18
Psychrometric Chart atau Chart psikrometrik merupakan hasil karya jenius peninggalan kakek moyang kita yang berhubungan dengan karakteristik udara. Dengan adanya chart ini maka perencanaan tata udara menjadi lebih sederhana, karena tidak perlu menggunakan hitungan matematis yang rumit. Chart psikrometrik merupakan tampilan secara grafikal sifat thermodinamik udara antara lain suhu, kelembaban, enthalpi, kandungan uap air dan volume spesific. Dalam chart ini dapat langsung diketahui hubungan antara berbagai parameter udara secara cepat dan persisi, baik yang berkaitan dengan sifat fisik udara maupun sifat thermiknya. 1.Pemetaan Psikrometrik Chart Cara terbaik memahami psikrometrik chart adalah mengobservasi bagaimana letak dan posisi setiap garis kurva diletakkan atau dipetakan pada psikrometrik chart. Psikrometrik chart menyatakan hubungan antara suhu bola kering, suhu bola basah, suhu titik embun, kelembaban relatif, panas total (entalpi), volume speisifik, kelebaban spesifik, panas sensibel dan panas laten. Anda akan memerlukan banyak fotocopi psikrometrik chart untuk menyelesaiakan masalah-masalah pendingian dan pemanasan yang ada. 2. Pengenalan letak garis skala pada Chart Tipikal pemetaan garis skala Psikrometrik chart 3. Cara membaca Chart Bila ada dua parameter yang diketahui maka kedua parametertersebut diplotkan pada chart sehingga ketemu titik potongnya(misalnya titik P). Kemudian dari titik potong tersebut dapat ditentukan parameter lainnya. Misalkan diketahui suhu bola kering95oF, dan suhu bola basah 76oF. Dari kedua data ini kita dapat kantitik potong di titik P. Dengan dikethuinya titik potong ini maka data lain yang diperlukan dapat diketahui. Besarnya kelembaban relatif (RH) adalah 42%. Kelembaban psesifik (w) adalah 104,5 g/lb. Volume spesifik (SpV) adalah 14,3 ft3/lb. Suhu titik embun (DP) adalah 68,6oF. Enthalpy (H) adalah 39,55 Btu/lb. 4. Definisi Istilah dan Plotting pada Chart

BAB 9.docx

Embed Size (px)

Citation preview

Page 1: BAB 9.docx

Psychrometric Chart atau Chart psikrometrik merupakan hasil karya jenius peninggalan kakek moyang kita yang berhubungan dengan karakteristik udara. Dengan adanya chart ini maka perencanaan tata udara menjadi lebih sederhana, karena tidak perlu menggunakan hitungan matematis yang rumit. Chart psikrometrik merupakan tampilan secara grafikal sifat thermodinamik udara antara lain suhu, kelembaban, enthalpi, kandungan uap air dan volume spesific. Dalam chart ini dapat langsung diketahui hubungan antara berbagai parameter udara secara cepat dan persisi, baik yang berkaitan dengan sifat fisik udara maupun sifat thermiknya.

1.Pemetaan Psikrometrik Chart

Cara terbaik memahami psikrometrik chart adalah mengobservasi bagaimana letak dan posisi setiap garis kurva diletakkan atau dipetakan pada psikrometrik chart. Psikrometrik chart menyatakan hubungan antara suhu bola kering, suhu bola basah, suhu titik embun, kelembaban relatif, panas total (entalpi), volume speisifik, kelebaban spesifik, panas sensibel dan panas laten. Anda akan memerlukan banyak fotocopi psikrometrik chart untuk menyelesaiakan masalah-masalah pendingian dan pemanasan yang ada.

2. Pengenalan letak garis skala pada Chart

Tipikal pemetaan garis skala Psikrometrik chart

3. Cara membaca Chart

Bila ada dua parameter yang diketahui maka kedua parametertersebut diplotkan pada chart sehingga ketemu titik potongnya(misalnya titik P). Kemudian dari titik potong tersebut dapat ditentukan parameter lainnya. Misalkan diketahui suhu bola kering95oF, dan suhu bola basah 76oF. Dari kedua data ini kita dapat kantitik potong di titik P. Dengan dikethuinya titik potong ini maka data lain yang diperlukan dapat diketahui. Besarnya kelembaban relatif (RH) adalah 42%. Kelembaban psesifik (w) adalah 104,5 g/lb. Volume spesifik (SpV) adalah 14,3 ft3/lb. Suhu titik embun (DP) adalah 68,6oF. Enthalpy (H) adalah 39,55 Btu/lb.

4. Definisi Istilah dan Plotting pada Chart

Berikut ini dijelaskan tujuh parameter udara terpenting yang digunakan untuk keperluan perancangan air conditioning. Chart yang digunakan sebagai acuan adalah chart psikrometirk yang disusun oleh Carrier dengan mengacu pada kondisi atmosfir normal.

Dry-bulb Temperature (DB)

DB adalah suhu udara ruang yang diperoleh melalui pengukuran dengan Slink Psikrometer pada theremometer dengan bulb kering. Suhu DB diplotkan sebagai garis vertikal yang berawal dari garis sumbu mendatar yang terletak di bagian bawah chart. Suhu DB ini merupakan ukuran panas sensibel. Perubahan suhu DB menunjukkan adanya perubahan panas sensibel.

Page 2: BAB 9.docx

Wet-bulb Temperature (WB)

WB adalah suhu udara ruang yang diperoleh melalui pengukuran dengan Slink Psikrometer pada theremometer dengan bulb basah. Suhu WB diplotkan sebagai garis miring ke bawah yang berawal dari garis saturasi yang terletak di bagian samping kanan chart. Suhu WB ini merupakan ukuran panas total (enthalpi). Perubahan suhu WB menunjukkan adanya perubahan panas total.

Dew-point temperature (DP) s

uhu DP adalah suhu di mana udara mulai menunjukkan aksi pengembunan ketika didinginkan. Suhu DP ditandai sebagai titik sepanjang garis saturasi. Pada saat udara ruang mengalami saturasi (jenuh) maka besarnya suhu DB sama dengan suhu WB demikian pula suhu DP. Suhu DP merupakan ukuran dari panas laten yang diberikan oleh sistem. Adanya perubahan suhu DP menunjukkan adanya perubahan panas laten atau adanya perubahan kandungan uap air di udara.

pecific Humidity (W)

Specific humidity adalah jumlah kandungan uap air di udara yang diukur dalam satuan grains per pound udara. ( 7000 grains = 1pound) dan diplotkan pada garis sumbu vertikal yang ada di bagian samping kanan chart.

Relative Humidity (% RH)

%RH merupakan perbandingan jumlah actual dan jumlah maksimal (saturasi) dari uap air yang ada pada suatu ruang atau lokasi tertentu. 100% RH berarti saturasi dan diplortkan menurut garis saturasi. Untuk ukuran yang lebih kecil diplotkan sesuai arah garis saturasi. Enthalpi (H) Enthalpi adalah jumlah panas total dari campuran udara dan uap aire di atas titik nol. Dinyatakan dalam satuan Btu/lb udara. Harga enthapi dapat diperoleh sepanjang skala di atas garis saturasi Specific volume (SpV) Specific volume atau volume spesifik adalah kebalikan dari berat jenis, dinyatakan dalam ft3/lb. Garis skalanya sama dengan garis skala bola basah (wet bulb)

BAB 9. PENGKONDISIAN UDARATujuan Instruksional Khusus

Mmahasiswa mampu melakukan perhitungan dan analisis pengkondisian udara. Cakupan dari pokok bahasan ini adalah prinsip pengkondisian udara, penggunaan diagram psikrometri, penghitungan beban pendinginan sensibel dan laten.

1.  Prinsip Dasar Pengkondisian Udara

Untuk mencapai kenyamanan, kesehatan dan kesegaran hidup dalam rumah tinggal atau bangunan – bangunan bertingkat, khususnya di daerah beriklim tropis dengan udara yang panas dan tingkat kelembaban tinggi, diperlukan usaha untuk mendapatkan udara segar baik udara segar dari alam dan aliran udaran buatan. Udara yang nyaman mempunyai kecepatan tidak boleh lebih dari 5 km/jam dengan suhu/ temperatur kurang dari 30°C dan banyak mengandung O2.

Daerah di Indonesia kebanyakan kurang memberikan kenyamanan karena udaranya

Page 3: BAB 9.docx

panas (23 -34°C), kotor (berdebu, berasap) dan angin tidak menentu, khususnya pada bangunan tinggi dimana angin mempunyai kecepatan tinggi. Karena keadaan alam yang demikian, maka diperlukan suatu cara untuk mendapatkan kenyamanan dengan menggunakan alat penyegaran udara (air condition).

Pengkondisian udara adalah perlakuan terhadap udara untuk mengatur suhu, kelembaban, kebersihan dan pendistribusiannya secara serentak guna mencapai kondisi nyaman yang diperlukan oleh orang yang berada di dalam suatu ruangan. Atau dapat didefinisikan suatu proses mendinginkan udara sehingga mencapai temperatur dan kelembaban yang ideal. Sistem pengkondisian udara pada umumnya dibagi menjadi 2 golongan utama :

Pengkondisian udara untuk kenyamanan kerja Pengkondisian udara untuk industri

Sistem pengkondisian udara untuk industri dirancang untuk memperoleh suhu, kelembaban dan distribusi udara yang sesuai dengan yang dipersyaratkan oleh proses serta peralatan yang dipergunakan di dalam ruangan. Dengan adanya pengkondisian udara ini, diharapkan udara  menjadi segar sehingga karyawan dapat bekerja dengan baik, pasien di rumah sakit menjadi lebih nyaman dan penghuni rumah tinggal menjadi nyaman

1.b. Komposisi utama sistem pengkondisian udara

Gambar 9.1. Sistem pengkondisian udara

Gambar 9.1. memperlihatkan komponen utama dari skema sistem pengkondisian.

Komponen sistem pengkondisian udara adalah:

a. sistem pembangkit kalor, mesin refrigerasi, menara pendingin dan ketel uap

b. sistem pipa: pipa air dan pipa refrigerasi dan pompa

c. pengkondisian udara: saringan udara, pendingin udara, pemanas udara dan pelembab udara

d. sistem saluran udara: kipas dan saluran udara

 

 

Komponen AC yang dilalui sirkkulasi udara

Fan (kipas udara) menggerakkan udara dari atau ke dalam ruangan. Udara yang dialirkan fan dapat berupa udara luar, udara ruangan atau gabungan dari udara luar dan udara ruangan. Jumlah aliran udara dan kecepatan udara harus diatur, agar memperoleh sirkulasi udara yang baik

Supply Duct (saluran udara keluar): untuk saluran udara dingin dari fan ke dalam

Page 4: BAB 9.docx

ruangan Supply out let (lubang keluar): untuk megatur arah aliran udara dari fan,

sehingga udara terdistribusi ke seluruh ruangan. Untuk kenyamanan, jumlah out let turut menentukan

Ruangan yang didinginkan: ruangan harus tertutup, sehingga udara dingin dalam ruangan tidak terbuang keluar dan udara luar tidak masuk ke dalam ruangan.

Gambar 9.2 Diagram sistem pengkondisian udara

Prinsip pengkondisian udara adalah kondisi udara dalam ruangan dapat dalam keadaan sangat dingin, panas, lembab, kering, kecepatan udara tinggi atau tidak ada gerakan udara. Udara dingin digerakkan oleh Fan masuk reducting (saluran udara) dan melalui out let (lubang keluar) udara masuk  ke dalam ruangan. Udara dari dalam ruangan kembali ke return out let (grile/ lubang isap) masuk ke ducting return (saluran kembali) dan melalui filter untuk pembersihan udara masuk melewati celah-celah/ permukaan coil evaporator (koil pendinginan) dan kembali digerakkan Fan (kipas udara).

2. Psikrometrik untuk Proses Air Conditioning

Psikometrik adalah ilmu yang mempelajari sifat-sifat termodinamika dari udara basah. Secara umum digunakan untuk mengilustrasikan dan menganalisis perubahan sifat termal dan karakteristik dari proses dan siklus sistem penyegaran udara (air conditioning). Diagram psikometrik adalah gambaran dari sifat-sifat termodinamika dari udara basah dan variasi proses sistem penyegaran udara dan siklus sistem penyegaran udara. Dari diagram psikometrik akan membantu dalam perhitungan dan menganalis kerja dan perpindahan energi dari proses dan siklus sistem penyegaran udara. Diagram psikrometrik ditunjukkan pada Gambar 9.3.

Page 5: BAB 9.docx

 

Gambar 9-3 Kurva PsikrometriProses yang terjadi pada udara dapat diganbarkan dalam bagan psikrometrik guna menjelaskan perubahan sifat-sifat udara yang penting seperti suhu, asio kelembaban dan entalpi dalm proses-proses tersebut. Beberapa proses dasar dapat ditunjukkan sebagai berikut

a. Proses Pemanasan dan pendinginan

Page 6: BAB 9.docx

Proses pemanasan dan pendinginan diartikan sebagai laju perpindahan kalor yang hanya disebabkan oleh perubahan suhu bola kering. Gambar 9.4. menunjukkan suatu perubahan suhu bola kering tanpa ada perubahan rasio kelembaban.

Gambar 9.4. Pemanasan dan pendinginan sensibelb. Pelembaban adiabatik dan non adiabatik

Gambar 9.5. menunjukkan proses pelembaban yang dapat bersifat adiabatik (proses 1-2) atau dengan penambahan kalor (proses 1-3).

Gambar 9.5. Proses pelembaban udarac. Pendinginan dan pengurangan kelembaban

Page 7: BAB 9.docx

Proses ini menurunkan suhu bola kering dan rasio kelembaban (Gambar 9.6). Proses ini terjadi pada koil pendingin atau alat penurun kelembaban.

Gambar 9.6. Pendinginan dan penurunan kelembaband. Pengurangan kelembaban kimiawi

Pada proses kimiawi (Gambar 9.7), uap air dari udara diserap atau diadsorbsi oleh suatu bahan higroskopik. Jika proses tersebut diberi penyekat kalor, sehingga entalpinya tetap, dan karena kelembabannya turun maka suhu udara tersebut harus naik.

Gambar 9.7. Proses penurunan kelembaban kimiawie. Pencampuran Udara

Page 8: BAB 9.docx

Campuran dua aliran udara adalah proses yang umum di dalam pengkondisian udara. Gambar 9.8 menunjukkan pencampuran udara antara w1 kg/detik udara dari keadaan 1 dengan w2 kg/detik udara dari keadaan 2. Hasilnya adalah kondisi 3, terlihat pada grafik psikrometrik dalam Gambar 9.9.

Gambar 9.8. Skema pencampuran udara

Gambar 9.9. Proses pencampuran udara pada kurva psikrometrik

Persamaan dasar untuk proses pencampuran ini adalah persamaan kesetimbangan energi dan keseimbangan massa. Persamaan keseimbangan energi adalah:

........................................................................................

.9-1

Dan persamaan kestimbangan massa air adalah:

........................................................................................

.9-2

Page 9: BAB 9.docx

Persamaan 9.1 dan 9.2 menunjukkan bahwa entalpi dan rasio kelembaban akhir adalah rata-rata dari entalpi dan rasio kelembaban udara saat masuk. Suatu pendekatan yang dilakukan oleh para ahli adalah bahwa suhu dan rasio kelembaban merupakan harga rata-rata udara masuk. Dengan pendekatan ini, titik yang terdapat pada grafik psikrometrik di atas menyatakan hasil dari suatu proses pencampuran yang terletak pada garis lurus yang menghubungkan titik-titik dari kondisi-kondisi pemasukan. Selanjutnya perbandingan jarak pada garis 1-3 dan 2-3 sama dengan perbandingan laju aliran w2 dan w1.

3. Perhitungan Beban Pendinginan 

Tujuan utama sistem pengkondisian udara adalah mempertahankan keadaan udara didalam ruangan dan meliputi pengaturan temperatur, kelembaban relatif, kecepatan sirkulasi udara maupun kualitas udara. Sistem pengkondisian udara yang dipasang harus mempunyai kapasitas pendinginan yang tepat dan dapat dikendalikan sepanjang tahun. Kapasitas peralatan yang dapat diperhitungkan berdasarkan beban pendinginan setiap saat yang sebenarnya. Alat pengatur ditentukan berdasarkan kondisi yang diinginkan untuk mempertahankan selama beban puncak maupun sebagian. Beban puncak maupun sebagian tidak mungkin dapat diukur sehingga diperlukan prediksi melalui perhitungan yang mendekati keadaan yang sebenarnya.

Untuk maksud perkiraan tersebut diperlukan survei secara mendalam agar dapat dilakukan analisis yang teliti terhadap sumber-sumber beban pendinginan. Pemilihan peralatan yang ekonomis dan perancangan sistem yang tepat dapat dilakukan juga beban pendinginan sesaat yang sebenarnya dapat dihitung secara teliti.

Beban pendinginan sebenarnya adalah jumlah panas yang dipindahkan oleh sistem pengkondisian udara setiap hari. Beban pendinginan terdiri atas panas yang berasal dari ruang dan tambahan panas. Tambahan panas adalah jumlah panas setiap saat yang masuk kedalam ruang melalui kaca secara radiasi maupun melalui dinding akibat perbedaan temperatur. Pengaruh penyimpanan energi pada struktur bangunan perlu dipertimbangkan dalam perhitungan tambahan panas.

Perhitungan beban pendingin dapat diperoleh dari ASHRAE Handbook of Fundamentals. Tata cara perhitungan ini dapat menghasilkan sistem pengaturan udara yang terlalu besar yang mengakibatkan kurang efisien dalam pemakaian. Dengan makin besarnya biaya-biaya pemakaian energi maka makin dirasa perlu mengadakan optimasi sistem Gambar 9.10. Perhitungan beban pendinginan

Page 10: BAB 9.docx

pengaturan udara suatu gedung atau bangunan yang harus dihitung dari waktu kewaktu secara dinamis.

 Didalam kenyataannya kalor yang masuk kedalam gedung tidak tetap, karena faktor-faktor yang mempengaruhi kalor tersebut juga berubah-ubah. Sebagai contoh temperatur udara luar (lingkungan) nilainya merupakan fungsi waktu, yaitu maksimum disiang hari rendah dipagi dan sore hari, sedang minimumnya dimalam hari. Demikian pula kelengasan udara luar maupun radiasi surya yang mengenai dinding bangunan nilainya berubah terhadap waktu.

Untuk memperhitungkan pengaruh dari perubahan tersebut sangatlah sulit, bahkan mungkin tidak praktis untuk dihitung. Oleh karena itu untuk menentukan keadaan tak lunak (transien) akan dipilih faktor-faktor yang dominan. Disamping itu akan diperhatikan adanya absorbsi oleh struktur bangunan.

Dasar perhitungan beban pendinginan dilakukan dengan dua cara, yaitu:

perhitungan beban kalor puncak untuk menetapkan besarnya instalasi perhitungan beban kalor sesaat, untuk mengetahui biaya operasi jangka pendek

dan jangka panjang serta untuk mengetahui karakteristik dinamik dari instalasi yang bersangkutan.

Beban pendinginan merupakan jumlah panas yang dipindahkan oleh suatu sistem pengkondisian udara. Beban pendinginan terdiri dari panas yang berasal dari ruang pendingin dan tambahan panas dari bahan atau produk yang akan didinginkan. Tujuan perhitungan beban pendinginan adalah untuk menduga kapasitas mesin pendingin yang dibutuhkan untuk dapat mempertahankan keadaan optimal yang diinginkan dalam ruang.

Aspek-aspek fisik yang harus diperhatikan dalam perhitungan beban pendingin antara lain : 1. Orientasi gedung dengan mempertimbangkan pencahayaan dan pengaruh angin 2. Pengaruh emperan atau tirai jendela dan pantulan oleh tanah 3. Penggunaan ruang 4. Jumlah dan ukuran ruang 5. Beban dan ukuran semua bagian pembatas dinding 6. Jumlah dan aktivitas penghuni 7. Jumlah dan jenis lampu 8. Jumlah dan spesifikasi peralatan kerja 9. Udara infiltrasi dan ventilasi 

Beban pendinginan suatu ruang berasal dari dua sumber, yaitu melalui sumber eksternal dan sumber internal. a. Sumber panas eksternal antara lain :

Radiasi surya yang ditransmisikan melaui kaca Radiasi surya yang mengenai dinding dan atap, dikonduksikan kedalam ruang

dengan memperhitungkan efek penyimpangan melalui dinding

Page 11: BAB 9.docx

Panas Konduksi dan konveksi melalui pintu dan kaca jendela akibat perbedaan temperatur.

Panas karena infiltrasi oleh udara akibat pembukaan pintu dan melalui celah-celah jendela.

Panas karena ventilasi.

b. Sumber panas internal antara lain :

Panas karena penghuni Panas karena lampu dan peralatan listrik Panas yang ditimbulkan oleh peralatan lain 

Beban pendinginan total merupakan jumlah beban pendinginan tiap ruang. Beban ruang tiap jam dipengaruhi oleh perubahan suhu udara luar, perubahan intensitas radiasi, surya dan efek penyimpanan panas pada struktur/dinding bagian luar bangunan gedung.

Dalam sistem pendingin dikenal dua macam panas atau kalor yaitu panas sensible (panas yang menyebabkan perubahan temperatur tanpa perubahan fase). Setiap sumber panas yang dapat menaikkan suhu ruangan ditandai dengan naiknya temperatur bola kering (Tdb) akan menambah beban panas sensible.

Panas laten yaitu : panas yang menyebabkan perubahan fase tanpa menyebabkan perubahan temperatur misalnya : kalor penguapan. Setiap sumber panas yang dapat menambah beban laten. Udara yang dimasukkan kedalam ruangan harus mempunyai kelembaban rendah agar dapat menyerap uap air (panas laten) dan temperatur yang rendah agar dapat menyerap panas dari berbagai sumber panas dalam ruangan (panas sensible), agar kondisi ruangan yang diinginkan dapat dipercepat.

Beban ini dapat diklasifikasikan sebagai berikut : 

a. Penambahan beban sensible 

Transmisi panas melalui bahan bangunan, melewati atap, dinding, kaca, partisi, langit-langit dan lantai

Radiasi sinar matahari Panas dari penerangan atau lampu-lampu Pancaran panas dari penghuni ruangan Panas dari peralatan tambahan dari ruangan Panas dari elektromotor

b. Penambahan panas laten

Panas dari penghuni ruangan Panas dari peralatan ruangan

c. Ventilasi dan infiltrasi

Penambahan panas sensible akibat perbedaan temperatur udara dalam dan luar

Page 12: BAB 9.docx

Penambahan panas laten akibat kelembaban udara dalam dan luar

Beban pendinginan puncak (total heat load) adalah total panas yang harus diambil oleh suatu sistem pendingin. Secara umum terdiri dari

a. Panas konduksi (Q1)

Gambar 9.11. Skema perpindahan panas melalui dinding

Beban panas yang melalui dinding disebut sebagai beban kebocoran dinding, yaitu banyaknya panas yang bocor menembus dinding ruang dari bagian luar ke dalam. Karena tidak ada insulasi yang sempurna, maka akan selalu ada beban panas yang berasal dari luar ke dalam ruangan, karena suhu di dalam ruangan lebih rendah dari pada suhu di luar ruangan. Gambar 9.11. menunjukkan skema perpindahan panas melalui dinding..

Panas yang masuk melalui dinding dan atas:

......................................................................................

.9-3

dimana Q = jumlah panas (W)       U = koefisien perpindahan panas total (W/m2 K)          A = luas permukaan (m2) (to-ti)  = perbedaan suhu dalam dan luar ruang pendingin (K)

koefisien perpindahan panas total (U) dihitung dengan persamaan:

.........................................

.9-4

      dimana x = tebal bahan insulasi (m)          k = konduktivitas termal bahan (W/m K)

Page 13: BAB 9.docx

          h = koefisien perpindahan panas konveksi (W/m2 K)

b. Field heat (Q2)

Beban kalor yang dibawa oleh produk yang akan didinginkan atau disimpan:

....................................................................................

.9-5

dimana Q = jumlah panas (KJoule)          m = berat dari produk yang didinginkan (kg)          Cp= panas jenis dari produk di atas titik beku (KJoule/kg K)          ΔT= perubahan suhu produk (K) 

c. Panas Respirasi (Q3)

Panas yang diperoleh dari produk sebagai akibat dari proses respirasi.

......................................................

.

9-6

d. Beban lampu (Q4)

...................................................................................

.9-7

e. Service load (Q5)

Service load adalah panas lain yang timbul dalam proses operasi pendinginan seperti kipas, operator, udara luar ketika pintu dibuka, motor listrik dan panas infiltrasi dari penyekat dan rak pendingin. Diperkirakan besarnya adalah sekitar 10% dari total konduksi panas, field heat dan panas respirasi.

Contoh soal:

1. Suatu campuran udara-uap bersuhu bola kering 30 °C dan rasio kelembaban 0.015. Hitunglah pada dua tekanan barometrik yang berbeda, 85 dan 101 kPa:

 a. entalpi udara campuranb. suhu pengembunanrasio

2. Dalam suatu unit pengkondisian udara, dimasukkan 3.5 m3/detik udara dengan suhu 27°C bola kering, kelembaban relatip 50 persen dan tekanan atmosfir standar. Udara keluar dengan keadaan suhu bola kering 13°C dan kelembaban relatif 90 persen. Dengan menggunakan sifat-sifat udara yang terdapat dalam kurva psikrometrik:

 a. hitung kapasitas refrigerasi dengan satuan kilowattb. tentukan laju pemisahan air dan udara

3. Suatu aliran udara luar dicampur dengan aliran udara balik dalam suatu sistem pengkondisian udara yang bekerja pada tekanan 101 kPa. Laju aliran udara luar 2

Page 14: BAB 9.docx

kg/detik bersuhu bola kering 35°C dan suhu bola basah 25°C. Laju udara balik 3 kg/detik dengan suhu 24°C dan kelembaban relatif 50 persen. Tentukan:  

 

a. entalpi udara campuranb. rasio kelembaban udara campuranc. suhu bola kering udara campuran yang ditentukan dari sifat-sifat yang ditunjukkan dalam bagian a dan bd. suhu bola kering dengan mengukur suhu bola kering rata-rata arus masuk

4. Udara di dalam suatu ruangan bersuhu 30 oC dan RH 80%. Ukuran ruangan adalah 2 m x 3 m x 3 m.  Dengan menggunakan diagram psikrometri tentukan: 

Suhu bola basah ruangan. Suhu titik embun ruangan. Kelembaban mutlak ruangan. Tekanan uap air di dalam ruangan. Jumlah panas yang harus dipindahkan dari ruangan tersebut (hint. Tentukan

volume jenis berdasarkan suhu rata-rata udara)

Test Formatip

1. Dapat dipahami apabila kelembaban mutlak di dalam ruang pendingin lebih rendah daripada kelembaban mutlak lingkungan.  Akan tetapi, dapatkah anda jelaskan mengapa kelembaban relatif (RH) dalam ruang pendingin dapat mempunyai nilai yang lebih rendah daripada RH lingkungan? (Gunakan skema bagan psikrometrik)

2. Diketahui udara di titik 1 mempunyai kondisi suhu (bola kering): 35oC dengan RH: 60%  sedangkan udara di titik 2 mempunyai kondisi kondisi suhu (bola kering): 22oC dengan RH: 90%.  Dengan laju aliran masing-masing 2 kg/detik (dari titik 1) dan 3 kg/detik (dari titik 2) keduanya bercampur di titik 3.  Hitunglah suhu (bola kering) dan RH di titik 3 dengan:

 

menggunakan diagram psikrometri, dan gambarkan sketsa pencampuran tersebut

menggunakan rumus pencampuran udara.

3. Bila  udara dengan kondisi Tdb = 30oC dan RH=70%  didinginkan sampai kondisi jenuh, dengan dua cara berikut:

Didinginkan pada kelembaban mutlak konstan Didinginkan secara adiabatik

Berapa suhu udara setelah pendinginan pada (a) dan (b) ?

Page 15: BAB 9.docx

4. Jika udara yang bersuhu 30oC dengan RH 60%,

Didinginkan secara adiabatis sampai RH 90%, tentukan suhu udara bola kering,   bola basah dan kelembaban mutlak dan perubahan entalpi

Didinginkan pada kelembaban mutlak yang konstan sampai kondisi RH 90%, tentukan suhu bola kering, suhu bola basah dan juga perubahan entalpi

5. Suhu udara yang masuk dalam suatu unit pendingin udara (AC) adalah 27°C bola kering, RH 50% dan debit 3.5m3/detik. Sedangkan udara yang keluar bersuhu 13°C dan RH 90%. Dengan menggunakan sifat-sifat udara yang terdapat dalam bagan psikrometrik, hitung:

kapasitas pendinginan (kilowatt) laju pemisahan air dari udara (kg/detik)    

6. Diketahui beban panas sensibel dan laten dalam ruang pendingin single zone secara berturut-turut adalah 60 dan 6 kW.  Ruang tersebut dijaga dalam suhu 18oC dengan RH 50%.  Kondisi udara lingkungan adalah suhu 30oC dengan RH =70%.  Untuk keperluan ventilasi digunakan campuran udara lingkungan dengan udara resirkulasi dengan perbandingan 1:4.  Tentukan kondisi udara sebelum melalui koil (evaporator) dan suhu udara setelah melalui koil.

7. Jika perolehan (beban) panas dalam suatu ruang yang menggunakan pengkondisian udara zone tunggal adalah sebagai berikut: panas sensibel 60 kW dan panas laten 5 kW.  Kondisi udara yang diinginkan dari ruangan tersebut adalah 25oC dan RH 60%, sedangkan kondisi udara luar adalah 35oC dan RH 60%. Misalnya syarat ventilasi untuk ruangan tersebut adalah: udara luar : udara resirkulasi = 1 : 7.  Tentukan: (a) suhu udara masuk koil pendingin dan (b) suhu udara meninggalkan koil pendingin.