, Sevilla, Spain.

REQUES, R. (2009). Conservar humedales,conservar biodiversidad para el futuro, InR. Reques & D. Barros (eds.) Humedales deCádiz: Veinte Años de Conservación.Consejería de Medio Ambiente de la Juntade Andalucía, Sevilla, Spain, pp. 141-156.

REQUES, R. & TEJEDO, M. (2008). Crearcharcas para anfibios: una herramienta efi-caz de conservación. Quercus 273: 15-20.

RONDININI, C.; STUART, S. & BOITANI, L.(2005). Habitat suitability models andthe shortfall in conservation planning forAfrican vertebrates. Conservation Biology19: 1488-1497.

RONDININI, C. & BOITANI, L. (2006).Differences in the umbrella effects ofAfrican amphibians and mammals basedon two estimators of the area of occupancy.Conservation Biology 20: 170-179.

RONDININI, C.; CHIOzzA, F. & BOITANI, L.(2006). Aree prioritarie per la conservazionedei Vertebrati africani. Natura 95: 47-56.

ROOT, T.L.; PRICE, J.T.; HALL, K.R.;SCHNEIDER, S.H.; ROSENzWEIG, C. &POUNDS, J.A. (2003). Fingerprints ofglobal warming on wild animals andplants. Nature 421: 57-60.

ROWE, C.L. & DUNSON, W.A. (1995).Impacts of hydroperiod on growth andsurvival of larval amphibians in tempo-rary ponds of central Pennsylvania, USA.Oecologia 102: 397-403.

SALVADOR, A. (1996): Amphibians of north-west Africa. Smithsonian HerpetologicalInformation Service 109: 1-43.

SALVADOR, A.; DONAIRE-BARROSO, D.; EL

MOUDEN, E.H.; SLIMANI, T.; GENIEz, P.& MATEO, J. (2006). Pseudepidaleabrongersmai, In IUCN (ed.) IUCN RedList of Threatened Species. Version 2012.1.International Union for Nature Conservationand Natural Resources, Gland, Switzerland.Available at http://www.iucnredlist.org.Retrieved on 08/24/2012.

SALVADOR, A., DONAIRE-BARROSO, D.;SLIMANI, T.; EL MOUDEN, E.H.; GENIEz,P.; PEREz-MELLADO, V. & MARTíNEz-SOLANO, I. (2009). Discoglossus scovazzi,In IUCN (ed.) IUCN Red List ofThreatened Species. Version 2012.2.International Union for NatureConservation and Natural Resources,Gland, Switzerland. Available at http://www.iucnredlist.org. Retrieved on 10/16/2012.

SCHLEICH, H.H.; KäSTLE, W. & KABISCH, K.(1996). Amphibians and Reptiles of NorthAfrica. Biology, Systematics, Field Guide.Koeltz Scientific Books, Koenigstein,Germany.

49STATUS OF MOROCCAN AND WESTERN SAHARAN AMPHIBIANS

SCHNEIDER, D.W. (1997). Predation andfood web structure along a habitat dura-tion gradient. Oecologia 110: 567-575.

SEGEV, O.; MANGEL, M. & BLAUSTEIN, L.(2009). Deleterious effects by mosquitofish(Gambusia affinis) on the endangered firesalamander (Salamandra infraimmaculata).Animal Conservation 12: 29-37.

SEMLITSCH, R.D. & ROTHERMEL, B.B. (2003).A foundation for conservation and man-agement of amphibians, In R.D.Semlitsch & D.B. Wake (eds.) AmphibianConservation. Smithsonian Institution,Washington, DC, USA, pp. 242-259.

SEMLITSCH, R.D.; SCOTT, D.E.; PECHMANN,J.H.K. & GIBBONS, J.W. (1996). Structureand dynamics of an amphibian communi-ty. Evidence from a 16-year study of a nat-ural pond, In M.L. Cody & J.A.Smallwood (eds.) Long-term Studies ofVertebrate Communities. Academic Press,San Diego, California, USA, pp. 217-248.

SPARLING, D.W.; LINDER, G. & BISHOP, C.A.(2000). Ecotoxicology of Amphibians andReptiles. SETAC Press, Pensacola, Florida, USA.

STATSOFT (2001). STATISTICA, version 6.Statsoft Inc., Tulsa, Oklahoma, USA.Available at http://www.statsoft.com.

STEINFARTz, S., VEITH, M. & TAUTz, D.(2000). Mitochondrial sequence analysisof Salamandra taxa suggests old splits ofmajor lineages and postglacial recoloniza-tion of Central Europe from distinctsource populations of S. salamandra.Molecular Ecology 9: 397-410.

STöCK, M.; MORITz, C.; HICKERSON, M.;FRyNTA, D.; DUJSEBAyEVA, T.; EREMCHENKO,V.; MACEy, J.R.; PAPENFUSS, T.J. & WAKE,D.B. (2006). Evolution of mitochondrialrelationships and biogeography of Palearctic

green toads (Bufo viridis subgroup) withinsights in their genomic plasticity. MolecularPhylogenetics and Evolution 41: 663-689.

STöCK, M.; SICILIA, A.; BELFIORE, N.M.;BUCKLEy, D.; LO BRUTTO, S.; LO VALVO, M.& ARCULEO, M. (2008). Post-Messinian evo-lutionary relationships across the SicilianChannel: mitochondrial and nuclear markerslink a new green toad from Sicily to Africanrelatives. BMC Evolutionary Biology 8: 1-19.

STöCK, M.; DUFRESNES, C.; LITVINCHUK, S.N.;LyMBERAKIS, P.; BIOLLAy, S.; BERRONEAU,M.; BORzéE, A.; GHALI, K.; OGIELSKA, M. &PERRIN, N. (2012). Cryptic diversity amongWestern Palearctic tree frogs: Postglacialrange expansion, range limits, and secondarycontacts of three European tree frog lineages(Hyla arborea group). Molecular Phylogeneticsand Evolution 65: 1-9.

STUART, S.N.; CHANSON, J.S.; COX, N.A.;yOUNG, B.E.; RODRIGUES, A.S.L.;FISCHMAN, D.L. & WALTER, R.W.(2004). Status and trends of amphibiandeclines and extinctions worldwide.Science 306: 1783-1786.

STUART, S.N.; HOFFMANN, M.; CHANSON,J.S.; COX, N.; BERRIDGE, R.; RAMANI, P.& yOUNG, B.E. (2008). ThreatenedAmphibians of the World. IUCN, Gland,Switzerland, and ConservationInternational, Arlington, Virginia, USA.

TAIQUI, L. (1997). La dégradation écologiqueau Rif marocain: nécessités d'une nouvelleapproche. Mediterránea, Serie de EstudiosBiológicos. Época II 16: 5-17.

TAIQUI, L. & MARTíN-CANTARINO, C. (1997).Eléments historiques d’analyse écologiquedes paysages montagneux du RifOccidental (Maroc). Mediterránea, Serie deEstudios Biológicos. Época II 16: 23-35.

REQUES ET AL.50

TEJEDO, M. & REQUES, R. (2002). Hyla merid-ionalis (Boettger, 1874). Ranita meridional,In J.M. Pleguezuelos, R. Márquez & M.Lizana (eds.) Atlas y Libro Rojo de los Anfibiosy Reptiles de España. Dirección General deConservación de la Naturaleza-AsociaciónHerpetológica Española (2ª impresión),Madrid, Spain, pp. 117-119.

TEWKSBURy, J.J.; HUEy, R.B. & DEUTSCH,C.A. (2008). Putting the heat on tropicalanimals. Science 320: 1296-1297.

TEWS, J.; BROSE, U.; GRIMM, V.;TIELBOERGER, K.; WICHMANN, M.C.;SCHWAGER, M. & JELTSCH, F. (2004).Animal species diversity driven by habitatheterogeneity/diversity: The importanceof keystone structures. Journal ofBiogeography 31: 79-92.

WALTHER, G.-R.; POST, E.; CONVEy, P.;MENzEL, A.; PARMESAN, C.; BEEBEE,T.J.C.; FROMENTIN, J.-M.; HOEGH-GULDBERG, O. & BAIRLEIN, F. (2002).Ecological responses to recent climatechange. Nature 416: 389-395.

WEyRAUCH, S.L. & GRUBB, T.C., JR. (2004).Patch and landscape characteristics associatedwith the distribution of woodland amphib-ians in an agricultural fragmented landscape:an information-theoretic approach. BiologicalConservation 115: 443-450.

WILSON, K.A.; UNDERWOOD, E.C.;MORRISON, S.A.; KLAUSMEyER, K.R.;MURDOCH, W.W.; REyERS, B.; WARDELL-JOHNSON, G.; MARQUET, P.A.; RUNDEL,P.W.; MCBRIDE, M.F.; PRESSEy, R.L.; BODE,M.; HOEKSTRA, J.M.; ANDELMAN, S.;LOOKER, M.; RONDININI, C.; KAREIVA, P.;SHAW, M.R. & POSSINGHAM, H.P. (2007).Conserving biodiversity efficiently: what todo, where, and when. PLoS Biology 5: e223.

zANGARI, F.; CIMMARUTA, R., & NASCETTI,G. (2006). Genetic relationships of thewestern Mediterranean painted frogsbased on allozymes and mitochondrialmarkers: evolutionary and taxonomicinferences (Amphibia, Anura, Discoglossidae).Biological Journal of the Linnean Society87: 515-536.

José Mateo1,*, Philippe Geniez2, Jim Pether3

Chapter 26Diversity and conservation of Algerian amphibian assemblages

1 Servei de Protecció d’Especies, Govern de les Illes Balears, Palma de Mallorca, Spain. 2 CNRS, Centre d’Ecologie Fonctionnelle et Evolutive, Montpellier, France.3 Centro de Investigaciones Herpetológicas, Gáldar, Spain.

*Correspondence: Servei de Protecció d’Especies, Govern de les Illes Balears, 07011-Palma de Mallorca, Spain. Phone: +34 630491672,Fax: +34 971176678, Email: [email protected]

Received: 10 January 2013; received in revised form: 14 October 2013; accepted: 7 November 2013.

Basic and Applied Herpetology 27 (2013): 51-83

Fourteen amphibian species representing six families inhabit Algeria: Salamandridae (Pleurodeles nebulosus,Pleurodeles poireti, and Salamandra algira), Alytidae (Alytes maurus, Discoglossus pictus, and Discoglossus scovazzi),Bufonidae (Amietophrynus mauritanicus, Amietophrynus xeros, Barbarophryne brongersmai, Bufo spinosus, and Bufotesboulengeri), Hylidae (Hyla meridionalis), Ranidae (Pelophylax saharicus), and Dicroglossidae (Hoplobatrachus occipi-talis). The presence of some of them, like A. maurus, D. scovazzi, and H. occipitalis, is punctual. Areas of distributionconform to predictable patterns of biogeography; almost all species are present only in the Mediterranean region,while the Sahara Desert relegates a few frog species to isolation in mountain areas and oases with sufficient water.Amphibian community origins are directly related to climatic changes in North Africa throughout the Holocene.Many relict populations can be explained by comparison of the former layout and structure of hydrographic net-works with those currently reduced to dry beds and, on occasion, suffering hyper-saline conditions. Relatively closephylogenetic relationships between species in the north of Algeria, portions of the Iberian Peninsula, Moroccan AtlasMountains, Mediterranean islands and the Italian Peninsula, demonstrate that Algerian amphibian communitieshave as their origins the same Tertiary geological events that gave rise to today’s Mediterranean Sea. In the northernMediterranean region, human overpopulation of coastal areas is affecting water quality and amphibian species diver-sity. The relict character of many amphibian populations in the desert regions, along with the rarity of stable waterdue to a combination of natural climatic changes, over-exploitation of aquifers, and eutrophication or pollution, jus-tifies considering all species to be in danger to one extent or another. Using IUCN-proposed criteria as a guide, weherein suggest a catalogue of threatened amphibian species, provide a preliminary list of areas of interest, and sug-gest appropriate action necessary for amphibian conservation in Algeria. Of the 14 amphibian species known fromAlgeria P. poireti, a newt found only in the Edough mountains, the Guerbes-Sendhadja wetlands, and the Mekhadamarshes, and A. maurus, a toad whose only known population in Algeria is in the Tlemcen mountains, must be con-sidered Critically Endangered according to our suggested catalogue. We also consider P. nebulosus to be Threatenedand S. algira to be Vulnerable, each due to continued loss of habitat, rarity, and population fragmentation. Finally,all amphibian populations south of 32°N latitude should be considered Near Threatened.

Key words: Algeria; amphibians; conservation; population decline.

Diversidad y conservación del conjunto de anfibios argelinos. Catorce especies de anfibios de seis familias diferentesviven en Argelia: Salamandridae (Pleurodeles nebulosus, Pleurodeles poireti y Salamandra algira), Alytidae (Alytes mau-rus, Discoglossus pictus y Discoglossus scovazzi), Bufonidae (Amietophrynus mauritanicus, Amietophrynus xeros,Barbarophryne brongersmai, Bufo spinosus y Bufotes boulengeri), Hylidae (Hyla meridionalis), Ranidae (Pelophylaxsaharicus) y Dicroglossidae (Hoplobatrachus occipitalis). La presencia de algunas de ellas como A. maurus, D. scovazziy H. occipitalis, es puntual. Las areas de distribución coinciden con los patrones biogeográficos predecibles; casi todaslas especies están presentes únicamente en la region mediterránea, mientras que sólo unas pocas especies aparecen enel desierto del Sáhara quedando aisladas en zonas de montaña y oasis con agua suficiente. Los orígenes de la comu-

This chapter should be cited as: Mateo, J., Geniez, P. & Pether, J. (2013). Diversity and conservation of Algerian amphibian assemblages. Chapter 26in Part 2. Mauritania, Morocco, Algeria, Tunisia, Libya and Egypt in Vol. 11. Conservation and Decline of Amphibians: Eastern Hemisphere of the seriesAmphibian Biology. Basic and Applied Herpetology 27: 51-83. DOI: http://dx.doi.org/10.11160/bah.13004/

MATEO ET AL.52

In spite of its size (2 381 740 km2) Algeria(Fig. 1) has populations of only 14 species ofamphibians (SALVADOR, 1996; SCHLEICH etal., 1996) (Table 1). Its species diversity forthis group of vertebrates is one of the poorestin Africa. Amphibian assemblages rarely con-tain more than five species, and more thanhalf of Algeria is territory considered unin-habitable for salamanders, toads, or frogs(SALVADOR, 1996; SCHLEICH et al., 1996;COX et al., 2006). Such limited amphibiandiversity has as its origin major climaticchanges affecting all of North Africa duringthe Pleistocene and the Holocene. Historicalchanges, coupled with today’s scarce andunpredictable precipitation in almost theentire country, continue to limit suitableenvironments for amphibians (FAURE, 1985;PETIT MAIRE, 1985, 1986; DUBIEF, 2001;AUMASSIP & FERHAT, 2002; COX et al., 2006;LE QUELLEC, 2006).

HABITAT

Geology, climate, and vegetation withinAlgeria allow characterization of two well-dif-ferentiated areas (Mediterranean Algeria andSaharan Algeria), each separated geographi-cally from the other by the Sub-Atlasic Fault,

nidad de anfibios están relacionados con los cambios climáticos acontecidos en el norte de África durante elHoloceno. La existencia de muchas poblaciones relictas se explica al comparar la disposición y estructura de lasantiguas cuencas hidrográficas con las actuales, reducidas a lechos secos y en ocasiones expuestas a condiciones hiper-salinas. Las relaciones filogenéticas relativamente estrechas entre las especies del norte de Argelia con las de algunaspartes de la península Ibérica, montañas del Atlas marroquí, islas del Mediterráneo y península Itálica, demuestranque las comunidades de anfibios de Argelia tienen el mismo origen Terciario que los eventos geológicos que dieronlugar al actual mar Mediterráneo. En la región mediterránea, al norte, la superpoblación humana en áreas costerasafecta a la calidad del agua y a la diversidad de especies de anfibios. El carácter relicto de muchas poblaciones deanfibios en las regiones desérticas, junto a la escasez de masas estables de agua como resultado de una combinaciónentre cambios climáticos naturales, sobreexplotación de acuíferos, eutrofización y contaminación, justifica que todaslas especies se consideren, en algún grado, amenazadas. Guiándonos en los criterios propuestos por la UICN, suge-rimos un catálogo de anfibios amenazados, aportamos una lista preliminar de áreas de interés y sugerimos las accionesnecesarias para la conservación de los anfibios de Argelia. De las 14 especies conocidas en Argelia, P. poireti, un tri-ton presente solo en las montañas de Edough, los humedales de Guerbes-Sendhadja y las marismas de Mekhada, asícomo A. maurus, un sapo cuya única población conocida en Argelia está en las montañas de Tlemcen, deben con-siderarse en peligro crítico según el catálogo que aquí sugerimos. También consideramos a P. nebulosus como ame-nazado y a S. algira como vulnerable, en ambos casos como consecuencia de la continua pérdida de hábitat, enrarec-imiento y fragmentación de poblaciones. Finalmente, todas las poblaciones de anfibios al sur del paralelo 32°Ndeberían considerarse como casi amenazadas.

Key words: anfibios; Argelia; conservación; declive de poblaciones.

Figure 1: Main regions in Algeria.

TellEastern Tell (Edough)TellWestern TellTellSaoura ValleyTellTell+Hauts PlateauxTassili’n’Ajjer and HoggarSaharan AtlasTellAll - rare Northeastern extremeAllTassili'n'Ajjer

CONSERVATION OF ALGERIAN AMPHIBIANS 53

a large east-to-west-oriented geological faultnear latitude 33ºN (ASKRI et al., 1995). Thisgeographic separation has been used toexplain floral and faunal differentiation with-in Algeria (BONS, 1967; WHITE, 1976;QUEzEL, 1978; SCHULz, 1979; LAMBERT,1984; WICKENS, 1984; OzENDA, 1991;BOBROV, 2000) and provides a convenientframework for a discussion of amphibianassemblages and the threats they face.

The Mediterranean

Located to the north of the great Sub-Atlasic Fault, the Mediterranean area, alsoknown as Alpine Algeria (ASKRI et al., 1995),has an approximate area of 280 000 km2. Thegeological origin of this region is tied directlyto the history of the Mediterranean Sea andto Tertiary folds that gave rise to many of themountain ranges in southern Europe andnorthern Africa (MALDONADO, 1985); two ofthese Tertiary mountain ranges cross contem-porary northern Algeria from east to west.

The northern slope of the Tell, or TellianAtlas (with “Djebel” Lalla Khedidja, at 2308 m,the highest point), coincides almost completelywith the Mediterranean coastline and is com-posed of several individual mountains(Tlemcen, Chréa and Kabylia) that behave asauthentic “interior islands” in that these containsome of the largest concentrations of threatenedamphibians in the entire Mediterranean region(COX et al., 2006; STUART et al., 2008).Climatic conditions in the Tell are typicallyMediterranean (humid to sub-humid; averageannual precipitation > 400 mm, with dry sum-mers and generally moderate temperatures)coinciding with Köppen’s climatic region “Csa”(KöPPEN, 1936). This area is the most humidregion in Algeria and some meteorological sta-tions, Djurjura, Babor, and El Tarf for example,record total annual precipitation of > 1000 mm(GRIFFITHS & SOLIMAN, 1972).

Vegetation in this area is comprised of sclero-phyllous forests and heathlands adapted to hotdry summers. Holm oaks (Quercus ilex) accom-panied or replaced by Kermes oaks (Q. coccifera),

PalaearticPalaearticPalaearticPalaearticPalaearticPalaearticPalaearticPalaearticEthiopianPalaearticPalaearticPalaearticPalaearticEthiopian

Biogeographicregion

MediterraneanMediterraneanMediterraneanMediterraneanMediterraneanMediterraneanMediterraneanMediterraneanSahelianArid MediterraneanEurosiberianArid MediterraneanMediterraneanSoudanian

Pleurodeles nebulosusPleurodeles poiretiSalamandra algiraAlytes maurusDiscoglossus pictusDiscoglossus scovazziHyla meridionalisAmietophrynus mauritanicusAmietophrynus xerosBarbarophryne brongersmaiBufo spinosusBufotes boulengeriPelophylax saharicusHoplobatrachus occipitalis

Species Biogeographicaffinity Regional presence in Algeria

Table 1: Biogeographic characteristics of the amphibian species of Algeria.

MATEO ET AL.54

Aleppo pines (Pinus halepensis), Carob trees(Ceratonia siliqua), or Sandarac gum cypress(Tetraclinis articulata) in the least humid areas,Cork oaks (Q. suber) in areas with soil of lowpH, deciduous oaks (Q. canariensis, Q. fagineaand Q. afares) in the most humid areas, or firsand cedars (Abies nummidica and Cedrus atlanti-ca) in the cooler and humid mountains, providetree cover (SCHULz, 1979; OzENDA, 1991).

To the south of the Tellian Atlas, and northof the Sub-Atlasic Fault (HERKAT & GUIRAUD,2006), is the Saharan Atlas, a range of small,isolated mountains rising to 2000 m above sealevel. Between the Tellian Atlas and theSaharan Atlas are the Hauts Plateaux and AïnRegada platform, two plateaus separated bythe solid massif of the Aurès.

The Saharan Atlas plateaus have climatesthat are basically Mediterranean but resembleSaharan climates in that annual precipitationrarely exceeds 200 mm. These areas coincidewith the Steppic-Northern African domaindefined by QUEzEL (1978) and only a fewsummits, such as the mountains around AïnSefra and “Djebel” Ksel, present a somewhatmore humid climate, resembling those char-acterizing the Tellian Atlas (OzENDA, 1991).

The more humid conditions in the TellianAtlas and the Aurès support the most com-plex amphibian assemblages in Algeria (COX

et al., 2006). The Hauts Plateaux, AïnRegada platform, and most of the SaharanAtlas support a less diverse fauna, their geo-graphic ranges being more localized.

The Sahara

South of the Sub-Atlasic Fault, the Saharanplatform is larger and more geologically stablethan in Alpine Algeria (WILLIAMS, 1984;

ASKRI et al., 1995). This fault line coincidesclosely with isohyets of 100 mm annual rain-fall and, for climatologists and biogeographersalike, this fault line is the northern limit of theSaharan warm desert (Fig. 2) (GRIFFITHS &SOLIMAN, 1972; LAMBERT, 1984, SMITH,1984; BOBROV, 2000). In addition to varia-tion in volume of rain, different parts of theSahara also differ in their seasonal pattern ofrainfall (GRIFFITHS & SOLIMAN, 1972).Approximately to the south of latitude 23°Nprecipitation occurs during summer (mon-soon), while to the north of latitude 23°N thepattern of rainfall is similar to that of theMediterranean region (Fig. 2). The variationsin patterns of precipitation within the SaharaDesert significantly affect the biogeography ofthe entire region.

A large portion of the Saharan platformsits directly on the North-African Craton, aPrecambrian shield about 1.5 billion years

Figure 2: Rainfall pattern in Algeria. Dotted lineseparates areas with Mediterranean-type precipi-tation (concentrated in the cool months of theyear) from those with monsoon-type precipitation(concentrated during the summer). Modifiedfrom GRIFFITHS (1972) and GRIFFITHS &SOLIMAN (1972).

CONSERVATION OF ALGERIAN AMPHIBIANS 55

old and partitioned into several large, com-plex, sedimentary basins (WILLIAMS, 1984;ASKRI et al., 1995). Today, this area presents amonotonous, extremely arid and denudedlandscape, for the most part not favourablefor amphibian populations (LAMBERT, 1984;BORKIN, 1999). The Sahara Desert however,is not only the “Empty Quarters” of MONOD’s(1958) or EMBERGER et al.’s (1962) extensivedesert areas, totally free of amphibians, andwith an average annual precipitation of 5mm, e.g., Tanezrouf or Ténéré (Fig. 2)(MONOD, 1958; DUBIEF, 1968); there arealso less harsh districts in which some amphib-ians find favourable microhabitats (GRIFFITHS

& SOLIMAN, 1972; LARMUTH, 1984).In the Algerian Sahara, the monotony of

the desert is interrupted by southern moun-tains and oases. The Targui shield, a socleassociated with the Pan-African fold, includesthe Hoggar and the plateaus (“tassilis”) sur-rounding it (WILLIAMS, 1984; ASKRI et al.,1995). These mountains, attaining elevationsof up to 3000 m in the Adrar Tahat, receivemore precipitation, and are subject to lowerrates of evaporation than surrounding areas(Fig. 2) (GRIFFITHS & SOLIMAN, 1972). Thismoisture regimen, coupled with the existenceof deep canyons able to support and maintainstable bodies of water, allows the southernmountains to behave as floral and faunalrefuges of the first order (LHOTE, 1972;OzENDA, 1991; BOUMEzBEUR, 2001).

Oases are remnants of a hydrographic net-work that, fewer than six thousand years ago,supported extensive savannahs with varied fau-nas (DRAKE & BRISTOW, 2006; LE QUELLEC,2006). Despite current hyper-arid conditions,the composition and differing thicknesses ofsilt and the varying elevations of certain areas

continue to partition the central Sahara intohydrological basins. These basins, in part,determine the distributions of oases and ofamphibian species continuing to inhabit theAlgerian Sahara. The most important basinsare “wadis” Tafassasset, Tamanrasset and TinTarabine, the Tidikelt depression, and theephemeral water-filled basins in the large“chotts” of the northeast (Fig. 3).

Large northeastern “chotts” (Melhir inAlgeria and Djerid in Tunisia) formed Chott-Megalake (a lake of about 30 000 km2 thatcaptured waters from the central and easternSaharan Atlas, the eastern mountains ofNementcha and Tebessa, the subsidiarybasins of Hodna and Aurès, and from basinsalong “wadi” Mya and in the Gassi Touil

Figure 3: Hydrographic basins of the Central Sahara(main rivers and lakes during the last humidperiod, about 8000 years ago). 1: Lake of Tidikelt,2: Melhir / El Djedid mega-lake, 3: Chad mega-lake, 4: Fezzan mega-lake. Modified from DRAKE &BRISTOL (2006).

MATEO ET AL.56

Valley, all of which originate north of theHoggar and the Tademaït Plateau) a fewthousand years ago (DAMNATI, 2000).

Water for the Tidikelt depression mainlyoriginates from the Moroccan High Atlas,Middle Atlas, and the western Saharan Atlas,supplemented by water from the western sideof the Hoggar and the southern slope of theCretaceous Tademaït Plateau (DRAKE &BRISTOW, 2006; FERHAT, 2006). At present,water still flows regularly, reaching Abadla,the valley of the Saoura / Messaoud and con-tinuing to the oases of Touat, resulting in arelatively benign corridor between the Grand“Erg” Occidental and the “Erg” Er Raoui.

The eastern Hoggar, the Tassili’n’Ajjer and,partially, the Aïr Mountains provide water forthe Tafassasset basin and flow on to the Ténérébasin (Niger), a subsidiary basin in turn of thePaleo-Chad. This great inland sea had a surfacearea the size of France, but at the present timeis reduced to little more than 10 000 km2.

The Tamanrhasset and Tin Tarabine riversoccasionally receive water from the southernand western slopes of the Hoggar, water gener-ally lost to the deserts of northern Mali andNiger. In the recent past, however, these rivers,tributaries of the Niger, facilitated migration ofnumerous sub-Saharan water-associated speciesto the north. Mega-Fezzan, a lake exceeding100 000 km2, located in southwestern Libya,continues to receive much of its water from theeastern slopes of the Tassili’n’Ajjer (DRAKE &BRISTOW, 2006).

Amphibian Fauna

Estimates of the number of amphibian speciesin Algeria historically have been limited tobetween eight and ten (LAMBERT, 1984;

SALVADOR, 1996; SCHLEICH et al., 1996; BORKIN,1999) but recent molecular investigations haveled to discovery of species previously unnoticed(COX et al., 2006). DNA analysis has demonstrat-ed that newts of the Edough are well-differentiat-ed from those in the rest of the country andshould be considered different species (Pleurodelespoireti and P. nebulosus) (CARRANzA &ARNOLD, 2004; CARRANzA & WADE, 2004)and that painted frogs from most of Algeria arerepresentative of a complex containing twospecies, Discoglossus pictus and D. scovazzi(PABIJAN et al., 2012; BEUKEMA et al., 2013),although the presence of D. scovazzi appears tobe restricted to isolated populations in theSaoura Valley (HUGHES & HUGHES, 1992).

Populations of two species previouslyunknown in Algeria have also been discovered.The African Midwife Toad (Alytes maurus), thenearest viable population of which was onlyknown from several hundred kilometres to thewest in Morocco, has been recently found inthe mountains of Tlemcen (first specimenscaught by J. Peña in 1990; confirmed 2009).Barbarophryne brongersmai, previously knownfrom Figuig, Morocco, a few kilometres fromthe border with Algeria (BONS & GENIEz,1996), recently has been found in four townsin the Saharan Atlas of northwestern Algeria(first specimens caught by Jesús Peña in 1990,and J.A. Mateo, personal observation).

Nomenclature for Algeria’s amphibians(Table 1) follows that proposed by CARRANzA

& WADE (2004) for caudate species, andBEUKEMA et al. (2013) for anuran species. Ofthe 14 species of Algerian amphibians, three arecaudates (Fig. 4) in the family Salamandridae(two species of Pleurodeles [one endemic] andone species of Salamandra) and 11 are anurans(Figs. 5-8) in the families Alytidae (one species

CONSERVATION OF ALGERIAN AMPHIBIANS 57

of Alytes, two species of Discoglossus), Bufonidae(two species of Amietophrynus and one specieseach of Barbarophryne, Bufo, and Bufotes),Hylidae (one species of Hyla), Ranidae (onespecies of Pelophylax), and Dicroglossidae (onespecies of Hoplobatrachus).

Two species reported in the literature(Amietophrynus regularis and Ptychadena sp.) (LE

BERRE, 1989; SALVADOR, 1996; SCHLEICH et al.,1996) have not been found in recent years andare no longer considered members of theAlgerian fauna. Both species, reported fromsouthern Algeria, were very likely confused withAmietophrynus xeros and Hoplobatrachus occipi-talis, two species present in the mountains of theTassili and the Hoggar (COX et al., 2006).

FAMILy SALAMANDRIDAE: NEWTS AND

“TRUE” SALAMANDERS

This Palearctic family is represented by twogenera (Pleurodeles and Salamandra), and threespecies (P. nebulosus, P. poireti, and S. algira).

Pleurodeles nebulosus (Guichenot, 1850):Algerian Newt (Fig. 4). This species is endemic

to the Maghreb of Algeria and northern Tunisia.In Algeria this species is present in humid, sub-humid, and semi-arid Mediterranean areas inthe north, but absent from the northwest, withSig (“Wilaya” of Mascara) being its westernmostknown locality (KOLAR, 1955; LE BERRE, 1989;SCHLEICH et al., 1996; CARRANzA & WADE,2004; VEITH et al., 2004). This newt prefersstagnant waters.

Pleurodeles poireti (Gervais, 1835): Edough’sNewt (Fig. 4). This species is an Algerianendemic (SAMRAOUI & DE BéLAIR, 1997;CARRANzA & WADE, 2004), smaller (up to129 mm total length) but otherwise very sim-ilar in external appearance to P. nebulosus. Inaddition to genetic differences, it differs fromP. nebulosus in external morphometric charac-ters and in the configuration of the vomerineteeth (PASTEUR, 1958; CARRANzA & WADE,2004). Edough’s Newt has a very restricteddistribution, being found only in the coastalmassif of Edough, the Guerbes-Sendhadjawetlands and the Mekhada marsh (“Wilayas”of Annaba and Skikda) (SAMRAOUI et al.,2012).

S. salamandra-

-D. pictus pictus

H. intermedia

B. bufoP. esculentus

S. algira tingitana and othersP. waltl

A. maurusD. scovazzi

H. meridionalis

B. spinosusP. saharicus riodeoroi

Rif + Moroccan Atlas

S. algira algiraP. nebulosusP. poiretiA. maurusD. pictus auritus

H. meridionalis

B. spinosusP. saharicus saharicus

Salamandra salamandra longirostrisPleurodeles waltl

Alytes dickhilleniiDiscoglossus jeannae D. galganoiHyla meridionalis H. arboreaBufo spinosusPelophylax perezi

South of the Iberian Peninsula Tellian Atlas Sicily + Calabria

Table 2: Species-complexes, species, and subspecies of amphibians occurring in the Messinian biogeo-graphic regions.

MATEO ET AL.58

Figure 4: Distributional ranges and bi-dimensional approximation to bioclimatic range for species of Caudata.Bioclimatic approximation utilizes Emberger’s ombroclimatic index (Q = 2000 P / M2 – t2), an indicator ofdegree of Mediterranean feel in temperate climates (OzENDA, 1964), where P is annual rainfall in mm, M isthe average maximum temperature of the hottest month and t is the average minimum temperature duringthe coldest month (see DAGET, 1977). hum: humid; shu: sub-humid; sdr: sub-dry; sah: Saharan.

59CONSERVATION OF ALGERIAN AMPHIBIANS

Salamandra algira Bedriaga, 1883: AlgerianSalamander (Fig. 4). In Algeria this species isrestricted to very humid places in the northernmountains (SCHLEICH et al., 1996;MARTíNEz-MEDINA et al., 1997; DONAIRE &BOGAERTS, 2003; MATEO et al., 2003).DOUMERGUE (1901) documented a popula-tion at Rhar-el-Maden (near Remchi) in Oranand this population is the westernmost knownfrom Algeria (BONS & GENIEz, 1996). Thereare confirmed records from the mountains ofConstantine, Edough, Medjerda, Traras,Tlemcen, and the Blidah Atlas; the majority ofliterature citations are from the Grande andPetite Kabylia regions (JOGER & STEINFARTz,1995; ESCORIzA et al., 2006).

Larvae may occur in puddles and in creekswith slow moving currents and clear, cleanwater but adults frequent very humid androcky areas and are associated with deciduousforests. Salamandra a. algira is the subspeciesfound in Algeria (DONAIRE & BOGAERTS,2003) and it is probable that the extremefragmentation to which the species is subject-ed masks genetic differentiation exceedingthe species-subspecies threshold.

FAMILy ALyTIDAE: PAINTED FROGS

With a Mediterranean distribution, thisanuran family is comprised of two genera and11 species (SAN MAURO et al., 2005). Thereare three species in Algeria: Alytes maurus,Discoglossus pictus, and D. scovazzi (HUGHES

& HUGHES, 1992; PABIJAN et al., 2012).

Alytes maurus Pasteur and Bons, 1962: AfricanMidwife Toad (Fig. 5). Holocene fossilremains found near Oran suggest that theAfrican Midwife Toad had a considerably

wider distribution a few thousand years ago(MATEO et al., 2003), and the presence of thisspecies in northwestern Algeria was consid-ered likely according to models of potentialdistributions (POUL et al., 2013).

In 1990 two adults of this species were cap-tured in an artificial reservoir in the Hafir Forest(1170 m, 34°46’12’’ N / 1°27’23’’ W) by JesúsPeña and colleagues. Because these specimenshad been incorrectly identified and labeled inthe collection of the Asociación de Amigos deDoñana they went unnoticed until 2006 whenthey were re-identified by José A. Mateo. A visitto the Hafir Forest area by Mateo in May, 2009,allowed for detection of Alytes larvae. Numbers,however, were low and some individuals pre-sented deteriorated horny beaks, an unequivocalsign they were infected by the fungusBatrachohytrium dendrobatidis (ALFORD et al.,2007). Chytridiomycosis, whose presence inNorth Africa has been confirmed (EL MOUDEN

et al., 2011), is considered a prime cause forextinction of numerous amphibian species andit virulently affects adults and larvae of Alytes(BOSCH et al., 2013). A visit to the area duringsummer, 2013, provided no evidence of Alytes inthe original artificial reservoir or vicinity.

Adults of A. maurus are not very aquatic,and the species is restricted to regions ofhumid Mediterranean climate.

Discoglossus pictus Otth, 1837: AlgerianPainted Frog (Fig. 5). This species is relative-ly terrestrial and generally found in well-watered, highly humid areas. It is present inall relatively humid Mediterranean regions ofnorthern Tunisia, Algeria and north-easternMorocco, Sicily, Malta, the Galita islands,and in French Roussillon and SpanishCatalonia (as an introduced species with an

MATEO ET AL.60

Figure 5: Distributional ranges and bi-dimensional approximation to bioclimatic range for species ofAlytidae. See Fig. 4 legend for details.

61CONSERVATION OF ALGERIAN AMPHIBIANS

expanding distribution) (LANzA &BRUzzONE, 1960; VEITH & MARTENS, 1997;PLEGUEzUELOS, 2002; FRANCH et al., 2007;BEUKEMA et al., 2013).

In Algeria, populations have been docu-mented from the entire Tell, and from thevicinity of Oran to the border with Tunisia.It is relatively common in the HautsPlateaux and has been found in the oasis ofzibans and in the Saharan Atlas (KOLAR,1955; SURA, 1983; SALVADOR, 1996).VEITH & MARTENS (1997) assigned Algerianpopulations to the subspecies D. p. auritusHéron-Royer, 1888.

Discoglossus scovazzi (Camerano, 1878):Moroccan Painted Frog (Fig. 5). This species,found in humid and sub-humid areas, is repre-sented by a relict population in the Saoura Valley(HUGHES & HUGHES, 1992). The Saoura Valleyis formed from the confluence of some intermit-tent rivers originating in the Moroccan AtlasMountains, where D. scovazzi is common(authors' personal observation).

FAMILy BUFONIDAE: “TRUE” TOADS

Five species (Amietophrynus mauritanicus,A. xeros, Barbarophryne brongersmai, Bufo

Figure 6: Distributional ranges and bi-dimensional approximation to bioclimatic range for species ofAmietophrynus. See Fig. 4 legend for details.

MATEO ET AL.62

spinosus, and Bufotes boulengeri) from thisfamily are known in Algeria (SALVADOR,1996; SCHLEICH et al., 1996; COX et al.,2006).

Amietophrynus mauritanicus (Schlegel, 1841):Berber Toad (Fig. 6). Exclusive to the Maghreb,the Berber toad is quite common in humid, sub-humid, and semi-arid areas with aMediterranean climate in the north and north-west of Algeria (SALVADOR, 1996; SCHLEICH etal., 1996). It is found along the entire coastalarea, in the Tellian Atlas, the Hauts Plateaux,region of zibans, the Saharan Atlas near the riverGuir, and the Drâa (KOLAR, 1955; BALOzET,1957; SIBOULET, 1968; ALTES & SIBOULET,1977; SURA, 1983; LE BERRE, 1989; SALVADOR,1996; SCHLEICH et al., 1996). References to A.mauritanicus in the south of Algeria (Hoggarand Tassili’n’Ajjer) (ANGEL & LHOTE, 1938; LE

BERRE, 1989) are erroneous; the species foundthere is A. xeros. Amietophrynus mauritanicuslives in close proximity to temporary or perma-nent bodies of water that generally are deeperthan those used by other Algerian bufonids.

Amietophrynus xeros (Tandy, Tandy, Keithand Duff-MacKay, 1976): Savannah Toad(Fig. 6). Typically a Sahelian species of aridsavannahs, dry “wadies”, oases, and similarareas, the Savannah Toad is restricted to theHoggar and Tassili’n’Ajjer mountains (ANGEL

& LHOTE, 1938; CEI, 1973; JOGER, 1981;SALVADOR, 1996; SCHLEICH et al., 1996;RöDEL, 2000) of southern Algeria.

Barbarophryne brongersmai Hoogmoed,1972: Brongersma’s Toad (Fig. 7). GENIEz etal. (2004) suggested that Brongersma’s toadwas a possible species to be found in north-

western Algeria and, recently, it has been dis-covered in four towns in the Saharan Atlaswithin Algeria (Jesús Peña and José A. Mateo,unpublished). The species also may actuallyoccur in other areas of this mountain rangewhere it could have been confused with B.boulengeri. It is not a very aquatic toad, andlives near humid areas (e.g., “wadies”, ditch-es, oases, orchards, gardens) in arid areas ofMediterranean climate.

Bufo spinosus Daudin, 1803: Common Toad(Fig. 7). The common toad is not very abun-dant in Algeria and its distribution is frag-mented. It is found only in humid and sub-humid areas of Mediterranean climate in thenorth; it is well-documented from the TellianAtlas (SALVADOR, 1996; SCHLEICH et al.,1996; AGASyAN et al., 2008). According toGARCIA-PORTA et al. (2012) common toadsof North Africa should be considered a non-described subspecies.

Bufotes boulengeri (Lataste, 1879): North-African Green Toad (Fig. 7). This species is rela-tively common in the north, but rare in themore humid areas there (SALVADOR, 1996;SCHLEICH et al., 1996). It is present in varyingdensities in the oases and relatively humid areasof central and southern Algeria. It is absent fromthe Kabylia mountains but relatively commonin the Hauts Plateaux, other semi-arid and aridregions of the Saharan Atlas, and the southernslope of the Aurès and Tebessa Mountains(SEURAT, 1930; SALVADOR, 1996). SAMRAOUI etal. (2012) have found some isolated populationsof this species in Numidia (northwesternAlgeria), where it is rare. In the central Sahara,North-African Green Toads are associated withoases (SCHLEICH et al., 1996) or with temporary

63CONSERVATION OF ALGERIAN AMPHIBIANS

Figure 7: Distributional ranges and bi-dimensional approximation to bioclimatic range for Bufotes boulen-geri, Barbarophyne brongersmai (Moroccan individual), and Bufo spinosus. See Fig. 4 legend for details.

MATEO ET AL.64

watercourses (BONS & GENIEz, 1996). In thesouth, this species is probably the most commonamphibian and is known from the MouydirMountains and the massifs of the Hoggar andTassili’n’Ajjer (SCHLEICH et al., 1996).

This toad is associated with seasonalponds of shallow depth in areas of very aridclimates but in other geographical areas theirpreferences can vary.

FAMILy HyLIDAE: TREEFROGS

RECUERO et al. (2007) and STöCK et al.(2008) demonstrated that tree frogs inTunisia and northeastern Algeria are geneticallydifferent from those in Morocco and north-ern and northwestern Algeria but no taxo-nomic changes have yet been introduced.

Hyla meridionalis Boettger, 1874: StripelessTreefrog (Fig. 8). This anuran is associated withbodies of water with dense vegetation in humidregions with a Mediterranean climate along theentire Algerian coast, in the Tell, along theCheliff Valley, and in the northern half of theAurès (LLABADOR, 1947; SURA, 1983; BONS &GENIEz, 1996; SALVADOR, 1996; SCHLEICH etal., 1996).

FAMILy RANIDAE: “TRUE” FROGS

True frogs are represented in Algeria onlyby Pelophylax saharicus.

Pelophylax saharicus (Boulenger, 1913): North-African Green Frog (Fig. 8). By far the mostcommon and widely distributed anuranthroughout North Africa (BONS & GENIEz,1996; SCHLEICH et al., 1996; GENIEz et al.,2004; BAHA EL DIN, 2006; DONAIRE-BARROSO

et al., 2008), two subspecies of the North-African Green Frog, P. s. saharicus(BOULENGER, 1891) and P. s. riodeoroi(SALVADOR & PERIS, 1975), are currently rec-ognized. Pelophylax s. riodeoroi can be found inthe northwest around Tlemcen and Aïn Sefra,in western “hamadas” along the Oueds Guir,Saoura and zousfana, in the Touat Oasis up toTimimoun, and in the valley of the Drâa.Pelophylax s. saharicus is present in the TellianAtlas, central and eastern Sahara, HautsPlateaux, Kabylia, Aurès, the region of Tebessa,along the Ghardaia-El Golea corridor, on theTademaït Plateau, and in oases (ARANO et al.,1998).

In the north its distribution is continuousand this aquatic species inhabits creeks andponds from the Mediterranean coast down tothe Saharan Atlas (HEMMER et al., 1980; LE

BERRE, 1989; SALVADOR, 1996; SCHLEICH et al.,1996). More to the south, and in the centre andeast of the country, it is restricted to dayas andoases (BOULENGER, 1891; ANGEL & LHOTE,1938; COX et al., 2006). In the massifs ofHoggar and Tassili’n’Ajjer it is relatively com-mon in deep gorges and close to bodies of rela-tively stable water (ANGEL & LHOTE, 1938).

FAMILy DICROGLOSSIDAE: FORKED

TONGUED FROGS

Recent separation of this group from thefamily Ranidae is based on molecular evid-ence and no anatomical characterization isyet available (FROST et al., 2006). The onlyAfrican representative of this newly-formu-lated family is Hoplobatrachus occipitalis.

Hoplobatrachus occipitalis (Günther, 1859):African Bullfrog (Fig. 8). Algerian populations

65CONSERVATION OF ALGERIAN AMPHIBIANS

Figure 8: Distributional ranges and bi-dimensional approximation to bioclimatic range for Hyla merid-ionalis, Pelophylax saharicus, and Hoplobatrachus occipitalis. See Fig. 4 legend for details.

MATEO ET AL.66

of this widely-distributed bullfrog are restrictedto Tassili’n’Ajjer, where several populations havebeen found in the vicinity of Iherir (25°24’ N,8°44’ E), zaouatallaz (24°52’ N, 8°26’ E), inaguelman of Ifedil (24°33’ N, 9°31’ E), and atthe head of the “wadi” Iddo (25°13’ N, 9°44’ E)(SEURAT, 1930; SCORTECCI, 1937; ANGEL &LHOTE, 1938; RöDEL et al., 2006).

African Bullfrogs are very aquatic andinhabit rivers and temporary ponds of sub-Saharan savannahs; in the Tassili’n’Ajjer theycan be found only near stable sources ofwater and have suffered significant decreasesin recent decades. In 1990 they had disap-peared from some “gueltates” in which theywere formerly abundant (Isidro Corea, per-sonal communication).

BIOGEOGRAPHy

Geology and bioclimatic conditions parti-tion Algeria into three regions of biogeo-graphic importance for amphibians: theMediterranean Tell (with humid or sub-humid conditions), a transition zone betweenMediterranean Tell and the Sahara Desert(with arid or semi-arid conditions), and theSahara Desert (Fig. 2).

The TellCoincidence of distribution for several

species or species-complexes in the Tellianregion with those of the Moroccan Atlas, thenorth of Tunisia, the Iberian Peninsula, or thesouth of Italy suggests that amphibian distri-bution in these areas sharing a Mediterraneanclimate can be partially explained by the“Messinian Model” (Table 2) (BUSACK, 1986;MATEO et al., 2003; BUSACK & LAWSON,2008). This biogeographical model, initially

proposed by BOCQUET et al. (1978) toexplain floristic coincidences, relates distribu-tional patterns to intercontinental connec-tions during desiccation and rehydration ofthe Mediterranean Sea during the Messinian(Upper Miocene) “Salinity Crisis”. The co-occurrence of several species is related to dis-appearance and re-appearance of a marinebarrier resulting from fragmentation ofPangaea. Conformation of current regionalamphibian assemblages with circumstancesinitiated by this series of events has beenbroadly explained in the works of BUSACK

(1986), ARANO et al. (1998), MATEO et al.(2003), CARRANzA & ARNOLD (2004),FROMHAGE et al. (2004), RECUERO et al.(2007), and BUSACK & LAWSON (2008).

Research demonstrates that genetic diver-sity in various complexes (Table 2) isexplained by the closure and re-opening of theStrait of Gibraltar. BUSACK (1986), for exam-ple, demonstrated significant differences ingenetic distances between some species con-sidered vicariant from one side to the other ofthe Strait of Gibraltar. Other workers (ARANO

et al., 1998; CARRANzA & WADE, 2004;FROMHAGE et al., 2004; MARTíNEz-SOLANO

et al., 2004; VEITH et al., 2004) have also dis-covered genetic discontinuities of the sameorder of magnitude. BARBADILLO et al.(1997), and later CARRANzA & WADE (2004)and PAULO et al. (2008), presented very con-vincing hypotheses based on fragmentation ofbasal populations, before and during theMessinian Crisis, to explain discontinuities.These authors suggested that the area nowcomprising the coast of northwestern Africaand the southern Iberian Peninsula oncebelonged to a series of islands belonging to ageologic complex named Alkapeca (MICHARD

67CONSERVATION OF ALGERIAN AMPHIBIANS

et al., 2002). Each of these islands could, overa long period of time, harbour isolated popu-lations of amphibians currently represented inthe region by allopatric species. ARANO et al.(1998), CARRANzA & ARNOLD (2004),FROMHAGE et al. (2004), MARTíNEz-SOLANO

et al. (2004), and RECUERO et al. (2007) havedescribed genetic discontinuity consideredappropriate for supporting taxonomicchanges among North-African amphibians inthe genera Pelophylax, Alytes, Discoglossus,Pleurodeles, and Hyla. Mountainous massifs ofEdough, connected for a few thousand yearsto the mainland, remained totally isolatedover a period of several millions of years andrepresent the last of the islands of theAlkapeca complex; the newt from Edoughrepresents one additional example ofallopatric speciation (CARRANzA & ARNOLD,2004; CARRANzA & WADE, 2004).

In addition to faunal distributionsattributable, in part, to Messinian events theTell region also has contemporary differencesin climate. Eastern and western areas alongthe Mediterranean Sea have areas of varyinghumidity and, while northwestern Algeria isrelatively arid, the Kabilya area (GRIFFITHS,1972) and some areas to the east of Alger, inthe mountains of the Tell, are humid. Somenorthwestern slopes (Tlemcen Mountains,Aricha Plateau) drain into the Moulouya.The valley through which this river flowsprovides a gradual northern corridor of desertand provides a pathway through which somespecies with clear Saharan affinities canapproach to within less than 20 km of theMediterranean Sea (BONS & GENIEz, 1996).

Two endemic species of the genusPleurodeles, along with two species withEurosiberian affinity (B. spinosus and S. algira),

are more common in these more humidregions. Bufotes boulengeri is, however, almostabsent from this region.

On occasion, north-south and east-westhumidity gradients (described above) are inter-rupted by elevations or depressions. The rela-tive aridity of northwestern Algeria is partiallyameliorated in the mountains behind Tlemcen,thereby creating a haven for Mediterraneansub-humid vegetation and sheltering severalfaunal relics that appear again only in theMiddle Atlas, Rif, or Kabilya Mountains(SCHLEICH et al., 1996). Alytes maurus is onesuch faunal vestige that merits a mention.

The Transition Zone While maintaining a strong climatic affin-

ity with the Mediterranean, the transitionzone has continental thermal conditions anda mean annual rainfall of 100-250 mm; thisproduces an aridity that reduces amphibianspecies richness. Included in this zone are theentire Hauts Plateaux, the Aïn Regada plat-form, the Saharan Atlas, and the southernslopes of the Aurès and Tebessa Mountains.

The batrachian fauna of the transitionzone is characteristically Mediterranean;creeks, ponds, “dayas”, and humid steppes inthe area provide shelter for some of the morecommon anurans of the Tell. Discoglossus pic-tus, A. mauritanicus, B. boulengeri, and P.saharicus are species that can be found in thearea (SALVADOR, 1996; SCHLEICH et al.,1996; BRUNET et al., 2009).

Also in the transition zone, but very nearthe desert in the Saharan Atlas, some summits(including, among others, Morhad at 2137m, Makter at 2063 m, Aissa at 2236 m, andKsel at 2009 m) serve as relatively humidhavens surrounded by arid steppes.

68 MATEO ET AL.

Assemblages of up to four different amphib-ian taxa can be found in these areas, includ-ing species otherwise occurring much furtherto the north (DOUMERGUE, 1901; SCHLEICH

et al., 1996). These populations, now in dan-ger of extirpation, are relicts from a not toodistant time when precipitation was moreabundant (PETIT-MAIRE, 1985; AUMASSIP,2004; LE QUELLEC, 2006).

The only amphibian characteristic of thetransition zone is B. brongersmai whose distri-bution in Algeria is believed to extend intodesert regions of the western Hauts Plateauxand western steppe of the Saharan Atlas.

The SaharaStrictly Saharan amphibians do not exist

(BONS, 1973; BORKIN, 1999). Of the sixspecies of frogs and toads occurring south of33ºN, four have Mediterranean, and thereforePalaearctic, affinities (D. scovazzi, B. boulengeri,A. mauritanicus, and P. saharicus), while theother two (H. occipitalis and A. xeros) areEthiopian. Unlike reptiles or mammals,amphibians in the Sahara Desert face a hostileenvironment and an almost impassable biogeo-graphic barrier. Requiring surface water, mostfrogs and toads have physiological and ecolog-ical requirements that preclude their survivalover more than 99% of this great desert’s sur-face area (COX et al., 2006). Locations provid-ing humid microclimates, regardless of size,serve to explain species’ distributions(LARMUTH, 1984); only where water exists onthe surface, or seasonally, as in some mountain“gueltates” and “dayas” in the region ofLaghouat, and some wells and oases, areamphibians found.

Hydrographic basins, almost always dry,may be used as basic geographic units

(PALOMO & ANTúNEz, 1992); their distribu-tion and extent can offer interesting insightinto the origin and affinity of the amphibianpopulations for which they provide refuge (seesummary by DRAKE & BRISTOW, 2006).Isolation of D. scovazzi, A. mauritanicus, and P.saharicus in different tracts of the Saoura Valley(BONS & GENIEz, 1996) likely began 6000years ago as water from Saharan slopes of theGreat Atlas and Middle Atlas drained into thebasin of Tidikelt, of which the Saoura forms apart (HUGHES & HUGHES, 1992; DRAKE &BRISTOW, 2006).

The presence of A. xeros and H. occipitalison the southern slopes of Tassili’n’Ajjer and,to a lesser extent, the Hoggar, is understand-able because these slopes are associated withthe Niger River and the Lake Chad basins,areas where both species are still abundant(LE BERRE, 1989; SALVADOR, 1996; RöDEL,2000). Today’s Saharan batrachofauna is apale memory of what it would have been onlya few thousand years ago when the region wasdotted by lakes and interior deltas, and tra-versed by large rivers. During that timePaleolithic artists of the Tassili, Drâa Valley,and the Eglabs region found inspiration inthe hippopotamus, crocodile, and other ver-tebrates associated with water, in placeswhere even dromedary camels find it difficultto survive today (VERNET, 1995; AUMASSIP,2004; LE QUELLEC, 2006).

CONSERVATION PROBLEMS

The same skin that allows an exchange ofgases and ions with the environment makesamphibians extraordinarily susceptible tochemical contaminants, ultraviolet radiation,and infection. Increasing levels of various

CONSERVATION OF ALGERIAN AMPHIBIANS 69

kinds of pollutants (HEATWOLE &WILKINSON, 2009) and UV-radiation(MARCO et al., 2009) have been registered inrecent decades, and there has been a global-ization of pathogenic viruses, bacteria, andfungi (BERGER et al., 2009; HEMINGWAy etal., 2009) that in the past were limited toresistant and geographically-restricted species(STUART et al., 2004; ALFORD et al., 2007).Amphibians may serve as an “early-warning”taxon for potential threats to other species,including humans, and they deserve pro-grammed and continuous monitoring (COX

et al., 2006; DODD et al., 2012).The monitoring carried out during the

past three decades by the University ofAnnaba has revealed significant reduction innumbers of P. poireti in recent years, anddetermined that this newt can be found onlyin Algeria. This species has come to beregarded as one of the most threatenedamphibians in the Mediterranean region(SAMRAOUI et al., 2012). Unfortunately,monitoring programs of Algerian amphibianpopulations were restricted to localized areas(SAMRAOUI & DE BéLAIR, 1997; ROUAG,2006; ROUAG & BENyACOUB, 2006) and theeffects that acid rain, contaminated aquifers,or illnesses transmitted by ranaviruses orchytrid fungi (Batrachochytrium) may be hav-ing on amphibians in Algeria is only begin-ning to be understood.

The presence of chytrid fungi in North Africahad been predicted by earlier models (RON,2005), and now has been confirmed in Morocco(EL MOUDEN et al., 2011). Chytrid fungus hadgone completely unnoticed in Algeria, but evi-dence of infection found in midwife toad larvaein the region of Tlemcen suggests that chytrid-iomycosis is affecting some amphibian popula-

tions in this country. The recently discoveredAlgerian population of A. maurus is already inextreme danger of extirpation.

Shortage and unpredictability of precipita-tion make most of Algeria a territory in whichpermanent and semi-permanent bodies ofwater are rare. In the north, the only region inwhich rainfall is relatively plentiful, water qual-ity is often compromised by high human pop-ulation density and the enormous volume ofwaste that industry and urbanization generate(MIMOUNI & CHIBANE, 1989). In the aridSahara to the south, human presence occasion-ally has fostered survival of some amphibianspecies, thanks to construction of channels and“fogharas” and to the maintenance of palmgroves (e.g., the Ramsar reserve at the OuledSaïd Oasis). It is possible that small popula-tions of D. scovazzi detected in the SaouraValley (HUGHES & HUGHES, 1992) surviveprecisely because of this contribution of water.

In other cases, however, presence ofhumans has resulted in eutrophication of“gueltates” and wells, and extirpation of fragileamphibian populations. Regardless of loca-tion, being it the north, central, or south ofAlgeria, amphibians continue to lose suitableareas in which to live.

COX et al. (2006) published conclusionsregarding distributions and state of conserva-tion for Mediterranean amphibians asexpressed by experts from 18 countries.Three of the 12 batrachian species thenknown from Algeria were listed as threatenedunder criteria established by the InternationalUnion for the Conservation of Nature(IUCN, 2010) (Table 3). While the evalua-tion summarized by COX et al. (2006) wasglobal, application of the same IUCN criteriathen used has been applied at the regional

MATEO ET AL.70

level (GAERDENFORS et al., 2001; IUCN,2010) to the 14 species currently known tooccur in Algeria (Table 3) and this assessmentallows completion of the Algerian catalog ofthreatened species, and provides a basis formaking recommendations to appropriategovernmental authorities (see PLEGUEzUELOS

et al., 2010). Reference to the protection ofautochthonous fauna, and the necessity oflegislation dedicated specifically for that pur-pose, is published in Algeria’s Constitution,but none of the lists of threatened Algerianfauna published since Algeria’s independencehas included amphibians (DUPUy, 1966;WORLD LAW GUIDE, 2010).

Table 3 provides information about thelevel of threat to each of the 14 amphibianspecies known to occur in Algeria.

THREATENED AMPHIBIANS

Pleurodeles poireti. Because of its small geo-graphic range (restricted to the Massif ofEdough, the Guerbes-Sendhadja wetlands,and the Mekhada wetlands; SAMRAOUI & DE

BéLAIR, 1997; CARRANzA & WADE, 2004;SAMRAOUI et al., 2012), and the provenregression of this species (SAMRAOUI et al.,2012), Edough’s Newt is considered the mostthreatened amphibian in Algeria. Because thespecies is an endemic, Algeria’s responsibilityfor its conservation is a high priority.

These newts are threatened by water pollu-tion, overgrazing, and drying out of habitatdue to agricultural and sanitary development(COX et al., 2006). A wetland area at Guerbes-Senhadja, including almost all the lagoons and

VUCRVUCRLCNTLCLCNTLCVU

LC / NT*LC / NT*

NT

68100424571474813765421

R %

VUENVUNTLCLCLCLCLCLCLCLCLCLC

Pleurodeles nebulosusPleurodeles poiretiSalamandra algiraAlytes maurusDiscoglossus pictusDiscoglossus scovazziHyla meridionalisAmietophrynus mauritanicusAmietophrynus xerosBarbarophryne brongersmaiBufo spinosusBufotes boulengeriPelophylax saharicusHoplobatrachus occipitalis

Species IUCN Med IUCN Algeria

B 1ab (ii) + 2 ab (iii)B 2ab (iii)

B 1ab (ii) + 2 ab (iii)B 1ab +D 2

B 1ab (v)---

Criteria

Table 3: Conservation status of Algerian amphibian species. R%: percentage of the species’ worldwide dis-tribution corresponding to Algeria (ASTUDILLO & ARANO, 1995); IUCN Med: estimated level of threat,according to IUCN criteria, in countries bordering the Mediterranean Sea (COX et al., 2006); IUCNAlgeria: level of threat proposed after the present updated review for Algerian populations, includingspecies newly-recorded for the country; Criteria according to IUCN (2010) for species catalogued inAlgeria as VU, EN or CR. LC: Least Concern; NT: Near threatened; VU: Vulnerable; EN: Endangered;CR: Critically Endangered. No Algerian species is included in category DD: Deficient Data.

*Saharan populations south of 32°N latitude

71CONSERVATION OF ALGERIAN AMPHIBIANS

swamps near Annaba, and encompassing morethan half of the known distribution of thisspecies, has been declared a Ramsar reserve,which, at least in theory, provides a territorialbase for which a recovery plan can be devel-oped. This plan should include proceduresbased on the species’ biology and basic require-ments as a means of formulating managementmeasures (SAMRAOUI et al., 2012).

Pleurodeles nebulosus. The Algerian Newt hasa much less limited distribution thanEdough’s Newt. Lagoons and other bodies offresh water in its distributional range, however,have suffered direct human impact, fromdraining of land for sanitary reasons, loss ofland to cultivation, contamination of land byagriculture or industry, and decrease in resid-ual water volume associated with growth ofAlgeria’s human population over the pastthree centuries.

Concern for wetlands has increased in thepast few decades and that concern has beentranslated into numerous Ramsar reserves.These reserves, especially the complex oflagoons (Lac des Oiseaux and Lake Fetzara)that are part of El Kala National Park, havehelped this species. As with Edough’s Newt,more information about this species’ biologyand of the actions required to guarantee itsconservation, is urgently needed (SAMRAOUI

et al., 2012).

Salamandra algira. The range of the AlgerianSalamander is discontinuous in mountainswith significant rainfall and high water qual-ity, and studies of the genetic variability ofNorth African populations should be under-taken (BOGAERTS & DONAIRE-BARROSO,2003). Loss of habitat due to deforestation

and cultivation, as well as loss from overgraz-ing and water contamination, are consideredserious areas of concern within Algeria(IUCN, 2005, unpublished report). Somehabitats of the Algerian Salamander alreadypossess some level of protection (Chréa,Djurdjura, and El Kala National Parks; BaborNatural Reserve), yet many areas in theGrande and Petite Kabilya and in theConstantine Mountains should also be con-sidered areas of interest for conservation.

Alytes maurus. The only well-known havenfor the African Midwife Toad is in theTlemcen Mountains, a good part of which isat present included in Tlemcen National Park(LOUKKAS, 2006). Loss of habitat associatedwith deforestation, contamination of water,and emergent illness are among the mainthreats. Algeria has limited responsibility forconservation of this species because Tlemcenpopulations represent only the eastern edgeof a wider distribution in Morocco.Application of some basic and inexpensiveconservation measures in Tlemcen NationalPark could guarantee its survival. If, as seemsto be happening, chytridiomycosis is affect-ing the population of Midwife Toads fromTlemcen, urgent measures need be taken topreserve this species in Algeria.

Bufo spinosus. The Common Toad is awidespread species not considered globallythreatened (COX et al., 2006) but that, inAlgeria, has a highly fragmented distributionassociated with mountainous areas(SAMRAOUI et al., 2012). This pattern of dis-tribution and progressive deterioration ofpopulations support the conclusion that thespecies is Vulnerable.

MATEO ET AL.72

Mediterranean subhumid

Mediterranean subhumid

Mediterranean subhumid

Mediterranean humid

Mediterranean humid

Mediterranean humid

Mediterranean subhumidand humid

Mediterranean semi-aridand subhumid

Mediterranean subhumid

Mediterranean semi-aridand subhumid

Mediterranean humid

Mediterranean Saharan

Saharan, precipitation incolder months

Saharan, precipitation incolder months

Saharan, precipitation incolder months

Saharan, precipitation inwarmest months

Saharan, precipitation inwarmest months

36º53’ N6º05’ E

36º51’ N7º19’ E

36º56’ N7º20’ E

36º47’ N8º07’ E

36º47’ N7º31’ E

36º45’ N8º01’ E

36º51’ N8º23’ E

34º36’ N1º27’ W

36º26’ N2º53’ E

36º19’ N3º34’ E

36º30’ N5º30’ E

33º54’ N0º09’ E

33º37’ N6º04’ E

29º54’ N1º54’ W

29º31’ N7º01’ W

24°35’ N09°31’ E (Djanet)

22°47’ N5°31’ E (Tamanrhasset)

Coordinates

6

700

42

9

90

1.2

764

82

266

185

17

2550

204

11 000

4200

72 000

380 000

Lake Béni Belaïd

Edough

Guerbes-Senhadja

Mekhada marshes

Lake Fetzara

Lac des Oiseaux

El Kala National Park

Tlemcen Mountains

Chréa

Djurdjura

Djebel Babor

Ksour Mountains andDjebel KselOases of Wadi Igharghar

Guir / Saoura

Drâa Valley

Tassili’n’Ajjer National Park

Hoggar National Park

Area Area (km2) Climate

Freshwater lake, adjacent humid areas and coastal dunesMediterranean moun-tains and forestCoastal wetlands

Marshes

Stable coastal lagoons,areas of seasonal floodingFreshwater lagoon

Humid area, coastalswamps and subhumidMediterranean forestMediterranean moun-tains with cork, pine,and oak forestMediterranean mountainswith oak and cedar forestsMediterranean moun-tains with cork forests,cedar and pineMediterranean forests ofHolm oak, cedar, and firArid Mediterranean areas

Oases, dunes, and“hamadas”

Alignment of Oases,between “ergs” and“hamadas”

Temporary “wadies”, iso-lated “gueltates”, andabandoned irrigationditches

Hyperarid plateaus andhills

Mountainous Desert

Type of Habitat

Table 4: Areas of special interest for amphibians in Algeria.

*BR: Biosphere Reserve; NP: National Park; NR: Natural Reserve.

73CONSERVATION OF ALGERIAN AMPHIBIANS

Jijel

AnnabaSkikda

El Tarf

Annaba

El Tarf

El Tarf

Tlemcen

Blida

BouiraTizi Ouzou

Sétif

Naama Bayadh

El Oued

Bechar Adrar

Tindouf

Illizi

Tamanrhas-set

Wilaya

NRRamsar site 1303

NR, Ramsar

Ramsar site 1056

Ramsar

Ramsar site 1299

NRRamsar site 975

NP, Ramsar sites 280,281, 1293, 1301,1305 and 1424

NP

NP, BR

NP

NR

NP, Ramsar

None

None

None

NP

NP

Protection*

5

7

5

5

6

5

6

7

6

6

6

5

3

4

4

4

3

Nº Species

Rouag, 1997 in Boumezbeur &Naziha 2003; Boumezbeur &

Naziha, 2002Samraoui & de Bélair, 1997;

Carranza & Wade, 2004Samraoui et al., 2012

Samraoui et al., 2012

Boumezbeur, 2003

Boumezbeur & Naziha, 2003

Rouag, 2006; Rouag &Benyacoub, 2006

Doumergue,1901;Loukkas, 2006

Loukkas, 2006

Loukkas, 2006

-

-

-

Gauthier, 1967; Hughes &Hughes, 1992

Bons & Geniez, 1996

Le Berre, 1989; Hughes & Hughes,1992; UNEP / WCMW, 2008

Hughes & Hughes, 1992;Boumezbeur, 2001

References

P. nebulosus

P. poiretiS. algiraP. poireti

P. poireti

P. nebulosus

P. nebulosus

P. nebulosusB. spinosus

A. maurusB. spinosus

S. algiraB. spinosusS. algira

B. spinosus

S. algiraB. spinosus

B. brongersmai

P. saharicusA. mauritanicusB. boulengeriP. saharicus

A. mauritanicusB. boulengeriD. scovazzi

B. boulengeriP. saharicus

B. brongersmai?A. xeros

B. boulengeriH. occipitalisP. saharicusP. saharicusA. xeros

B. boulengeri

Threatened and Near-Threatened species

MATEO ET AL.74

NEAR-THREATENED SPECIES

Three species, considered of Least Concern(LC) at the global level, have restricted andseverely fragmented distributions in Algeriaand are considered Near Threatened (NT) atthe local level. Barbarophryne brongersmai isrelatively common in semi-arid regions inportions of the Saharan Atlas, and both A.xeros and H. occipitalis have wide distribu-tions in sub-Saharan Africa but are restrictedto some areas of the Hoggar and the Tassili inAlgeria. As with the previous species, waterquality and loss of habitat are the main causesof their precarious state.

Pelophylax saharicus and B. boulengeri arenot considered threatened at the global level(COX et al., 2006) and are relatively commonin northern Algeria but isolated populations inthe Saharan region are, on occasion, verythreatened. For this reason, populations southof latitude 32ºN in Algeria can appropriatelybe considered as Near Threatened (NT).

AREAS OF SPECIAL INTEREST FOR

AMPHIBIANS

Reports published in 2003 by Earth Trendsidentify 5.1% of Algeria’s surface as within lim-its of reserves, national parks, national monu-ments, or otherwise protected landscape.Although amphibians are repeatedly consid-ered excellent indicators of the ecologicalhealth of an area, they have rarely been consid-ered when site mapping for these protectedareas (BUTCHART et al., 2006). In addition tosites important for historical and landscape rea-sons, Algerian parks and reserves have targetedmainly the conservation of birds and largemammals (LOUKKAS, 2006). The protectivemeasures adopted have, however, indirectly

benefitted some amphibian species. The mostobvious examples of this are wetland areas pro-tected by the Ramsar convention, areas origin-ally mapped for ornithological reasons but thatalso serve as amphibian refuges. As notedabove, protection of wetlands in the north ofAlgeria benefits species such as P. poireti and P.nebulosus; similarly, protection of mountainousareas, such as those of the Djurdjura, Tlemcen,or the Hoggar, serve as refuges for some threat-ened species and protect relict fauna like S. algi-ra and A. maurus.

Not all areas important for amphibianconservation are found within the boundariesof a national park or reserve, however, but alldeserve to be preserved, especially all Saharanwater points whose amphibian communitiesare, by definition, threatened. We concludethis chapter with a preliminary listing of areasof importance to amphibians, includinginformation on location, area, climate, habi-tat characteristics, and Threatened and NearThreatened species that can be found in theseareas (Table 4).

Acknowledgement

Assistance and information were providedby José Brito, Jesús Peña, Hipólito Guerrero,Eva Graciá and the curators of herpetologicalcollections maintained by the AsociaciónAmigos de Doñana (Sevilla, Spain), theBritish Museum of Natural History, theEstación Biológica de Doñana (Sevilla,Spain), the Cornide de Saavedra Fund(Coruña, Spain), the Institut de Recherches(Rabat, Morocco), the Laboratoire deBiogéographie et écologie des Vertébrés(Montpellier, France), the Musée de laWilaya d’Oran (Oran, Algeria), the MuséeNational d’Histoire Naturelle (Paris, France),

75CONSERVATION OF ALGERIAN AMPHIBIANS

the Museo Nacional de Ciencias Naturales(Madrid, Spain), the Museum AlexanderKönig (Bonn, Germany), and Paul ValéryUniversity (Montpellier, France).

REFERENCES

AGASyAN, A.; AVISI, A.; TUNIyEV, B.; CRNOBRNJA

ISAILOVIC, J.; LyMBERAKIS, P.; ANDRéN, C.;COGALNICEANU, D.; WILKINSON, J.;ANANJEVA, N.; ÜzÜM, N.; ORLOV, N.;PODLOUCKy, R.; TUNIyEV, S. & KAyA, U.(2008). Bufo bufo, In The IUCN Red List ofThreatened Species, v. 2010.4. InternationalUnion for Nature Conservation and NaturalResources, Gland, Switzerland. Available athttp://www.iucnredlist.org. Retrieved on11/11/2010.

ALFORD, R.A.; BRADFIELD, K.S. &RICHARDS, S.J. (2007). Global warmingand amphibian losses. Nature 447: E3-E4.

ALTES, J. & SIBOULET, R. (1977). Une popu-lation saharienne du crapaud deMaurétanie (Bufo mauritanicus Schlegel,1841). Essai de distinction ostéométrique.Archives de Zoologie Expérimentale etGénérale 118: 423-440.

ANGEL, F. & LHOTE, M.H. (1938). Reptileset amphibiens du Sahara Central et duSoudan recueillis par M.H. Lhote.Bulletin du Comité d’Études Historiques etScientifiques de l’AOF 21: 345-384.

ARANO, B.; LLORENTE, G.A.; MONTORI, A.;BUCKLEy, D. & HERRERO, P. (1998).Diversification in north-west Africanwater frogs: molecular and morphologicalevidence. Herpetological Journal 8: 57-64.

ASKRI, H.; BELMECHERI, A.; BENRABAH, B.;BOUDJEMA, A.; BOUMENDJEL, K.;DAOUDI, M.; DRID, M.; GHALEM, T.;DOCCA, A.M.; GHRANDRICHE, H.;

GHOMARI, A.; GUELLATI, N.; KHENNOUS,M.; LOUINICI, R.; NAILI, H.; TAKHERIT,D. & TERKMANI, M. (1995). Géologie del’Algérie / Geology of Algeria. SchlumbergerWEC Sonatrach, Alger, Algeria.

ASTUDILLO, G. & ARANO, B. (1995). Europay su herpetofauna: responsabilidades decada país en lo referente a su conser-vación. Boletín de la AsociaciónHerpetológica Española 6: 14-45.

AUMASSIP, G. (2004). Préhistoire du Saharaet ses Abords. Maisonneuve and Larose,Paris, France.

AUMASSIP, G. & FERHAT, N. (2002). LeQuaternaire dans le Sahara Algérien.Mémoires du Service Géologique de l’Algérie11: 195-206.

BAHA EL DIN, S. (2006). Guide to the Reptilesand Amphibians of Egypt. AmericanUniversity in Cairo Press, Cairo, Egypt.

BALOzET L. (1957). La Vipère Lébétine etson venin. Archives de l’Institut Pasteurd’Algérie 35: 220-295.

BARBADILLO, L.J.; GARCíA-PARíS, M. &SANCHIz, B. (1997). Orígenes y rela-ciones evolutivas de la herpetofauna ibéri-ca, In J.M. Pleguezuelos (ed.) Distribucióny Biogeografía de los Anfibios y Reptiles deEspaña y Portugal. Series: Monografías deHerpetología, vol. 3. Universidad deGranada - Asociación HerpetológicaEspañola, Granada, Spain, pp. 47-99.

BERGER, L.; LONGCORE, J.E.; SPEARE, R.;HyATT, A. & SKERRATT, L.F. (2009).Fungal diseases of amphibians, In H.Heatwole & J.W. Wilkinson (eds.)Amphibian Decline: Diseases, Parasites,Maladies and Pollution. Series: AmphibianBiology, vol. 8 (H. Heatwole, ed.). SurreyBeatty Pty. Ltd., Baulkham Hills,Australia, pp. 2986-3052.

MATEO ET AL.76

BEUKEMA, W.; DE POUS, P.; DONAIRE-BARROSO, D.; BOGAERTS, S.; GARCIA-PORTA, J.; ESCORIzA, D.; ARRIBAS, O.J.; EL

MOUDEN, E.H. & CARRANzA, S.(2013). Review of the systematics, distribu-tion, biogeography and natural history ofMoroccan amphibians. Zootaxa 3661: 1-60.

BOBROV, V.V. (2000). The limit betweenPalearctic and Afrotropical faunistic king-doms (according to distribution oflizards). Biology Bulletin 27: 191-204.

BOCQUET, G.; WIDLER, B. & KIEFER, H.(1978). The Messinian Model – A newoutlook for the floristics and systematicsof the Mediterranean area. Candollea 33:269-286.

BOGAERTS, S. & DONAIRE-BARROSO, D.(2003). Information on polymorphismin Salamandra algira Bedriaga, 1883.Boletín de la Asociación HerpetológicaEspañola 14: 47-51.

BONS, J. (1967). Recherches sur la Biogéographieet la Biologie des Amphibiens et des Reptiles duMaroc. Ph.D. Dissertation, University ofMontpellier, Montpellier, France.

BONS, J. (1973). Herpétologie Marocaine II:Origines, évolution et particularités dupeuplement herpétologique du Maroc.Bulletin de la Société des Sciences Naturelleset Physiques du Maroc 53: 63-110.

BONS, J. & GENIEz, P. (1996). Amphibiens etReptiles du Maroc (Sahara OccidentalCompris). Atlas Biogéographique / Anfibios yReptiles de Marruecos (Incluido SáharaOccidental). Atlas Biogeográfico. AsociaciónHerpetológica Española, Barcelona, Spain.

BORKIN, L.J. (1999). Distribution of amphib-ians in north Africa, Europe, western Asiaand the former Soviet Union, In W.E.Duellman (ed.) Patterns of Distribution of

Amphibians: a Global Perspective. The JohnsHopkins University Press, Baltimore,Maryland, USA, pp. 329-420.

BOSCH, J.; GARCíA-ALONSO, D.; FERNÁNDEz-BEASKOETXEA, S.; FISHER, M.C. &GARNER, T.W. (2013). Evidence for theintroduction of lethal chytridiomycosisaffecting wild betic midwife toads (Alytesdickhilleni). Ecohealth 10: 82-89.

BOULENGER, G.A. (1891). Catalogue of thereptiles and batrachians of Barbary(Morocco, Algeria, Tunisia), based chieflyupon the notes and collections made in1880-1884 by Fernand Lataste.Transactions of the Zoological Society ofLondon 13: 93-164.

BOUMEzBEUR, A. (2001). Information Sheet onRamsar Wetlands. Iherir Valley. RépubliqueAlgerienne Démocratique et Populaire,Ministere de l’Agriculture et duDeveloppement Rural, Direction Généralesdes Forêts, Alger, Algeria. Available athttp://sites.wetlands.org/reports/ris/1Dz009en.pdf. Retrieved on 12/27/2008.

BOUMEzBEUR, A. (2003). Lac Fetzara, Wilayad’Annaba. République AlgerienneDémocratique et Populaire, Ministere del’Agriculture et du Developpement Rural,Direction Générales des Forêts, Alger,Algeria. Available at http://sites.wetlands.org/reports/ris/1Dz020fr.pdf. Retrievedon 12/26/2008.

BOUMEzBEUR, A. & NAzIHA, A. (2002). RéserveNaturelle du Lac de Béni Bélaïd, Wilaya deJijel. République Algerienne Démocratiqueet Populaire, Ministere de l’Agriculture et duDeveloppement Rural, Direction Généralesdes Forêts, Alger, Algeria. Available athttp://sites.wetlands.org/reports/ris/1Dz024fr.pdf. Retrieved on 12/26/2008.

77CONSERVATION OF ALGERIAN AMPHIBIANS

BOUMEzBEUR, A. & NAzIHA, A. (2003). LaRéserve Naturelle du Lac des Oiseaux,Wilaya d’El Tarf. République AlgerienneDémocratique et Populaire, Ministere del’Agriculture et du Developpement Rural,Direction Générales des Forêts, Alger,Algeria. Available at http://sites.wetlands.org/reports/ris/1Dz003fr.pdf. Retrievedon 12/26/2008.

BRUNET, P.; SANUy, D.; OROMí, N.; AIT

HAMMOU, M. & DAHMANI, W. (2009).Anuran studies from Tiaret region, north-west of Algeria. Boletín de la AsociaciónHerpetológica Española 20: 68-72.

BUSACK, S.D. (1986). Biogeographic analysisof the herpetofauna separated by the for-mation of the Strait of Gibraltar. NationalGeographic Research 2: 17-36.

BUSACK, S.D. & LAWSON, R. (2008).Morphological, mitochondrial DNA andallozyme evolution in representativeamphibians and reptiles inhabiting eachside of the Strait of Gibraltar. BiologicalJournal of the Linnean Society 94: 445-461.

BUTCHART, S.H.M.; AKCAKAyA, H.R.;KENNEDy, E. & HILTON-TAyLOR, C.(2006). Biodiversity indicators based ontrends in conservation status: strengths ofthe IUCN Red List Index. ConservationBiology 20: 579-581.

CARRANzA, S. & ARNOLD, E.N. (2004).History of West Mediterranean newts,Pleurodeles (Amphibia: Salamandridae),inferred from old and recent DNAsequences. Systematics and Biodiversity 1:327-337.

CARRANzA, S. & WADE, E. (2004). Taxonomicrevision of Algero-Tunisian Pleurodeles(Caudata: Salamandridae) using molecularand morphological data. Revalidation of

the taxon Pleurodeles nebulosus (Guichenot,1850). Zootaxa 488: 1-24.

CEI, J.M. (1973). Geographical barriers andserological relationships in some Africantoads of the Bufo regularis complex. Arquivosdo Museu Bocage (2ª Série) 4: 233-245.

COX, N.; CHANSON, J. & STUART, S. (2006).The Status and Distribution of Reptiles andAmphibians of the Mediterranean Basin.International Union for NatureConservation and Natural Resources,Gland, Switzerland.

DAGET, P. (1977). Le bioclimat méditerranéen:analyse des formes climatiques par le sys-tème d'Emberger. Vegetatio 34: 87-104.

DAMNATI, B. (2000). Holocene lake records inthe northern hemisphere of Africa. Journalof African Earth Sciences 31: 253-262.

DODD, C.K., JR.; LOMAN, J.; COGăLNICEANU,D. & PUKy, M. (2012). Monitoringamphibian populations, In H. Heatwoleand J.W. Wilkinson (eds.) Conservation andDecline of Amphibians: Ecological Aspects,Effect of Humans, and Management. Series:Amphibian Biology, vol. 10 (H. Heatwole,ed.). Surrey Beatty Pty. Ltd., BaulkhamHills, Australia, pp. 3577-3635.

DONAIRE, D. & BOGAERTS, S. (2003). Datossobre taxonomía, ecología y biología deAlytes maurus (Pasteur and Bons, 1962)(Anura; Discoglossidae). Botlletí de laSocietat Catalana d’Herpetología 16: 26-41.

DONAIRE-BARROSO, D.; MARTíNEz-SOLANO, I.;SALVADOR, A.; GARCíA-PARíS, M.; RECUERO,E.; SLIMANI, T.; EL MOUDEN, H.; GENIEz,P.; JOGER, U. & BAHA EL DIN, S. (2008).Pelophylax saharicus, In The IUCN Red List ofThreatened Species, v. 2010.4. InternationalUnion for Nature Conservation and NaturalResources, Gland, Switzerland. Available at

MATEO ET AL.78

http://www.iucnredlist.org. Retrieved on11/11/2010.

DOUMERGUE, F. (1901). Essai sur la FauneErpétologique de L'Oranie. Fouque éd.,Orán, Algeria.

DRAKE, N.A. & BRISTOW, C. (2006).Shorelines in the Sahara: geomorphologi-cal evidence for an enhanced monsoonfrom palaeolake Megachad. The Holocene16: 901-911.

DUBIEF, J. (1968). Essai sur la déterminationdes limites climatiques du Sahara et essaisur les subdivisions climatiques du Sahara.International Biological Programme 9: 1-17.

DUBIEF, J. (2001). Données Météorologiquesdu Nord de l’Afrique à l’Équateur. éditionsKarthala, Paris, France.

DUPUy, A.R. (1966). Espèces menacées duterritoire Algérien. Travaux de l’Institut deRecherches Sahariennes 25: 29-36.

EL MOUDEN, E.H.; SLIMANI, T.; DONAIRE, D.;FERNÁNDEz-BEASKOETXEA, S.; FISHER,M.C.& BOSCH, J. (2011). First record ofthe chitrid fungus Batrachochytrium dendro-batidis in North Africa. HerpetologicalReview 42: 71.

EMBERGER, L.; GAUSSEN, H.; KASSAS, M. &DE PHILIPPIS, P. (1962). Bioclimatic Mapof the Mediterranean Region. UNESCO-FAO, Paris, France.

ESCORIzA, D.; COMAS, M.M.; DONAIRE, D.& CARRANzA, S. (2006). Rediscovery ofSalamandra algira Bedriaga, 1833 fromthe Beni Snassen massif (Morocco) andphylogenetic relationships of NorthAfrican Salamandra. Amphibia-Reptilia27: 448-455.

FAURE, H. (1985). Aspects généraux du tertiaireet du quaternaire, In R. Black (ed.) EvolutionGéologique de l’Afrique. Series: Publications

Occasionnelles du Centre International pourla Formation et les Echanges en Géosciences,vol. 1985/4. Centre International pour laFormation et les Echanges en Géosciences,Paris, France, pp 293-305.

FERHAT, N. (2006). Le Quaternaire de la val-lée de la Saoura. Mémoires du ServiceGéologique de l’Algérie 13: 145-154.

FRANCH, M.; LLORENTE, G.A.; MONTORI, A.;RICHTER-BOIX, À. & CARRANzA, S.(2007). Discovery of an introduced popula-tion of Discoglossus pictus beyond its knowndistributional range. Herpetological Review38: 356-359.

FROMHAGE, L.; VENCES, M. & VEITH, M. (2004).Testing alternative vicariance scenarios inWestern Mediterranean discoglossid frogs.Molecular Phylogenetics and Evolution 31:308-322.

FROST, D.R.; GRANT, T.; FAIVOVICH, J.;BAIN, R.H.; HAAS, A.; HADDAD, C.F.B.;DE SA, R.O.; CHANNING, A.; WILKINSON,M.; DONNELLAN, S.C.; RAXWORTHy, C.;CAMPBELL, J.A.; BLOTTO, B.L.; MOLER,P.; DREWES, R.C.; NUSSBAUM, R.A.;LyNCH, J.D.; GREEN, D.M. & WHEELER,W.C. (2006). The amphibian tree of life.Bulletin of the American Museum ofNatural History 297: 1-370.

GAERDENFORS, U.; HILTON -TAyLOR, C.; MACE,G.M. & RODRíGUEz, J.P. (2001). The appli-cation of IUCN Red List criteria at regionallevels. Conservation Biology 15: 1206-1212.

GARCIA-PORTA, J.; LITVINCHUK, S.N.;CROCHET, P.A.; ROMANO, A.; GENIEz, P.;LO-VALVO, M.; LyMBERAKIS, P. &CARRANzA, S. (2012). Molecular phylo-genetics and historical biogeography ofthe west-palearctic common toads (Bufobufo species complex). Molecular

79CONSERVATION OF ALGERIAN AMPHIBIANS

Phylogenetics and Evolution 63: 113-130.GAUTHIER, R. (1967). La faune herpé-

tologique du Sahara N.O. algérien.Bulletin du Muséum National d’HistoireNaturelle 5: 819-828.

GENIEz, P.; MATEO, J.A.; GENIEz, M. &PETHER, J. (2004). The Amphibians andReptiles of the Western Sahara. An Atlas andField Guide. Edition Chimaira, Frankfurtam Main, Germany.

GRIFFITHS, J.F. (1972). The Mediterraneanzone, In J.F. Griffiths (ed.) Climate ofAfrica. Series: World Survey ofClimatology, vol. 10. Elsevier, Amsterdam,The Netherlands, pp. 37-74.

GRIFFITHS, J.F. & SOLIMAN, K.H. (1972). Thenorthern desert (Sahara), In J.F. Griffiths(ed.) Climate of Africa. Series: World Surveyof Climatology, vol. 10. Elsevier,Amsterdam, The Netherlands, pp. 75-192.

HEATWOLE, H. & WILKINSON, J.W. (2009).Amphibian Decline: Diseases, Parasites,Maladies and Pollution. Series: AmphibianBiology, vol. 8 (H. Heatwole, ed.). SurreyBeatty Pty. Ltd., Baulkham Hills, Australia.

HEMINGWAy, V.; BRUNNER, J.; SPEARE, R. &BERGER, L. (2009). Viral and bacterial dis-eases of amphibians, In H. Heatwole &J.W. Wilkinson (eds.) Amphibian Decline:Diseases, Parasites, Maladies and Pollution.Series: Amphibian Biology, vol. 8 (H.Heatwole, ed.). Surrey Beatty Pty. Ltd.,Baulkham Hills, Australia, pp. 2963-2985.

HEMMER, H.; KONRAD, A. & BACHMANN, K.(1980). Hybridization within the Ranaridibunda complex of North Africa.Amphibia-Reptilia 1: 41-48.

HERKAT, M. & GUIRAUD, R. (2006). The rela-tionships between tectonics and sedimenta-tion in the Late Cretaceous series of the

eastern Atlasic Domain (Algeria). Journal ofAfrican Earth Sciences 46: 346-370.

HUGHES, R.H. & HUGHES, J.S. (1992). ADirectory of African Wetlands. InternationalUnion for Conservation of Nature, Gland,Switzerland, and Cambridge, UK.

IUCN (2010). The IUCN Red List ofThreatened Species, v. 2010.4. InternationalUnion for Nature Conservation andNatural Resources, Gland, Switzerland.Available at http://www.iucnredlist.org.Retrieved on 11/16/2010.

JOGER, U. (1981). zur HerpetofaunistikWestafrika. Bonner Zoologische Beitrage32: 297-340.

JOGER, U. & STEINFARTz, S. (1995). Proteinelectrophoretic data on taxonomic prob-lems in East Mediterranean Salamandra(Urodela: Salamandridae), In G.A.Llorente, A. Montori, X. Santos & M.A.Carretero (eds.) Scientia Herpetologica.Asociación Herpetológica Española,Barcelona, Spain, pp. 33-36.

KOLAR, K. (1955). Herpetologische ausSüdalgerien. Die Aquarien und Terrarien8: 75-78.

KöPPEN, W. (1936). Das geographischeSystem der Klimate, In W. Köppen & R.Geiger (eds.) Handbuch der Klimatologie.Borntraeger, Berlin, Germany, pp. 1-44.

LAMBERT, M.R.K. (1984). Amphibians andreptiles, In J.L. Cloudsley-Thompson(ed.) Sahara Desert. Pergamon Press,Oxford, United Kingdom, pp. 205-228.

LANzA, B. & BRUzzONE, C.L. (1960).Erpetofauna dell’Arcipelago della Galita(Tunisia). Annali del Museo Civico diStoria Naturale Giacomo Doria 71: 41-56.

LARMUTH, J. (1984). Microclimates, In J.L.Cloudsley-Thompson (ed.) Sahara Desert.

MATEO ET AL.80

Pergamon Press, Oxford, UnitedKingdom, pp. 57-66.

LE BERRE, M. (1989). Faune de Sahara, 1.Poissons-Amphibiens-Reptiles. Lechevalier-R. Chabaud, Paris, France.

LE QUELLEC, J.L. (2006). Rock art and cul-tural responses to climatic changes in theCentral Sahara during the Holocene, InP.C. Reddy (ed.) Exploring the Mind of theAncient Man. Research India Press, NewDelhi, India, pp. 173-188.

LHOTE, H. (1972). Formation d’un lac tem-poraire au nord du Tassili’n’Ajjer etphénomènes consécutifs à unes crue desoueds du bassin de l’Imirhou. Science etNature 114: 25-28.

LLABADOR, F. (1947). Contribution a la faunedes vertébrés de l’Oranie Occidentale.Bulletin de la Société Geographique etArcheologique d’Oran 68: 177-185.

LOUKKAS, A. (2006). Atlas des Parcs NationauxAlgériens. République AlgerienneDémocratique et Populaire, Ministere del’Agriculture et du Developpement Rural,Direction Générale des Forêt et ParcNational de Théniet El Had, Alger, Algeria.Available at http://www.fichier-pdf.fr/2010/12/19/atlas-des-parcs-nationaux/.Retrieved on 07/19/2009.

MALDONADO, A. (1985). Evolution of theMediterranean basins and detailed recon-struction of the Cenozoic paleoceanography,In R. Margalef (ed.) Western Mediterranean.Pergamon Press, Oxford, UnitedKingdom, pp. 17-59.

MARCO, A.; BANCROFT, B.A.; LIzANA, M. &BLAUSTEIN, A.R. (2009). Ultraviolet-Bradiation and amphibians, In H.Heatwole & J.W. Wilkinson (eds.)Amphibian Decline:Diseases, Parasites,

Maladies and Pollution. Series: AmphibianBiology, vol. 8 (H. Heatwole, ed.). SurreyBeatty Pty. Ltd., Baulkham Hills,Australia, pp. 3112-3144.

MARTíNEz-MEDINA, F.J.; RUIz, J.L. &MOHAMED, L. (1997). Una nueva especiepara la herpetofauna de Ceuta (España,Norte de África): Salamandra salamandraalgira. Boletín de la AsociaciónHerpetológica Española 12: 2-5.

MARTíNEz-SOLANO, I.; GONçALVES, H.A.;ARNTzEN, J.W. & GARCíA-PARíS, M.(2004). Phylogenetic relationships andbiogeography of midwife toads(Discoglossidae: Alytes). Journal ofBiogeography 31: 603-618.

MATEO, J.A.; PLEGUEzUELOS, J.M.; FAHD, S.;GENIEz, P. & MARTíNEz MEDINA, F.J.(2003). Los Anfibios, los Reptiles y el Estrechode Gibraltar. Un ensayo sobre laHerpetofauna de Ceuta y su Entorno.Instituto de Estudios Ceutíes, Ceuta, Spain.

MICHARD, A.; CHALOUAN, A.; FEINBERG, H.;GOFFé, B. & MONTIGNy R. (2002). Howdoes the Alpine belt end between Spainand Morocco? Bulletin de la SociétéGéologique de France 173: 3-15.

MIMOUNI, O. & CHIBANE, B. (1989).Predicting nitrate pollution of Mitidja plaingroundwater (Northern Algiers – Algeria).Environmental Software 4: 136-141.

MONOD, T. (1958). Majâbat al Koubrâ.Contribution à l’étude de l’“empty quar-ter” ouest-saharien. Mémoires de l’InstitutFrançais d’Afrique Noire 52: 1-407.

OzENDA, P. (1964). Biogéographie Végétale.Doin, Paris, France.

OzENDA, P. (1991). Flore et Végétation duSahara. Editions du Centre National de laRecherche Scientifique, Paris, France.

81CONSERVATION OF ALGERIAN AMPHIBIANS

PABIJAN, M.; CROTTINI A.; RECKWELL D.;IRISARRI I.; HAUSWALDT J.S. & VENCES M.(2012). A multigene species tree forWestern Mediterranean painted frogs(Discoglossus). Molecular Phylogeneticsand Evolution 64: 690-696.

PALOMO, L.J. & ANTúNEz, A. (1992). Losatlas de distribución de las especies, InJ.M. Vargas, R. Real & A. Antúnez (eds.)Objetivos y Métodos Biogeográficos.Aplicaciones en Herpetología. Series:Monografías de Herpetología, vol. 2.Asociación Herpetológica Española,Madrid, Spain, pp 39-50.

PASTEUR, G. (1958). Sur la systématique desespèces du genre Pleurodeles (Salamandridae).Bulletin de la Société de Sciences Naturelles etPhysiques du Maroc 38: 157-165.

PAULO, O.S.; PINHEIRO, J.; MIRALDO, A.;BRUFORD, M.W.; JORDAN, W.C. & NICHOLS,R.A. (2008). The role of vicariance vs. disper-sal in shaping genetic patterns in ocellatedlizard species in the western Mediterranean.Molecular Ecology 17: 1535-1551.

PETIT MAIRE, N. (1985). El Sáhara, de la estepaal desierto. Mundo Científico 43: 64-74.

PETIT MAIRE, N. (1986). Palaeoclimatology ofthe central and occidental Sahara duringthe last two climatic optima, at paratropicallatitudes, In N. Petit Maire (ed.)Changement Globaux en Afrique. Office dela Recherche Scientifique et Techniqued’Outre-Mer, Paris, France, pp. 371-379.

PLEGUEzUELOS, J.M. (2002). Las especiesintroducidas de Anfibios y Reptiles, In J.M.Pleguezuelos, R. Márquez & M. Lizana(eds.) Atlas y Libro Rojo de los Anfibios yReptiles de España. Ministerio de MedioAmbiente – Asociación HerpetológicaEspañola, Madrid, Spain, pp. 501-532.

PLEGUEzUELOS, J.M.; BRITO, J.C.; FAHD, S.;FERICHE, M.; MATEO, J.A.; MORENO-RUEDA, G.; REQUES, R. & SANTOS, X.(2010). Regional red listing of theamphibians and reptiles of Morocco. Itsutility for setting conservation priorities.Oryx 44: 501-508.

POUL, P.; METALLINAOU, M.; DONAIRE-BARROSO, D.; CARRANzA, S. & SANUy, D.(2013). Integrating mtDNA analyses andecological niche modelling to infer theevolutionary history of Alytes maurus(Amphibia; Alytidae) from Morocco.Herpetological Journal 23: 153-160.

QUEzEL, P. (1978). Analysis of the flora ofMediterranean and Saharan Africa. Annals ofthe Missouri Botanical Garden 65: 479-534.

RECUERO, E.; IRAOLA, A.; RUBIO, X.;MACHORDOM, A. & GARCíA-PARíS, M.(2007). Mitochondrial differentiationand biogeography of Hyla meridionalis(Anura: Hylidae): an unusual phylogeo-graphical pattern. Journal of Biogeography34: 1207-1219.

RöDEL, M.-O. (2000). Herpetofauna of WestAfrica, Vol. 1, Amphibians of the WestAfrican Savanna. Edition Chimaira,Frankfurt am Main, Germany.

RöDEL, M.-O.; LARGEN, M.; BURGER, M.;HOWELL, K.; SALVADOR, A.; LöTTERS, S. &JOGER, U. (2006). Hoplobatrachus occipital-is, In The IUCN Red List of ThreatenedSpecies, v. 2010.4. International Union forNature Conservation and NaturalResources, Gland, Switzerland. Available athttp://www.iucnredlist.org. Retrieved on11/11/2010.

ROUAG, R. (2006). Biologie et écologie desreptiles du Parc National d’El Kala.Mésogée 62: 1-65.

MATEO ET AL.82

ROUAG, R. & BENyACOUB, S. (2006).Inventaire et écologie des reptiles du Parcnational d’El Kala. Bulletin de la SociétéHerpétologique de France 117: 25-40.

RON, S. (2005). Predicting the distribution ofthe amphibian pathogen Batrachochytriumdendrobatidis in the new world. Biotropica37: 209-221.

SALVADOR, A. (1996). Amphibians of north-west Africa. Smithsonian HerpetologicalInformation Service 109: 1-25.

SALVADOR, A. & PERIS, S. (1975).Contribución al estudio de la fauna her-petológica de Río de Oro. Boletín de laEstación Central de Ecología 4: 49-60.

SAMRAOUI, B. & DE BéLAIR, G. (1997). TheGuerbes-Senhadja Wetlands (N. E.Algeria). Part I: an overview. Écologie 28:233-250.

SAMRAOUI, B.; SAMRAOUI, F.; BENSLIMANE, N.;ALFARHAN, A. & AL-RASHEID, K.A.S.(2012). A precipitous decline of the Algeriannewt Pleurodeles poireti Gervais, 1835 andother changes in the status of amphibians ofNumidia, north-eastern Algeria. Revued’Ecologie (Terre Vie) 67: 70-81.

SAN MAURO, D.; VENCES, M.; ALCOBENDAS,M.; zARDOyA, R. & MEyER, A. (2005).Initial diversification of living amphibianspredated the Breakup of Pangaea. TheAmerican Naturalist 165: 590-599.

SCHLEICH, H.H.; KäSTLE, W. & KABISCH, K.(1996). Amphibians and Reptiles of NorthAfrica. Koeltz Scientific Books, Koenigstein,Germany.

SCHULz, E. (1979). zur Flora undVegetation der Randgebiete des Murzuk-Beckens. Willdenowia 9: 239-259.

SCORTECCI, G. (1937). Relazione prelim-inare di un viaggio nel Fezzan sud orien-

tale e sui Tassili. Atti della Società Italianadi Scienze Naturali 76:105-194.

SEURAT, L.G. (1930). Exploration zoologique del’Algérie de 1830 à 1930. Series : Collection duCentenaire de l’Algérie. Masson, Paris, France.

SIBOULET, R. (1968). Le crapaud panthérin.Aquarama 2: 29-30.

SMITH, G. (1984). Climate, In J.L.Cloudsley-Thompson (ed.) Sahara Desert.Pergamon Press, Oxford, UnitedKingdom, pp 17-30.

STöCK, M.; DUBEy, S.; KLÜTSCH, C.;LITVINCHUK, S.N.; SCHEIDT, U. & PERRIN,N. (2008). Mitochondrial and nuclear phy-logeny of circum-Mediterranean tree frogsfrom the Hyla arborea group. MolecularPhylogenetics and Evolution 49: 1019-1024.

STUART, S.N.; CHANSON, J.S.; COX, N.A.;yOUNG, B.E.; RODRIGUES, A.S.L.;FISCHMAN, D.L. & WALLER, R.W.(2004). Status and trends of amphibiandeclines and extinctions worldwide.Science 306: 1783-1786.

STUART, S.N.; HOFFMANN, M.; CHANSON,J.S.; COX, N.A.; BERRIDGE, R.; RAMANI,P. & yOUNG, B.E. (2008). ThreatenedAmphibians of the World. Lynx Editions,Barcelona, Spain.

SURA, P. (1983). Preliminary results of a col-lecting trip to Algeria - Amphibians andReptiles. British Herpetological SocietyBulletin 6: 27-35.

UNEP / WCMC (2008). Tassili N’Ajjer NationalPark, Algeria. United Nations EnvironmentProgramme -World Conservation MonitoringCentre. Available at http://www.eoearth.org/view/article/156422. Retrieved on02/02/2014.

VEITH, M. & MARTENS, H. (1997).Discoglossus pictus Otth, 1837, In J.-P.

83CONSERVATION OF ALGERIAN AMPHIBIANS

Gasc, A. Cabela, J. Crnobrnja-Isailovic, D.Dolman, K. Grossenbacher, P. Haffner, J.Lescure, H. Martens, J.P. Martínez Rica,H. Maurin, M.E. Oliveira, T.S.Sofianidou, M. Veith & A. zuiderwijk(eds.) Atlas of Amphibians and Reptiles inEurope. Societas Europaea Herpetologica -Muséum National d’Histoire Naturelle &Service du Patrimoine Naturel, Paris,France, pp. 104-105.

VEITH, M.; MAyER, C.; SAMRAOUI, B.;DONAIRE BARROSO, D. & BOGAERTS, S.(2004). From Europe to Africa and viceversa: evidence for multiple intercontin-ental dispersal in ribbed salamanders(genus Pleurodeles). Journal ofBiogeography 31: 159-171.

VERNET, R. (1995). Climats Anciens du Nordde l’Afrique. Harmattan, Paris, France.

WHITE, F. (1976). The vegetation map ofAfrica. Boissiera 24: 659-666.

WICKENS, G.E. (1984). Flora, In J.L.Cloudsley-Thompson (ed.) Sahara Desert.Pergamon Press, Oxford, UnitedKingdom, pp. 67-75.

WILLIAMS, M. (1984). Geology, In J.L.Cloudsley-Thompson (ed.) Sahara Desert.Pergamon Press, Oxford, UnitedKingdom, pp 31-39.

WORLD LAW GUIDE (2010). Legislation Algeria.Lexadin, The Netherlands. Available athttp://www.lexadin.nl/wlg/legis/nofr/oeur/lxwealg.htm#Environmental Law. Retrievedon 11/23/2010.

84

Nabil Amor1,2,*, Mohsen Kalboussi3, Khaled Said2

Chapter 27Conservation status of amphibians in Tunisia

1 Center for Functional and Evolutionary Ecology and Biogeography of Vertebrates (EPHE), UMR5175 – CNRS Montpellier, France.2 Unité de Recherche: Génétique, Biodiversité et Valorisation des Bioresources, Institut Supérieur de Biotechnologie de Monastir,Monastir, Tunisia.

3 Institut Sylvo-Pastoral, Tabarka, Tunisia.Authors are listed in alphabetical order.

* Correspondence: Unité de Recherche: Génétique, Biodiversité et Valorisation des Bioresources, UR/09-30, Institut Supérieur deBiotechnologie de Monastir, Monastir 5000, Tunisia. Phone: +216 99904622, Fax: +216 71573526. Email: [email protected]

Received: 10 January 2013; received in revised form: 17 September 2013; accepted: 18 September 2013.

Basic and Applied Herpetology 27 (2013): 85-100

The North African amphibian fauna was once regarded as limited in diversity, but increased field and laboratory researchin the region has subsequently revealed considerable endemism and data such as these are necessary for making objec-tive and justifiable recommendations for conservation. Our research, coupled with findings from the literature, allowan up-to-date analysis of distribution, status of populations, and actual and potential threats to the continued survivalof all species within Tunisia. The Tunisian batrachofauna currently consists of seven species grouped in seven genera:Pleurodeles, Bufotes, Discoglossus, Bufo, Amietophrynus, Pelophylax, and Hyla. Whereas other species are characterized bywider distributions from north to south, Bufo spinosus appears restricted to the mountainous northwestern corner wheremajor protected areas occur. Pleurodeles nebulosus and Hyla meridionalis appear restricted to humid, subhumid, andsemi-arid localities in northern Tunisia, in the Khroumirie region, but also within the Mogod region, around Tunis andthe Cap Bon Peninsula. Northern localities represent the most humid and temperate portion of the country and sup-port the highest habitat and species diversity. Despite an increasing number of man-made habitats (irrigation canals),southern localities continue to suffer from lack of suitable habitat due to natural and human causes. There are no man-made ponds dedicated to protect amphibian species in Tunisia. Our observations confirmed that Tunisia is affected byamphibian population decline, due especially to loss and fragmentation of habitat. Principal threats to amphibian sur-vival (uncontrolled urban extension, alteration and destruction of habitat, pollution, road kills, and introduction of sev-eral predator species) vary slightly from north to south. Implementation of stricter policies coupled with increased pub-lic education and awareness is recommended in order to preserve Tunisia’s amphibian fauna.

Key words: amphibians; conservation status; Tunisia.

Estado de conservación de los anfibios en Túnez. Tradicionalmente se consideraba a la fauna de anfibios del norte deÁfrica poco diversa, pero el aumento de los estudios de campo y laboratorio en esta región ha revelado un grado con-siderable de endemicidad, haciéndose necesarios más datos para elaborar recomendaciones para la conservación quesean objetivas y justificables. Nuestro trabajo, junto a otros hallazgos recopilados de la literatura, permite un análisisdetallado de la distribución, estado de las poblaciones y amenazas reales y potenciales para la supervivencia de todas lasespecies de Túnez. La batracofauna tunecina consiste actualmente en siete especies en otros tantos géneros: Pleurodeles,Bufotes, Discoglossus, Bufo, Amietophrynus, Pelophylax e Hyla. Mientras que algunas especies se encuentran ampliamentedistribuidas de norte a sur, Bufo spinosus se restringe a la región montañosa noroccidental donde se encuentran las prin-cipales áreas protegidas. Pleurodeles nebulosus e Hyla meridionalis se limitan a las localidades húmedas, subhúmedas ysemiáridas del norte, en la región de Khroumirie, además de a la región de Mogod, el entorno de la capital y la penín-sula del cabo de Bon. Las localidades septentrionales constituyen la parte más húmeda y templada del país, albergan-do la mayor diversidad de hábitats y de especies. En las localidades meridionales, pese al incremento en el número dehábitats artificiales (canales de irrigación), existe una falta de hábitats apropiados como consecuencia de factores tanto

This chapter should be cited as: Amor, N., Kalboussi, M. & Said, K. (2013). Conservation status of amphibians in Tunisia. Chapter 27 in Part 2.Mauritania, Morocco, Algeria, Tunisia, Libya and Egypt in Vol. 11. Conservation and Decline of Amphibians: Eastern Hemisphere of the series AmphibianBiology. Basic and Applied Herpetology 27: 85-100. DOI: http://dx.doi.org/10.11160/bah.13006/

AMOR ET AL.86

Tunisia is the smallest north-Africancountry, with an area of 164 000 km2. Whilesome forest occurs in the centre of the coun-try, broadly-forested areas are limited to thenorth; almost one-third of Tunisia’s surfacearea is covered by the Sahara Desert, and amajor portion of the rest of the country isdominated by an arid climate characterizedby annual and seasonal variation in rainfall(PEEL et al., 2007). The major ecological fac-tor limiting amphibian survival in the coun-try is scarcity of water (AMOR et al., 2010a,b).

Prior studies of the distribution of amphib-ians in Tunisia (POIRET, 1789; GERVAIS, 1835,1853; LATASTE, 1881; BOULENGER, 1882,1891; OLIVIER, 1894, 1896; DOUMERGUE,1901; DE CHAIGNON, 1904; WOLTERSTORFF,1901; MAyET, 1903; PELLEGRIN, 1927;GAUTHIER, 1928; MERTENS, 1929; MOSAUER,1934; BLANC, 1935; GALLIEN, 1948; PASTEUR,1958; DOMERGUE, 1959; SCHNEIDER, 1974,1978; HEMMER et al., 1980; BLANC &NOUIRA, 1988; STEINWARz & SCHNEIDER,1991; SCHLEICH et al., 1996; MEDDEB &CHENITI, 1998; NOUIRA & LESCURE, 1998;NOUIRA, 2001; ROMDHANE & MISSAOUI,2001; JOGER, 2003; AzOUzI & TEKAyA, 2004,2007; BEN HASSINE, 2007, 2011; MEDDEB etal., 2007) understandably were limited in geo-graphical coverage and utilized the morpholog-ically-based taxonomy in use at the time.Updated contributions by AMOR et al. (2007,

2009, 2010a,b,c,d,e, 2011), SICILIA et al.(2009), BEN HASSINE & NOUIRA (2012a,b),BEN HASSINE et al. (2013), and BOGAERTS et al.(2013a,b) contribute toward a more completeunderstanding of the distribution and ecologyof Tunisian amphibians.

FAUNAL COMPOSITION AND

GENERAL DISTRIBUTION

Pleurodeles nebulosus (Guichenot, 1850),the Algerian ribbed newt, is the only salaman-der represented in Tunisia (CARRANzA &WADE, 2004; VEITH et al., 2004; SICILIA et al.,2009; BEN HASSINE & NOUIRA, 2012a,b; BEN

HASSINE et al., 2013). It has been recordedfrom north-central Algeria to the Cap BonPeninsula (SMITH et al., 1998; PASMANS et al.,2002; SICILIA et al., 2009; BEN HASSINE &NOUIRA, 2012b; BEN HASSINE et al., 2013) butcurrently this Algero-Tunisian endemic appearsrestricted to the humid, subhumid, and semi-arid localities in northern Tunisia: in theKhroumirie region, and at the Mogod region,around Tunis and the Cap Bon Peninsula (BEN

HASSINE, 2012a; BEN HASSINE et al., 2013). Inthese places it is locally abundant in humidenvironments close to rivers (Ordha, southwestof Tabarka; the route between Aïn Sobh andthe aeroport; near oued El Kebir, Tabarka),small watercourses, and stagnant bodies ofwater (in the vicinity of Tabarka; Barbra Dam

naturales como artificiales. No existen en todo Túnez charcas artificiales destinadas a la protección de anfibios. Nuestrasobservaciones confirman que Túnez no es ajeno al declive de las poblaciones de anfibios, debido fundamentalmente ala pérdida y fragmentación del hábitat. Las principales amenazas para la supervivencia de los anfibios (expansión incon-trolada de los núcleos urbanos, alteración y destrucción del hábitat, contaminación, atropellos e introducción de difer-entes especies depredadoras) varían ligeramente de norte a sur. Recomendamos implementar políticas más estrictas,junto al incremento de la educación y concienciación social, para preservar la fauna de anfibios de Túnez.

Key words: anfibios; estado de conservación; Túnez.

AMPHIBIAN STATUS IN TUNISIA 87

near the village of Hammam Bourguiba).Individuals tend to congregate in groups ofmore than ten under the same shelter, probablyin response to the lack of suitable shelters, butalso they are often found solitary or in smallgroups. Aestivation during hot and dry periodsof the year is accomplished by digging deeplyinto soil among plant roots. The species’ south-ern limit of distribution in Tunisia seems to bethe Cap Bon Peninsula.

Hyla meridionalis Böttger, 1874, theMediterranean treefrog, is the country’s onlyarboreal species of amphibian. Recent phylo-geographic studies have shown that TunisianH. meridionalis are highly divergent fromIberian and neighbouring populations, sug-gesting that the Tunisian populations couldrepresent a new species (RECUERO et al., 2007;STöCK et al., 2008a), although the interpreta-tion of this divergence could be exaggerateddue to absence of samples from Algeria. TheMediterranean treefrog is limited to northernTunisia, from the Algerian border (El FeijaNational Park) to Bizerte, south and north ofMedjerda (BEN HASSINE & NOUIRA, 2012b),where it has a disjunct distribution and sur-vives mainly around sources of water support-ing woody vegetation; when not breeding ormoving toward a suitable breeding pond, itusually is found perched on a tree or a bush.The species may be locally abundant in theKhroumirie and Mogod regions during itsbreeding season, generally from the beginningof February to the end of March (SICILIA etal., 2009; BEN HASSINE & NOUIRA, 2012a).In Tunisia, the species has not been found oncoastal dunes (e.g. Bizerte), as is sometimesthe case in southern Spain or northernMorocco (BUSACK, 1986), and its reportedoccurrence near the city of Tunis and Bardo’s

gardens (MAyET, 1903) has not been con-firmed (SICILIA et al., 2009; BEN HASSINE &NOUIRA, 2012b) .

Discoglossus pictus Otth, 1837, the paintedfrog, is widely distributed in Tunisia, but itsgeographic distribution is discontinuous. Alleastern Maghrebian populations were for-merly known as D. p. auritus, but the taxo-nomic validity of D. p. auritus for these pop-ulations, and D. p. pictus for Mediterraneanisland populations (Sicily, Malta, and Gozo)does not appear supported by recent geneticand karyological analyses (FROMHAGE et al.,2004; zANGARI et al., 2006; AMOR et al.,2007, 2010c,d,e). The painted frog inhabits awide range of biotopes from montane foreststo coastal areas. In northwestern Tunisia itmay be found somewhat distant from anywater (AMOR et al., 2010c,d). In southern-most localities D. pictus is confined to areassuch as the oases of Gafsa, Chott El Djerid,Kebili, Chinini, and the Oued el Ferd andKettana both in Gabès (BUSACK, 2006; BEN

HASSINE & NOUIRA, 2009, 2012b; SICILIA etal., 2009; AMOR et al., 2010c,d). Higher den-sities may be found around the multipledams in the country, especially during breed-ing seasons. BEN HASSINE & NOUIRA

(2012b) considered the painted frog to beabsent from all Sahel regions; however, wehave recorded the presence of individualsfrom Gabès to Nabeul (AMOR et al.,2010c,d). Surveys within suitable habitatsduring the breeding season are necessary forverification of this species’ presence.

Pelophylax saharicus (Boulenger, 1913),the North African green frog, is the mostabundant species in Tunisia (AMOR et al.,2007, 2009, 2010a,b). It inhabits oases,ponds (natural and artificial), and irrigation

AMOR ET AL.88

ditches throughout the country (includingnorthern portions of the Sahara Desert), andpopulation density is often very high (AMOR

et al., 2009, 2010a,b). The taxonomy of thisspecies has changed in the recent past(STEINWARz & SCHNEIDER, 1991; NOUIRA,2001) from its former names Rana perezi(Seoane 1885) and R. ridibunda (Pallas1771). BUCKLEy et al. (1994, 1996) andARANO et al. (1998) distinguished betweenIberian green frogs (Pelophylax perezi) andWest African green frogs (P. saharicus), andwithin the latter identified two distinct cladesseparated by the river Moulaya: P. saharicussaharicus in Algeria and P. s. riodeoroi inMorocco. A recent morphological studydescribed significant differentiation amongTunisian populations of P. saharicus (AMOR etal., 2009). However, using mitochondrialmarkers, AMOR et al. (2010a,b) revealed lowgenetic variation and the absence of structurewithin the species in Tunisia.

Bufo spinosus Daudin, 1803, the commontoad, is confined to mountainous regions ofnorthwestern Tunisia. A recent phylogeo-graphic study, covering the entire distribu-tion of the species complex, suggested theuse of B. bufo ssp. for the African populationand that this population might include twodifferent subspecies, one in the WesternMaghreb and another in the EasternMaghreb (GARCIA-PORTA et al., 2012).However, further studies have discovered thatpopulations from northern Africa, as wellas those from the Iberian Peninsula andsouthern France constitute a different species,B. spinosus (RECUERO et al. 2012; ARNTzEN

et al., 2013). Bufo spinosus inhabits forestedareas between Tabarka and Ouchtata and cansometimes be found near cities (Jendouba)

and archaeological sites in Bulla Regia, bothof which may constitute local refuges formany amphibian and reptilian species, but itgenerally avoids proximity to humans.SICILIA et al. (2009) and BOGAERTS et al.(2013a) reported this species near AïnDraham in an oak forest near the reservoir ofBeni M’tir; BEN HASSINE & NOUIRA

(2012a,b) also mention Beni Mtir,Ghardimou, and El Feija. Population densi-ties were very low. In addition to localitiesspecified by previous authors, we add mar-itime pine forests west of Melloula, mixedoak (zeen and cork oak) forests east ofTabarka, and oak forests south of Nefza(Bellif forests).

Amietophrynus mauritanicus (Schlegel,1841), the Mauritanian toad, is an endemicspecies of the Maghreb. During our field-work we observed this species to be present inlow densities throughout Tunisia where itinhabits rocky areas, meadows, bushes, culti-vated fields, and some urban environments(Gafsa). In the south it is confined to theoases of Gafsa, Chott El Djerid, Tozeur,Kebili, and Ben Gardane (BOULENGER, 1891;JOGER, 2003; AMOR et al., 2007; SICILIA etal., 2009).

Bufotes boulengeri (Lataste, 1879),Boulenger’s toad, has recently become betterunderstood in a phylogenetic context.Previously considered a member of thePalearctic green toad complex as Bufo viridis,recently it has been reassigned independentspecies status based on mitochondrial DNAdata (see STöCK et al., 2006, 2008b andBEUKEMA et al., 2013 for details). It is wide-ly distributed throughout Tunisia and inhab-its forest, meadow, and steppe environments(AMOR et al., 2011). Resistant both to

AMPHIBIAN STATUS IN TUNISIA 89

drought and saline conditions, it prefersopen terrain near water courses but in aridareas it lives close to irrigation ditches,springs, and oases (AMOR et al., 2011).According to SICILIA et al. (2009), the south-ernmost breeding site is a temporary streamin the rocky desert (Hamada) nearTataouine. The species seems to be quitecommon on the Tunisian islands ofKerkennah and Djerba (STöCK et al., 2006;BEN HASSINE & NOUIRA, 2012b). Recentmorphometric study of Tunisian Boulenger’stoad reported clinal variation in body sizeand weight that might result from phenotyp-ic plasticity correlated with local environ-mental factors (AMOR et al., 2011).

The North African Fire Salamander,Salamandra algira (Bedriaga, 1883), occurs inisolated populations throughout the northernmountain ranges of north-western Africa(SCHLEICH et al., 1996). BLANC (1935) men-tioned that S. algira might occur in Tunisia,as its type locality is found nearby in Algeria.Despite the fact that BLANC (1935) encour-aged searches for S. algira in the Khroumirieregion, no subsequent records were provided.Recently, after field trips conducted in north-eastern Tunisia, BOGAERTS et al. (2013b)found no indications for the presence of S.algira in Tunisia. Additionally, phenotypicand morphological examinations of“Tunisian” S. algira museum specimens orig-inating from the zoologischesForschungsmuseum Alexander Koenig(zFMK), Germany, were carried out. ThezFMK specimens of S. algira turned out tobe most likely middle or eastern EuropeanSalamandra salamandra. These results do notsupport earlier statements on the presence ofthe species in Tunisia.

HABITAT DIVERSITy AND

CURRENT STATUS

Northern localities

Habitat diversity is highest between theMedjerda Mountains in the west and CapBon Peninsula in the east. NorthwesternTunisia (Khroumirie and Mogod regions) hasthe highest rainfall (650-1500 mm / year)(OMRANI & OUESSAR, 2008) and is the mosthumid and temperate portion of the country,dominated by forests of natural cork (Quercussuber) and zeen (Quercus canariensis) (LE

FLOC’H et al., 2010). The northwest, withtwo national parks and four natural reserves,provides appropriate habitats for populationsof all Tunisian amphibian species. Bestknown are the national parks, from which sixspecies are reported (KAREM, 2003; SICILIA etal., 2009; BEN HASSINE & NOUIRA, 2012a,b;BEN HASSINE et al., 2013) but species com-monly found in other parts of North Africa,such as B. spinosus and H. meridionalis, havenot been found in either northern park or inthe south of Tunisia.

Northern Tunisia is continuing to experi-ence increasing rural populations with highhuman densities of 173-256 inhabitants /km2) (COELHO et al., 1999; GAFSI et al.,2008). Intense human activity and popula-tion growth over the past century have led todeforestation for agriculture and industry,overgrazing, forest fires, and pollution, result-ing in significant loss of amphibian habitat(BOUSSAïD et al., 1999). The plain of Tunissuffers fragmentation of habitat resultingfrom urbanization, industrial pollution, andwaste management. Many artificial lakes anddams have been created in the west in the

AMOR ET AL.90

past twenty years; while the water is used pri-marily for agriculture and some artificial wet-lands may dry in summer, these artificial sitesprovide refuges and breeding areas foramphibians in a country where water is animportant variable influencing amphibiansurvival. Natural habitats, however, often aredamaged during construction because ofalteration of the courses of rivers and streams.Introduction of several species of fish (Mugilcephalus, Liza ramada, Rutilus rubilio,Scardinius erythrophtalmus, Gambusia affinis)into new dams may also lead to predation,mostly on eggs and larvae (GHRAB &BOUATTOUR, 1999; AMOR et al., 2009; BEN

HASSINE & NOUIRA, 2012a). The impact ofthese lakes on local amphibian populations isyet to be studied.

Severe drought in 1987-1988 and 1988-1989 exacerbated habitat degradation in thewetlands on Cap Bon Peninsula (SMART &HOLLIS, 1989). At one site, Azmour, we foundseveral P. saharicus specimens displaying mor-phological abnormalities (missing digits),probably stemming from intensive agricultur-al activity. In the same region, BEN HASSINE etal. (2011) reported high rates of malformationin populations of P. saharicus and D. pictusinhabiting an artificial dam (“lebna”).

Central localities

Habitat destruction in this region is alsoincreasing as a result of urban and industrialdevelopment. We observed high mortality ofamphibians and reptiles on roadwaysthroughout all visited localities; concentra-tion of the textile industry in the Sahel region(Moknine, Monastir, Ksarhlel, and Sousse)has likely contributed to declines in species

abundance that we noted during field trips(2004-2013). In fact, disposal of largeamounts of industrial waste at breeding sitescaused massive pollution (CAR / PAP, 2005).

Southern localities

The scarcity of suitable habitat foramphibians in southern Tunisia (AMOR et al.,2009, 2010a,b,c, 2011) is due both to natu-ral and human causes: an increase in temper-ature, a decrease in annual rainfall (ALOUI,2010) and, thus, an increase in the intensityof drought on the one hand, and the expan-sion of human activity on the other. Elevatedtemperatures can lead to early desiccation ofbreeding ponds and subsequent mortality ofeggs and tadpoles and may also result in mor-tality of adults due to the increased rate ofwater loss associated with dry conditions(BLAUSTEIN et al., 2010). However, in south-ern agricultural regions where natural wet-lands are scarce, irrigation channels may rep-resent important breeding habitats foramphibians. In fact, we observed that allamphibian species were breeding in theseman-made habitats.

Habitat fragmentation in extensive areasis also a significant negative factor influenc-ing amphibian survival (BLAUSTEIN et al.,1994; FISHER & SHAFFER, 1996; GILLESPIE

& HOLLIS, 1996; HECNAR & M’CLOSKEy,1996). Plantations established on weakenedsoils in Gafsa are fragmenting the land andmany natural water sources have run drybecause of agricultural activities. An impor-tant problem facing amphibians in this area,however, is pollution of remaining freshwa-ter and terrestrial habitats by mineral min-ing and wastewater (commonly known as

AMPHIBIAN STATUS IN TUNISIA 91

“margine”) from olive mills. Tailings fromphosphate mining have polluted the Bay ofGafsa (Gafsa, Mitlaoui, Moularayes,Redaief, and Lala), thereby threateningcoastal and fishing waters (Gabès and Sfax)and underground aquifers. The average vol-ume of “margine” produced annually, atSfax, during extraction of olive oil is esti-mated at 700 000 m3 (0.7 m3 / ton of fresholives). Although its effects on the environ-ment through pollution, corrosion, andblocking of sewage pipes have not beenthoroughly documented, we have observed

large quantities of “margine” and otherkinds of waste being released into naturalhabitats (Fig. 1). Other sources of pollutionare cement plants, chemical (M’dilla,Guetar, and Ksar-Gafsa) and steel manufac-turing plants and petroleum refineries(HAMzA-CHAFFAI, 1993; HAMzA-CHAFFAI

et al., 1997; SERBAJI, 2000; SMAOUI-DAMAK

et al., 2003). Discoglossus pictus has been found in the

Oued el Ferd, Nefta (BOULENGER, 1891)and in the oases of the Chott El Djerid(MAyET, 1903). The southernmost siteswhere the species occurred were irrigationcanals in Chott El Djerid and also inChinini oasis near Gabés; in the same areafrom which it was recorded by Busack inMarch, 1972 (BUSACK, 2006), and bySICILIA et al. (2009). Discoglossus pictus wasreported to occur in Gafsa, Kebili, andKettana (BEN HASSINE & NOUIRA, 2009,2012b; AMOR et al., 2010c,d). SCHNEIDER

(1978) reported the occurrence of A. mauri-tanicus on the northern border of the SaharaDesert. Recent studies reveal that thisspecies is confined to oases, especiallyTozeur and Gafsa (JOGER, 2003; AMOR etal., 2007; SICILIA et al., 2009; BEN HASSINE

& NOUIRA, 2012b). Bufotes boulengeri andP. saharicus appear remarkably adapted toextreme conditions in the southern part ofTunisia, occurring in irrigation channelsand agricultural reservoirs in spite of hightemperatures and elevated salinity (Tozeur,Ras El Ain). Plasticity in the annual repro-ductive cycle of P. saharicus (ESTEBAN et al.,1999), coupled with predation on tadpolesand juveniles of B. boulengeri, contribute tothis species being the dominant amphibianin the south (MEDDEB & CHENITI, 1998).

Figure 1: “Margine” waste generated during the pro-cess of olive (Olea europaea) oil extraction. (a) AinEssoltan. (b) Gafsa (Oasis Nord).

a

b

AMOR ET AL.92

THREATS TO SURVIVAL

In general, Tunisians do not like amphib-ians and avoid any contact with them. Toadsare particularly disdained because of their largesize and rough skin. Few people exhibit fear ofthese animals and amphibians are not deliber-ately killed unless found in close proximity togardens and houses. No Tunisian species areobjects of local trade or exploitation except,perhaps, frogs (P. saharicus mostly) used asmodel animals in the educational system.

In summary, major threats to amphibiansurvival in Tunisia currently include:

- Deforestation and destruction of naturalvegetation close to watercourses and ponds.The decrease in natural vegetation is continu-ing, and large portions of natural forests aredegraded. Hyla meridionalis, in particular, isnegatively affected by such practices, and manylocal populations have declined or disappearedin the past few years because of habitat loss.

- Desiccation of wetlands, ponds, and mead-ows (El Mnagaa) due to agricultural activity andurban extension, especially in southern Tunisia(Ain Essoltan) (BEN AMOR, 2010).

- Transformation, fragmentation, anddestruction of suitable natural habitat due tograzing, farming, and urbanization.Ecosystems have been changed dramaticallyduring the past century, and the phe-nomenon is not likely to end in the nearfuture. Plowing may constitute destruction ofthe habitat of P. nebulosus because this speciesaestivates in the soil during summer. Inregions where intensive agricultural activityoccurs, newts are restricted to the margins ofcultivated land where soil is not turned over.

- Pollution derived from industry, such asmining (Gafsa), petroleum (Sfax), and textile

production (Monastir), or agriculture (CapBon) pose risks to freshwater and to the equi-librium of the ecosystem.

- Road kills: large numbers of amphibians,mainly toads, are killed on roads during thebreeding season and after rains. Amphibiansare constrained to move within their homeranges and must often cross roads, exposingthem to vehicular traffic. There is no system oftunnels allowing safe movement from oneplace to another along the Tunisian nationalnetwork of routes and highways.

CURRENT STATUS

The network of protected areas in Tunisiais comprised of 17 national parks and 27 nat-ural reserves, four faunal reserves, and 38humid areas (Ramsar). During the past twoyears, many of these protected areas have beensubjected to numerous degradations (e.g. cut-ting trees, fires, poaching) that have manyconsequences for the fauna inhabiting them.Prior studies by SICILIA et al. (2009) and BEN

HASSINE & NOUIRA (2012b) evaluated theconservation status of Tunisian amphibians.In addition, we carried out recent fieldwork inmore than 30 localities including differentaquatic and terrestrial habitats (Table 1) andcovering the entire species’ ranges (AMOR etal., 2007, 2009, 2010a,b,c,d,e, 2011). On thebasis of these surveys, we noted that D. pictus,P. saharicus, B. boulengeri, and A. mauritanicusare common and do not appear threatened,which, with the exception of D. pictus,accords with the observations made by BEN

HASSINE & NOUIRA (2012b). On the otherhand, species like B. spinosus, H. meridionalis,and P. nebulosus were believed to be represent-ed only at a few scattered localities, although

AMPHIBIAN STATUS IN TUNISIA 93

recent intensive surveys like those by SICILIA

et al. (2009) and BEN HASSINE & NOUIRA

(2012a,b) have confirmed their presence insome new localities, revealing a more contin-uous distribution. In the network of protect-ed areas, no status report concerning amphib-

ian populations has been completed, andavailable data are not sufficient to provide anaccurate status report for all species.Salamandra algira, however, has been deter-mined not to occur within Tunisia’s borders(BOGAERTS et al., 2013b).

Table 1: Geographic information and species detected in the localities recently surveyed. Pn: Pleurodelesnebulosus, Dp: Discoglossus pictus, Am: Amietophrynus mauritanicus, Bsp: Bufo spinosus, Bbo: Bufotesboulengeri, Hm: Hyla meridionalis, Ps: Pelophylax saharicus.

Region

North

Centre

South

Locality

AzmourBejaGhar DimaouGrombaliaHammametKelibiaKorbaLebna (1)Lebna (2)NabeulOued El Maleh BejaBizertBarbra damOued EzzargaTunis

Kairouan (1)Kairouan (2)KasserineKasserine el ArichMonastir 1Monastir 2

Ain EssoltanBen GardenGabès (Chenini)GafsaGafsa (Oasis Nord)Gafsa (Oasis Sud)DjerbaKebiliNeftaOued El Maleh GafsaTamerza Oasis 1 gkTamerza Oasis 2 pkTozeur Ras El Ain

Latitude (N)

36°55’05.32’’36°43’58.48’’36°26’59.37’’36°36’10.95’’36°22’36.76’’36°50’58.75’’36°33’53.84’’36°44’27.08’’36°44’26.83’’36°27’32.37’’36°41’19.81’’37°19’45.31’’36°44’02.00’’36°38’34.22’’36°52’20.21’’

35°40’13.00’’35°43’22.02’’35°10’25.93’’35°12’00.61’’35°45’33.04’’35°42’03.04’’

34°23’15.16’’36°22’36.76’’33°52’33.59’’34°23’43.41’’34°23’12.21’’34°23’21.18’’33°49’40.70’’33°41’22.06’’36°50’58.75’’34°23’09.02’’34°23’04.68’’34°23’06.66’’33°55’20.59’’

Longitude (E)

11°00’22.20’’9°11’00.69’’8°25’43.60’’10°29’38.41’’10°32’20.36’’11°06’49.49’’10°51’36.28’’10°55’20.03’’10°55’19.70’’10°44’07.44’’9°14’19.64’’9°48’50.87’’8°32’08.00’’9°12’59.33’’10°10’32.54’’

10°5’57.72’’10°5’55.12’’8°49’36.37’’8°49’13.30’’10°48’49.35’’10°46’00.12’’

8°49’42.13’’10°32’20.36’’10°04’39.68’’8°46’51.35’’8°46’12.15’’8°47’00.50’’11°01’04.83’’8°58’17.82’’11°06’49.49’’8°49’11.40’’7°56’24.36’’7°55’19.23’’8°07’58.93’’

Elevation (m)

95249449453401312391542917630230

62657266332422

2783442702712830384

27029127092

Observed species

Dp, Am, Bbo, PsDp, Am, Bbo, Ps

Pn, Dp, Am, Bsp, BboDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, Ps

Dp, Am, Bbo, Hm, PsPn, Dp, Am, Bbo, Ps

Dp, Am, Bbo, PsDp, Am, Bbo, Ps

Dp, Am, Bbo, Hm, PsPn, Dp, Am, Bbo, Ps

Dp, Am, Bbo, PsDp, Am, Bbo, Ps

Dp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, Ps

Dp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, PsDp, Am, Bbo, Ps

AMOR ET AL.94

All aspects of the biology and life history ofamphibians in Tunisia require additional studyand protection-oriented action. Priorityshould be given to localized populations andspecies with restricted ranges for implementa-tion of conservation measures in the nearfuture. In addition, implementation of stricterpolicies, especially for industrial and agricul-tural activities, is necessary to preserve theTunisian amphibian fauna. Finally, there is aneed to increase civic awareness and participa-tion among the citizens of Tunisia with regardto the importance of protecting and preservingour natural heritage in order to reduce the rateat which the ecosystem is degrading.

REFERENCES

ALOUI, A. (2010). Changements climatiquesen Tunisie: impacts sur les forêts, InAGORA - Atelier avec les décideurs et par-ties prenantes concernées. MediterraneanRegional Office of the European ForestInstitute, Rabat, Morocco. Available at:http://www.efimed.efi.int/portal/projects/agora/version_fran_aise/parties_prenantes/atelier_parties_prenantes_au_maroc/.Retrieved on 10/25/2012.

AMOR, N.; APREA, G.; CHATTI, N.;FARJALLAH, S.; ODIERNA, G. & SAID, K.(2007). Karyological analysis of fourTunisian species of Anura (Amphibia).African Zoology 42: 268-278.

AMOR, N.; FARJALLAH, S. & SAID, K. (2009).Morphometric variation in the Tunisiangreen Frog, Rana saharica (Anura:Ranidae). African Zoology 44: 194-203.

AMOR, N.; FARJALLAH, S.; BEN yACOUB, S. &SAID K. (2010a) Karyological and morpho-metric variation of the North African green

frog Pelophylax saharicus (Anura) in north-east Africa. Current Zoology 56: 678-686.

AMOR, N.; FARJALLAH, S.; BEN yACOUB, S. &SAID K. (2010b). Assessment of intraspe-cific mtDNA variability of Pelophylaxsaharicus in eastern North Africa. AnnalesZoologici 60: 639-646.

AMOR, N.; FARJALLAH, S.; BEN yACOUB, S. &SAID, K. (2010c). Morphometric and kary-ological differentiation among populationsof Discoglossus pictus in eastern NorthAfrica. Annales Zoologici 60: 159-168.

AMOR, N.; VELO-ANTóN, G.; FARJALLAH, S.& SAID, K. (2010d). Genetic variationacross Tunisian populations of the anuranspecies Discoglossus pictus and Pelophylaxsaharicus. African Zoology 45: 121-128.

AMOR, N.; ODIERNA, G.; CHINALI, G.; SAID,K. & PICARIELLO O. (2010e). Unusualchromosomal distribution of a majorsatellite DNA from Discoglossus pictusauritus (Amphibia, Anura). Cytogeneticand Genome Research 127: 33-42.

AMOR, N.; FARJALLAH, S.; BEN yACOUB, S.;MERELLA P. & SAID K. (2011). Morphologicalvariation of the African green toad, Bufoboulengeri (Amphibia: Anura) in Tunisia.Pakistan Journal of Zoology 43: 921-926.

ARANO, B.; LORENTE, G.A.; MONTORI, A.,BUCKLEy, D. & HERRERO, P. (1998).Diversification in north-west Africanwater frogs: Molecular and morphologicalevidence. Herpetological Journal 8: 57-64.

ARNTzEN, J.W.; MCATEAR, J.; RECUERO, E.;zIERMANN, J.M.; OHLER, A.; VAN ALPHEN,J. & MARTíNEz-SOLANO, I. (2013).Morphological and genetic differentiationof Bufo toads: two cryptic species inWestern Europe (Anura, Bufonidae).Contributions to Zoology 82: 147-169.

95AMPHIBIAN STATUS IN TUNISIA

AzOUzI, K. & TEKAyA, S. (2004).L’ovogenèse de Rana saharica en Tunisie:étude histologiques et influence des fac-teurs climatiques. Revue de la Société desSciences Naturelles de Tunisie 31: 1-8.

AzOUzI, K. & TEKAyA, S. (2007). Adaptationaux facteurs climatiques de l’ovogenèsechez le Discoglosse en Tunisie(Amphibien, Anoure). Bulletin de laSociété Zoologique de France 132: 57-66.

BEN AMOR, M.H. (2010). Etude de laRationalisation de l’Eau dans l’OasisHistorique de Gafsa. Projet GCP/GLO/212/GEF «Conservation et GestionAdaptative des Systèmes Ingénieux duPatrimoine Agricole Mondial(GIAHS/SIPAM)». Association deSauvegarde de la Medina de Tunis -Globally Important Agricultural HeritageSystems, Tunis, Tunisia.

BEN HASSINE, J. (2007). Contribution à laConnaissance de l’Écologie de Discoglossus pic-tus (Amphibien, Anoure): Cas de TroisPopulations des Oasis de Gabès. M.Sc. Thesis,Faculté des Sciences de Tunis, Tunisia.

BEN HASSINE, J. (2011). Biodiversity andwetlands in Tunisia: distribution of theAlgerian Ribbed Newt (Pleurodeles nebu-losus) (Guichenot, 1850) (Amphibia,Caudata) the challenge to protect it andensure its survival. MediterraneanWetlands Observatory Newsletter 19: 1-4.Available at: http://www.medwetlands-obs.org/en/content/distribution-algerian-ribbed-newt-tunisia. Retrieved on10/25/2012.

BEN HASSINE, J. & NOUIRA, S. (2009). Diet ofDiscoglossus pictus Otth 1837 (Anura,Alytidae) and Pelophylax saharicus(Boulenger in Hartert, 1913) in the oases

of Kettana (Gabes, Tunisia). Bulletin de laSociété Zoologique de France 134: 321-332.

BEN HASSINE, J. & NOUIRA, S. (2012a). Theamphibians of Tunisia: biodiversity, distri-bution, status and major threats. FrogLog101: 32-34.

BEN HASSINE, J. & NOUIRA, S. (2012b).Répartition géographique et affinitésécologiques des Amphibiens de Tunisie. LaTerre et la Vie - Revue d’Écologie 67: 437-457.

BEN HASSINE, J.; DE BUFFRéNIL, V.; &NOUIRA, S. (2011). First record of morpho-logical abnormalities in natural populationsof two amphibians species in Tunisia.Journal of Herpetology 45: 465-471.

BEN HASSINE, J.; KASSEBI, A. & NOUIRA, S.(2013). Pleurodeles nebulosus (Guichenot,1850) en Tunisie: répartition, habitat,reproduction et statut. Bulletin de la SociétéHerpétologique de France 144: 51-66.

BEUKEMA, W.; DE POUS, P.; DONAIRE-BARROSO, D.; BOGAERTS, S.; GARCIA-PORTA, J.; ESCORIzA, D.; ARRIBAS ,O.; EL

MOUDEN, E.H. & CARRANzA, S. (2013).Review of the systematics, distribution, bio-geography and natural history of Moroccanamphibians. Zootaxa 3661: 1-60.

BLANC, M. (1935). Faune Tunisienne. [s.n.]Tunis, Tunisia. Available at the MuséumNational d'Histoire Naturelle de Paris,OCLC 493496052.

BLANC, C.P. & NOUIRA, S. (1988). Fauneherpétologique des îles Kerkennah.Inventaire et distribution. Bulletin d’É-cologie 19: 259-263.

BLAUSTEIN, A.R.; WAKE, D.B. & SOUSA, W.P.(1994). Amphibian declines: judging stabil-ity, persistence, and susceptibility of popu-lations to local and global extinctions.Conservation Biology 8: 60-71.

AMOR ET AL.96

BLAUSTEIN, A.R.; WALLS, S.C.; BANCROFT,B.A.; LAWLER, J.J.; SEARLE, C.L. &GERVASI, S.S. (2010). Direct and indirecteffects of climate change on amphibianpopulations. Diversity 2: 281-313.

BOGAERTS, S.; DONAIRE-BARROSO, D.;PASMANS, F.; HERBERT, D. & BEUKEMA,W. (2013a). New data on the distributionof Bufo bufo in Tunisia. Herpetology Notes6: 203-207.

BOGAERTS, S.; DONAIRE-BARROSO, D.;PASMANS, F.; CARRANzA, S. & BöHME,W. (2013b). Do North African FireSalamanders, Salamandra algira, occur inTunisia? Herpetology Notes 6: 301-306.

BOULENGER, G.A. (1882). Catalogue of theBatrachia Salientia S. Ecaudata in the col-lection of the British Museum, 2nd ed.British Museum, London, UK.

BOULENGER, G.A. (1891). Catalogue of the rep-tiles and batrachians of Barbary (Morocco,Algeria, Tunisia) based chiefly upon thenotes and collections made in 1880-1884 byM. Fernand Lataste. Transactions of theZoological Society of London 13: 93-164.

BOUSSAïD, M.; BEN FADHEL, N; CHEMLI, R. &BEN M'HAMED, M. (1999). Structure ofvegetation in Northern and Central Tunisiaand protective measures. Cahiers OptionsMéditerranéennes (Montpellier) 38: 295-302.

BUCKLEy, D.; ARANO, B.; HERRERO, P.;LLORENTE, G. & ESTEBAN, M. (1994).Moroccan water frogs vs. R. perezi:Allozyme studies show their differences.Zoologica Poloniae 39: 377-385.

BUCKLEy, D.; ARANO, B.; HERRERO, P. &LLORENTE, G. (1996). Population struc-ture of Moroccan Water Frogs: Geneticcohesion despite a fragmented distribu-tion. Journal of Zoological Systematics and

Evolutionary Research 34: 173-179.BUSACK, S.D. (1986). Biogeographic analysis

of the herpetofauna separated by the for-mation of the Strait of Gibraltar. NationalGeographic Research 2: 17-36.

BUSACK, S.D. (2006). Geographic distribu-tion. Discoglossus pictus. HerpetologicalReview 37: 99.

CAR / PAP (2005). Gestion des zonesCôtières en Tunisie. Centre d’ActivitésRégionales pour le Programme d’ActionsPrioritaires, Split, Croatia.

CARRANzA, S. & WADE, E. (2004). Taxonomicrevision of Algero-Tunisian Pleurodeles(Caudata: Salamandridae) using molecularand morphological data. Revalidation of thetaxon Pleurodeles nebulosus (Guichenot,1850). Zootaxa 488: 1-24.

COELHO, C.; SALA, M.; TANAGO, M.; LAOUINA,A. & HAMzA, A. (1999). MEDCHANGE -Changing land use practices in forest andgrazing ecosystems - MEDCHANGE.European Tropical Forest Research NetworkNews 28. Available at: http://www.etfrn.org/publications/arid+and+semi+arid+areas.Retrieved on 10/25/2012.

DE CHAIGNON, H. (1904). Contribution àl’histoire naturelle de la Tunisie. Bulletinde la Société d’Histoire Naturelle d’Autun17: 1-280.

DOMERGUE, C.A. (1959). Liste des batraciens,chéloniens et sauriens de Tunisie etd’Afrique du Nord. Bulletin de la Société desSciences Naturelles de Tunisie 9-10: 75-79.

DOUMERGUE, F. (1901). Essai sur la fauneerpétologique de l’Oranie avec destableaux analytiques et des notions pourla détermination de tous les reptiles etbatraciens du Maroc, de l’Algérie et de laTunisie. Bulletin de la Société de

97AMPHIBIAN STATUS IN TUNISIA

Géographie et d’Archéologie de la Provinced’Oran 19-21: 324-397.

ESTEBAN, M.; GARCIA-PARIS, M.; BUCKLEy,D. & CASTANET, J. (1999). Bone growthand age in Rana saharica, a water frog liv-ing in a desert environment. AnnalesZoologici Fennici 36: 53-62.

FISHER, R. & SHAFFER, H. (1996). Thedecline of amphibians in California’sGreat Central Valley. Conservation Biology10: 1387-1397.

FROMHAGE, L.; VENCES, M. & VEITH, M.(2004). Testing alternative vicariance sce-narios in Western Mediterraneandiscoglossid frogs. Molecular Phylogeneticsand Evolution 31: 308-322.

GAFSI, H.; BEN HAJ, S.; PERELLI, C. & SATTA,A. (2008). Destinations. Développement deStratégies pour un Tourisme Durable dans lesNations Méditerranéennes. Tunisie: ScénariiAlternatifs de la Destination. ProgrammeLIFE - Pays Tiers de la CommissionEuropéenne - Agence d’Aménagement etde Protection du Littoral (APAL) - Centred'Activités Régionales pour le Programmed'Actions Prioritaires (CAR / PAP) duPNUE / PAM, Tunis, Tunisia.

GALLIEN, L. (1948). Sur les caractères et l’in-terêt biologique d’un batracien anoure deTunisie: Discoglossus pictus Otth. Bulletinde la Société des Sciences Naturelles deTunisie 1: 80-82.

GARCIA-PORTA, J.; LITVINCHUK, S.N.;CROCHET, P.A.; ROMANO, A.; GENIEz,P.H.; LO-VALVO, M.; LyMBERAKIS, P. &CARRANzA, S. (2012). Molecular phylo-genetics and historical biogeography ofthe west-Palearctic common toads (Bufobufo species complex). MolecularPhylogenetics and Evolution 63: 113-130.

GAUTHIER, H. (1928). Recherches sur la Faunedes Eaux Continentales de l’Algérie et de laTunisie. Minerva, Alger, Algeria.

GERVAIS, P. (1835). Communication sur lesreptiles de Barbarie. Bulletin de la Sociétédes Sciences Naturelles de France Séance du23/12/1835: 112-114.

GERVAIS, P. (1853). Le Glossoliga poireti etl’Euproctus rusconii. Annales des SciencesNaturelles 20: 312-314.

GILLESPIE, G.R. & HOLLIS, G.J. (1996).Distribution and habitat of the spottedtree frog, Litoria spenceri Dubois (Anura:Hylidae), and an assessment of potentialcauses of population declines. WildlifeResearch 23: 49-75.

GHRAB, J. & BOUATTOUR, A. (1999). Etudeexpérimentale de l’efficacité larvivore deGambusia affinis holbrooki (Girard, 1859)(Poisson-Poecilidae). Archives de l’InstitutPasteur de Tunis 76: 33-38

HAMzA-CHAFFAI, A. (1993). Etude de labioaccumulation métallique et des métal-lothionéines chez des poissons de la côte deSfax (Golfe de Gabès). Ph.D. Dissertation,Université de Sfax, Tunisia.

HAMzA-CHAFFAI, A.; AMIARD-TRIQUET, C.& EL ABED, A. (1997). Metallothionein-like protein, is it an efficient biomarker ofmetal contamination? A case study basedon fish from the Tunisian coast. Archivesof Environmental Contamination andToxicology 33: 53-62.

HECNAR, S.J. & M’CLOSKEy, R.T. (1996).Regional dynamics and the status ofamphibians. Ecology 77: 2091-2097.

HEMMER, H.; KONRAD, A. & KONRAD, B.(1980). Hybridization within the Ranaridibunda complex of North Africa.Amphibia-Reptilia 1: 41-48.

AMOR ET AL.98

JOGER, U. (2003). Reptiles and amphibiansof southern Tunisia. Kaupia 12: 71-88.

KAREM, A. (2003). Les parcs nationaux deTunisie. Kaupia 12: 3-17.

LATASTE, F. (1881). Diagnoses des reptilesnouveaux d’Algérie. Le Naturaliste (Paris)3: 370-372.

LE FLOC’H, E.; BOULOS, L. & VELA, E. (2010).Catalogue Synonymique Commenté de laFlore de Tunisie. République Tunisienne,Ministère de l’Environnement et duDéveloppement Durable, BanqueNationale des Gènes, Tunis, Tunisia.

MAyET, V. (1903). Catalogue Raisonné desReptiles et Batraciens de la Tunisie.Exploration Scientifique de la Tunisie.Imprimerie Nationale, Paris, France.

MEDDEB, C. & CHENITI, T.L. (1998).Régime alimentaire de deux populationsde grenouille verte de Tunisie Pelophylaxsaharicus Boulenger, 1913 (Amphibiens,Anoures, Ranidae). Bulletin de la SociétéZoologique de France 123: 73-89.

MEDDEB, C.; NOUIRA, S.; CHENITI, T.L.;WALSH, P.T. & DOWNIE, J.R. (2007). Agestructure and growth in two Tunisian pop-ulations of green water frogs Pelophylaxsaharicus: a skeletochronological approach.Herpetological Journal 17: 54-57.

MERTENS, R. (1929). Beiträge zurHerpetologie Tunisiens. Senckenbergiana11: 291-310.

MOSAUER, W. (1934). The reptiles andamphibians of Tunisia. University ofCalifornia at Los Angeles Publication inBiological Sciences 1: 49-64.

NOUIRA, S. (2001). Conservation des ZonesHumides Littorales et des Écosystèmes Côtiers- Cap Bon. Rapport de Diagnostic des Sites.

Partie Relative à l’Herpétofaune. Ministèrede l’Environnement et de l’Aménagementdu Territoire, Agence de Protection etd’Aménagement du Littoral, RépubliqueTunisienne, Tunis, Tunisia. Available at:http://vinc.s.free.fr/IMG/rap_herpeto-faune.pdf. Retrieved on 10/25/2012.

NOUIRA, S. & LESCURE, J. (1998). Les nomsscientifiques français des amphibiens etreptiles de Tunisie. Bulletin de la SociétéHerpétologique de France 85-86: 37-54.

OLIVIER, E. (1894). Herpétologie algérienne,ou catalogue raisonné des reptiles et desbatraciens observés jusqu’à ce jour enAlgérie. Mémoires de la Société Zoologiquede France 7: 98-131.

OLIVIER, E. (1896). Matériaux pour la faunede la Tunisie. I. Catalogue des Reptiles.Notes sur les Mammifères-Oiseaux. RevueScientifique du Bourbonnais et CentreFrance, Moulins 9: 117-133.

OMRANI, N. & OUESSAR, M. (2008).Historical and contemporary perspectivesof water culture in Tunisia, In M. ElMoujabber, M. Shatanawi, G. TrisorioLiuzzi, M. Ouessar, P. Laureano & R.Rodriguez (eds.) Water Culture and WaterConflict in the Mediterranean Area. Series:Options Méditerranéennes, Série A:Séminaires Méditerranéens, vol. 83.CIHEAM-IAMB, Bari, Italy, pp. 75-84.

PASMANS, F.; BOGAERTS, S.; BARROSO, D.D.& HERBERT, D. (2002). Field notes onPleurodeles poireti in Tunisia. Zeitschrift fürFeldherpetologie 9: 111-115.

PASTEUR, G. (1958). Sur la systématique desespèces du genre Pleurodeles (Salamandridés).Bulletin de la Société des Sciences Naturelles etPhysiques du Maroc 38: 157-165.

99AMPHIBIAN STATUS IN TUNISIA

PEEL, M.C.; FINLAySON, B.L. & MCMAHON,T.A. (2007). Updated world map ofthe Köppen-Geiger climate classifica-tion. Hydrology and Earth SystemSciences 11: 1633-1644.

PELLEGRIN, J. (1927). Les reptiles et les batraciensde l’Afrique du Nord française. ComptesRendus de l’Association Française pourl’Avancement des Sciences (Paris) 51: 260-264.

POIRET, J.L.M. (1789). Voyage en Barbarie: ouLettres Écrites de l’Ancienne NumidiePendant les Années 1785 & 1786, sur laReligion, les Coutumes & les Moeurs desMaures & des Arabes-Bédouins: Avec unEssai sur l’Histoire Naturelle de ce Pays.J.B.F. Née de la Rochelle, Paris, France.

RECUERO, E.; IRAOLA, A.; RUBIO, X.;MACHORDOM, A. & GARCìA-PARìS, M.(2007). Mitochondrial differentiation andbiogeography of Hyla meridionalis (Anura:Hylidae): an unusual phylogeographical pat-tern. Journal of Biogeography 34: 1207-1219.

RECUERO, E.; CANESTRELLI, D.; VöRöS, J.;SzABO, K.; POyARKOV, N.A.; ARNTzEN,J.W.; CRNOBRNJA-ISAILOVIC, J.; KIDOV,A.A.; COGALNICEANU, D.; CAPUTO, F.P.;NASCETTI, G. & MARTíNEz-SOLANO, I.(2012). Multilocus species tree analysesresolve the radiation of the widespreadBufo bufo species group (Anura,Bufonidae). Molecular Phylogenetics andEvolution 62: 71-86.

ROMDHANE, M.S. & MISSAOUI, H. (2001).Conservation des Zones Humides Littoraleset des Ecosystèmes Côtiers du Cap-Bon.Ministère de l’Environnement et del’Aménagement du Territoire, Agence deProtection et d’Aménagement du littoral,République Tunisienne, Tunis, Tunisia.

SCHLEICH, H.H.; KäSTLE, W. & KABISCH, K.(1996). Amphibians and Reptiles of NorthAfrica. Koeltz Scientific Books,Koenigstein, Germany.

SCHNEIDER, B. (1974). Beitrag zurHerpetofauna Tunesiens, I. Bufo bufospinosus. Salamandra 10: 55-60.

SCHNEIDER, B. (1978). Beitrag zurHerpetofauna Tunesiens, II. Bufo mauri-tanicus. Salamandra 14: 33-40.

SERBAJI, M.M. (2000). Utilisation d’un SIGMulti-Sources pour la Compréhension et laGestation Intégrée de l’Écosystème Côtier dela Région de Sfax (Tunisie). Ph.D.Dissertation, Université de Tunis II,Tunis, Tunisia.

SICILIA, A.; MARRONE, F.; SINDACO, R.;TURKI, S. & ARCULEO, M. (2009).Contribution to the knowledge ofTunisian amphibians: notes on distribu-tion, habitat features and breeding phe-nology. Herpetology Notes 2: 107-132.

SMAOUI-DAMAK, W.; HAMzA-CHAFFAI, A.;BERTHET, B. & AMIARD, J.C. (2003).Preliminary study of the clam (Ruditapesdecussatus) exposed in situ to metal con-tamination and originating from the gulfof Gabès, Tunisia. Bulletin ofEnvironmental Contamination andToxicology 71: 961-970.

SMART, M. & HOLLIS, G.E. (1989). RamsarAdvisory Missions: Report No. 15, Ichkeul,Tunisia. The Ramsar Convention onWetlands, Gland, Switzerland.

SMITH, H.M.; ROBINSON, P.; CHISzAR, D. &VAN BREUKELEN, F. (1998). North Africanamphibians and reptiles in the Universityof Colorado Museum. Bulletin of theChicago Herpetological Society 9: 182-187.

AMOR ET AL.100

STEINWARz, D. & SCHNEIDER, H. (1991).Distribution and bioacoustics of Ranaperezi Seoane, 1885 (Amphibia, Anura,Ranidae) in Tunisia. Bonner ZoologischeBeiträge 3-4: 283-297.

STöCK, M.; MORITz, C.; HICKERSON, M.;FRyNTA, D.; DUJSEBAyEVA, T.;EREMCHENKO, V.; MACEy, J.R.;PAPENFUSS, T.J. & WAKE, D.B. (2006).Evolution of mitochondrial relationshipsand biogeography of Palearctic greentoads (Bufo viridis subgroup) with insightsin their genomic plasticity. MolecularPhylogenetics and Evolution 41: 663-689.

STöCK, M.; DUBEy, S.; KLÜTSCH, C.;LITVINCHUK, S.N.; SCHEIDT, U. &PERRIN, N. (2008a). Mitochondrial andnuclear phylogeny of circum-Mediterranean tree frogs from the Hylaarborea group. Molecular Phylogenetics andEvolution 49: 1019-1024.

STöCK, M.; SICILIA, A.; BELFIORE, N.M.;BUCKLEy, D.; LO BRUTTO, S.; LO VALVO,M. & ARCULEO, M. (2008b).

Evolutionary relationships across theSicilian channel: Mitochondrial andnuclear markers link a new green toadfrom Sicily to ancient African relatives.BMC Evolutionary Biology 8: 56.

VEITH, M.; MAyER, C.; SAMRAOUI, B.;BARROSO, D.D. & BOGAERTS, S. (2004).From Europe to Africa and vice versa: evi-dence for multiple intercontinental dispersalin ribbed salamanders (Genus Pleurodeles).Journal of Biogeography 31: 159-171.

WOLTERSTORFF, W. (1901). Révision desespèces de Tritons du genre EuproctusGené: Suivi d’un aperçu des urodèles de larégion paléarctique. La Feuille des JeunesNaturalistes 362: 73-78.

zANGARI, F.; CIMMARUTA, R. & NASCETTI,G. (2006). Genetic relationships of thewestern Mediterranean painted frogsbased on allozymes and mitochondrialmarkers: evolutionary and taxonomicinferences (Amphibia, Anura,Discoglossidae). Biological Journal of theLinnean Society 87: 515-536.

Adel A. Ibrahim*

Chapter 28Amphibians in Libya: a status report

Department of Environmental Sciences, Faculty of Science, Suez University, Suez, Egypt.

*Correspondence: Department of Environmental Sciences, Faculty of Science, Suez University, 43527 Suez, Egypt. Phone: +20-122-358-2798,Email: [email protected]

Received: 10 January 2013; received in revised form: 29 November 2013; accepted: 9 December 2013.

Basic and Applied Herpetology 27 (2013): 101-106

Libya is mostly desert, has few water sources and only four amphibian species (all anurans) have been histor-ically reported to occur there, although ancient reports of Hoplobatrachus occipitalis have not been confirmedin recent surveys. Amietophrynus xeros is confined to the Ghat area in the southwest, Pelophylax saharicus isrestricted to the north and Bufotes boulengeri is found in various localities within the country. Although noquantitative data have been reported for amphibian population declines, some factors (habitat degradation,drought, and high temperatures contributing to disappearance of some bodies of water) seem to be behindthe local decline of amphibian populations in Libya.

Key words: amphibians; conservation; Libya; population decline.

Anfibios en Libia: informe sobre su situación. Libia es mayoritariamente desierto, presenta pocas fuentes de aguay solo cuatro especies de anfibios (todas ellas anuros) se han citado históricamente, aunque las citas antiguas deHoplobatrachus occipitalis no han podido confirmarse en muestreos recientes. Amietophrynus xeros está confinadoal área de Ghat en el suroeste, Pelophylax saharicus se restringe al norte y Bufotes boulengeri aparece en varias local-idades dentro del país. Aunque no existen datos cuantitativos de declives de poblaciones de anfibios, algunos fac-tores (degradación de hábitat, sequía, y las elevadas temperaturas que contribuyen a la desaparición de algunasmasas de agua) parecen estar detrás de los declives locales de poblaciones de anfibios en Libia.

Key words: anfibios; conservación; declive de poblaciones; Libia.

While most (~95 %) of the human popula-tion of Libya resides in the Mediterraneancoastal region in the north, widely-scatteredoases in the desert area to the south are alsoinhabited. Because of its vast desert and pauci-ty of water sources Libya has only four docu-mented amphibian species. Libyan amphib-ians, especially those inhabiting the south, arepart of the worldwide declining amphibianphenomenon with one or more species threat-ened because of drastic changes in habitat(IBRAHIM, 2008). Population declines and / orextinctions throughout the country are diffi-cult to prove, however, because of the effects of

annual variation in climate, normal fluctuationof populations, and lack of historical data.

FROST (2013) listed five species from Libya,but only three could be confirmed recently: (1)Amietophrynus xeros, which is very localized andfound only near Ghat in the southwesternextreme; (2) Pelophylax saharicus, which appearsto be confined to the north; and (3) Bufotesboulengeri, which is scattered throughout. Sincethe work of SCORTECCI (1937), these threespecies are the only ones reported in field-basedstudies (SCHNURRENBERGER, 1963; SCHLEICH,1987; FRyNTA et al., 2000; IBRAHIM & INEICH,2005; IBRAHIM, 2008).

This chapter should be cited as: Ibrahim, A.A. (2013). Amphibians in Libya: a status report. Chapter 28 in Part 2. Mauritania, Morocco, Algeria, Tunisia,Libya and Egypt in Vol. 11. Conservation and Decline of Amphibians: Eastern Hemisphere of the series Amphibian Biology. Basic and Applied Herpetology 27:101-106. DOI: http://dx.doi.org/10.11160/bah.13005/

IBRAHIM102

Few articles have been published on theconservation status of Libyan amphibians. Themain objectives of this study are to report onthe current status of Libyan amphibians and todefine the main causes for decline or extinction,in order to propose conservation measures.

THE AMPHIBIAN FAUNA

Libyans do not discriminate amongspecies and local Arabic names “Dhofda'a”and “Grana” (most likely derived from theItalian word “rana”) apply to all anuran taxa;taxonomy follows FROST (2013).

Hoplobatrachus occipitalis (Günther, 1858)

This species was introduced to the Ghatarea to control mosquitoes (SCHLEICH et al.,1996). SCORTECCI (1937) reported high abun-dance of this species in the Ghat area which, inaddition to numerous wells, puddles, and smallmarshes, once formed a continuous oasis withabout 20 springs within the city itself.Presently, Ghat is no longer an oasis; with theexception of one spring still at Al-Berkah,most bodies of water have dried up. During avisit to this area in 2006 no remnant watersource was observed; the whole area had com-pletely changed because of urban expansion.Intensive search in the Ghat area, particularlyat Tunin where about 15 springs and severalwells previously existed, produced no evidenceof H. occipitalis. SALVADOR (1996) and RöDEL

(2000) cited Libya as one of the countrieswhere H. occipitalis was present but thesereports seem to have been based on ancient lit-erature. Therefore, the records of H. occipitalisare questionable and the presence of thisspecies in Libya has not been confirmed

recently. Extirpation of this frog from Ghatmay be directly related to the disappearance ofwater and / or with this species’ general inabil-ity to cope with habitat variation due, in part,to its relatively large size.

Pelophylax saharicus (Boulenger, 1913)

The Saharan frog has been reported in thenortheast, from Barqa, Benghazi, Al-Marj,Shahhat and Al-Jabal Al-Akhdar (WERNER,1909; GHIGI, 1920; zAVATTARI, 1922, 1937;CALABRESI, 1923; SCHLEICH, 1987; FRyNTA etal., 2000), and from Tripoli (Aïn Sarah) byWERNER (1909). IBRAHIM & INEICH (2005)reported it as common in freshwater springsand rain pools in Badr village (NalutProvince). Individuals were also collected fromAïn Al-Khenjari (8 km southeast of Badr)where they were active during part of the year,including sunny winter days. SCORTECCI

(1934) cited a juvenile in Ghat, but wasunable to find additional specimens despiteextensive search. DUBOIS & OHLER (1995)reported the ten specimens deposited in theMuseo Civico di Storia Naturale, Milan, aslost. Pelophylax saharicus has not been reportedfrom Al-Berkah since Scortecci’s initial paper,and was not found there during the presentstudy. JDEIDI (2008) noted a significantly dif-ferent mating call in specimens from thenortheast, suggesting the possibility of crypticdiversity within Libyan P. saharicus.

Amietophrynus xeros (Tandy, Tandy, Keith &Duff-Mackay, 1976)

The Savannah toad is highly localized inLibya. IBRAHIM (2008) reported its occur-rence in pools of local farms at Tunin and

AMPHIBIANS IN LIBYA 103

Bufotes boulengeri (Lataste, 1879)

The Green toad is widespread, especiallyin the eastern part of the country and alongthe Mediterranean coastal belt where there isplenty of rainfall and the area is mostly green.This species has been reported from Derna(WERNER, 1909), Al-Marj (zAVATTARI,1922), Al-Jabal Al-Akhdar at Al-Bayda(SCHLEICH, 1987) in the northeast and inBenghazi Province (GHIGI, 1920; FRyNTA etal., 2000). Along the coast between Benghaziand Tripoli it has been recorded at Al-Khoms(ANDREUCCI, 1913) and Misratah(BOULENGER, 1914). In the extreme west ithas been reported from Tripoli (WERNER,1909; SCORTECCI, 1935), Sebratah (FRyNTA

around the water station at Al-Berkah andsuggested the Ghat area (Fig. 1) to be theonly well-documented locality for thespecies in Libya. An intensive male choruswas heard in July 2006, and toads wereoccasionally found in swampy areas withdense vegetation at farms where it was dif-ficult to catch an individual or to trace atoad by its call. Toads were commonly seenin highest densities just after sunset; diur-nally, they concealed themselves under thevegetation stratum (up to 30 cm thick) atthe bottom of the pool. In addition tointensive nocturnal activity, toads and tad-poles were observed swimming near thesurface during the day, some of them closeto the edges of the pool.

Figure 1: Map of Libya. 1: Brack, 2: Al-Fejij, 3: Qabroon, 4: Sabha,5: Ghodwah, 6: Morzoq, 7: Taraghen, 8: Om Al-Araneb, 9: zowailah.

IBRAHIM104

et al., 2000), and Badr village (IBRAHIM &INEICH, 2005). In the south, it has beenreported from Al-Jofrah (Fig. 1) (zAVATTARI,1937), Ain Ed-Dalaam, 5 km west of Sabha(Fig. 1, site 4), Brack oasis (Fig. 1, site 1)(SCHNURRENBERGER, 1963), Al-Fejij (Fig. 1,site 2) and Qabroon (Fig. 1, site 3) (FRyNTA

et al., 2000). SCORTECCI (1934, 1935)reported B. boulengeri in Taraghen (Fig. 1,site 7), Morzoq (Fig. 1, site 6), Ghodwah(Fig. 1, site 5) and Al-Qatroun. IBRAHIM

(2008) found a few individuals on theTaraghen agricultural project grounds and inthe university dormitory in Taraghen.Rehabilitation of the previously devastatedagricultural project at Taraghen helped someindividuals to survive. This toad was alsocommon on green farms consisting of thou-sands of acres of cultivated vegetables, fruits,and fodder in Om Al-Araneb (Fig. 1, site 8).

THREATS, DECLINE AND CONSERVATION

There are no quantitative data indicat-ing the existence of decline or change inpopulation dynamics of amphibians fromLibya. It is clear, however, that degradationof habitat, especially in the south, hasaffected amphibians in this country.Amphibians in the north are probably notas deeply threatened as in the south becausegradual urban expansion is occurring most-ly in the extensive green coastal sector,which has a permanent water supply. Allprevious herpetofaunal studies focusing onthe north have reported B. boulengeri andP. saharicus, the two species currently exist-ing there (e.g. WERNER, 1909; GHIGI,1913; zAVATTARI, 1922; CALABRESI, 1923;SCHNURRENBERGER, 1963; SCHLEICH,

1987; FRyNTA et al., 2000; IBRAHIM &INEICH, 2005; IBRAHIM, 2008). In thesouth the situation is different; amphibiansare greatly threatened and already extirpat-ed in some places. The main threat isdestruction of wetland breeding sitesthought to be caused by long-term climaticand environmental changes and / or a con-siderable lowering of the water tablebecause of local extraction for agriculture,industry, and urban expansion.

Southern Libya is extremely dry; annualprecipitation averages less than 20 mm andinter-annual variability is high (PALLAS,1980); some areas receive no rainfall for sev-eral years at a time and, of course, withoutrain there is no opportunity for replenishingbodies of water. One of the causes for the dis-appearance of water in the south, especiallyin the Ghat area, is scarcity of rainfall. Thesouth is also hot, especially during June, July,and August. In Sabha, for example, air tem-perature may exceed 50ºC in summer. Inaddition, insolation is extreme and potentialevaporation reaches, or exceeds, 4.5 m / year(HUGHES & HUGHES, 1992). Such climaticconditions likely contributed to the disap-pearance of some bodies of water.

The only amphibian species inhabiting theGhat area (A. xeros) is threatened because it isconfined to areas of very limited water sourcesin Tunin and Al-Berkah. In a similar manner,B. boulengeri populations in the Taraghen vil-lage that was once an oasis (SCORTECCI, 1934)are now threatened because they have becomefew in number and occur in places with anotable shortage of water.

Local human activities have also con-tributed to the reduction of the water table.Currently one must dig a well at least 400 m

AMPHIBIANS IN LIBYA 105

deep to extract underground water in Ghat,while in Sabha the necessary depth rangesfrom 70 to 150 m, and occasionally from 1.5to 2 km to get clear water (Al-Khair Saleh &Abid Ahmad, personal communication).

In some areas of southern Libya,amphibian habitats may be affected by lossof underground water as a result of theconstruction of the Great Man MadeRiver, a river 1600 km long that conveysabout 6.5 million cubic meters of waterper day from southern aquifers to Libyansin the coastal belt. This tremendous use ofunderground water can result in consider-able degradation of land within oases andcauses severe damage to the cover of vege-tation (WHITE et al., 2003).

Expansion of green fields in Om Al-Araneb and zowailah (Fig. 1, site 9) hasremarkably increased during the past decade.Bufotes boulengeri could hardly find tinypools for breeding sites in these agriculturalprojects watered by drip irrigation. The areaof cultivated land, however, is still extremelylimited compared to the vast area of sur-rounding desert. The small number of toadsreported from agricultural projects inMorzoq and Ghodwah will be threatened ifunderground water decreases to the pointthat its extraction becomes too expensive andthe necessity for alternative sources arises.

Acknowledgement

I am grateful to Abid Ahmad (Faculty ofScience, Sabha University) for providingfacilities and data and to Roberto Sindaco(Istituto per le Piante da Legno e l’Ambiente,corso Casale, Torino) for providing essentialliterature for this review.

REFERENCES

ANDREUCCI, A. (1913). Contributo alla faunadella Tripolitania. Bollettino della SocietàEntomologica Italiana 45: 185-202.

BOULENGER, G.A. (1914). Contributo allostudio della fauna libica. Materiali raccoltinelle zone di Misurata e Homs, 1912-13,dal dott. Alfredo Andreini, capitanomedico. Rettili e Batraci. Annali del MuseoCivico di Storia Naturale "G. Doria e R.Gestro", Genova 6: 79-80.

CALABRESI, E. (1923). Missione zoologica delDr. E. Festa in Cirenaica. Bollettino deiMusei di Zoologia e Anatomia Comparatadella R. Università di Torino 38: 1-28.

DUBOIS, A. & OHLER, A. (1995). Frogs of thesubgenus Pelophylax (Amphibia, Anura, genusRana): a catalogue of available and valid scien-tific names, with comments on name-bearingtypes, complete synonymies, proposed com-mon names, and maps showing all type local-ities. Zoologica Poloniae 39: 139-204.

FROST, D.R. (2013). Amphibian Species of theWorld: an Online Reference, v. 5.6.American Museum of Natural History,New york, USA. Available athttp://research.amnh.org/herpetology/amphibia. Retrieved on 11/07/2013.

FRyNTA, D.; KRATOCHVíL, L.; MORAVEC, J.;BENDA, P.; DANDOVÁ, R.; KAFTAN, M.;KLOSOVÁ, K.; MIKULOVÁ, P.; NOVÁ, P. &SCHWARzOVÁ, L. (2000). Amphibians andreptiles recently recorded in Libya. ActaSocietatis Zoologicae Bohemiae 64: 17-26.

GHIGI, A. (1913). Materiali per lo studiodella fauna libica. Memorie della RealeAccademia delle Scienze dell’Istituto diBologna, Classe di Scienze Fisiche, Sezionedelle Scienze Naturali 6: 251-296.

IBRAHIM106

GHIGI, A. (1920). Vertebrati di Cirenaica rac-colti dal Prof. Alessandro Ghigi nella escur-sione organizzata dal Touring ClubItaliano, 15–24 Aprile 1920. Memorie dellaReale Accademia delle Scienze dell’Istituto diBologna, Classe di Scienze Fisiche, Sezionedelle Scienze Naturali 7: 195-212.

HUGHES, R.H. & HUGHES, J.S. (1992). ADirectory of African Wetlands. IUCN, UNEP,and WCMC, Gland, Switzerland, Nairobi,Kenya, and Cambridge, United Kingdom.

IBRAHIM, A. (2008). Contribution to the her-petology of southern Libya. ActaHerpetologica 3: 35-49.

IBRAHIM, A. & INEICH, I. (2005). Additionalrecords to the herpetofauna of NalutProvince, Libya. African Herp News 38: 2-9.

JDEIDI, T.B. (2008). Structure and variationof Rana saharicus mating calls in Libya, InThe Sixth World Congress of Herpetology.Manaus, Brasil. Available athttp://www.intronet.com.br/clientes/rep/index2.php?var=viewAbstract&id=65.Retrieved on 12/09/2013.

PALLAS, P. (1980). Water resources in theSocialist People’s Libyan Arab Jamahiriya,In M.J. Salem & M.T. Busrewil (eds.) TheGeology of Libya. Second Symposium on theGeology of Libya. Faculty of Science,University of Al-Fateh, Tripoli, Lybia,September 16-21, 1978. Academic Press,London, United Kingdom, pp. 539-591.

RöDEL, M.O. (2000). Herpetofauna of WestAfrica, Vol. I. Amphibians of the WestAfrican Savanna. Edition Chimaira,Frankfurt, Germany.

SALVADOR, A. (1996). Amphibians of north-west Africa. Smithsonian HerpetologicalInformation Service 109: 1-43.

SCHLEICH, H. (1987). Contribution to theherpetology of Kouf national park andadjacent area. Spinixia 10: 37-80.

SCHLEICH, H.; KäSTLE, W. & KABISCH, K.(1996). Amphibians and Reptiles of NorthAfrica. Koeltz Scientific Publishers,Koenigstein, Germany.

SCHNURRENBERGER, H. (1963). Fishes,amphibians, and reptiles of two Libyanoases. Herpetologica 18:270-273.

SCORTECCI, G. (1934). Cenni sui risultati diuna campagna di ricerche zoologiche nelFezzan. Natura, Rivista di Scienze Naturali25: 93-103.

SCORTECCI, G. (1935). Cenni sugli anfibidella Tripolitania. Atti Secondo Congressodi Studi Coloniali, Firenze 13: 159-165.

SCORTECCI, G. (1937). Il Saharo Italiano. 1.Il Fezzan e Oasi di Gat. La fauna delFezzan. Reale Società Geografica Italiana,Roma 15: 211-239.

WERNER, F. (1909). Reptilien, Batrachier undFische von Tripolis und Barka. ZoologischeJahrbücher (Systematik) 27: 595-646.

WHITE, K.; BROOKS, N. P. J.; DRAKE, N. A.;CHARLTON, M. & MCLAREN, S. J.(2003). Monitoring vegetation change indesert oases by remote sensing; a casestudy in the Libyan Fazzan. Libyan Studies34: 153-166.

zAVATTARI, E. (1922). Vertebrati di Cirenaicaraccolti dal generale medico prof. FrancescoTesti. Atti della Società dei Naturalisti eMatematici di Modena 8: 13-22.

zAVATTARI, E. (1937). I Vertebrati dellaLibia, In Festschrift zum 60 Geburstage vonProfessor Dr. Embrik Strand, vol. 2.University of Latvia, Riga (Izdevnieciba"Latvija"), pp. 526-532.

Adel A. Ibrahim

Chapter 29Amphibians of Egypt: a troubled resource

Department of Environmental Sciences, Suez University, Suez, Egypt.

*Correspondence: Department of Environmental Sciences, Faculty of Science at Suez, Suez University, 43527 Suez, Egypt. Telephone:+20 1204800096, Email: [email protected]

Received: 10 January 2013; received in revised form: 16 December 2013; accepted: 6 January 2014.

Basic and Applied Herpetology 27 (2013): 107-117

Amphibians in Egypt are represented by only nine species. Some species (Amietophrynus regularis, Bufotes boulengeri,Ptychadena mascareniensis, and Pelophylax bedriagae) are well-known and common. Distributions of Duttaphrynus dod-soni and Hyla savignyi are limited, Amietophrynus kassasii is common and restricted while Ptychadena schillukorum appearsuncommon and localized. Egyptian amphibians are, in part, poorly studied; some are threatened, others have declinedor disappeared at various localities. Over-harvesting, habitat destruction, predation, overuse of pesticides, and road-killsare main causes of population decline. In 2010 the Egyptian government issued a resolution prohibiting exportation ofPelophylax bedriagae taken from natural habitats for three years – at least – to allow rehabilitation of populations; the localCITES committee had previously issued a similar declaration in 2009. Limitation of quantities of Amietophrynus regu-laris used for dissection in Egyptian universities and scientific agencies was also requested by the Secretary of the EgyptianEnvironment. These decrees and declarations seem to have been successful during the past few years.

Key words: Amphibia; conservation; Egypt; population decline.

Los anfibios de Egipto: un recurso en problemas. Los anfibios en Egipto están representados únicamente por nueveespecies. Algunas especies (Amietophrynus regularis, Bufotes boulengeri, Ptychadena mascareniensis y Pelophylax bedria-gae) son bien conocidas y comunes. Las distribuciones de Duttaphrynus dodsoni e Hyla savignyi son limitadas,Amietophrynus kassasii es común y restricta mientras que Ptychadena schillukorum es poco común y también restric-ta. Los anfibios egipcios están, en parte, poco estudiados, algunos están amenazados, mientras que otros están endeclive o han desaparecido en varias localidades. La sobreexplotación, destrucción de hábitat, depredación, excesivouso de pesticidas y los atropellos son las principales causas del declive de las poblaciones. En 2010, el gobierno egip-cio emitió una resolución prohibiendo la exportación de Pelophylax bedriagae capturadas en sus hábitats naturalesdurante tres años – por lo menos – para permitir la recuperación de las poblaciones; previamente el comité CITESlocal había emitido una declaración similar en 2009. Asimismo, la secretaría de ambiente de Egipto solicitó la restric-ción de las cantidades de Amietophrynus regularis utilizadas para disección en universidades egipcias y agencias cien-tíficas. Estos decretos y declaraciones parecen haber tenido éxito a lo largo de los últimos años.

Key words: Amphibia; conservación; declive de poblaciones; Egipto.

This chapter should be cited as: Ibrahim, A.A. (2013). Amphibians of Egypt: a troubled resource. Chapter 29 in Part 2. Mauritania, Morocco, Algeria,Tunisia, Libya and Egypt in Vol. 11. Conservation and Decline of Amphibians: Eastern Hemisphere of the series Amphibian Biology. Basic and AppliedHerpetology 27: 107-117. DOI: http://dx.doi.org/10.11160/bah.13007/

Most of Egypt is desert, and frogs inhabit-ing Egypt must share water resources withhumans. Populations, both of humans andanurans, are concentrated along the RiverNile Valley and Delta (which together repre-sent less than 5% of Egypt's total area) andmost anuran species are threatened. Thepaucity of suitable frog habitat, coupled with

the need for cohabitation with humans, mayultimately lead to the extinction of one ormore species in many places in Egypt.

Egypt has a small (nine species), poorly-stud-ied, amphibian fauna whose current status andneed for conservation are not well known. Fourspecies (Amietophrynus regularis, Bufotes boulen-geri, Ptychadena mascareniensis, and Pelophylax

IBRAHIM108

bedriagae) are considered relatively widespreadand common, and three (Pelophylax saharicus inthe west at Siwa Oasis [Fig. 1, site 2],Duttaphrynus dodsoni in the extreme southeast atJabal Elba [Fig. 1, site 26], and Hyla savignyi inthe extreme northeast of the Sinai Peninsula) arerestricted to small areas. Amietophrynus kassasii iscommon and restricted, while Ptychadenaschillukorum appears rare and localized (BAHA EL

DIN, 2006). The goal of this contribution is toassess potential threats, current status, and distri-bution of Egyptian amphibians in order to rec-ommend conservation management strategies.

THE FAUNA

The taxonomy for this study follows Frost(2013).

Amietophrynus kassasii (Baha El Din, 1993).Local name: Dofda'a Qassas.

Nile Valley Toads, previously identified asBufo vittatus in Egypt (ANDRE 1909; FLOWER

1933), occur in the Nile Valley and Delta andin the Fayoum (Fig. 1, site 20) Depression.SABER (2002) reported dense populations inbodies of freshwater south of Lake Burullus(Fig. 1, site 5). BAHA EL DIN (2006) suggestedthis species was common but localized andassumed it spread northward along reedswamps on both banks of the River Nile and itsbranching channels after construction of theAswan Dam in the extreme south. It is record-ed upstream as far as Luxor (Fig. 1, site 23).

Amietophrynus kassasii is mostly aquaticand is found in densely vegetated shallow ordeep water, reed swamps, rice fields, over-grown canals, and water ways. It is seen onlyoccasionally on land (BAHA EL DIN, 2006).

Amietophrynus regularis (Reuss, 1833). Localname: Ad-Dofda'a Al-Masreyya Ar-Raqta’a.

Egyptian Toads are very common aroundcreeks, ponds, farms, and houses. They arefound in the Nile Delta (especially Ash-Sharqeyya, Ad-Daqahleyya, Al-Gharbeyya,Al-Qalubeyya, and Kafr Ash-SheikhGovernorates); the Nile Valley fromupstream of Dumyat (Fig. 1, site 7) down toAbu Simbel south of Aswan City (Fig. 1, site25); in Fayoum (Fig. 1, site 20); along thenorthwestern coast from Alexandria (Fig. 1,site 4) westward to As-Salloum (Fig. 1, site 1)near the border with Libya (ANDERSON,1898; FLOWER, 1933; MARX, 1968;

Figure 1: Map of Egypt and sites referred in thetext. 1: As-Salloum; 2: Siwa Oasis; 3: Burg Al-Arab;4: Alexandria; 5: Lake Burullus; 6: Ras El Barr; 7:Dumyat; 8: Faraskur; 9: Shirbin; 10: Lake Manzala;11: Port Saïd; 12: Al-Qantara; 13: Ismailia; 14:Meet Abul Koum Al Jadidah; 15: Bitter Lakes; 16:Suez; 17: Al-Arish; 18: Sheikh zowayid; 19: Rafah;20: Fayoum; 21: Suhag; 22: Qena; 23: Luxor; 24:Edfu; 25: Aswan; 26: Jabal Elba.

109AMPHIBIANS OF EGYPT

MICHAEL et al., 1992; BAHA EL DIN, 2006);at Lake Burullus (Fig. 1, site 5) (SABER,2002); in newly-reclaimed areas in the west-ern coastal desert (SALEH, 1997) and inWestern Desert oases (BAHA EL DIN, 2006);the Suez Canal zone, and recently in Sinai20 km west of Al-Arish (Fig. 1, site 17)(IBRAHIM, 2001a).

Very common around freshwater irrigationcanals on the west bank of the Suez Canal fromPort Saïd (Fig. 1, site 11) to Suez (Fig. 1, site16), this toad is often heard calling in gardensand around houses. Following introduction ofwater from the River Nile it has also becomewidespread on the east bank of the Suez Canal,especially in green fields east of the Bitter Lakes(Fig. 1, site 15) that extend up to ten km intoSinai (IBRAHIM, 2013).

Bufotes boulengeri (Lataste, 1879). Localname: Dofda'a Khadra.

The Green Toad occurs mainly in north-ern Egypt, but is infrequently found fromRafah (Fig. 1, site 19) at the northeasternextremity of the country to As-Salloum (Fig.1, site 1) in the extreme west (BAHA EL DIN,2006). It has been recorded from LakeBurullus (Fig. 1, site 5); Fayoum (Fig. 1, site20); Alexandria and its environs (Fig. 1, site4); Burg Al-Arab (Fig. 1, site 3); and WesternDesert oases (FLOWER, 1933; MARX, 1968;MICHAEL et al., 1992; SALEH, 1997; SABER,2002: Annex 6). MARX (1968) reported it fromAl-Qantara (Fig. 1, site 12) and Anderson(1898) reported finding this species in Luxor,but there has been no record of this species inUpper Egypt since his report.

SALEH (1997) recorded this species fromthe Suez Canal zone but did not cite an exact

locality; occurrence in the Suez Canal zone isdoubtful. The only taxon of the familyBufonidae present on both sides of the SuezCanal is A. regularis (IBRAHIM, 2013), and A.regularis is not known to occur in sympatrywith B. boulengeri (BAHA EL DIN, 2006). Thelocal record from Shirbin (Fig. 1, site 9) inthe Nile Delta (MARX, 1968) is also incor-rect; this town has been visited many timessince, and no green toads were found.Amietophrynus regularis, along withPtychadena mascareniensis, is, however, foundthere (personal observation).

In North Sinai, B. boulengeri is common,and found in small bodies of water, ponds,and irrigating freshwater creeks in Al-Arish(Fig. 1, site 17), Sheikh zowayid (Fig. 1, site18), Rafah, and Sad Ar-Rawafa’a (HART,1891; SCHMIDT & MARX, 1956; WERNER,1982; GHOBASHI et al., 1990).

Duttaphrynus dodsoni Boulenger, 1895. Localname: Dofda'a Elba.

Dodson's Toad was first reported fromJabal (Mount) Elba (Fig. 1, site 26) at theextreme southeastern corner of Egypt(SCHMIDT & MARX, 1957). It is consideredto be confined to this area, but southernEgypt has not been thoroughly surveyed andthis toad may be found west of Jabal Elba atthe Sudanese border. BAHA EL DIN (2006)observed that toads often perch in high posi-tions on rocks and small boulders while look-ing for moving prey underneath. He also sug-gested that during long-lasting droughts theyprobably move to higher elevations wherethere is higher humidity, and that they can befound during winter and spring in or nearwells at night.

IBRAHIM110

Hyla savignyi Audouin, 1827. Local name:Dofda'a Ash-shajar.

I discovered Savigny's Treefrog in Egypt forthe first time in 1992 (BAHA EL DIN, 1994).This species was confined to local farms, espe-cially those near the beach, in Rafah (Fig. 1,site 19) at the Egypt-Israel border and inSheikh zowayid (Fig. 1, site 18) whereSavigny's Treefrogs were usually seen on treeson both banks of man-made canals (locallyknown as Thameela), and occasionally on theground near shallow bodies of water.

The treefrog in northern Sinai is confinedto an area not extending more than 20 kmwest of Rafah. Treefrogs are not found amongpeach (Prunus persica), almond (Amygdaliscommunis) or grape (Vitis vinifera) crops inRafah (personal observation) because thesecrops depend upon rainwater which is relative-ly scant. Recently, however, a large number ofdrip-system-irrigated farms and orchards hasbeen established from Rafah up to 10 kmsouth and west of the city. While areas of pipeleakage and small man-made irrigation poolsof varying size provide limited water resourcesfor treefrogs, populations are large enough thatlocal people are irritated by the noise made bycalling frogs. Vocalizations increased in someareas and decreased in others as I drove south-west of Rafah; frogs were numerous in man-darin (Citrus x nobilis) orchards which repre-sent almost 80% of these farms, and lessnumerous in olive (Olea europaea) and apple(Pyrus malus) orchards; olives and apples donot require as much water as mandarins.

I visited the agricultural project at Al-Kharrouba, about 15 km east of Al-Arish City(Fig. 1, site 17) in June 2009, and no treefrogswere seen despite the presence of water and

dense vegetation around both banks of the450-m man-made canal. The canal dependsupon a pump station which has been unusedand neglected for a relatively long time, andsalinity in the creek has increased to the pointthat it is no longer suitable for the frogs. Whileit has been assumed this frog might be foundin Al-Arish (BAHA EL DIN, 2006), the Al-Kharrouba area apparently acts as a barrier totreefrog distribution as extensive surveys fromAl-Kharrouba westward to Al-Arish did notproduce this species.

Destruction of habitat and urbanization,especially at the beach, do not allow thisspecies to spread west of Sheikh zowayid. Anadult treefrog captured from the village of Ar-Roudha, 50 km west of Al-Arish, is deposit-ed in the herpetological collection of zaranikprotectorate. The collector assured me thespecimen was captured in the village, but thetreefrog, which may have been introduced tothe area, no longer occurs there.

Pelophylax bedriagae (Camerano, 1882).Local name: Gazza'a Akhdar.

Currently recorded from the Nile Valley andDelta, extreme northeast Sinai, Fayoum (Fig. 1,site 20) and Luxor (Fig. 1, site 23) (BAHA EL

DIN, 2006), the Levant Green Frog was firstrecorded from Egypt when specimens werefound in Giza by MARX (1968). BAHA EL DIN

(2006) suggested that successive ecologicalchanges downstream from the high Aswan Dammay be related to the occurrence of P. bedriagaein Upper Egypt. It is a common species at LakeBurullus (Fig. 1, site 5) (SABER, 2002: Annex 6).

This species was collected for the firsttime from Rafah (Fig. 1, site 19), North Sinaiin 1987 (IBRAHIM, 2011). In Sinai, however,

111AMPHIBIANS OF EGYPT

P. bedriagae is currently on the verge of extir-pation. Once abundantly distributed inRafah and Sheikh zowayid (Fig. 1, site 18) inthe peninsula’s extreme northeast, it is nowrarely observed, even during the breeding sea-son (personal observation).

Levant Green Frogs were first observed inthe Suez Canal zone six km northwest ofIsmailia (Fig. 1, site 13), and a large numberwere heard vocalizing in natural swamps aboutthree km southwest of Serapeum village dur-ing June, 2008. According to local people,these swamps were not present 30 years ago.On the east bank of the Suez Canal, P. bedria-gae were first recorded from a dense reedassemblage in a small swamp five km north ofIsmailia East at Attaqaddom village (IBRAHIM,2011). No additional east-bank localities forthe species were listed (IBRAHIM, 2013).

This species is highly resistant to environ-mental pollution. In Ismailia Governorate, ithas been found in a heavily littered swamp pol-luted by organic waste (Fig. 2). Some pondsconsidered the main source of mosquito prolif-eration in Ferdan (about 10 km north ofIsmailia City) have been filled in recently.Disappearance of ponds and urbanization ofFerdan may have caused this frog’s decline.

Pelophylax saharicus (Boulenger, 1913). Localname: Gazza'a Sahrawy.

The Saharan Frog appears confined to theSiwa Oasis in the Western Desert (Fig. 1, site2) (BAHA EL DIN, 2006). It is expected, how-ever, that its range might extend further to thewest, possibly to the Egypt-Libya border. It is acommon frog; some individuals were capturedfrom Siwa for identification and released at thesite of capture during summer, 2007.

Ptychadena mascareniensis (Duméril and Bibron,1841). Local name: Gazza'a Mukhattat.

The Mascarene Ridged Frog (P. m. mas-careniensis) is widespread throughout the NileValley and Delta. Dense populations arefound in almost all Nile Delta Governorates,especially Dumyat, Ad-Daqahleyya, Al-Gharbeyya, Ash-Sharqeyya, Al-Menufeyya,and Al-Beheira. It is common in LakeBurullus (Fig. 1, site 5) (SABER, 2002: Annex6) and regularly observed in the small canalsirrigating cultivated fields (especially rice). Ithas spread upstream to Qena (Fig. 1, site 22),Edfu (Fig. 1, site 24), and Fayoum (Fig. 1, site20) (ANDERSON, 1898; FLOWER, 1933;MARX, 1968) and has been recorded inreclaimed desert areas irrigated with Nilewater (SALEH, 1997). This species is also well-known on the west bank of the Suez Canalaround Port Saïd (Fig. 1, site 11) and atFerdan and Al-Qantara West (Fig. 1, site 12)in Ismailia Governorate, extending southwestto near Suez (Fig. 1, site 16) (IBRAHIM, 2013).

For the first time in Sinai, specimens(one each) were recorded on local farms 17km south of Al-Arish (Fig. 1, site 17), and

Figure 2: A view of a polluted natural swamp southof Ismailia.

IBRAHIM112

from Sheikh zowayid (Fig. 1, site 18). It hasbeen suggested that these animals may havereached these areas accidentally via localtransport carrying fodder and other com-modities (IBRAHIM, 2001b). On the eastbank of the Suez Canal this species hasbecome common by following streams torecently cultivated lands east of Bitter Lakes(Fig. 1, site 15). Several frogs were observedand heard vocalizing in a pool alongside A.regularis at Meet Abul Koum Al Jadidah(Fig. 1, site 14) about seven km east of theSuez Canal (IBRAHIM, 2013). The localrecord of this species from Wadi Feiran,South Sinai, by SCHMIDT & MARX (1956) islikely to be erroneous and unreliablebecause this area is extremely arid and repre-sents unsuitable habitat for the species.

Ptychadena schillukorum (Werner, 1908).Local name: Gazza'a Sudani.

BAHA EL DIN (2005) reported the occur-rence of the Schilluk Ridged Frog in Egyptbased on two individuals, one from the west-ern margin of Lake Manzala (Fig. 1, site 10)and the other from Fayoum (Fig. 1, site 20).He provided an account for the EgyptianNile Delta population and discussed confu-sion with P. mascareniensis. I visited the west-ern area of Lake Manzala but could not locatethis species. In Dumyat (Fig. 1, site 7), Ras ElBarr area (Fig. 1, site 6), and Faraskur (Fig. 1,site 8) only three amphibian species areknown, A. regularis, P. mascareniensis, andP. bedriagae (Gamal Abdulla, personal com-munication). Intensive search is needed tolocate this species in view of the fact that it islocalized to small areas and not well-knownin Egypt (BAHA EL DIN, 2006).

THREATS, DECLINE AND CONSERVATION

Ancient Egyptians have records of "thefrog", finding it in shallow bodies of wateraround the River Nile. Toads, according torecords from the Pharaohs, were so abun-dant that they were called "Khefen" (onehundred thousand) and the ancientEgyptians painted images of toads on thewalls of temples and considered toads to besacred. It is possible that, because of theseimages and a highly-visible productivity, thefrog became a powerful symbol of self pro-liferation and regeneration of life.

The croaking of toads has always been afamiliar sound to Egyptians. Two decades ago,toads were seen throughout the length of theRiver Nile and its Delta. Choruses were heardwherever a source of water was found, much tothe annoyance of the people living nearby.Recently, however, decrease in population num-bers has become evident even to the public, andthe sound has become less intensive than before.The reasons for declining amphibian popula-tions in Egypt can be summarized as follows:

Over-harvesting

One of the major threats confronting A. reg-ularis and P. bedriagae is annual harvesting forteaching, research, and exportation. Up to twomillion A. regularis are taken from the wild eachyear to meet the needs of Egyptian universitiesand scientific research centres. Unfortunately,this toad is still used for dissection and animaldealers collect both adult and young toads;many toads, especially juveniles, die from poorhandling and storage. Animal dealers who pro-vide Egyptian universities with toads empha-sized that there is a remarkable decline in

113AMPHIBIANS OF EGYPT

amphibian populations, and in A. regularis inparticular (personal observation). It is currentlydifficult to meet the needs of all universities andresearch agencies. Rashed Refaee, an animaldealer supplying Cairo University, stated thatten years ago he used to collect 1000 frogs in onehour; today four people now spend four days tocollect 140 individuals. That dealer was supply-ing the University with approximately 250,000toads per year collected over a nine-month peri-od that included the mating season.

A large number of Levant Green Frogs,P. bedriagae, is exported each year to countrieswhere it is used for food. These frogs wereremoved from the wild, mostly from LakeManzala and Lake Burullus (Fig. 1, sites 10and 5, respectively), but substantial quantitieswere also collected from Nile creeks, and fromirrigating canals in Upper Egypt (Suhag, Qena[Fig. 1, sites 21 and 22, respectively]). Figure 3clearly shows variation in quantities exportedbetween 2000 and 2009, suggesting that frognumbers have likely declined due to over har-vesting. No aquaculture for breeding frogs is

known in Egypt, but there are man-madepools used for maintaining frogs until readyfor export.

One frog dealer at Lake Manzala withwhom I spoke emphasized that all sizes offrogs, including juveniles, are removed fromthe Lake between September and June; whilehunters used to catch up to two metric tons offrogs from the Lake in one day during thebreeding season, it is now difficult to catch twokilograms in one day. He also stated that breed-ing these frogs in captivity was once attempted,but the attempt failed because the frogsdecreased in size and eventually died. Animaldealers in the Suez Canal zone similarly collecta large number of frogs from natural habitats.

All anurans listed above are species of "LeastConcern" according to the IUCN (STUART etal., 2008), and none is locally threatened orendangered according to CITES. While thesespecies may be classed as "Least Concern" onthe scale of all of Egypt, many local popula-tions are severely threatened through overex-ploitation or other anthropogenic effects (such

Figure 3: Estimate of the number of Pelophylax bedriagae individuals removed from natural habitats forexportation between 2000 and 2009 (data courtesy of Ragi Toma).

IBRAHIM114

as filling in ponds). While no studies onamphibian conservation have evaluated the realdanger and challenges these species face, theEgyptian Secretary of the Environment (2February 2010) approved a decree prohibitingexportation of Levant Green Frogs (P. bedria-gae) taken from natural habitats for a period ofat least three years to allow the species to recov-er and reproduce. Only farm-raised frogs maybe exploited after conclusion of the specifiedthree-year period and if, after three years, hunt-ing is allowed, it will not be permitted duringthe reproductive season (March to July). Thelocal CITES committee had issued a similardecree on 15 October 2009.

In addition, the Secretary of theEnvironment has requested that the Secretaryof Higher Education and Scientific Researchevaluate reducing the quantity of Egyptiantoads (A. regularis) used for dissection inEgyptian universities and scientific agencies.

Destruction of Habitat

Expansion of urbanization has causedsevere degradation of amphibian habitats, espe-cially at breeding sites. In the Nile Delta a vastarea of green fields has been devastated becauseof human expansion at the expense of watersources that originally created breeding habitatfor frogs. All anurans in the Delta are affected,particularly A. regularis and P. mascareniensis.The same situation is evident along the westernportion of the Mediterranean coast, whereextensive human expansion, road projects, andother anthropocentric use of land has occurredduring the past few decades, and destruction ofshallow bodies of fresh water has damagedhabitat and caused extirpation of populationsof frogs in many places.

The dramatic decline of P. bedriagae innorthern Sinai can be attributed to habitatdestruction due to change from furrow-irri-gation to drip irrigation. Furrow-irrigationwas based on the establishment of permanentunderground sources (man-made canals) thatallowed frogs to live and reproduce. Thesecanals have been neglected and most haveeither dried up or become salty while othershave been filled in. Since P. bedriagae is high-ly aquatic, it gradually disappeared, and H.savignyi is no longer observed in Rafah Cityfor the same reason. No treefrogs wereobserved on farms near the beach or close tothe border and, during summer 2009, veryfew individuals of P. bedriagae or H. savignyiwere observed in an irrigating canal about 7km south of Rafah or in a small canal atSheikh zowayid. Frogs in these canals arethreatened as this habitat is expected to dryup because there is no more undergroundwater feeding it. Pelophylax bedriagae is alsothreatened by localized loss of habitatthrough drainage of wetlands along the banksof the River Nile.

Predators

The invasive red swamp crayfish(Procambarus clarkii) was unwisely and irrespon-sibly introduced to the River Nile at Giza in1983 and represents a serious threat to anurans(A. regularis in particular) within the river sys-tem. This New-World crayfish, free from naturalpredators in Egypt, has spread rapidly through-out the Nile Valley from Dumyat to Aswan andsmall numbers have been recently recorded innorthern Sinai (IBRAHIM & KHALIL, 2009).While this crayfish feeds mainly on fishes, snails,and plants in its natural habitat, P. clarkii sub-

115AMPHIBIANS OF EGYPT

stantially reduced larval survival in all anuranspecies in a southwest Iberian population towhich it had been introduced in 1973 (CRUz &REBELO, 2005).

The obvious decline in frog populationscoincident with widespread distribution ofthese crayfish suggests that this predator playsa key role in Egypt as well, but as yet therehas been no direct evidence of predationrecorded. One animal dealer with whom Ispoke, however, stated that he had to travel toUpper Egypt to collect toads because (hebelieves) crayfish have greatly reduced toadpopulations in the Nile Delta. Crayfish areconsiderably less expensive than shrimp andred lobster and a great effort is being made tocontrol this invasive animal by catching andselling large quantities to Egyptian and inter-national markets, thus attempting to mini-mize its effect on fish and amphibians(Magdy Khalil, personal communication).

Tadpoles and frogs are also importantfood items for some snakes, such as the DicedWater Snake, Natrix tessellata (SALEH, 1997),and large lizards, such as the Nile Monitor,Varanus niloticus (LENz, 2004), inhabitingEgyptian freshwater systems.

Overuse of Pesticides

Pesticides are used routinely and exces-sively. This excessive use has contributed sub-stantially to contamination of the wetlands inwhich frogs breed, and may lead to extensivedestruction of eggs and tadpoles. Puddles andswamps are normally sprayed with pesticidesand petroleum hydrocarbons (e.g. keroseneand crude oil) to control mosquitoes and fliesand, thus, anurans and their eggs are likelyaffected negatively.

Road-Kills

During spring and summer several deadanurans are seen on main highways and con-necting roads passing through villages andgreen fields (personal observation).

Acknowledgement

I thank Dr. Nabil Sedqi, undersecretary ofagriculture for Egyptian zoo and Wildlife,Dr. Ragi Toma, manager of wildlife, for pro-viding data on frogs exported from Egyptover the past ten years, and Dr. Adel El-Gazzar for identifying plants and reviewingan early draft of this manuscript. I am grate-ful to Mr. Sayed zaina for accompanying meon several field trips to the Nile Delta.

REFERENCES

ANDERSON, J. (1898). Zoology of Egypt, VolumeFirst, Reptilia and Batrachia. BernardQuaritch, London, United Kingdom.

ANDRE, A. (1909). Bufo vittatus Blgr. inägypten. Blätter für Aquarien - undTerrarienkunde 20: 642-625.

BAHA EL DIN, S.M. (1994). A contributionto the herpetology of Sinai. TheHerpetological Society Bulletin 48: 18-27.

BAHA EL DIN, S.M. (2005). On the occurrenceof Ptychadena schillukorum (Werner 1907) inEgypt. Herpetozoa 18: 178-181.

BAHA EL DIN, S.M. (2006). A Guide to theReptiles and Amphibians of Egypt. TheAmerican University in Cairo Press,Cairo, Egypt.

CRUz, M.J & REBELO, R. (2005).Vulnerability of southwest Iberianamphibians to an introduced crayfish,

IBRAHIM116

Procambarus clarkii. Amphibia-Reptilia26: 293-303.

FLOWER, S.S. (1933). Notes on the recentreptiles and amphibians of Egypt, with alist of the species recorded from that king-dom. Proceedings of the Zoological Societyof London 1933: 735-851.

FROST, D.R. (2013). Amphibian Species of theWorld: an Online reference, Version 5.6. (9January 2013). American Museum ofNatural History, New york. Available athttp://research.amnh.org/vz/herpetolo-gy/amphibia/index.html. Retrieved on12/14/2013.

GHOBASHI, A.; ABU EGLA, M.; TANTAWy, H.& IBRAHIM, A. (1990). Herpetofaunalsurvey of Al-Arish area (North Sinai),with special reference to their habitat andseasonal distribution. Proceedings of theZoological Society, Arab Republic of Egypt21: 273-290.

HART, H.C. (1891). Some account of thefauna and flora of Sinai, Petra, and WadiArabah. Alexander P. Watt (for theCommittee of the Palestine ExplorationFund), London, United Kingdom.

IBRAHIM, A.A. (2001a). Geographic distribution.Bufo regularis. Herpetological Review 32: 112.

IBRAHIM, A.A. (2001b). Geographic distribu-tion. Ptychadena mascareniensis.Herpetological Review 32: 115.

IBRAHIM, A.A. (2011). First record ofPelophylax bedriagae (Amphibia: Ranidae)in the Suez Canal area, Egypt. HerpetologyNotes 4: 331-332.

IBRAHIM, A. (2013). The herpetology of the SuezCanal zone. Vertebrate Zoology 63: 87-110.

IBRAHIM, A.M. & KHALIL, M.T. (2009). Thered swamp crayfish in Egypt (A fast spreadingfreshwater invasive crustacean). Centre of

Research and studies of protectorates, AinShams University, Cairo, Egypt.

LENz, S. (2004). Varanus niloticus, In E.Pianka, D. King & R. King (eds.)Varanoid Lizards of the World. IndianaUniversity Press, Bloomington, Indiana,USA, pp. 133-138.

MARX, H. (1968). Checklist of the Reptiles andAmphibians of Egypt. Special Publication,United States Naval Medical ResearchUnit Number Three, Cairo, Egypt.

MICHAEL, M.I.; DEKINESH, S.I. & ALy, A.H.(1992). The herpetofauna of the northwestern coast of Egypt. Journal of theEgyptian German Society of Zoology(Comparative Physiology) 8: 81-99.

SABER, S. (2002). Amphibians and Reptiles &Reptile and Amphibian species recordedfrom Burullus Protected Area. In M. Kassas(ed) Management plan for Burullus ProtectedArea. Med Wet Coast, Global EnvironmentFacility & Egyptian Environment AffairsAgency, Cairo, Egypt, pp. 37-38 & Annex6, p 112. Available at http://vinc.s.free.fr/article.php3?id_article=159. Accessed on02/03/2014.

SALEH, M.A. (1997). Amphibians and Reptilesof Egypt. Publications of NationalBiodiversity Unit No. 6, Cairo, Egypt.

SCHMIDT, K.P. & MARX, H. (1956). TheHerpetology of Sinai. Fieldiana Zoology39: 21-40.

SCHMIDT, K.P. & MARX, H. (1957). Resultsof the NAMRU-3 Southeastern EgyptExpedition, 1954. Bulletin of theZoological Society of Egypt 13: 16-28.

STUART, S.N.; HOFFMANN, M.; CHANSON,J.S.; COX, N.A.; BERRIDGE, R.J.; RAMANI,P. & yOUNG, B.E. (2008). ThreatenedAmphibians of the World. IUCN, Gland,

117AMPHIBIANS OF EGYPT

Switzerland & Conservation International,Arlington, Virginia, USA.

Werner, y.L. (1982). Herpetofaunal survey ofthe Sinai peninsula (1967-77), withemphasis on the Saharan sand communi-

ty. In N.J. Scott, Jr (ed.) HerpetologicalCommunities. Wildlife Research Report13, United States Department of theInterior, Fish and Wildlife Service,Washington DC, USA, pp. 153-161.

118

119

PUBLICATION GUIDELINES

AIMS AND SCOPEBasic and Applied Herpetology (B&AH) is the official journal of the Spanish Herpetological

Society (AHE). B&AH publishes original research papers dealing with any aspect of amphibians andreptiles worldwide. Updated reviews about especially interesting issues and book reviews will also beaccepted if they fit with the general purpose of the journal. There is no maximum limit to the lengthof the papers submitted although authors can be requested to shorten their paper if necessary. Authorscan submit short notes if these are organized around hypotheses appropriately argued and analysedquantitatively. The editors reserve the right to publish the accepted manuscripts as original researchpapers or as short notes at their convenience, regardless of the format of the original manuscript. B&AHwill not accept distribution notes or punctual or sporadic observations. This kind of papers must besubmitted to the Boletín de la Asociación Herpetológica Española

http://www.herpetologica.es/publicaciones/boletin-de-la-asociacion-herpetologica-espanolaSubmission of a manuscript implies, without further acceptance by authors, that the work

described has not been published before (except in the form of an abstract), that it has not been sub-mitted or published elsewhere, and that its content and publication in B&AH has been approved byall co-authors. By submitting a manuscript, the authors agree that the copyright for their article istransferred to the AHE if and when the article is accepted for publication. The copyright covers theexclusive and unlimited rights to reproduce and distribute the article in any form of reproduction.

To minimize turnaround time, authors are encouraged to follow the instructions below.Manuscripts not in the correct format may be returned to the authors for modification.Instructions to authors are posted on the web page of B&AH

http://bah.herpetologica.es

MANUSCRIPT SUBMISSIONManuscripts should be submitted preferably as e-mail attachments to the journal address:

[email protected] will be prepared using word-processing software (preferably MS Word). Please

do not submit material as PDF files.Although less recommendable, manuscripts can also be sent through postal mail in a mass

storage device (CD-ROM, pen-drive, etc.) to one of the following addresses:Manuel Ortiz Santaliestra. Editor, Basic and Applied Herpetology. Institute forEnvironmental Sciences, University of Koblenz-Landau. Fortstrasse 7, Building C1, Room101b. 76829 Landau (Germany).Ana Perera Leg. Editor, Basic and Applied Herpetology. CIBIO. Campus Agrário de Vairão.Rua Padre Armando Quintas-Castro 4485-661 Vairão (Portugal). Postal mail from Spain or Portugal should be addressed to the editor in your own country. Mail from

the rest of countries should be addressed to M. Ortiz (for papers concerning amphibians) or A. Perera(for papers concerning reptiles). Studies with a general subject or dealing with both taxa can be sent toeither editor. It is not necessary to send a hard copy of the manuscript. The storage device must containonly the files corresponding to the submitted paper, without duplicate files or different versions of thesame file. Devices will not be returned to the authors regardless of the acceptance or rejection of the paper.

For the original submission, include figures and tables in the same file as the main text of themanuscript. If high-resolution figures are necessary, send them as separate files once the paper has

120

been accepted for publication and potential corrections of such figures has been introduced. Originalfiles containing figures in the software they were created must be sent to the journal upon acceptanceof the paper for publication. Do not submit original high-resolution figures with the initial submis-sion unless the originals must be seen by the editors and the reviewers.

With the manuscript submission, authors are requested to suggest the names and contact infor-mation of at least three qualified reviewers. All the manuscripts will be evaluated by at least two inde-pendent reviewers. The editors reserve the right to choose reviewers other than, or in addition to,those suggested by the authors. Duration of the review process will vary depending on the numberof manuscripts in edition, the availability of reviewers and the time needed by reviewers and editors.Nevertheless, decisions are expected to be communicated within a 90-day period after manuscriptsubmission. The editors’ decision will be based on the reviewers’ evaluations. There are three cate-gories of response: accept after minor revision, accept after major revision, and reject. If a paper isrejected because it requires profound changes, but its content is considered of interest by the editors,authors will be encouraged to resubmit a corrected version. In those cases, the resubmittedmanuscript will be evaluated again by reviewers. Authors must include with their revised manuscriptsa rebuttal letter including a detailed explanation of how they have dealt with each of the reviewers’and editors’ comments. Revised manuscripts should be returned to the editors as soon as possible,always within a maximum time of 60 days. After that time, revised manuscripts can be considered anew submission and sent out for review.

GALLEy PROOFS AND ADVANCED ONLINE PUBLICATIONWhen a manuscript is accepted, the provisional abstract and article information (title,

authors and affiliations) will be published on the B&AH website and a digital object identifi-er (DOI) will be assigned. In parallel, a galley proof will be elaborated and sent to the authors,who should return it back corrected as soon as possible. Corrections in proofs should be lim-ited to typographical errors. The costs of any other changes will be charged to the authors.Corrected proofs will be published on the B&AH website and will be available open access.Authors will receive a PDF copy of the article in its final version for personal use.

FORMAT AND STyLEB&AH publishes papers in English or Spanish. However, manuscripts in English will be

given preference in the review and edition process. Manuscripts in English may include aSpanish version of the abstract and key words. Such abstract will be added by the editors if itis not included in the original version of the manuscript. Manuscripts in Spanish must includean English version of the abstract and key words. Moreover, authors can include, at their con-venience, an additional translation of the abstract and key words to one of the following lan-guages: Portuguese, French, German or Italian.

Manuscripts must be typed double-spaced, aligned left (not justified), and using a normal font(Times New Roman) of size 12. All paragraphs but the abstracts must be indented (1.25 cm).Manuscripts should have line numbers (continuous for the whole document), page numbers andwide margins (2.5 cm) throughout, including tables and figures. Use consistent punctuation; insertonly a single space between words and after punctuation. Type text without end-of-line hyphenation,except for compound words. Use italics only for scientific names of genera and species. Numbers oneto nine should be written in full in the text unless they precede units of measurement (5 mm), aredesignators (experiment 4), or are separated by a dash (2-3 scales). Higher numbers should be writ-

121

ten in Arabic numerals except at the beginning of a sentence. Close up digit numbers except fornumbers of five or more digits, in which a space should be used (4000, 45 000). Do not use thou-sands separator. Measurement units and their abbreviations should conform to those of the SI(Système International d’Unités). For significance tests, give the name of the test followed by a colon,the test statistic and its value, the degrees of freedom (as a subscript to the test statistic) or sample size(as N = x) whichever is the convention for the test, and the probability value (ANOVA: F3,8 = 9.733;P = 0.005). The name of the test can be omitted if can be inferred from the context (“The ANOVArevealed that differences were significant (F3,8 = 9.733; P = 0.005)”). Probability values will be quot-ed preferably as exact values (P = 0.018), or as below the pre-established threshold significance value(P < 0.05, P < 0.001). Use a space before and after each symbol or mathematical operator (3.54 ±0.17). Do not use a space after numbers followed by an abbreviator (5%, 24ºC).

MANUSCRIPT SECTIONSManuscripts should be arranged as follows: title page, abstract page(s), text, tables, figure

captions and figures. Each section will include the following information: Title page:• Title: short and informative. In bold characters.• Names and surnames of the authors (without initials).• Affiliations: multiple author names should be matched to affiliations by superscript numbers.• Correspondence: full postal address (including telephone and fax numbers) and e-mail addressof the corresponding author, who should be indicated with an asterisk in the list of authors.• Running title: not exceeding 50 characters. • Word count of the text (including references and excluding tables, figure captions and fig-ures), number of tables and number of figures in the manuscript.Abstract page(s):• Main abstract: in the manuscript language, no more than 250 words (no more than 150words for short notes).• Main key words: 3-6 key words arranged in alphabetical order in the manuscript lan-guage, separated by semicolons, and preceded by the term Key words followed by a colon.In addition, abstract page(s) should include:

a) For manuscripts in English:• Title in Spanish (optional). In bold characters.• Abstract in Spanish (optional): no more than 250 words (no more than 150 words forshort notes).• Key words in Spanish (optional): 3-6 key words arranged in alphabetical order, sepa-rated by semicolons, and preceded by the term Key words followed by a colon.• Title in Portuguese, French, German or Italian (optional). In bold characters.• Abstract in Portuguese, French, German or Italian (optional): no more than 250words (no more than 150 words for short notes).• Key words in Portuguese, French, German or Italian (optional): 3-6 key words arranged in alpha-betical order, separated by semicolons, and preceded by the term Key words followed by a colon.

b) For manuscripts in Spanish:• Title in English (mandatory). In bold characters.• Abstract in English (mandatory): no more than 250 words (no more than 150 wordsfor short notes).

122

• Key words in English (mandatory): 3-6 key words arranged in alphabetical order, sep-arated by semicolons, and preceded by the term Key words followed by a colon.• Title in Portuguese, French, German or Italian (optional). In bold characters.• Abstract in Portuguese, French, German or Italian (optional): no more than 250words (no more than 150 words for short notes).• Key words in Portuguese, French, German or Italian (optional): 3-6 key wordsarranged in alphabetical order, separated by semicolons, and preceded by the term Keywords followed by a colon.

Text, with the following sections for original research papers: • Introduction: without heading. Must be clear and concise, including a justification forthe study and a review of the state-of-the-art of the subject. Authors are encouraged to pre-sent the objectives of the study at the end of the introduction. • Materials and Methods: authors must include all the information necessary to replicatethe study. When presenting the procedures for data analysis, authors are recommended tostate the probability values considered as significant (usually P < 0.05).• Results: must be clear and concise, without repetition of the results shown in tablesand figures.• Discussion: do not repeat the results but explore their significance. Nevertheless, it is rec-ommendable to start the discussion with a brief summary of the more relevant results.•Acknowledgements (optional): limit wording, for example:

o“J. McAllister and C. Smith helped during the study” instead of “We thank to JamesMcAllister for his participation in the experimental design, and to Cathy Smith for herhelp during field work”o“Financed by the Regional Government (ref ###)” instead of “Thanks to the RegionalGovernment for financing the study through the project ###”

• References (see below)Introduction should begin on the first line of the first page of the text, without heading.

Write main headings for the rest of the sections, with the exception of acknowledgement, insmall caps (MATERIALS AND METHODS, RESULTS, DISCUSSION, REFERENCES) on a separate lineand keeping an empty line right before and after each heading. In addition to main headings,authors can use subheadings that will be written in bold italics (e.g. Experimental design, Dataanalysis), on a separate line and keeping an empty line right before and after each subheading.Acknowledgements should be placed between the discussion and the references. The heading(Acknowledgement) will be written in italics, on a separate line and keeping an empty line rightbefore and after.

Authors submitting reviews can replace the main headings corresponding to Materials andMethods, Results and Discussion by different headings at their convenience, using small capsfor main headings and bold italics for subheadings.

Short notes will be structured and arranged as original research papers, although headingsof the sections Materials and Methods, Results and Discussion will be omitted.

Tables: should be numbered consecutively in Arabic numerals arranged as they are quotedin the text. Each table should be typed on a separate page together with a clear descriptive leg-end. Tables should not include vertical rules, and the main body of the table should not con-tain horizontal rules. Keep tables as simple as possible and make them understandable with-out reference to the text.

123

Figure captions: should be typed (double-spaced) and grouped together on a page separatefrom the figures. They should explain with clarity all the elements in the figure. Make figuresunderstandable without reference to the text.

Figures: illustrations, whether maps, drawings, diagrams or photographs, should be kept tothe minimum needed to clarify the text. They should be numbered consecutively in Arabicnumerals arranged as they are quoted in the text and submitted on separate pages (one figureper page), each bearing the figure number and, if desired (e.g. in photographs), the name(s) ofthe figure author(s). If good-quality versions of figures are necessary to be examined during thereview process, authors will include such version in the original submission, as separate files,according to the instructions given in the next paragraph. In the text, ‘Figure’ should be abbre-viated (Fig. 2) except when beginning a sentence. Authors are encouraged to use a sans seriffont (Helvetica, Arial, Geneva) for all text associated with figures. The labelling must be clear-ly legible and stand reduction to the final print size. Include a scale of distance or dimensionwhere appropriate.

Once the manuscript is accepted for publication, good-quality versions of figures shouldbe submitted in their original format with a minimum resolution of 300 dpi. For figures con-sisting in a picture modified with symbols, text, etc., authors will be requested to send the orig-inal, unmodified, good-quality picture once the manuscript is accepted. For figures not origi-nally in a digital format (photographs, slides, drawings) authors are recommended to use adedicated scanner or send the original to the editors by postal mail. In these cases, the origi-nals will be returned to authors after digitalization. Given that B&AH assumes the costs ofpublishing colour prints and slides, these will be accepted only when they are strictly neces-sary at the editors’ discretion. In some cases, colour figures can be accepted only for the digi-tal version, being displayed in greyscale format in the printed version.

REREFENCESFor references in the text give full surnames of the first author followed by the publica-

tion year and separated by a comma (Pleguezuelos, 1997). For papers with two authors, usethe term “&” to separate surnames (Semlitsch & Bodie, 2003). Papers with three or moreauthors will be quoted with the surname of the first author followed by ‘et al.’ (note italics)(Stuart et al., 2004). To distinguish between two papers by the same author(s) in the sameyear use lower-case letters (a,b) after the year, without space, arranged in alphabetical orderas the references are quoted in the text (Harris et al., 2004a,b). List multiple citations inchronological order, using alphabetical order for citations within the same year. Separatecitations with semicolons (Tyler, 1991; Wake, 1991; Blaustein et al., 1994a,b; Stuart et al.,2004). If the citation is part of the sentence, move the surname(s) of the author(s) out ofthe brackets and delete the comma.

“As pointed by Pleguezuelos (1997)”“Blaustein et al. (1994a) reviewed the situation of amphibians”The reference list should include all and only the references mentioned in the text, tables

and figures. Cite references in the reference list in alphabetical order according to the authors'surnames. Multiple citations for the same author should be organized as follows: single cita-tions first (in chronological order), two-author citations second (in alphabetical order), threeor more authors third (in chronological order). Spell out (i.e. do not abbreviate) the names ofall journals. The references should conform to the following formats:

124

Articles in periodicals:• Stuart, S.N.; Chanson, J.S.; Cox, N.A.; young, B.E.; Rodrigues, A.S.L.; Fishman, D.L.& Waller, R.W. (2004). Status and trends of amphibian declines and extinctions world-wide. Science 306: 1783-1786.• Wiens, J.J. & Penkrot, T.A. (2002). Delimiting species using DNA and morphological varia-tion and discordant species limits in spiny lizards (Sceloporus). Systematic Biology 51: 69-91.Books:• Dodd, Jr., C.K. (ed.) (2009). Amphibian Ecology and Conservation. A Handbook of Techniques.Oxford University Press, Oxford.• Vitt, L.J. & Caldwell, J.P. (2009). Herpetology: An Introductory Biology of Amphibians andReptiles, 3rd ed. Academic Press, Burlington, Massachusetts.Book chapters:• King, R.B. (2009). Population and conservation genetics, In S.J. Mullin & R.A. Seigel (eds.)Snakes: Ecology and Conservation. Cornell University Press, Ithaca, New york, pp. 78-122.Web pages (authors are recommended to keep the use of web pages to a minimum; use peer-

reviewed literature instead when possible):• IUCN (2010). The IUCN Red List of Threatened Species, v. 2010.3. International Union forNature Conservation and Natural Resources, Gland, Switzerland. Available at http://www.iuc-nredlist.org/. Retrieved on 10/31/2010.

SUPPORTING MATERIALAuthors can submit with their manuscripts supporting material related to the work (additional

tables and figures, detailed protocols, data logs, audio and video recordings, etc.). The supportingmaterial will be uploaded to the online site of B&AH with a reference code that will be used to quotesuch material in the final version of the article. In the initial version of the manuscript, supportingmaterial should be quoted as “SM” followed by a number according to the same format as for tablesand figures. Supporting material must be submitted as independent files. Name each file with thecode used in the initial version of the manuscript (SM1, SM2, etc.). Authors may also refer to sup-porting material available from a different online site (e.g. GenBank, MorphoBank), in which casethe exact access reference will be indicated in the final version of the article.

BIOETHICAL CONSIDERATIONSBecause right animal use and care is an area of major concern to the AHE, authors must guaran-

tee that all animals used for research purposes are treated ethically and in accordance with the laws andregulations established by governmental authorities and bioethics committees of each institution.Therefore, authors are recommended to state in the Acknowledgement section that they have followedthe corresponding regulation and legislation on animal care. Authors should cite in this section theinformation regarding collection permits and experimental protocols approved by bioethics or animalcare committees. Editors might request from authors as much information as they consider necessaryto confirm the fulfilment of such premises. Failure to comply with these bioethical principles will sup-pose immediate rejection of the article, regardless of the reviewers’ recommendation.

Las normas de publicación en castellano están disponibles para su consultaen la página web de Basic and Applied Herpetology

(http://bah.herpetologica.es/)

©

On behalf of the Spanish Herpetological Society, the editorial board of Basic and AppliedHerpetology wants to acknowledge the work of the following experts who have worked asmanuscript reviewers for the elaboration of the present volume (in alphabetical order):

Jihène Ben Hassine (Tunis-El Manar University, Tunisia)Lior Blank (University of Haifa, Israel)José Carlos Brito (CIBIO-Universidade de Porto, Portugal)Pierre-André Crochet (Centre d'Ecologie Fonctionnelle et Evolutive-CNRS, France)El Hassan El Mouden (Université Cadi Ayyad, Morocco)Soumia Fahd (Université Abdelmalek Essaddi, Morocco)Sarig Gafny (Ruppin Academic Center, Israel)Tarek Bashir Jdeidi (Tripoli University)Fernando Martínez-Freiría (CIBIO-Universidade de Porto, Portugal)Daniele Salvi (CIBIO-Universidade de Porto, Portugal)Boudjéma Samraoui (University of Guelma, Algeria)Neftalí Sillero (CICGE-Universidade de Porto, Portugal)Roberto Sindaco (Istituto per le Piante da Legno e l'Ambiente, Italy)Yehudah Leopold Werner (Hebrew University of Jerusalem, Israel)

BASIC & APPLIED HERPETOLOGYREVISTA ESPAÑOLA DE HERPETOLOGÍA

AHE 2013