13
Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya Putra 1 , Sujoko Sumaryono 2 , Sri Suning Kusumawardani 2 1 Student at Department of Electrical Engineering and Information Technology, UGM 2 Lecturer at Department of Electrical Engineering and Information Technology, UGM Jl. Grafika No. 2, Kampus UGM Yogyakarta, Indonesia 55281 [email protected], [email protected], [email protected] Abstract—The high bit rate 802.11n consumes more power compared to other 802.11 modes during data transmission, reception, and idle (not transmitting or receiving high volume data) [1][2] and may lead to a shorter battery life in mobile devices [3]. This study investigates the transmit, receive, and idle energy consumption of 802.11 modes then forms a dynamic 802.11 mode scheme that uses different energy saving modes for different STA (Wireless Station) operations. The dynamic scheme energy consumption was compared against static schemes using a test bed that realizes seamless data communication during mode transitions. The results show that 802.11n is the most energy efficient mode to use in transmissions and receptions whereas 802.11g is the most energy efficient to use while idle. Therefore, the 802.11g-802.11n-802.11g dynamic mode scheme was formed and it was proven to be the most energy efficient scheme in ’30-second idle – 100 MB transmit – idle’ experiments whereas the static 802.11g scheme was proven to be the most energy efficient scheme in ’30-second idle – 100 MB receive – idle’ experiments. Keywords-STA energy consumption, STA power consumption, 802.11 mode, bit-rate, Mann-Whitney U I. INTRODUCTION Nowadays, the use of WLANs for high quality video streaming and large file transfer has increased. As a result, higher bit-rate wireless connections are required to enable fast data transfer. To achieve higher bit-rates, the IEEE 802.11n standard can be used in APs (Access Points) and STAs (Wireless Stations) [4]. However, the 802.11n standard consumes more power compared to other 802.11 modes during data transmission and idle [1][2]. The excess of power consumption in STAs due to 802.11n usage during idle conditions will lead to a shorter battery life [3]. A study by Putra has proposed the use of 802.11n only when the transmission of high volume data takes place and 802.11g when AP enters idle condition [1]. However, Putra’s research did not incorporate the validation of the 802.11 modes energy consumption data significance using statistical calculations and did not implement seamless data communication during 802.11 mode transitions resulting in a connection termination during mode transitions. Furthermore, the power consumption of STAs was also not considered yet. Therefore, it is important to validate the significance between STAs’ 802.11 modes energy consumption data and realize seamless data communication when mode transitions occur. Based on a white paper by Texas Instruments that describes the low-power advantage of 802.11a/g compared to 802.11b, this study considers the bit-rate of every 802.11 mode as an important factor in energy consumption. The advantage of 802.11a/g is its high bit rate (up to 54 Mbps) while 802.11b has a bit-rate only limited to 11 Mbps [5]. The higher bit-rate of 802.11a/g is what causes the data transmission time for a certain amount of bytes to become shorter thus more energy is saved. This research involved measurements of STA current consumption during transmission, reception, and idle. Current values were used in power and energy calculations. The energy calculation results of every mode were tested for significance against the other modes’ using the Mann-Whitney U-test in SPSS. The Mann-Whitney U-Test is a nonparametric statistical test for comparing two unrelated and independent variables therefore it was used in this study [6]. II. RESEARCH METHOD To implement the test bed used in this study, the following hardware are used: A computer capable of running Parallels Desktop 6 virtualization software with two Ubuntu 11.10 operating systems as guest operating systems (one functions as the Linux Server while the other as the Linux Client). Three PCI MZK-RP150N USB powered 802.11b/g/n APs. Three TP-LINK TL-WN7200ND 802.11b/g/n STAs (USB Wireless Adapters). Two USB hubs (one with an external voltage source via AC adapter). A Buffalo WHR-HP-G300N, which functions as a router. A digital multi meter capable of measuring current up to 10 A. Besides the hardware, several software programs are used to implement the test bed in this study: The bwm-ng program, which functions as a bit- rate usage detector in the Linux Client [7]. ISSN: 2088-6578 Yogyakarta, 12 July 2012 CITEE 2012 240 DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter

Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control

Bachelor Thesis Paper

Ramadhan Praditya Putra1, Sujoko Sumaryono2, Sri Suning Kusumawardani2 1Student at Department of Electrical Engineering and Information Technology, UGM

2Lecturer at Department of Electrical Engineering and Information Technology, UGM Jl. Grafika No. 2, Kampus UGM Yogyakarta, Indonesia 55281

[email protected], [email protected], [email protected]

Abstract—The high bit rate 802.11n consumes more power compared to other 802.11 modes during data transmission, reception, and idle (not transmitting or receiving high volume data) [1][2] and may lead to a shorter battery life in mobile devices [3]. This study investigates the transmit, receive, and idle energy consumption of 802.11 modes then forms a dynamic 802.11 mode scheme that uses different energy saving modes for different STA (Wireless Station) operations. The dynamic scheme energy consumption was compared against static schemes using a test bed that realizes seamless data communication during mode transitions. The results show that 802.11n is the most energy efficient mode to use in transmissions and receptions whereas 802.11g is the most energy efficient to use while idle. Therefore, the 802.11g-802.11n-802.11g dynamic mode scheme was formed and it was proven to be the most energy efficient scheme in ’30-second idle – 100 MB transmit – idle’ experiments whereas the static 802.11g scheme was proven to be the most energy efficient scheme in ’30-second idle – 100 MB receive – idle’ experiments.

Keywords-STA energy consumption, STA power consumption, 802.11 mode, bit-rate, Mann-Whitney U

I. INTRODUCTION Nowadays, the use of WLANs for high quality video

streaming and large file transfer has increased. As a result, higher bit-rate wireless connections are required to enable fast data transfer. To achieve higher bit-rates, the IEEE 802.11n standard can be used in APs (Access Points) and STAs (Wireless Stations) [4]. However, the 802.11n standard consumes more power compared to other 802.11 modes during data transmission and idle [1][2]. The excess of power consumption in STAs due to 802.11n usage during idle conditions will lead to a shorter battery life [3].

A study by Putra has proposed the use of 802.11n only when the transmission of high volume data takes place and 802.11g when AP enters idle condition [1]. However, Putra’s research did not incorporate the validation of the 802.11 modes energy consumption data significance using statistical calculations and did not implement seamless data communication during 802.11 mode transitions resulting in a connection termination during mode transitions. Furthermore, the power consumption of STAs was also not considered yet. Therefore, it is important to validate the significance between STAs’ 802.11 modes energy consumption data and realize seamless data communication when mode transitions occur.

Based on a white paper by Texas Instruments that describes the low-power advantage of 802.11a/g compared to 802.11b, this study considers the bit-rate of every 802.11 mode as an important factor in energy consumption. The advantage of 802.11a/g is its high bit rate (up to 54 Mbps) while 802.11b has a bit-rate only limited to 11 Mbps [5]. The higher bit-rate of 802.11a/g is what causes the data transmission time for a certain amount of bytes to become shorter thus more energy is saved.

This research involved measurements of STA current consumption during transmission, reception, and idle. Current values were used in power and energy calculations. The energy calculation results of every mode were tested for significance against the other modes’ using the Mann-Whitney U-test in SPSS. The Mann-Whitney U-Test is a nonparametric statistical test for comparing two unrelated and independent variables therefore it was used in this study [6].

II. RESEARCH METHOD To implement the test bed used in this study, the

following hardware are used:

• A computer capable of running Parallels Desktop 6 virtualization software with two Ubuntu 11.10 operating systems as guest operating systems (one functions as the Linux Server while the other as the Linux Client).

• Three PCI MZK-RP150N USB powered 802.11b/g/n APs.

• Three TP-LINK TL-WN7200ND 802.11b/g/n STAs (USB Wireless Adapters).

• Two USB hubs (one with an external voltage source via AC adapter).

• A Buffalo WHR-HP-G300N, which functions as a router.

• A digital multi meter capable of measuring current up to 10 A.

Besides the hardware, several software programs are used to implement the test bed in this study:

• The bwm-ng program, which functions as a bit-rate usage detector in the Linux Client [7].

ISSN: 2088-6578 Yogyakarta, 12 July 2012 CITEE 2012

240 DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter

Page 2: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

• Iperf, for sending TCP packets between the Linux Client and Server [8].

In general, the workings of the hardware implementation in Fig. 1 are as follows. At first, no data transmission is occurring and only one STA is active. Both the currently active AP and STA are using the most energy efficient mode during idle. Suppose that the mode is 802.11g. A few moments later, the user through Linux Client (Guest OS 2) downloads a large file from Linux Server (Guest OS 1). Linux Client will detect a bit-rate increase on the bonded interface port at 172.29.144.4. The interface bonds three STAs (Wireless USB Adapters), which are connected to a USB hub. Because a bit-rate increase is detected, the Linux Client will activate the STA with the most energy efficient 802.11 mode during transmission (e.g. 802.11n) and then include it into the bonded interface.

Once the newly activated 802.11n STA has associated with the 802.11n AP, the previously used 802.11g STA will be deactivated. Deactivation is done by excluding the previously used STA from the bonded interface.

The procedure in the previous paragraph creates a seamless data communication during mode transitions due to the soft handoff between the STAs and APs [9]. The soft handoff procedure relies on the active-backup scheme in the Linux interface bonding of the three STAs. In short, interface bonding is logically merging two or more interfaces in order to have a single MAC address if seen from other network devices [10]. The term active-backup means that if one interface is disabled, then the connection will be seamlessly replaced by another interface [11].

The power consumption of every 802.11 mode was measured during transmission, reception, and idle operations, each involving sixteen repeated measurements. In the transmission operation, power measurements were performed during 30 MB TCP data transmission whereas in the reception operation, power measurements were performed during 30 MB TCP data reception. In the idle operation, measurements were performed during 20-second idle conditions.

Power values were calculated by multiplying the measured current values by five, which is the measured USB port voltage. Afterwards, energy consumption values were calculated by multiplying the power values by two, which is the period between current measurements in seconds. After the energy values of every operation are obtained, the significance of energy consumption between

modes in every operation was tested using the Mann-Whitney U-test.

After the most energy-saving mode during transmit/receive and idle has been determined, a dynamic mode scheme that is a combination of the most energy-saving modes in every operation was formed. The energy consumption of the dynamic scheme was measured and compared with the static schemes (802.11b only, 802.11g only, and 802.11n only) in a ’30-second idle – 100 MB transmit – idle’ and ’30-second idle – 100 MB transmit – idle’ operation pattern. The ’30-second idle – 100 MB transmit/receive – idle’ pattern was arbitrarily chosen based on the author’s subjective personal operation pattern during web browsing and file downloading or uploading. Mode scheme energy consumption measurements were conducted sixteen times for every operation pattern and the significance between each mode scheme’s energy consumption was tested using the Mann-Whitney U-test.

III. RESULTS AND DISCUSSIONS The following sub-sections describe and discuss the

power measurement results.

A. Transmit Energy Consumption Fig. 2 shows the transmit power consumption of

802.11b, 802.11g, and 802.11n and shows that 802.11n at approximately 85 Mbps has the highest power consumption. However, due to the high-bit rate, transmission time is shortest thus consuming less energy. The 802.11b, which transmits at 4.66 Mbps, has relatively high power consumption and the longest transmission time. The 802.11g was able to transmit in a shorter time than 802.11b due to its 16.7 Mbps and at a lower power consumption.

The high power consumption of 802.11n is a result of its high bit-rate, which caused the STA baseband processor to increase its clock speed and due to its use of 40 MHz channel width [3][12]. The 802.11g mode achieved low power consumption as a result of its relatively low bit rate compared to its maximum bit-rate (16.7 out of 25 Mbps) and its use of 20 MHz channel width. On the other hand, 802.11b consumed higher power due to its relatively high bit-rate compared to its maximum bit-rate (4.66 out of 5.17 Mbps) and mostly due to its relatively high RF power level [3].

Each mode was unable to transmit at more than half of its maximum specified bit-rate (11 Mbps for 802.11b, 54 Mbps for 802.11g, and 300 Mbps for 802.11n). The

Figure 2. Test bed hardware assembly. Figure 1. 802.11 modes 30 MB transmit power consumption.

CITEE 2012 Yogyakarta, 12 July 2012 ISSN: 2088-6578

DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter 241

Page 3: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

reason is the overhead caused by the use of CSMA/CA access control, which requires STA to wait for a random amount of time before determining that the medium is free for transmission. Another reason is the RTS/CTS sequence used to overcome the hidden node problem [13].

Fig 3. shows the transmit energy consumption of every mode. Fig. 3 shows that the high bit-rate 802.11n is the least energy consumptive despite its high power consumption whereas the low bit-rate 802.11b is the most energy consumptive.

B. Receive Energy Consumption Fig. 4 shows the receive power consumption of

802.11b, 802.11g, and 802.11n and shows that 802.11n at approximately 13.2 Mbps has the highest power consumption. However, due to the high-bit rate, reception time is shortest thus consuming less energy. The 802.11b, which receives at 3.37 Mbps, has a higher power consumption compared to 802.11g and the longest transmission time. The 802.11g was able to receive in a shorter time than 802.11b due to its 3.7 Mbps and at a lower power consumption.

The high power consumption of 802.11n is due to its high receive rate, which caused the STA baseband processor to increase its clock speed and due to its use of 40 MHz channel width [3][12]. The 802.11g mode achieves low power consumption as a result of its relatively low receive rate compared to its maximum bit-rate (3.7 out of 25 Mbps) and its use of 20 MHz channel width. On the other hand, 802.11b consumes higher power due to its relatively high receive rate compared to its maximum bit-rate (3.37 out of 5.17 Mbps).

Fig 5. shows the receive energy consumption of every mode. Fig. 5 shows that the high bit-rate 802.11n is the least energy consumptive despite its high power consumption whereas the low bit-rate 802.11b is the most energy consumptive.

C. Idle Energy Consumption Fig. 6 shows the idle power consumption of 802.11b,

802.11g, and 802.11n and shows that 802.11n has the highest power consumption. On the other hand, 802.11g and 802.11b have lower power consumption than 802.11n but have quite similar power consumption values among each other.

The high power consumption of 802.11n while both 802.11b and 802.11g have the same power consumption shows that channel bandwidth does have an effect on power consumption [12]. In idle mode, the RF power amplifier is idle therefore signal strength does not affect power consumption [3]. In addition, the baseband processor is still turned on to scan for RF signals. Since no bits are transmitted or received, the baseband processor speed does not count for power consumption. Only the processing required for powering the 40 MHz channel is accounted.

Fig 7. Shows the idle energy consumption of every

Figure 4. 802.11 modes 30 MB transmit energy consumption.

Figure 5. 802.11 modes 30 MB receive power consumption.

Figure 6. 802.11 modes 20-second idle power consumption.

Figure 3. 802.11 modes 30 MB receive energy consumption. Figure 7. 802.11 modes 20-second idle energy consumption.

ISSN: 2088-6578 Yogyakarta, 12 July 2012 CITEE 2012

242 DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter

Page 4: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

mode. The 802.11n has the highest energy consumption while it has not been determined yet which among 802. 11b and 802.11g has the lowest energy consumption.

D. Mode Scheme Formation In order to determine which mode is the most energy

saving in each operation, significance tests have been conducted using the Mann-Whitney U-test. The level of significance (α) used was 0.05 and the following hypotheses were used:

• HO : Both modes X and Y have identical energy consumption.

• HA : Both modes have significantly different energy consumption.

Table 1 shows the energy consumption ranks of the 802.11 modes based on the conducted significance tests. It was found that the idle energy consumption of 802.11b and 802.11g are not significantly different, therefore to decide which mode to use during idle and low bit-rate transmission/reception, a small experiment has been conducted to investigate the power consumption of every mode in all possible bit-rates. Fig. 8 shows the experiment results and shows that 802.11g is more power-efficient compared to 802.11b during transmission and reception. Based on the significance tests, Table 1, and Fig. 8, the dynamic ‘802.11g-802.11n-802.11g’ mode scheme was formed.

E. ’30-second idle – 100 MB transmit – idle’ Energy Consumption In this experiment, the power consumption of three

static mode schemes (802.11b, 802.11g, and 802.11n) and one dynamic scheme (‘802.11g-802.11n-802.11g’) were measured during a ’30-second idle – 100 MB transmit – idle’ operation pattern. Fig. 9 shows that 802.11b has the longest transmit time due to its 4.66 Mbps bit-rate. The 802.11g at 16.7 Mbps took shorter time and lower power consumption compared to 802.11b. The 802.11n at approximately 85 Mbps was able to achieve the shortest transmit time but high power consumption during idle.

The proposed dynamic ‘802.11g-802.11n-802.11g’ scheme achieved low power consumption during idle as well as a shorter transmit time compared to 802.11g and 802.11b. However, the soft handoff process during mode transitions consumed a significant amount of power due to the requirement of two STAs to be simultaneously powered on during the handoff process.

Fig. 10 shows the energy consumption of the schemes in the ’30-second idle – 100 MB transmit – idle’ experiments. Based on Fig. 10 and the Mann-Whitney U-tests performed between mode scheme energy consumption values, 802.11b was proven to be the most energy consumptive whereas ‘802.11g-802.11n-802.11g’ was proven to be the most energy-saving scheme despite the high power consumption during mode transitions.

F. ’30-second idle – 100 MB receive – idle’ Energy Consumption In this experiment, the power consumption of three

static mode schemes (802.11b, 802.11g, and 802.11n) and one dynamic scheme (‘802.11g-802.11n-802.11g’) were measured during a ’30-second idle – 100 MB receive – idle’ operation pattern. Fig. 11 shows that 802.11b has the longest receive time due to its 3.37 Mbps bit-rate. The 802.11g at 3.7 Mbps takes shorter time and lower power consumption compared to 802.11b. The 802.11n at approximately 13.2 Mbps was able to achieve the shortest receive time but high power consumption during idle. The proposed dynamic ‘802.11g-802.11n-802.11g’ scheme achieved low power consumption during idle as well as shorter receive time compared to 802.11g and 802.11b. However, the soft handoff process during mode transitions consumed a significant amount of power due to the requirement of two STAs to be simultaneously

Figure 8. 802.11 modes power consumption vs. bit-rate.

Figure 10. 802.11 modes ’30-second idle – 100 MB transmit – idle’ power consumption.

Figure 9. 802.11 modes ’30-second idle – 100 MB transmit – idle’

energy consumption.

TABLE I. 802.11 MODES ENERGY CONSUMPTION RANKS.

Ranka Operating Condition Transmit Receive Idle

#1 802.11b 802.11b 802.11n #2 802.11g 802.11g 802.11b/g #3 802.11n 802.11n

a. From the most energy consumptive.

CITEE 2012 Yogyakarta, 12 July 2012 ISSN: 2088-6578

DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter 243

Page 5: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

powered on during the handoff process.

Fig. 12 shows the energy consumption of the schemes in the ’30-second idle – 100 MB receive – idle’ experiments. Based on Fig. 12 and the Mann-Whitney U-tests performed between mode scheme energy consumption values, 802.11b was proven to be the most energy consumptive whereas 802.11g was proven to be the most energy-saving scheme.

IV. CONCLUSION The 802.11n mode is the most energy-efficient mode

to use during transmission and reception whereas 802.11g is the most energy efficient during idle. Consequently, the ‘802.11g-802.11n-802.g’ dynamic mode scheme was formed. The dynamic scheme was proven to be the most energy-efficient in the ’30-second idle – 100 MB transmit – idle’ experiment whereas the 802.11g scheme was proven to be the most energy-efficient in the ’30-second idle – 100 MB receive – idle’ experiment. Seamless communication during mode transitions was implemented using the soft handoff method between STAs. However, the soft handoff method was proven to consume a significant amount of power.

V. FUTURE STUDIES In this study, the ’30-second idle – 100 MB

transmit/receive – idle’ operation pattern was arbitrarily chosen based on the author’s personal experience in web browsing and file downloading or uploading. In future studies, experiments based on an objective determination of user’s operation pattern should be conducted.

ACKNOWLEDGMENT The author wishes to express his gratitude to his

bachelor thesis supervisors, Sujoko Sumaryono and Sri Suning Kusumawardani who was abundantly helpful and offered invaluable assistance, support, and guidance. Deepest gratitude is also due to Prof. Koji Okamura and Prof. Takumi Miyoshi without whose knowledge this study would not have been successful.

REFERENCES [1] Putra, Ramadhan P. and Miyoshi, Takumi (2012). “Considering

Power Consumption of Access Points Based on 802.11 Mode Control”. Paper Presented at IEICE General Conference, March 20-23, 2012 in Okayama.

[2] --------- (2008). ”Practical Considerations for Deploying 802.11n”. White Paper. Siemens.

[3] Ebert, J.P., Burns, B., and Wolisz, A. (2002). “A Trace-based Approach for Determining The Energy Consumption of a WLAN Network Interface”. Proceeding. Appeared in Proceeding of European Wireless 2002, pp. 230-236.

[4] --------- (2009). ”IEEE Std 802.11n-2009”. White Paper. The Institute of Electrical and Electronic Engineers, Inc. http://standards.ieee.org/getieee802/download/802.11n-2009.pdf. Accessed on January 25, 2012.

[5] --------- (2003). ”Low Power Advantage of 802.11a/g vs. 802.11b”. White Paper. Texas Instruments Incorporated. http://focus.ti.com/pdfs/bcg/80211_wp_lowpower.pdf. Accessed on January 28, 2012.

[6] Corder, Gregory W. and Foreman, Dale I. (2009). ”Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach”. Hoboken: John Wiley & Sons, Inc.

[7] Gropp, Volker (2011). ”Bwm-ng (Bandwidth Monitor NG)”. Homepage of Volker Gropp. http://www.gropp.org/?id=projects&sub=bwm-ng. Accessed on December 5, 2011.

[8] --------- (2011). ”Iperf”. SourceForge.Net. http://iperf.sourceforge.net/. Accessed on November 29, 2011.

[9] Ramachandran, K., Rangarajan, S., and Lin, J.C. (2006). “Make-Before-Break MAC Layer Handoff in 802.11 Wireless Networks”. in IEEE International Conf. on Communications. Istanbul. 2006. pp. 4818-4823.

[10] --------- (2003). ”Bonding (Port Trunking)”. LINUX Horizon. http://www.linuxhorizon.ro/bonding.html. Accessed on January 29, 2012.

[11] Davis, T. et al (2011). ”Linux Ethernet Bonding Driver HOWTO”. The Linux Kernel Archives. http://www.kernel.org/doc/Documentation/networking/bonding.txt. Accessed on January 29, 2012.

[12] Chandra, R. et al. (2008). ”A Case for Adapting Channel Width in Wireless Networks”. Microsoft Research, Redmond. Presented in SIGCOMM’08 August 17-22, 2008 in Seattle.

[13] Cook, Diane J. and Das, Sajal K. (2005). “Smart Environments: Technologies, Protocols, and Applications”. Hoboken: John Wiley & Sons, Inc.

Figure 12. 802.11 modes ’30-second idle – 100 MB receive – idle’

power consumption.

Figure 11. 802.11 modes ’30-second idle – 100 MB receive – idle’

energy consumption.

ISSN: 2088-6578 Yogyakarta, 12 July 2012 CITEE 2012

244 DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter

Page 6: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

CITEE2012

PROCEEDINGS OFINTERNATIONAL CONFERENCE ON

INFORMATION TECHNOLOGYAND

ELECTRICAL ENGINEERING

Yogyakarta, IndonesiaJuly 12, 2012

Inte

rna

tion

al C

on

fere

nce

on

Info

rma

tion

Tech

no

log

y an

d E

lectrica

l En

gin

ee

ring

DEPARTMENT OF ELECTRICAL ENGINEERINGAND INFORMATION TECHNOLOGY

FACULTY OF ENGINEERING

GADJAH MADA UNIVERSITY

20

12

Department of Electrical Engineering and Information TechnologyFaculty of Engineering, Gadjah Mada UniversityJalan Grafika no. 2, Kampus UGMYogyakarta, 55281, Indonesia

ISSN: 2088-6578

Page 7: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

CITEE 2012 ISSN: 2088-6578

PROCEEDINGS OF INTERNATONAL CONFERENCE ON

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Yogyakarta, 12 July 2012

DEPARTMENT OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY

FACULTY OF ENGINEERING GADJAH MADA UNIVERSITY

Page 8: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

ISSN: 2088-6578 Yogyakarta, 12 July 2012 CITEE 2012

ii DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter

ORGANIZER 2012

Technical Program Committee Chair (cont.)

Andreas Timm-Giell (Universität Hamburg-

Harburg Germany)

Ryuichi Shimada (Tokyo Institute of

Technology, Japan)

Ismail Khalil Ibrahim (Johannes Kepler

University Linz, Austria)

Kang Hyun Jo (University of Ulsan, Korea)

David Lopez (King’s College London, United

Kingdom)

Martin Klepal (Cork Institute of Technology,

Ireland)

Tamotsu Nimomiya (Nagasaki University,

Japan)

Ekachai Leelarasmee (Chulalongkorn

University, Thailand)

Marteen Weyn (Artesis University College,

Belgium)

Chong Shen (Hainan University, China)

Haruichi Kanaya (Kyushu University, Japan)

Ramesh K. Pokharel (Kyushu University,

Japan)

Ruibing Dong (Kyushu University, Japan)

Kentaro Fukushima (CRIEPI, Japan)

Mahmoud A. Abdelghany (Minia University,

Egypt)

Sunil Singh (G B Pant University of

Agriculture & Technology, India)

Abhishek Tomar (G B Pant University of

Agriculture & Technology, India)

Lukito Edi Nugroho (Universitas Gadjah

Mada, Indonesia)

Umar Khayam (Institut Teknologi Bandung,

Indonesia)

Anton Satria Prabuwono (Universiti

Kebangsaan Malaysia, Malaysia)

Eko Supriyanto (Universiti Teknologi

Malaysia, Malaysia)

Kamal Zuhairi Zamli (Universiti Sains

Malaysia, Malaysia)

Sohiful Anuar bin Zainol Murod (Universiti

Malaysia Perlis, Malaysia )

Advisory Board

F. Danang Wijaya

Risanuri Hidayat

General Chair

Widyawan

Chair

Eka Firmansyah

Indriana Hidayah

Eny Sukani Rahayu

Avrin Nur Widyastuti

Bimo Sunarfri Hantono

Sigit Basuki Wibowo

Budi Setiyanto

Ridi Ferdiana

Yusuf Susilo Wijoyo

Adhistya Erna Permanasari

Prapto Nugroho

Muhammad Nur Rizal

Selo Sulistyo

Sunu Wibirama

Lilik Suyanti

Indria Purnamasari

Reviewer

Adhistya Erna Permanasari

Agus Bejo

Avrin Nur Widyastuti

Bambang Sugiyantoro

Bambang Sutopo

Bimo Sunarfri Hantono

Bondhan Winduratna

Budi Setiyanto

Danang Wijaya

Eka Firmansyah

Enas Duhri Kusuma

Eny Sukani Rahayu

Harry Prabowo

Indriana Hidayah

Insap Santosa

Isnaeni

Iswandi

Litasari

Lukito Edi Nugroho

Noor Akhmad Setiawan

Prapto Nugroho

Ridi Ferdiana

Risanuri Hidayat

Rudy Hartanto

Samiadji Herdjunanto

Sarjiya

Sasongko Pramono Hadi

Selo

Sigit Basuki Wibowo

Silmi Fauziati

Suharyanto

Sujoko Sumaryono

Sunu Wibirama

T. Haryono

Teguh Bharata Adji

Wahyu Dewanto

Wahyuni

Warsun Nadjib

Widyawan

Yusuf Susilo Wijoyo

Page 9: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

CITEE 2012 Yogyakarta, 12 July 2012 ISSN: 2088-6578

DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter iii

FOREWORD

Welcome to this year’s CITEE 2012 in Yogyakarta.

Peace be upon you. First of all, praise to Allah, for blessing us with healthy and ability to come

here, in the Conference on Information Technology and Electrical Engineering 2012 (CITEE 2012).

If there is some noticeable wisdoms and knowledge must come from Him.

This conference is the fourth annual conference organized by the Department of Electrical

Engineering and Information Technology, Faculty of Engineering, Universitas Gadjah Mada. It is

expected that CITEE 2012 can serve as a forum for sharing knowledge and advances in the field of

Information Technology and Electrical Engineering, especially between academic and industry

researchers.

On behalf of the committee members, I would like to say thank you to all of the writers, who come

here enthusiastically to share experiences and knowledge. I also would like to say thank you to the

keynote speakers for the participation and contribution in this conference.

According to our record, there are 150 papers from 15 countries are being submitted to this

conference and after underwent reviewing process there are 78 papers that will be presented. It is a

52% acceptance rate. There are 15 papers in the field of Power Systems, 26 papers in the area of

Signals System and Circuits, 11 papers in Communication System and 26 papers in Information

Technology. Furthermore, the proceedings of this conference is expected to be used as reference for

the academic and practitioner alike.

Finally, I would like to say thank you to all of the committee members, who worked tirelessly to

prepare this conference. Special thank to IEEE Computer Society Indonesian Chapter, Department

of Electrical Engineering and Information Technology UGM and LPPM UGM for the support,

facility and funds.

Thank you and enjoy the conference, CITEE 2012, and the city, Yogyakarta

12 July 2012

Widyawan

Page 10: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

ISSN: 2088-6578 Yogyakarta, 12 July 2012 CITEE 2012

DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter iv

Schedule of CITEE 2012

Yogyakarta, 12 July 2012

07.30 – 08.00 Registration

08.00 – 08.10 Opening Speech

1. Chairman of the Organizing Committee

2. Head of Department of Electrical Engineering and Information Technology of Gadjah Mada

University

PLENARY SESSION (at Room 1): Keynote Speech

08.10 – 08.50 The Development Trend of a Next Generation Vehicle and its Propulsion Motor

Professor Jin Hur, Ph.D., University of Ulsan, Korea

Moderator: Eka Firmansyah

08.50 – 09.30 Applied VLSI Research in Indonesia

Eko Fajar Nurprasetyo, Ph.D., Xirka Silicon Technology

Moderator: Iswandi

09.30 – 10.00 Morning Coffee Break

PARALLEL SESSION

Allocated duration per paper : 20 minutes (max.)

GREEN lamp : 10 minutes (max.) presentation

YELLOW lamp : 10 minutes (max.) discussion

RED lamp : END of allocated duration

No Time Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7

Ses

. 1

A

Moderator Adha I.C.

(S-Mas #11)

Anindito Y.

(I-Jkrt #11)

A. Suhartomo

(C-Jkrt #12)

A. Syakur

(P-TEIa #13)

Raymond B.

(I-Jkrt #21)

Sarjiya

(P-TEIb #22)

Gunawan W.

(S-Jkrt #21)

1. 10.00 – 10.20 S-Bndg #11 I-Jkrt #12 C-Srby #12 P-Bntn #11 I-Bndg #21 P-Kpng #21 S-Riau #21

2. 10.20 – 10.40 S-Srby #12 I-Smrg #12 C-Jkrt #11 P-Pwt #11 I-UGM #21 P-Mlng #21 S-Smrg #21

3. 10.40 – 11.00 S-Srby #11 I-Bndg #11 C-Srby #11 P-TEIa #11 I-TEIa #21 P-TEIb #21 S-TEIa #22

Ses

. 1

B Moderator

Nanang S.

(S-Srby #11)

Hariandi M.

(I-Bndg #11)

M. Agus Z.

(C-Srby #11)

Alief R.M.

(P-TEIa #11)

Amien R.

(I-TEIa #21)

Bambang S.

(P-TEIb #21)

Indra A.

(S-TEIa #22)

4. 11.00 – 11.20 S-MAS #11 I-Jkrt #11 C-Jkrt #12 P-TEIa #13 I-Jkrt #21 P-TEIb #22 S-Jkrt #21

5. 11.20 – 11.40 S-Bndg #12 I-Smrg #14 C-TEIa #11 P-Pwt #12 I-TEIa #25 P-TEIb #23 S-Srby #21

6. 11.40 – 12.00 S-Smrg #12 I-Smrg #11 C-TEIb #11 P-Smrg #11 I-TEIa #24 P-TEIa #21 S-TEIa #21

12.00 – 13.00 Lunch Break

Ses

. 2

A

Moderator Linggo S.

(S-Yog #11)

Catur S.

(I-Smrg #11)

M. Denny S.

(S-Smrg #12)

Supari

(P-Smrg #11)

Chairani

(I-TEIa #23)

Ridwan W.

(P-TEIa #21)

Hari M.

(S-TEIa #21)

7. 13.00 – 13.20 S-Smrg #11 I-Smrg #13 S-Srby #13 C-TEIb #13 I-TEIa #26 C-TEIa #21 S-Yog #21

8. 13.20 – 13.40 S-Mlng #12 I-UGM #12 S-Pwt #11 C-TEIb #12 I-TEIa #27 S-TEIa #23 S-UGM #22

9. 13.40 – 14.00 S-Mlng #11 I-UGM #11 S-UGM #11 P-TEIa #12 I-TEIa #28 S-TEIb #21 S-UGM #21

Ses

. 2

B

Moderator Aryuanto S.

(S-Mlng #11)

Eka K.

(I-UGM #11)

Fahri F.

(I-Smrg #13)

Arif Jaya

(P-TEIa #12)

Zawiyah S.

(I-TEIa #28)

10. 14.00 – 14.20 S-Yog #11 I-TEIb #11 I-JPN #11 P-IND #11 I-TEIa #23

11. 14.20 – 14.40 S-Jkrt #11 I-TEIb #12 I-IND #11 P-IRI #11 I-TEIa #22

12. 14.40 – 15.00 S-IND #11 I-THA #11 C-EGY #11 I-ALG #11 C-Bndg #11

Paper codes (see Table of Contents for the details):

Number #1X: International (English) papers/presentations, Number #2X: National (Indonesia) papers/presentations

I, P, S, C : Information, Power, Signal/System/Circuit, Communication

Certificate of presentation will be available at the room of presentation, immediately after the paper is presented

Rooms Location:

Room 1-4 : located at the “Kantor Pusat Fakultas Teknik (KPFT)” building

Room 5-7 : located at the “Jurusan Teknik Elektro dan Teknologi Informasi (JTETI)” building, 50 m from KPFT

Page 11: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

CITEE 2012 Yogyakarta, 12 July 2012 ISSN: 2088-6578

DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter v

Table of Contents Inner Cover i

Organizer ii

Foreword iii

Schedule iv

Table of Contents v

1. I-ALG

#11

Enabling Real-time Alert Correlation Using Complex Event Processing 1

Hichem Debbi, Bilal Lounnas, and Abdelhak Bentaleb

2. I-JPN

#11

Detection and Verification of Potential Peat Fire Using Wireless Sensor Network and UAV 6

Rony Teguh, Toshihisa Honma, Aswin Usop, Heosin Shin, and Hajime Igarashi

3. I-IND

#11

Data Mining Application to Reduce Dropout Rate of Engineering Students 11

Munindra Kumar Singh, Brijesh Kumar Bharadwaj, and Saurabh Pal

4. I-THA

#11

Usability Standard and Mobile Phone Usage Investigation for the Elderly 15

V. Chongsuphajaisiddhi, V. Vanijja, and O. Chotchuang

5. I-Jkrt

#11

Test on Interface Design and Usability of Indonesia Official Tourism Website 21

Anindito Yoga Pratama, Dea Adlina, Nadia Rahmah Al Mukarrohmah, Puji Sularsih,

and Dewi Agushinta R.

6. I-Jkrt

#12

Data Warehouse for Study Program Evaluation Reporting Based on Self Evaluation

(EPSBED) using EPSBED Data Warehouse Model: Case Study Budi Luhur University

25

Indra, Yudho Giri Sucahyo, and Windarto

7. I-Bndg

#11

Denial of Service Prediction with Fuzzy Logic and Intention Specification 32

Hariandi Maulid

8. I-Smrg

#11

Integrating Feature-Based Document Summarization as Feature Reduction in Document

Clustering

39

Catur Supriyanto, Abu Salam, and Abdul Syukur

9. I-Smrg

#12

A GPGPU Approach to Accelerate Ant Swarm Optimization Rough Reducts (ASORR)

Algorithm

43

Erika Devi Udayanti, Yun-Huoy Choo, Azah Kamilah Muda, and Fajar Agung Nugroho

10. I-Smrg

#13

Loose-Coupled Push Synchronization Framework to Improve Data Availability in Mobile

Database

48

Fahri Firdausillah, and Norhaziah Md. Salleh

11. I-Smrg

#14

Feature Extraction on Offline Handwritten Signature using PCA and LDA for Verification

System

53

Fajrian Nur Adnan, Erwin Hidayat, Ika Novita Dewi, and Azah Kamilah Muda

12. I-UGM

#11

Cognitive Agent Based Modeling of a Question Answering System 58

Eka Karyawati, and Azhari SN

13. I-UGM

#12

GamaCloud: The Development of Cluster and Grid Models based shared-memory and MPI 65

Mardhani Riasetiawan

14. I-TEIb

#11

Sub-Trajectory Clustering for Refinement of a Robot Controller 70

Indriana Hidayah

15. I-TEIb

#12

Transfer Rules Algorithm for Hierarchical Phrase-based English-Indonesian MT Using ADJ

Technique

74

Teguh Bharata Adji

16. P-IRI

#11

Investigation of Insulation Coordination in EHV Mixed Line 77

A.Eyni, and A.Gholami

Page 12: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

ISSN: 2088-6578 Yogyakarta, 12 July 2012 CITEE 2012

DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter vi

17. P-IND

#11

Unbalance and Harmonic Analysis in a 15-bus Network for Linear and Nonlinear Loads 82

T.Sridevi, and K.Ramesh Reddy

18. P-Bntn

#11

The Maximizing of Electrical Energy Supply for Production of Steel Plant through Fault

Current Limiter Implementation

88

Haryanta

19. P-Smrg

#11

Modelling and Stability Analysis of Induction Motor Driven Ship Propulsion 93

Supari, Titik Nurhayati, Andi Kurniawan Nugroho, I Made Yulistya Negara, and

Mochamad Ashari

20. P-Pwt

#11

A New Five-Level Current-Source PWM Inverter for Grid Connected Photovoltaics 98

Suroso, Hari Prasetijo, Daru Tri Nugroho, and Toshihiko Noguchi

21. P-Pwt

#12

Optimal Scheduling of Hybrid Renewable Generation System Using Mix Integer Linear

Programming

104

Winasis, Sarjiya, and T Haryono

22. P-TEIa

#11

Design and Implementation Human Machine Interface for Remote Monitoring of SCADA

Connected Low-Cost Microhydro Power Plant

109

Alief Rakhman Mukhtar, Suharyanto, and Eka Firmansyah

23. P-TEIa

#12

Equivalent Salt Deposit Density and Flashover Voltage of Epoxy Polysiloxane Polymeric

Insulator Material with Rice Husk Ash Filler in Tropical Climate Area

113

Arif Jaya, Tumiran, Hamzah Berahim, and Rochmadi

24. P-TEIa

#13

Tracking Index of Epoxy Resin Insulator 119

Abdul Syakur, Tumiran, Hamzah Berahim, and Rochmadi

25. S-IND

#11

Semiconducting CNTFET Based Half Adder/Subtractor Using Reversible Gates 124

V.Saravanan, and V.Kannan

26. S-MAS

#11

Preliminary Design for Teleoperation Systems under Nonholonomic Constraints 129

Adha I. Cahyadi, Rubiyah Yusof, Bambang Sutopo, Marzuki Khalid, and Yoshio

Yamamoto

27. S-Jkrt

#11

PACS Performance Analysis In Hospital Radiology Unit 134

Sugeng Riyadi, and Indra Riyanto

28. S-Srby

#11

Middleware Framework of AUV using RT-CORBA 141

Nanang Syahroni, and Jae Weon Choi

29. S-Srby

#12

Convolute Binary Weighted Based Frontal Face Feature Extraction for Robust Person’s

Identification

147

Bima Sena Bayu D., and Jun Miura

30. S-Srby

#13

Evaluation of Speech Recognition Rate on Cochlear Implant 153

Nuryani, and Dhany Arifianto

31. S-Mlng

#11

Remote Laboratory Over the Internet for DC Motor Experiment 157

Aryuanto Soetedjo, Yusuf Ismail Nakhoda, and Ibrahim Ashari

32. S-Mlng

#12

Comparative Analysis of Neural Fuzzy and PI Controller for Speed Control of Three Phase

Induction Motor

162

Ratna Ika Putri, Mila Fauziyah, and Agus Setiawan

33. S-Bndg

#11

Programmable Potentiostat Based ATMEL Microcontroller for Biosensors Application 168

Erry Dwi Kurniawan, and Robeth V. Manurung

34. S-Bndg

#12

Dummy State: An Improvement Model for Hybrid System 172

Sumadi, Kuspriyanto, and Iyas Munawar

Page 13: Bachelor Thesis Paper - repository civitas UGM · 2014-07-08 · Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control Bachelor Thesis Paper Ramadhan Praditya

CITEE 2012 Yogyakarta, 12 July 2012 ISSN: 2088-6578

DEEIT, UGM – IEEE Comp. Soc. Ind. Chapter vii

35. S-Smrg

#11

Fuzzy C-Means Algorithm for Adaptive Threshold on Alpha Matting 177

R. Suko Basuki, Moch. Hariadi, and R. Anggi Pramunendar

36. S-Smrg

#12

Analysis of Performance Simulator Water Level Control at Fresh Water Tank in PLTU with

Microcontroller

182

M Denny Surindra

37. S-Pwt

#11

An FPGA Implementation of Automatic Censoring Algorithms for Radar Target Detection 187

Imron Rosyadi

38. S-Yog

#11

On The Influence of Random Seeds Evaluation Range in Generating a Combination of

Backpropagation Neural Networks

195

Linggo Sumarno

39. S-UGM

#11 Analisis EEG Menggunakan Transformasi Fourier Waktu-singkat dan Wavelet Kontinu:

Studi Kasus Pengaruh Bacaan al Quran

201

Agfianto Eko Putra, and Putrisia Hendra Ningrum Adiaty

40. C-EGY

#11

Interference Mitigation for Self-Organized LTE-Femtocells Network 211

Nancy Diaa El-Din, Karim G. Seddik, Ibrahim A. Ghaleb, and Essam A. Sourour

41. C-Jkrt #11

Dual-Band Antenna Notched Characteristic with Co-Planar Waveguide Fed 216

Rastanto Hadinegoro, Yuli Kurnia Ningsih, and Henry Chandra

42. C-Jkrt

#12

Edge – Component Order Connectivity Issue In Designing MIMO Antennas 220

Antonius Suhartomo

43. C-Srby

#11

Robust Image Transmission Using Co-operative LDPC Decoding Over AWGN Channels 226

M. Agus Zainuddin, and Yoedy Moegiharto

44. C-Srby

#12

Parameter Measurement of Acoustic Propagation in the Shallow Water Environment 231

Tri Budi Santoso, Endang Widjiati, Wirawan, and Gamantyo Hendrantoro

45. C-Bndg

#11

Radio Network Planning for DVB-T Repeater System Integrated with Early Warning

System

235

Herry Imanta Sitepu, Dina Angela, Tunggul Arief Nugroho, and Sinung Suakanto

46. C-TEIa

#11

Considering Power Consumption of Wireless Stations Based on 802.11 Mode Control 240

Ramadhan Praditya Putra, Sujoko Sumaryono, and Sri Suning Kusumawardani

47. C-TEIb

#11

The Design Model of 2.4 GHz Dual Biquad Microstrip Antenna 245

Wahyu Dewanto, Penalar Arif, and HC. Yohannes

48. C-TEIb

#12

Voice Service Performance of Broadband Cellular Systems 252

Wahyu Dewanto, and Imam Bagus Santoso

49. C-TEIb

#13

Capacity and Quality of Single Cell WiMAX Network for VoIP Application 257

Budi Setiyanto, Esmining Mitarum, and Sigit Basuki Wibowo