70
49 BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis Hidrologi Data curah hujan dari stasiun pengamat Gubeng, Larangan dan Keputih. Stasiun tersebut dapat mewakili curah hujan pada daerah perumahan Sukolilo Dian Regency 2. Tabel 5.1 Tabel Curah Hujan Hari Maksimum No Tahun St. Gubeng St. Larangan St. Keputih Rata- rata 1 2003 68 65 102 78,33 2 2004 86 61 58 68,33 3 2005 89 64 110 87,67 4 2006 106 72 140 106,00 5 2007 104 64 127 98,33 6 2008 98 84 90 90,67 7 2009 75 70 120 88,33 8 2010 106 113 90 103,00 9 2011 81 72 78 77,00 10 2012 70 71 85 75,33 Sumber: Balai PSWAS Butung Paketingan, 2013 5.1.1 Uji Konsistensi Semua data curah hujan yang dianalisis harus konsisten seperti data stasiun pembanding, karena bila dalam data curah hujan terdapat ketidak konsistenan maka dapat mengakibatkan penyimpangan pada hasil perhitungan. Oleh karena itu untuk mengetahui konsisten atau tidaknya data tersebut dilakukan uji konsistensi. Berikut adalah hasil uji konsistensi dari masing- masing stasiun 1. Uji Konsistensi Stasiun Gubeng Pengujian konsistensi data curah hujan pada stasiun Gubeng dilakukan dengan cara membandingkan akumulasi data hujan stasiun Gubeng dengan akumulasi rata-rata data hujan stasiun pembanding, yaitu stasiun Larangan dan Keputih. Hasil perhitungan uji konsistensi

BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

Embed Size (px)

Citation preview

Page 1: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

49

BAB 5ANALISIS DAN PEMBAHASAN

5.1 Analisis HidrologiData curah hujan dari stasiun pengamat Gubeng, Larangan

dan Keputih. Stasiun tersebut dapat mewakili curah hujan padadaerah perumahan Sukolilo Dian Regency 2.

Tabel 5.1 Tabel Curah Hujan Hari MaksimumNo Tahun St. Gubeng St. Larangan St. Keputih Rata-

rata1 2003 68 65 102 78,332 2004 86 61 58 68,333 2005 89 64 110 87,674 2006 106 72 140 106,005 2007 104 64 127 98,336 2008 98 84 90 90,677 2009 75 70 120 88,338 2010 106 113 90 103,009 2011 81 72 78 77,00

10 2012 70 71 85 75,33Sumber: Balai PSWAS Butung Paketingan, 2013

5.1.1 Uji KonsistensiSemua data curah hujan yang dianalisis harus konsisten sepertidata stasiun pembanding, karena bila dalam data curah hujanterdapat ketidak konsistenan maka dapat mengakibatkanpenyimpangan pada hasil perhitungan. Oleh karena itu untukmengetahui konsisten atau tidaknya data tersebut dilakukan ujikonsistensi. Berikut adalah hasil uji konsistensi dari masing-masing stasiun

1. Uji Konsistensi Stasiun GubengPengujian konsistensi data curah hujan pada stasiunGubeng dilakukan dengan cara membandingkanakumulasi data hujan stasiun Gubeng dengan akumulasirata-rata data hujan stasiun pembanding, yaitu stasiunLarangan dan Keputih. Hasil perhitungan uji konsistensi

Page 2: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

50

stasiun Gubeng bisa dilihat dalam Tabel 5.2 danGambar 5.1.

Tabel 5.2 Perhitungan uji konsistensi Stasiun GubengNo Tahun St.

Gubeng Akumulasi St.Larangan

St.Keputih

rata-rata akumulasi

1 2003 68 68 65 102 83,5 83,52 2004 86 154 61 58 59,5 1433 2005 89 243 64 110 87 2304 2006 106 349 72 140 106 3365 2007 104 453 64 127 95,5 431,56 2008 98 551 84 90 87 518,57 2009 75 626 70 120 95 613,58 2010 106 732 113 90 101,5 7159 2011 81 813 72 78 75 790

10 2012 70 883 71 85 78 868Sumber: Hasil Perhitungan, 2014

Gambar 5.1 Grafik Uji Konsistensi Stasiun Gubeng

2. Uji Konsistensi Stasiun GubengPengujian konsistensi data curah hujan pada stasiunLarangan dilakukan dengan cara membandingkanakumulasi data hujan stasiun Larangan denganakumulasi rata-rata data hujan stasiun pembanding,yaitu stasiun Gubeng dan Keputih. Hasil perhitungan uji

y = 1.0253x + 2.318R² = 0.9987

0

200

400

600

800

1000

0 200 400 600 800 1000

Aku

mul

asi S

t. G

uben

g

Akumulasi St. Pembanding

Uji Konsistensi St. Gubeng

Page 3: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

51

konsistensi stasiun Larangan bisa dilihat dalam Tabel5.3 dan Gambar 5.2.

Tabel 5.3 Perhitungan uji konsistensi Stasiun LaranganNo Tahun St.

LaranganAkumulasi St.

GubengSt.

Keputihrata-rata

akumulasi

1 2003 65 65 68 102 85 852 2004 61 126 86 58 72 1573 2005 64 190 89 110 99,5 256,54 2006 72 262 106 140 123 379,55 2007 64 326 104 127 115,5 4956 2008 84 410 98 90 94 5897 2009 70 480 75 120 97,5 686,58 2010 113 593 106 90 98 784,59 2011 72 665 81 78 79,5 864

10 2012 71 736 70 85 77,5 941,5Sumber: Hasil Perhitungan

Gambar 5.2 Grafik Uji Konsistensi Stasiun Larangan

3. Uji Konsistensi Stasiun KeputihPengujian konsistensi data curah hujan pada stasiunKeputih dilakukan dengan cara membandingkanakumulasi data hujan stasiun Keputih dengan akumulasirata-rata data hujan stasiun pembanding, yaitu stasiunGubeng dan Larangan. Hasil perhitungan uji konsistensi

y = 0.7665x - 16.235R² = 0.989

0

200

400

600

800

0 200 400 600 800 1000Aku

mul

asi S

t. L

aran

gan

Akumulasi St. Pembanding

Uji Konsistensi St. Larangan

Page 4: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

52

stasiun Keputih bisa dilihat dalam Tabel 5.4 danGambar 5.3.

Tabel 5.4 Perhitungan uji konsistensi Stasiun KeputihNo Tahun St.

KeputihAkumulasi St.

LaranganSt.

Gubengrata-rata

akumulasi

1 2003 102 102 65 68 66,5 66,52 2004 58 160 61 86 73,5 1403 2005 110 270 64 89 76,5 216,54 2006 140 410 72 106 89 305,55 2007 127 537 64 104 84 389,56 2008 90 627 84 98 91 480,57 2009 120 747 70 75 72,5 5538 2010 90 837 113 106 109,5 662,59 2011 78 915 72 81 76,5 739

10 2012 85 1000 71 70 70,5 809,5Sumber: Hasil Perhitungan, 2014

Gambar 5.3 Grafik Uji Konsistensi Stasiun Keputih

5.1.2 Uji HomogenitasPengujian homogenitas data curah hujan dari ketigastasiun

pengamat dilakukan untuk memastikan bahwa pada masing-masing stasiun tidak terdapat penyimpangan data curah hujanyang cukup signifikan. Hal tersebut sangat berpotensi terjadi dilapangan karena disebabkan oleh banyak faktor, antara lain

y = 1.2401x + 19.489R² = 0.9938

0

200

400

600

800

1000

1200

0 200 400 600 800 1000

Aku

mul

asi S

t. K

eput

ih

Akumulasi St. Pembanding

Uji Konsistensi St. Keputih

Page 5: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

53

pemindahan stasiun hujan, stasiun hujan hilang, maintenancestasiun curah hujan, bencana alam, dan lain sebagainya. Hal-haltersebut menyebabkan data yang ada pada stasiun menjadi tidakhomogen sedangkan data yang dibutuhkan adalah data curahhujan yang homogen. Oleh karena itu diperlukan uji homogenitas.Data curah hujan yang digunakan merupakan data yang telahdidapatkan dari rata-rata curah hujan metode aljabar.

1. Mula-mula cari rata-rata dari R rata-rata curah hujan.2. Lalu R rata-rata tersebut di ranking dari nilai terbesar ke

terkecilTabel 5.5 Perhitungan ranking homogenitas n=10

Tahun R R rata-rata (mm)rangking

(R rangking - Rratarata)2

2003 78,33 106,00 349,692004 68,33 103,00 246,492005 87,67 98,33 121,732006 106,00 90,67 11,332007 98,33 88,33 1,072008 90,67 87,67 0,132009 88,33 78,33 80,402010 103,00 77,00 106,092011 77,00 75,33 143,202012 75,33 68,33 359,73

Jumlah 873,00 1419,88Rata-rata 87,30 141,99

Sumber: Hasil Perhitungan, 20143. Ditentukan besarnya standart deviasi (d) dari data

tersebut

d = 2

1n

1i

2i

1n

RR

= √ , = 12,56

Page 6: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

54

4. Ditentukan nilai dari Table of Reduced Mean (Yn) danReduced Standart Deviation (σn) dengan n = 10 dandidapatkan :

10 = 0,9496

10Y = 0,4952

5. Tentukan 226,139496,0

56,121

10

R

6. Tentukan μ = R 101 Y

87,3–13,226(0,4952)= 80,75

7. Tentukan persamaan regresi liniernya

R = nY

1

= 80,75+ 13,226 nYBila Y1 = 0 maka nilai R1 = 80,75+ 13,226 (0)

= 80,75Bila Y2 = 5 maka nilai R2 = 80,75+ 13,226 (5)

= 146,87Kemudian R1 dan R5 diplot pada Gumbels Probability Paper(Lampiran 4), lalu kedua titik tesebut dihubungkan makadiperoleh :

Tr = 2,24 tahunR10 = 113

8. Kemudian dilakukan uji homogenitas pada homogenitytest graph dengan

Ordinat =R

R10 Tr =3,87

113 2,24 = 2,89

Absis = 109. Kemudian koordinat ordinat dan absis dimasukkan dalam

grafik homogenitas data curah hujan (Lampiran 5), untukmengetahui bahwa data tersebut sudah homogen ataubelum.

Page 7: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

55

Setelah ordinat dan absis dimasukkan dalam grafikhomogenitas data curah hujan, didapatkan bahwa data hujanhomogen karena titik temu absis dan ordinat berada dalam rangehomogenitas sehingga dapat dilanjutkan ke perhitungan curahhujan harian maksimum.

5.1.3 Curah Hujan Maksimum Harian Rata-rataUntuk menghitung hujan harian maksimum digunakan tiga

metode yaitu : Metode Gumbel, Metode Log Person Tipe III danMetode Iwai Kadoya.5.1.3.1 Metode Gumbel

Dalam metode ini, data curah hujan rata-rata daerahdisusun secara peringkat, yakni dari data hujan yang terbesarmenuju yang terkecil.

Tabel 5.6 Data R Metode GumbelNo Ri (Ri-R) (Ri-R)21 106 18,70 349,692 103 15,70 246,493 98 11,03 121,734 91 3,37 11,335 88 1,03 1,076 88 0,37 0,137 78 -8,97 80,408 77 -10,30 106,099 75 -11,97 143,20

10 68 -18,97 359,73Total 873 1419,88

Rata-rata 87,30 141,99Sumber: Hasil Perhitungan, 2014

Dari tabel di atas, dapat ditentukan :

iRn

R 1

=10873

= 87,3

Menentukan standar deviasi (d) :

Page 8: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

56

d = 2

1n

1i

2i

1n

RR

= √ , = 12,56Untuk n = 10, dari Table of Reduced Mean ( nY ) andReduced Standard Deviation ( 10) didapatkan :

10 = 0,9496

10Y = 0,4952Curah hujan harian maksimum dihitung dengan menggunakanrumus :

ntn

RT YYRR

DimanaR = tinggi hujan rata-rataRT = standar deviasin & Yn = didapat dari tabel reduced mean dan standardeviationYt = dididapat dari tabel reduced variety of PUH ttahun

Tabel 5.7 Nilai Reduce Variate (Yt) pada PUH t tahunT Yt2 0,36655 1,4999

10 2,250225 3,198550 3,9019

100 4,6001Sumber: Suripin, Sistem Drainase Perkotaan yang Berkelanjutan2004

Page 9: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

57

Contoh PerhitunganPUH (t) = 2 tahun Y2 = 0,3665Maka 10210

YYRR RT

= 4952,03665,09496,0

56,123,87

= 85,6 mmRentang keyakinan (Convidence Interval)

Untuk : = 90% t (a) = 1,64= 80% t (a) = 1,282= 68% t (a) = 1,000

Rentang keyakinan yang dipakai pada metode ini adalah 90 % = 90 % t (α) = 1,64

9496,04952,03665,0

10

102

YYk = -0,14

21,13,11 kkb = 2)14,0-(1,1)14,0-(3,11 = 0,92

Nb

S Re

=

1056,1292,0 x = 3,65

65,364,1 xRk = 5,98RT dengan a (90%) = 85,60 ± 5,98

Untuk hasil selengkapnya perhitungan Gumbel bisadilihat dalam tabel di bawah ini:

Tabel 5.8 HHM metode Gumbel dan rentang keyakinannyaPUH R k b Se Rk batas

atasbatas

bawah2 85,60 -0,14 0,92 3,65 5,98 91,58 79,615 100,59 1,06 1,90 7,54 12,37 112,96 88,22

10 110,51 1,85 2,68 10,63 17,43 127,94 93,08Sumber: Hasil Perhitungan, 2014

Page 10: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

58

5.1.3.2 Metode Log Person Type 3Pada perhitungan hujan harian maksimum dengan metode

Log Person Type III, mula-mula diurutkan dulu dari data yangterbesar ke terkecil kemudian dihitung dengan menggunakan logdari rata-rata hujan tersebut.Tabel 5.9 Peringkat Curah Hujan Untuk Metode Log person Type

IIINo Ri Xi= Log Ri (Xi- x ) (Xi- x )2 (Xi- x )3

1 106 2,03 0,09 0,01 0,002 103 2,01 0,08 0,01 0,003 98 1,99 0,06 0,00 0,004 91 1,96 0,02 0,00 0,005 88 1,95 0,01 0,00 0,006 88 1,94 0,01 0,00 0,007 78 1,89 -0,04 0,00 0,008 77 1,89 -0,05 0,00 0,009 75 1,88 -0,06 0,00 0,00

10 68 1,83 -0,10 0,01 0,00Total 873 19 0.00 0.04 0.00Rata-rata

87,30 1,94

Sumber: Hasil Perhitungan, 2014Berdasarkan tabel di atas maka dapat ditentukan nilai

nx

x i = 9,11019

Menghitung besarnya standar deviasi (d) rata-rata denganrumus berikut:

d

1

2

Nxxi = 063,0

90,04

Menghitung harga skew coefficient dengan rumus berikut:

Page 11: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

59

3

3

21 x

is NN

xxNC

=

3063,089)00,0(10 = - 0,00000041

Berdasarkan harga skew coeffitient (Cs) yang diperolehdan harga periode ulang (T) yang ditentukan, dapat diketahui nilaiKx dengan menggunakan tabel Grafik uji homogenitas curahhujan (terlampir):

Contoh perhitungan :Menghitung Xt dengan rumus berikut

xt KxXX = 1,9 + 0 x -0,00000041= 1,9

Menghitung perkiraan harga HHM untuk PUH (T) denganrumus berikut :

TXTR 10 = 101,94 = 86,48 mmUntuk hasil perhitungan selengkapnya dari masing-masingPUH bisa dibuat dalam tabel di bawah

Tabel 5.10 HHM Metode Log Person Type IIIPUH Kx Kx . σx Xt Rt (mm/24 jam)

2 0 0 1.94 86.485 0.842 0.05301 1.99 97.71

10 1.282 0.080711 2.02 104.15Sumber: Hasil Perhitungan, 2014

5.1.3.3 Iway KadoyaMetode iwai kadoya dilakukan mula-mula dengan

mengurutkan dahulu data curah hujan yang homogen dari terbesarke terkecil kemudian dicari log dari curah hujan tesebut. Hasilperhitungan dapat dilihat pada tabel di bawah ini

Tabel 5.11 Peringkat Curah Hujan Metode Iwai KadoyaNo Ri Xi= Log Ri1 106 2.032 103 2.01

Page 12: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

60

No Ri Xi= Log Ri3 98 1.994 91 1.965 88 1.956 88 1.947 78 1.898 77 1.899 75 1.88

10 68 1.83Total 873 19Rata-rata 87.30 1.94

Sumber: Hasil Perhitungan, 2014

Memperkirakan harga Xo dengan rumus

n

iio x

nx

1log1log = 19

101 x = 0,96

Xo = antilog 0,96 = 9,299 mmMemperkirakan harga bi dengan rumus

Ts

tsi XXX

XXXb

0

20

2Tabel 5.12 Penentuan Nilai bi

Xs Xt Xs.Xt Xs + Xt (Xs . Xt) - Xo2 2Xo - (Xt+Xs) bi165 82 13530 247 13443.51699 -228.401 -58.8593163 89 14507 252 14420.51699 -233.401 -61.7844

jumlah -120.644b -120.644

Sumber: Hasil Perhitungan, 2014Memperkirakan harga b dengan rumus

n

iibm

b1

1; m

10n

=1010

= 1

b = )120.644.(11 = -120.644

Page 13: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

61

Karena b bernilai negatif maka Log (Xi+b) tidakmempunyai nilai sehingga pada perhitungan HHMmenggunakan Iwai Kadoya tidak terdapat HHM rencana.

Dari ketiga metode perhitungan HHM tersebut, dipilihHHM yang mempunyai cakupan nilai yang paling besar.Berdasarkan HHM yang telah dihitung dengan metode Gumbel,Log Person tipe III, dan Iwai Kadoya. Didapatkan bahwa HHMdengan metode Gumbel mempunyai rentang cakupan nilai yangpaling besar sehingga HHM dengan metode Log Person puntercangkup di dalamnya. Sedangkan pada HHM denganmenggunakan metode Iwai Kadoya tidak bisa dimasukkan karenahasil perhitungan adalah negatif dan tidak punya nilai HHM.Tabel 5.13 Perbandingan Metode HHM dengan berbagai metode

PUHtahun Gumbel

Rentangkeyakinan

GumbelLog

personIII

IwayKadoya

(+) (-)2 85.60 ± 5.98 91.58 79.61 86.48 -5 100.59 ± 12.37 112.96 88.22 97.71 -

10 110.51 ± 17.43 127.94 93.08 104.15 -Sumber:Hasil Perhitungan, 2014

Dari Tabel 5.13 dapat diketahui bahwa nilai HHM yang dipakaiadalah HHM dengan metode Gumbel karena rentang nilai palingbesar.

5.1.4 Uji Keselarasan (Goodness of fit)Uji Keselarasan distribusi ini dimaksudkan untuk

mengetahui apakah distribusi frekuensi dari sample data terhadapfungsi jenis peluang yang diperkirakan dapat menggambarkan/mewakili distribusi frekuensi tersebut, sehingga diperlukanpengujian parameter.

Page 14: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

62

5.1.4.1 Uji Chi SquareDiketahui : Jumlah data (n) = 10 Menentukan probibilitas dari data Debit banjir dengan

melakukan peringkat terlebh dahulu:

Tabel 5.14 Nilai Peringkat dan ProbabilityNo R Peringkat Probability1 106 1 0.09092 103 2 0.18183 98 3 0.27274 91 4 0.36365 88 5 0.45456 88 6 0.54557 78 7 0.63648 77 8 0.72739 75 9 0.8182

10 68 10 0.9091Sumber:Hasil Perhitungan, 2014

Jumlah kelas (k) = 1+3,32 log (n)= 1+3,32 log (10)= 4,32 (pakai 4)

Derajat kepercayaan(α) = 5% Derajat kebebasan (γ) = k-(R-1)

= 4-(1-1)= 2

(nilai R untuk distribusi gumbel=2) Of = merupakan frekuensi data pada

interval setiap kelas Ef = jumlah data/ kelas

= 10/4= 2,5

Page 15: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

63

Dengan derajat kepercayaan (α) = 5 % dan derajat bebas(γ) = 2, maka dperoleh nilai krisis untuk distribusi ChiSquare (∆ kritis) adalah 5,991 (tabel nilai ∆ kritis ChiSquare).

Nilai uji kecocokan Chi Square distribusi Gumbel dapat dilihatpada tabel berikut:

Tabel 5.15 Nilai uji Chi Square

No ProbabilityExpected

Frequency(Ef)

ObsrvedFrequency

(Of)Ef-Of (Ef-Of)2/

EF

1 0,00 < P ≤ 0,25 2,5 2,0 0,5 0,12 0,26 < P ≤ 0,5 2,5 3,0 -0,5 0,13 0,51 < P ≤ 0,75 2,5 3,0 -0,5 0,14 0,76 < P ≤ 1 2,5 2,0 0,5 0,1

JUMLAH 10 10 0,4Sumber: Hasil Perhitungan, 2014

Dari hasil tabel diatas x2 terhiung lebih kecil dari X2,yaitu0,4 < 5,991. maka distribusi Gumbel dapat diterima.

5.1.4.2 Uji Smirnof-KolmogorofDiketahui :

Jumlah data (n) = 10Rata-rata R (debit banjir) = 87,3 m3/dtkStandar Deviasi (d) = 12,56 m3/dtkZ = (Ri- Ṝ)/ d

Tabel 5.16 Nilai uji Smirnov-KolmogorofNo R Z Peringkat Pe Pt Pe-Pt1 106 1.49 1 0.090909 0.9319 -0.840992 103 1.25 2 0.181818 0.8944 -0.712583 98 0.88 3 0.272727 0.8106 -0.53787

Page 16: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

64

No R Z Peringkat Pe Pt Pe-Pt4 91 0.27 4 0.363636 0.6064 -0.242765 88 0.08 5 0.454545 0.5319 -0.077356 88 0.03 6 0.545455 0.488 0.0574557 78 -0.71 7 0.636364 0.2389 0.3974648 77 -0.82 8 0.727273 0.2061 0.5211739 75 -0.95 9 0.818182 0.1711 0.647082

10 68 -1.51 10 0.909091 0.0655 0.843591max 0.0552

Sumber: Hasil Perhitungan, 2014

Dari hasil perhitungan didapatkan nilai max = 0,0552. Padaderajat kepercayaan 20%, 10%, 5% dan 1 % diperoleh D daritabel nilai krisis D (kritis) dengan n=10 berturut-turut adalah 0,32;0,37; 0,41 dan 0,49. Nilai max < kritis maka keputusan distribusiGumbel dapat diterima.

5.1.5 Analisis Intensitas HujanDalam menentukan intensitas hujan digunakan tiga metode

yaitu metode Van Breen, metode Hasper Weduwen dan metodeBell.5.1.5.1 Metode Van Breen

Untuk perhitungan dipakai HHM dengan metode gumbeldan dicari intensitas hujan.

Contoh perhitunganPUH = 2 tahunR24 = 85,6 mm

4%90 24RI

=4

6,85%90 x= 19,26

Untuk hasil selengkapnya dari perhitungan analisisintensitas hujan dengan menggunakan metode Van Breen dapatdilihat hasilnya pada tabel dibawah ini.

Page 17: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

65

Tabel 5.17 Perhitungan Intensitas Hujan Metode Van Breen

PUH HHMgumbel I

2 85.60 19.265 100.59 22.63

10 110.51 24.87Sumber: Hasil Perhitungan, 2014

Dengan membandingkan intensitas tersebut denganintensitas hujan kota jakarta, maka intensitas hujan pada durasitertentu diperoleh.

Tabel 5.18 Intensitas hujan jakarta

Durasi(menit)

INTENSITAS HUJAN JAKARTA (mm/jam)Untuk Periode Ulang Hujan (Tahun)

2 5 10 25 505 126 148 155 180 191

10 114 126 138 156 16820 102 114 123 135 14440 76 87 96 105 11460 61 73 81 91 100

120 36 45 51 58 63240 21 27 30 35 40

Contoh perhitungan perbandingan intensitas curah hujankota jakarta

Intensitas PUH 2 tahun = 19,26 mm/jam Intensitas PUH 2 tahun Kota Jakarta pada durasi 5

menit = 126 mm/jam Intensitas PUH 2 tahun Kota Jakarta pada durasi 240

menit = 21 mm/jamUntuk PUH 2 tahun durasi 5 menit :

Page 18: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

66

I(2,120) = 12621

26,19 x 116 mm/jam

Perhitungan lengkap intensitas hujan dengan metode VanBreen dapat dilihat pada Tabel 5.19.

Tabel 5.19 Intensitas Hujan metode Van Breen

Durasi(menit)

INTENSITAS HUJAN(mm/jam)

Untuk Periode Ulang Hujan(Tahun)

2 5 105 116 124 128

10 105 106 11420 94 96 10240 70 73 8060 56 61 67

120 33 38 42240 19 23 25

Sumber: Hasil Perhitungan, 2014

5.1.5.2 Metode Hasper WaduwenPada metode ini, perhitungan intensitas hujan didasarkan

pada HHM terpilih, yaitu HHM dengan metode Gumbel.Intensitas hujan pada metode hasper waduwen dihitung denganmenggunakan rumus

241 t , maka

10012,3

300.11 tXt

tR

10 t , maka

10012,3

300.11 iRt

tR

Page 19: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

67

ttXtXR

TTi 12721

541218

Dimana : XT: HHM (Gumbel)T : durasi (jam)R,Ri : Curah Hujan

Contoh perhitungan :Untuk PUH = 2 tahun ; t= 5 menit= 0,0833 jam ; XT = 85,6mm/24 jam

Ri = 85,6

)0833.01272()0833.01(6,85

54)0833.01218(

= 72,16

21

)12.30833.0(0833.011300R

10016,72

= 12,37

tRI =

0833.037,12

= 148,49 mm/jam

Perhitungan selengkapnya Ri bisa dilihat pada Tabel 5.20.Tabel 5.20 Perhitungan Nilai Ri

Durasi Nilai Ri tiap PUH(menit ) t (jam ) 2 5 10

5 0,0833 72.16 78.92 82.9010 0,1667 77.64 87.39 93.4020 0,3333 81.85 94.23 102.1540 0,6667 84.57 98.82 108.16

Sumber: Hasil Perhitungan, 2014

tRI

Page 20: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

68

Sedangkan untuk hasil perhitungan R selengkapnya bisa

dilihat pada Tabel 5.21.Tabel 5.21 Perhitungan Nilai R

Durasi Nilai R tiap PUH( menit ) t (jam) 2 5 10

5 0,0833 12.37 13.53 14.2110 0,1667 18.59 20.92 22.3620 0,3333 27.03 31.12 33.7340 0,6667 37.72 44.08 48.2460 1 44.83 52.68 57.88

120 2 56.87 66.83 73.42240 3 63.71 74.86 82.25

Sumber: Hasil Perhitungan, 2014

Setelah diketahui R maka dapat dihitung intensitas hujan

menggunakan metode Hasper Waduwen.Tabel 5.22 Intensitas Hujan Metode Hasper Weduwen

Durasi I (mm/jam) PUH tahun( menit ) t ( jam ) 2 5 10

5 0,0833 148.49 162.40 170.5910 0,1667 111.50 125.50 134.1320 0,3333 81.10 93.36 101.2140 0,6667 56.58 66.11 72.3660 1 44.83 52.68 57.88

120 2 28.43 33.41 36.71240 3 21.24 24.95 27.42

Sumber: Hasil Perhitungan, 2014

5.1.5.3 Metode BellData hujan selama selang waktu yang cukup panjang harus

tersedia untuk keperluan analisis frekuensi hujan. Bila data ini taktersedia, bila diketahui besarnya curah hujan 1 jam (60 menit)

Page 21: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

69

dengan periode ulang 10 tahun sebagai dasar, maka suatu rumusempiris yang diberikan oleh Bell dapat dipakai untuk menentukancurah hujan dari 5–120 menit dengan periode ulang 2–100 tahun.

Menurut Tanimoto yang didasarkan pada penelitian Dr.Borema bahwa untuk daerah Jawa, distribusi curah hujan setiapjam diperkirakan sebagai berikut

Tabel 5.23 Distribusi Hujan Menurut Tanimoto

Jam ke Hujan (mm)170 230 350 470

1 87 90 96 1012 28 31 36 423 18 20 26 314 11 14 20 255 8 11 16 226 6 9 14 207 6 8 13 198 4 7 12 189 2 5 10 15

10 - 5 10 1511 - 4 9 1412 - 4 9 1413 - 4 9 1414 - 4 9 1415 - 3 8 1316 - 3 8 1317 - 3 7 1318 - 3 7 1219 - 2 7 1120 - - 7 1121 - - 7 1122 - - 6 1123 - - 4 10

Sumber: Hasil PerhitunganPerkiraan pola distribusi curah hujan ini dilakukan apabila

durasi hujan tidak ada, sehingga dalam mencari hubunganintensitas pada setiap durasi dilakukan dengan cara empiris.Perumusan secara empiris didasarkan pada data curah hujan

Page 22: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

70

durasi 60 menit (1 jam). Untuk data hujan yang telah dianalisisberdasarkan metode Gumbel, pola distribusi curah hujan harianuntuk setiap jam adalah hanya sampai ranking 1 jam ke-4.

Contoh perhitungan :PUH = 2 tahunRangking 1 :

jam ke – 1 :81,43

876,85170

x

x

jam ke – 2 :1,14

286,85170

x

x

jam ke – 3 :06,9

186,85170

x

x

jam ke – 4 :54,5

116,85170

x

x

Untuk perhitungan HHM dengan PUH 2-10 tahun dapatdihitung dengan cara yang sama, Hasil perhitungan dapt dilihatpada Tabel 5.24

Tabel 5.24 Pola Distribusi HHM per jam Rangking 1-4Rangking 1Jam ke - 4

HHM (mm/jam) dengan PUH (tahun)2 5 10

1 43.81 51.48 56.562 14.10 16.57 18.203 9.06 10.65 11.704 5.54 6.51 7.15

Rata-rata 18.13 21.30 23.40Sumber: Hasil Perhitungan, 2014

Dalam menghitung intensitas hujan dengan metode Bell,

digunakan rumus menit

tahuntT RtTLnR

6010

25,0 50,054,052,021,0Dengan menggunakan pedoman perhitungan di atas,

Page 23: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

71

maka untuk data HHM ( 6010R ) digunakan rata-rata dari distribusi

hujan 2 jam pertama pada PUH 10, yaitu :

38,372

20,1856,566010

R

Contoh perhitungan bila diambil PUH = 2 tahun (T).

Durasi = 5 menit (t) 65,738,375,0554,052,0221,0 25,05

2 LnR

65,75605

2I 91,8 mm/jam

Dengan cara yang sama untuk PUH lain dapat dilihat padaTabel 5.25.

Tabel 5.25 Hasil Perhitungan R TanimotoDurasi(menit )

Nilai R pada tiap PUH2 5 10

5 7.65 9.86 11.5310 11.45 14.76 17.2720 15.97 20.59 24.0840 21.35 27.52 32.1960 24.95 32.16 37.62

120 32.03 41.28 48.29240 40.44 52.13 60.97

Sumber: Hasil Perhitungan, 2014

Dari nilai R tanimoto di atas dapat dihitung intensitas hujan

menurut metode bell. Hasil perhitungan selengkapnya dapat dilihat

pada Tabel 5.26.Tabel 5.26 Intenaitas Hujan Metode Bell

Durasi(menit)

Intensitas Hujan ( mm/jam )pada masing-masing PUH

2 5 10

Page 24: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

72

Durasi(menit)

Intensitas Hujan ( mm/jam )pada masing-masing PUH

2 5 105 91.80 118.34 138.41

10 68.70 88.57 103.5920 47.91 61.76 72.2440 32.02 41.28 48.2860 24.95 32.16 37.62

120 16.01 20.64 24.14240 10.11 13.03 15.24

Sumber: Hasil Perhitungan, 2014dapat dipilih metode perhitungan intensitas hujan yang

memiliki rata-rata intensitas hujan cakupan yang paling luas halini dapat dilihat pada grafik yang membandingkan ketiga metodepada tiap PUH.

Gambar 5.4 Grafik rentang intensitas hujan pada PUH 2

0

50

100

150

200

250

300

0 50 100 150 200

Dura

si (m

enit)

Intensitas (mm/jam)

PUH 2

Van Breen Hasper Weduween Bell

Page 25: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

73

Gambar 5.5 Grafik rentang intensitas hujan pada PUH 5

Gambar 5.6 Grafik rentang intensitas hujan pada PUH 10

5.1.6 Pemilihan Rumus Lengkung Intensitas HujanDalam perhitungan pemilihan rumus intensitas hujan,

digunakan 3 metode, yaitu metode Talbot, metode Sherman, danmetode Ishiguro.

0

50

100

150

200

250

300

0 50 100 150 200

Dura

si (m

enit)

Intensitas (mm/jam)

PUH 5

Van Breen Hasper Weduween Bell

0

50

100

150

200

250

300

0 50 100 150 200

Dura

si (m

enit)

Intensitas (mm/jam)

PUH 10

Van Breen Hasper Weduween Bell

Page 26: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

74

Dari ketiga metode tersebut, yang akan digunakan adalahmetode yang memiliki nilai lengkung intensitas paling kecil. Dariperhitungan distribusi intensitas hujan sebelumnya, yangmenggunakan metode Van Breen. Sedangkan PUH yangdigunakan adalah 5 karena PUH tersebut dianggap sesuai untukperencanaan saluran tersier pada perumahan. Perhitungan tersebutdilakukan dengan durasi 5, 10, 20, 40, 60, 120 dan 240 menit.Data yang digunakan tertera pada Tabel 5.28.

Tabel 5.27 Intensitas Hujan

Durasi(menit)

INTENSITAS HUJAN(mm/jam)

Untuk Periode Ulang Hujan(Tahun)

2 5 105 116 124 128

10 105 106 11420 94 96 10240 70 73 8060 56 61 67

120 33 38 42240 19 23 25

Sumber: Hasil Perhitungan, 2014

Perumusan intensitas dapat dihitung sebagai berikut :

a) Metode Talbot

2491.5752)42484.23(7491.5752953039.6642484.23(18223.13)

a = 5484.148

2491.5752)42484.23(7

953039.66718223.13491.5752

b = 41.02

02,415484.148

t

I

b) Metode Sherman

Page 27: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

75

log 2)10.8396(18.898067

10.8396))(18.3017129(18.8980612.44752

a = 2.49

a = antilog (2,52) = 310.2345

2)10.8396()18,89806(7)18.3017129(7)10.8396)(12.44752(

n = 0,46

46,0

310.2345t

I

c) Metode Ishiguro

2)491.5752()42484.23(7)491.5752)(176217.6()42484.23(2541.575

a = 415,96

2)491.5752()50099,23(7

)176217.6(72541.575)491.5752(

b = 0,28

28,0383.0526

t

I

dimana

t = durasi

N = jumlah data

a, b, n = konstanta

I = Intensitas hujan (mm/jam)

Page 28: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

76

“ Halaman ini sengaja dikosongkan”

Page 29: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

77

Tabel 5.28 Perhitungan rumus lengkung intensitas hujan PUH 2

No t I I.t I2 I2t Log t Log I Log t Log I (Log t)2 t1/2 I.t1/2 I2. t1/2

1 5 128 642.36 16505.04 82525.20 0.70 2.11 1.47 0.49 2.24 287.27 36906.392 10 114 1143.81 13083.12 130831.21 1.00 2.06 2.06 1.00 3.16 361.71 41372.463 20 102 2038.97 10393.54 207870.77 1.30 2.01 2.61 1.69 4.47 455.93 46481.324 40 80 3182.79 6331.34 253253.62 1.60 1.90 3.05 2.57 6.32 503.24 40042.915 60 67 4028.22 4507.37 270442.22 1.78 1.83 3.25 3.16 7.75 520.04 34913.946 120 42 5072.57 1786.87 214424.69 2.08 1.63 3.38 4.32 10.95 463.06 19574.217 240 25 5967.73 618.29 148390.79 2.38 1.40 3.32 5.67 15.49 385.22 9578.58

∑ 558.6457 22076.45 53225.58 1307738.50 10.84 12.92 19.14 18.90 50.39 2976.47 228869.82Sumber: Hasil Perhitungan, 2014

Tabel 5.29 Perhitungan rumus lengkung intensitas hujan PUH 5

No t I I.t I2 I2t Log t Log I Log t Log I (Log t)2 t1/2 I.t1/2 I2. t1/2

1 5 142 711.97 20276.11 101380.56 0.70 2.15 1.51 0.49 2.24 318.40 45338.762 10 123 1234.08 15229.61 152296.13 1.00 2.09 2.09 1.00 3.16 390.25 48160.263 20 107 2135.91 11405.31 228106.26 1.30 2.03 2.64 1.69 4.47 477.60 51006.114 40 83 3322.53 6899.51 275980.41 1.60 1.92 3.08 2.57 6.32 525.34 43636.335 60 72 4319.29 5182.30 310937.93 1.78 1.86 3.30 3.16 7.75 557.62 40141.916 120 46 5505.91 2105.21 252625.34 2.08 1.66 3.45 4.32 10.95 502.62 23061.437 240 28 6645.06 766.61 183986.94 2.38 1.44 3.43 5.67 15.49 428.94 11876.31

∑ 601.22 23874.76 61864.67 1505313.57 10.84 13.15 19.50 18.90 50.39 3200.77 263221.13Sumber: Hasil Perhitungan, 2014

Page 30: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

78

Tabel 5.30 Perhitungan rumus lengkung intensitas hujan PUH 10

No t I I.t I2 I2t Log t Log I Log t Log I (Log t)2 t1/2 I.t1/2 I2. t1/2

1 5 142 711.02 20222.25 101111.27 0.70 2.15 1.50 0.49 2.24 317.98 45218.332 10 125 1250.81 15645.21 156452.09 1.00 2.10 2.10 1.00 3.16 395.54 49474.503 20 107 2144.24 11494.44 229888.79 1.30 2.03 2.64 1.69 4.47 479.47 51404.704 40 85 3395.05 7203.98 288159.21 1.60 1.93 3.09 2.57 6.32 536.80 45561.975 60 74 4467.17 5543.23 332593.73 1.78 1.87 3.33 3.16 7.75 576.71 42937.676 120 47 5628.64 2200.11 264012.90 2.08 1.67 3.47 4.32 10.95 513.82 24100.977 240 30 7147.47 886.92 212859.99 2.38 1.47 3.51 5.67 15.49 461.37 13740.05

∑ 610.5135 24744.41 63196.13 1585077.97 10.84 13.23 19.65 18.90 50.39 3281.69 272438.18Sumber: Hasil Perhitungan, 2014

Page 31: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

79

Setelah didapatkan semua rumus intensitas PUH, kemudiandimasukkan nilai tiap durasi (t) ke dalam rumus sehingga akandiperoleh intensitas dengan metode tersebut. Setelah ituintensitasnya dicari dengan intensitas data.

Contoh perhitunganIntensitas hujan PUH 5; t = 5 menitI data = 116 mm/jam

a) I talbot

02,415484.148

t

I = 129,4mm/jam

∆ I= I data – I talbot= 116 – 129,4= 13,84

b) I Sherman

46,0

310.2345t

I = 160,49

∆ I= I data – I Sherman= 116 – 160,49= 44,93

c) I Ishiguro

28,0383.0526

t

I = 165,04

∆ I= I data – I Ishiguro= 116 – 165,04= 49,48

Untuk perhitungan seluruh PUH dengan waktu tertentudapat dilihat pada Tabel 5.32.

Page 32: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

80

Tabel 5.31 Perbandingan Kesesuaian Rumus Intensitas CurahHujan PUH 2

No tI

(Data)I

(Talbot) ∆I1

I(Sherman) ∆I2

I(Ishiguro) ∆I3

1 5 116 129.40 13.84 160.49 44.93 165.04 49.482 10 105 116.72 12.17 116.61 12.06 120.69 16.143 20 94 97.59 4.05 84.73 8.81 87.45 6.094 40 70 73.50 3.80 61.57 8.13 62.94 6.765 60 56 58.95 3.01 51.08 4.87 51.80 4.146 120 33 36.98 3.97 37.11 4.10 37.01 4.007 240 19 21.19 1.93 26.97 7.71 26.37 7.11

∑ 42.77 ∑ 90.61 ∑ 93.72Rata-Rata 6.11 Rata-Rata 12.94 Rata-Rata 13.39

Sumber: Hasil Perhitungan, 2014

Gambar 5.7 Grafik lengkung intensitas hujan pada PUH 2

Pada PUH 2, ∆I terkecil adalah ∆I Talbot, dengan demikianuntuk PUH 2 rumus intensitas yang digunakan adalah metodeTalbot.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

0 100 200 300

Inte

nsita

s Huj

an (m

m)

Waktu (menit)

Lengkung Intensitas PUH 2 tahun

Talbot

Sherman

Ishiguro

Page 33: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

81

Talbot PUH 2=02,41

5484.148

t

I

Tabel 5.32 Perbandingan Kesesuaian Rumus Intensitas CurahHujan PUH 5

No tI

(Data)I

(Talbot) ∆I1

I(Sherman) ∆I2

I(Ishiguro) ∆I3

1 5 124 137.43 13.37 170.00 45.94 168.13 44.072 10 106 125.69 20.08 126.31 20.69 128.96 23.343 20 96 107.35 11.79 93.85 1.71 97.00 1.444 40 73 83.10 10.18 69.73 3.19 71.82 1.115 60 61 67.79 6.60 58.61 2.58 59.89 1.306 120 38 43.66 5.93 43.55 5.83 43.56 5.847 240 23 25.50 2.87 32.36 9.73 31.44 8.81

∑ 70.82 ∑ 89.66 ∑ 85.90Rata-Rata 10.12 Rata-Rata 12.81 Rata-Rata 12.27

Sumber: Hasil Perhitungan, 2014

Gambar 5.8 Grafik lengkung intensitas hujan pada PUH 5

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

0 100 200 300

Inte

nsita

s Huj

an (m

m)

Waktu (menit)

Lengkung Intensitas PUH 5 tahun

TalbotShermanIshiguro

Page 34: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

82

Pada PUH 5, ∆I terkecil adalah ∆I Talbot, dengandemikian untuk PUH 5 rumus intensitas yang digunakan adalahmetode Talbot

Talbot PUH 5=48,54

6479.88

t

I

Tabel 5.33 Perbandingan Kesesuaian Rumus Intensitas CurahHujan PUH 10

No tI

(Data)I

(Talbot) ∆I1

I(Sherman) ∆I2

I(Ishiguro) ∆I3

1 5 128 148.21 19.74 182.85 54.38 181.07 52.592 10 114 136.36 21.98 137.33 22.94 140.81 26.433 20 102 117.57 15.62 103.14 1.19 107.12 5.174 40 80 92.16 12.59 77.46 2.11 80.04 0.475 60 67 75.78 8.65 65.51 1.62 67.04 0.106 120 42 49.43 7.16 49.20 6.93 49.05 6.787 240 25 29.15 4.29 36.95 12.09 35.56 10.69

∑ 90.02 ∑ 101.26 ∑ 102.24Rata-Rata 12.86 Rata-Rata 14.47 Rata-Rata 14.61

Sumber: Hasil Perhitungan, 2014

Gambar 5.9 Grafik lengkung intensitas hujan pada PUH 10

0.0020.0040.0060.0080.00

100.00120.00140.00160.00180.00200.00

0 100 200 300

Inte

nsita

s Huj

an (m

m)

Waktu (menit)

Lengkung Intensitas PUH 10 tahun

Talbot

Sherman

Ishiguro

Page 35: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

83

Pada PUH 10, ∆I terkecil adalah ∆I Talbot, dengandemikian untuk PUH 10 rumus intensitas yang digunakan adalahmetode Talbot

Talbot PUH 10=52,55

7347.33

t

I

Pada perhitungan kajian ini menggunakan PUH 5 tahundisesuaikan dengan saluran drainase perumahan. Jadi rumus PUHyang digunakan adalah rumus PUH 5 metode Talbot:

Talbot PUH 5=48,54

6479.88

t

I

Page 36: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

84

5.2 Perhitungan Run Off Perumahan Dian Regency 2Pembagian blok dimaksudkan agar nilai run off yang akan

diketahui efektif sesuai dengan kondisi aliran yang terdapat padadaerah blok tersebut.

Gambar 5.10 Gambar pembagian blok

Selanjutnya menghitung C dari luas yang ada dari masing-masing blok dan dapat dihitung untuk mendapatkan C per blok.Koefisien C didapat dari tabel yang ada untuk masing-masingjenis lahan pada tabel. Setelah diketahui nilai C kemudian dapatdihitung nilai C kumulatif. Hasil perhitungan C bisa dilihat padaTabel 5.35.

Blok 2

Blok 1

Fasum 2

Fasum 11

3

2

Page 37: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

85

Tabel 5.34 Nilai C per Blok

Blok Luas(Ha) Tipe daerah aliran C % L C C total

Blok 1 5,3Multiunit tergabung 0,75 70% 0,525

0,675Jalan Paving 0,7 20% 0,14Halaman 0,1 10% 0,01

Fasum1 1,7415

Multinit, terpisah 0,6 60% 0,360,65Jalan Paving 0,7 40% 0,28

Halaman 0,1 10% 0,01

Blok 2 6,38Multiunit tergabung 0,75 70% 0,525

0,675Jalan Paving 0,7 20% 0,14Halaman 0,1 10% 0,01

Fasum2 3,45

Multinit, terpisah 0,6 50% 0,30,56Jalan Paving 0,7 40% 0,28

Halaman 0,1 10% 0,01Sumber: Hasil Perhitungan, 2014

Contoh perhitungan: Panjang limpasan terjauh (Lo) inlet 1 = 176,4 m Beda tinggi muka tanah antara limpasan terjauh dengan

saluran (Ho) = 1,5 – 0,8 = 0,7 m Slope limpasan (So) = Ho/Lo = , , = 0,004 Untuk lapisan lahan nilai n = 0,015 V yang diasumsikan adalah = 0,4 m/dt (datar) Nilai C inlet 1 = 0,65

Karena panjang limpasan 176,4m maka digunakan rumuslimpasan untuk saluran kurang dari 1000 m

Page 38: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

86

to = 51

31

..108

So

Lon

to =5

1

31

4,0

4,176.015,0.108

= 10,93 menit

td = = ,, = 3,81 menittc = to+td = 10,93+3,81

= 14,74 menit

Nilai yang digunakan untuk saluran sekunder adalah PUH 5tahun. Dari perhitungan lengkung intensitas terkecil didapatkanbahwa untuk PUH 5 tahun metode yang cocok adalah metodeTalbot dengan rumus sebagai berikut:

I =48,54

6479.88t

I = 48,5474,146479.88

I = 102,41 mm/jam

Rumus perhitungan debit adalahQ =(1/3,6 . I(mm/jam) . A(km2) . C)Q = (0,278 . 102,41. 0,0174 . 0,65)Q = 0,32 m3/dt

Selanjutnya run off yang di hasilkan per unit rumah tipe 49,59 dan79 dihitung dengan menghitung nilai C per tipe rumah dahuluselanjutnya didapatkan nilai run off. Tabel 5.35 menunjukkannilai c pada setiap tipe rumah

Page 39: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

87

Tabel 5.35 Nilai C tiap tipe rumahKatakter Nilai C %L C C total

Tipe49

atap 0.9 0.625 0.5625

0.679Paving 0.7 0.1 0.07Halaman tanah

berat datar 0.17 0.275 0.04675

Tipe59

atap 0.9 0.57 0.513

0.708Paving 0.7 0.23 0.161Halaman tanah

berat datar 0.17 0.2 0.034

Tipe79

atap 0.9 0.73 0.657

0.756Paving 0.7 0.1 0.07Halaman tanah

berat datar 0.17 0.17 0.0289

Sumber: Hasil Perhitungan, 2014

Panjang limpasan terjauh dari tiap rumah merupakan panjang

yang diambil dari atap hingga masuk ke saluran. Untuk

kemiringan slope digunakan asumsi dengan nilai 1%. Didapatkan

nilai run off yang dihasilkan dari tiap tipe rumah yang hasilnya

dapat dilihat dari Tabel 5.38:

Page 40: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

88

Perhitungan selengkapnya untuk masing-masing saluran dapat dilihat pada Tabel 5.37

Tabel 5.36 Menentukan Q limpasan dengan V asumsi

ZonaElevasi

Saluran (m) Ho(m)

Lo(m) So n to

(menit)Ld(m)

VAsumsi(m/dtk)

td(menit)

tc(menit) C A

(Km2)I

(mm/jam)

Qlimpasan

(m3/detik)Awal Akhir

Inlet 1 1,5 0,8 0,7 176,4 0,40 0,015 10,93 91,4 0,4 3,81 14,74 0,65 0,0174 102,41 0,32Inlet 2 2 0,7 1,3 266,3 0,49 0,015 12,03 187,7 0,4 7,82 22,56 0,66 0,0704 91,14 1,18Inlet 3 2 0,1 1,9 272 0,70 0,015 11,28 261,5 0,6 7,26 29,82 0,64 0,0168 82,69 2,48

Sumber: Hasil Perhitungan, 2014

Berikut disajikan perhitungan limpasan yang terjadi pada setiap tipe rumah:

Tabel 5.37 Q limpasan per tipe rumah

Tipe JumlahUnit

Lo(m)

So(m)

to(menit) V (m/dtk) tc

(menit) A (Ha) I (mm/jam) Q limpasan(m3/detik)

Q total per unit(m3/detik)

49 241 22 0,01 20,34 0,4 20,34 0,000080 94,07 0.000014 295,959 198 25,5 0,01 20,41 0,4 20,41 0,000096 93,99 0.000018 303,879 145 30 0,01 19,43 0,4 19,43 0,000119 95.34 0.000024 298,7

Page 41: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

89

5.3 Perhitungan Jumlah Air Hujan Yang DitampungSalah satu metode pengurangan run off pada bulan hujan

yang juga termasuk metode ecodrainage adalah pembuatan bakpenampung air hujan. Dalam hal ini, metode pengurangan run offakan di terapkan pada lokasi perumahan dengan pembuatan bakpenampung air hujan. Air hujan yang jatuh pada satu lokasirumah ada yang jatuh langsung ke tanah dan terserap, jatuh di atasatap lalu dialirkan ke drainase ataupun langsung mengalir kesaluran drainase tanpa adanya penyerapan. Air hujan yang jatuhke atap akan di tampung ke dalam bak sehingga air hujan yangmenjadi run off berkurang dari semestinya. Air hujan yang jatuhdi atap akan mengalir sesuai arah kemiringan atap kemudianmasuk kedalam saluran talang atap. Dari saluran talang atap, airhujan dialirkan menuju tangki di halaman belakang.

Beberapa hal yang dibutuhkan dalam perhitungan jumlahair hujan yang ditampung antara lain adalah curah hujan, luaspenampang (pada kasus ini adalah atap), dan koefisien pengaliran.Pada pembahasan perhitungan jumlah air hujan yang akanditampung menggunakan curah hujan dari stasiun keputih karenalokasi studi yang berada di sekitar stasiun tersebut. Data curahhujan yang didapat dari Balai Pengelolaan Sumber Daya AirWilayah Sungai (PSAWS) Butung Paketingan, Surabaya diambilselama 10 tahun terakhir. Selanjutnya dirangking dari yangterbesar hingga terkecil lalu dihitung median tiap bulan untukmenentukan curah hujan yang selanjutnya akan dihitung sebagaicurah hujan perwakilan. Berikut hasil perhitungan median daricurah hujan 10 tahun terakhir pada tiap bulan:

Tabel 5.38 Median hujan di Stasiun KeputihData Curah Hujan Stasiun Keputih Median

(mm)No 1 2 3 4 5 6 7 8 9 10Jan 551 477 427 378 338 289 256 242 175 169 314Feb 481 424 373 368 317 285 247 229 228 207 301Mar 448 414 395 372 320 246 235 209 201 196 283Apr 440 425 158 102 83 80 50 34 27 0 81.5

Page 42: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

90

Data Curah Hujan Stasiun Keputih Median(mm)No 1 2 3 4 5 6 7 8 9 10

Mei 336 166 107 97 64 64 55 50 17 15 64Juni 128 103 50 45 41 15 5 0 0 0 28Juli 90 36 0 0 0 0 0 0 0 0 0Agst 20 10 0 0 0 0 0 0 0 0 0Sep 117 0 0 0 0 0 0 0 0 0 0Okt 142 48 33 23 14 4 0 0 0 0 9Nov 281 276 203 133 125 75 72 33 0 0 100Des 526 430 404 388 314 224 191 157 0 0 269Sumber: Hasil perhitungan, 2014Dari perhitungan Tabel 5.37 dapat diketahui bahwa terdapat bulanhujan (basah) yaitu antara bulan November-Maret dan bulankering antara April-Oktober. Maka peristiwa run off terjadi padakisaran bulan hujan (basah) yaitu antara bulan November-Maret.Perhitungan jumlah air hujan yang tertampung dapat ditentukandengan menggunakan rumus:

V = A x R x CDimana:V = volume air yang dapat ditampung (m3)A = luas areal penangkap air hujan (m2)R = curah hujan daerah tersebut (mm/bulan) (Median)C = Koefisien pengaliran atap

Pada kajian ini luas areal penangkap air hujan melalui atap rumahyang kemudian disalurkan ke tangki elevasi. Berikut contohperhitungan jumlah penangkapan air hujan:

Tipe 49Diketahui A = 49,82 m2

R = 314 (mm/tahun)C = 0,9

V = A x R x CV = 49,82 m2 x 314 mm/bulan x 0,9V= 14,06 m3/ bulan = 468,54 l/hari

Hasil Volume tangkapan air hujan sesuai dengan luasan ataprumah pertipe disajikan pada Tabel 5.40.

Page 43: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

91

Tacbel 5.39 Volume Air hujan yang tertampung pada tipe 49

Bulan Median(mm)

LuasAtap

CAtap

Volumem3/bulan m3/hari l/hari

Jan 314 49,82 0,9 14,06 0,47 468,54Feb 301 49,82 0,9 13,50 0,45 449,86Mar 283 49,82 0,9 12,69 0,42 422,95April 82 49,82 0,9 3,65 0,12 121,80Mei 64 49,82 0,9 2,87 0,10 95,65Juni 28 49,82 0,9 1,26 0,04 41,85Juli 0 49,82 0,9 0 0 0Agst 0 49,82 0,9 0 0 0Sep 0 49,82 0,9 0 0 0Okt 9 49,82 0,9 0,40 0,01 13,45Nop 100 49,82 0,9 4,48 0,15 149,45Des 269 49,82 0,9 12,06 0,40 402,03

Sumber: Hasil Perhitungan, 2014

Pada Tabel 5.41 merupakan hasil perhitungan volume air hujanyang tertampung pada rumah tipe 59:

Tabel 5.40 Volume Air hujan yang tertampung pada tipe 59Bulan Median

mmLuasAtap

CAtap

Volumem3/bulan m3/hari l/hari

Jan 314 70,45 0,9 19,88 0,66 662,54Feb 301 70,45 0,9 19,08 0,64 636,13Mar 283 70,45 0,9 17,94 0,60 598,08April 82 70,45 0,9 5,17 0,17 172,24Mei 64 70,45 0,9 4,06 0,14 135,26Juni 28 70,45 0,9 1,78 0,06 59,17Juli 0 70,45 0,9 0 0 0Agst 0 70,45 0,9 0 0 0Sep 0 70,45 0,9 0 0 0

Page 44: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

92

Bulan Medianmm

LuasAtap

CAtap

Volumem3/bulan m3/hari l/hari

Okt 9 70,45 0,9 0,57 0,02 19,02Nop 100 70,45 0,9 6,34 0,21 211,34Des 269 70,45 0,9 17,05 0,57 568,50

Sumber: Hasil Perhitungan, 2014

Pada Tabel 5.42 merupakan perhitungan volume air hujan yangtertampung pada rumah tipe 79:

Tabel 5.41 Volume Air hujan yang tertampung pada tipe 79Bulan Median

(mm)LuasAtap

CAtap

Volumem3/bulan m3/hari l/hari

Jan 314 89,38 0,9 25,22 0,84 840,65Feb 301 89,38 0,9 24,21 0,81 807.13Mar 283 89.38 0.9 22.77 0.76 758.86April 82 89.38 0.9 6.56 0,22 218,54Mei 64 89,38 0,9 5,15 0,17 171,62Juni 28 89,38 0,9 2,25 0,08 75,08Juli 0 89,38 0,9 0 0 0Agst 0 89,38 0,9 0 0 0Sep 0 89,38 0,9 0 0 0Okt 9 89,38 0,9 0,72 0,02 24,13Nop 100 89,38 0,9 8,04 0,27 268,15Des 269 89,38 0,9 21,64 0,72 721,32

Sumber: Hasil Perhitungan, 2014

5.4 Perhitungan Kebutuhan Air Yang DibutuhkanPerhitungan kebutuhan air tersebut dimaksudkan agar air

hujan yang tertampung dapat digunakan untuk memenuhikebutuhan air bersih penghuni sebanyak air hujan yangtertampung, dalam kajian ini adalah untuk memenuhi kebutuhanair penggunaan water closet dan wastafel. Berdasarkan jenis danjumlah alat plambing dapat diketahui kebutuhan air yang dapat

Page 45: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

93

dilayani dengan menggunakan air tangkapan air hujan.Perhitungan juga mengasumsikan jumlah penghuni sesuai dengankamar yang tersedia.

Pemakaian air untuk setiap alat plambing dapat digunakanTabel 2.10 Berikut hasil yang didapat:

Tabel 5.42 Kebutuhan air bersih menurut jumlah alat plambingJenis alatplambing

Jumlah alatplambing

Pemakaianair (L)

Pemakaian/hari

Kebutuhan air (L)

Tipe 49 (penghuni 3-4 orang)Water Closet(tangki) 1 15 8 120

Wastafel 2 10 12 240

Jumlah 360Tipe 59 (penghuni 3-4 orang)Water Closet(tangki) 1 15 8 120

Wastafel 2 10 12 240

Jumlah 360Tipe 79 (penghuni 4-5 orang)Water Closet(tangki) 2 15 10 300

Wastafel 2 10 14 280

Jumlah 580Sumber: Hasil Perhitungan, 2014

Dilihat dari Tabel 5.43 kebutuhan air bersih, dapatdiketahui kebutuhan air bersih untuk water closet serta wastafeldengan penghuni per tipe sekitar 3-5 orang. Jika dibandingkandengan air hujan yang tertampung dengan elevated tank padatabel 5.40-5.43 sesuai dengan tipe rumah masing-masing, makakebutuhan air bersih untuk water closet dan wastafel denganpenghuni sekitar 3-5 orang untuk tipe rumah 49, 59 dan 79tercukupi. Hal demikian, penggunaan air bersih dari tampunganair hujan dapat menghemat penggunaan air PDAM.

Page 46: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

94

5.5 Penentuan Kapasitas Tangki Dan Perencanaan Talang,Dan Letak Elevated Tank

5.5.1 Penentuan Kapasitas TangkiPenentuan kapasitas volume bak penampung disesuaikan

dengan air hujan yang ditangkap. Penampung air hujan yang digunakan adalah jenis tangki. Berikut rangkuman volume air hujanyang tertangkap pada tiap tipe rumah:

Tabel 5.43 Volume Air hujan yang tertampung

No Tipe 49 Tipe 59 Tipe 79Volume l/hari Volume l/hari Volume l/hari

Januari 468,54 662,54 840,65Februari 449,86 636,13 807.13

Maret 422,95 598,08 758.86April 121,80 172,24 218,54Mei 95,65 135,26 171,62Juni 41,85 59,17 75,08Juli 0 0 0

Agustus 0 0 0September 0 0 0Oktober 13,45 19,02 24,13

Nopember 149,45 211,34 268,15Desember 402,03 568,50 721,32

Sumber: Hasil Perhitungan, 2014Pada Tabel 5.44 tersebut menjelaskan bahwa bulan

Januari merupakan bulan dengan tangkapan air hujan terbesar.Kapasitas penampungan air hujan mengikuti hasil tangkapanterbesar. Maka pada tipe 49, 59 dan 79 menggunakan hasiltangkapan bulan Januari untuk menentukan kapasitas tangki.

Tangki yang digunakan merupakan tangki portabel yangterbuat dari polyethylene. Kapasitas tangki yang dipilih denganukuran 2 kali lipat dari kapasitas air hujan yang tertampung,dengan asumsi bahwa curah hujan tersebut merupakan curah

Page 47: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

95

hujan median sehingga masih terdapat curah hujan maksimum.Disajikan pada Tabel 5.43 tangki jenis klasik yang tersedia dipasaran yang digunakan untuk menampung air hujan

Tabel 5.44 Kapasitas tangki terpakaiTipe Runah Volume (l) Kapasitas Tangki (l)

49 468,54 105059 662,54 120079 840,65 1550

Sumber: Hasil Perhitungan, 2014

Spesifikasi tangki yang digunakan untuk menampung air hujanper tipe dapat dilihat pada Tabel 5.44-5.45.

Tabel 5.45 Spesifikasi Tangki yang digunakan rumah tipe 49TIPE 49

Jenis Tangki TB 110Kapasitas 1050 lTinggi (T)Ө tutupӨ tangki

1,265 m0,4 m

1,06 mTebaldinding

9-11 mm

Ө fitting ¾-1 inchHarga Rp 1.625.000

Sumber: Hasil Perhitungan, 2014

Page 48: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

96

Tabel 5.46 Spesifikasi Tangki yang digunakan rumah tipe 59TIPE 59

Jenis Tangki TB 120Kapasitas 1200 lTinggi (T)Ө tutupӨ tangki

1,395 m0,4 m

1,06 mTebaldinding

9-11 mm

Ө fitting ¾-1 inchHarga Rp 1.750.000

Sumber: Hasil Perhitungan, 2014

Tabel 5.47 Spesifikasi Tangki yang digunakan rumah tipe 79TIPE 79

Jenis Tangki TB 160Kapasitas 1550 lTinggi (T)Ө tutupӨ tangki

1,575 m0,4 m

1,16 mTebaldinding

10-12 mm

Ө fitting 1 inchHarga Rp 2.300.000

Sumber: Hasil Perhitungan, 2014

Page 49: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

97

5.5.2 Perencanaan Talang dan Letak Elevated TankSistem penyaluran air hujan dilakukan secara integrasi

antar talang dengan elevated tank. Air hujan yang jatuh ke atapakan mengalir ke talang bagian depan maupun belakangselanjutnya dialirkan dan ditampung ke elevated tank yangterletak di bagian halaman belakang rumah. Perumahan diSukolilo Dian Regency 2 berupa multiunit yang saling menempelsatu sama lainnya, sehingga tidak ada celah antara satu rumahdengan rumah lainnya untuk jalur talang. Oleh karena itu, jalurtalang dari sisi depan rumah masuk kedalam rumah dan kemudianmasuk ke jalur talang bagian belakang yang selanjutnyaditampung ke dalam tangki. Dari tangki air akan disalurkan keunit plambing secara gravitasi.

Talang yang digunakan berbentuk setengah lingkaran yangberbahan galvanis. Dibandingkan talang yang terbuat dari bahanpvc dan bentuk persegi, talang berbahan galvanis lebih kuatterhadap perubahan cuaca sehingga tidak mudah retak denganstandar harga yang tidak berbeda jauh dengan bahan PVC.Sedangkan talang berbentuk setengah lingkaran mengalirkan airlebih baik dan cenderung tidak menampung kotoran.

Spesifikasi penggunaan talang pada setiap rumahmenggunakan talang berbentuk setengah lingkaran berbahangalvanis dengan diameter 15 cm. Sedangkan pipa penyalur airhujan yang masuk kedalam rumah digunakan diameter 87,5 mm.

Letak tangki berada pada halaman belakang setiap rumahtepat dibawah posisi atap, oleh karena itu dibutuhkan menaradalam peletakannya. Menara yang direncanakan dibuat dengankonstruksi baja profil L. Detail gambar perencanaan talang danletak elevated tank untuk masing-masing tipe rumah pada gambar5.12 sampai 5.20.

5.6 Proses Penampungan Air HujanProses penampungan air hujan yang terjadi yaitu, air hujan

yang turun dan jatuh ke atap akan mengalir masuk ke talang airhujan. Talang tersebut menyalurkan air hujan ke dalam bak

Page 50: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

98

penampung yang terletak di belakang bangunan rumah. Jumlahair hujan yang tertampung ditunjukkan seperti pada Tabel 5.44.Sesuai dengan kapasitas tangki air hujan yang dipilih, tangkimemiliki kapasitas yang lebih besar dari debit air hujan yangtertampung per harinya. Hal demikian untuk menampung airtangkapan yang curahnya lebih besar dan menampung air hingga2 hari hujan.

Air yang telah tertampung akan digunakan untuk keperluansehari-hari yaitu untuk penggelontoran closet dan penggunaan airdi wastafel. Apabila air hujan yang telah tertampung tersebut padahari yang sama digunakan untuk keperluan sehari-hari, makatangki penampung akan kembali kosong sehingga dapatmenampung kembali air hujan di hari berikutnya

Apabila tangki tersebut sudah penuh, maka air yang masukkedalam tanki akan tumpah kedalam pipa overflow dan kemudianmasuk ke saluran drainase halaman belakang untuk selanjutnyadibawa ke saluran drainase kawasan perumahan.

Berikut ini disajikan gambar proses air hujan yangditampung ke dalam tangki.

Gambar 5.11 Proses penampungan dan arah aliran air

depanbelakang

Page 51: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

99

Page 52: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

100

Page 53: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

101

Page 54: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

102

Page 55: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

103

Page 56: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

104

Page 57: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

105

Page 58: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

106

Page 59: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

107

Page 60: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

108

Page 61: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

109

5.7 Perhitungan Efisiensi Bak Penampung Serta BOQ danRAB

5.7.1 Perhitngan Efisiensi Bak Penampung dalammengurangi run off

Efiseinsi dari bak penampung air hujan (elevated tank)dalam pengurangan run off pada studi kasus lokasi PerumahanSukolilo Dian Regency 2 ini dilakukan dengan caramembandingkan debit limpasan air hujan (run off) awal tanpaadanya bak tangkapan air hujan dengan debit limpasan air hujan(run off) dengan adanya reduksi limpasan melalui bak tangkapanair hujan yang dipasang pada setiap rumah tipe 49,59 dan 79.Perhitungan efisiensi ini guna mengetahui seberapa besar peranbak tangkapan air hujan dalam mereduksi run off di kawasanPerumahan Sukolilo Dian Regency 2. Semakin besar nilaiefisiensi maka semakin kecil nilai run off sehingga beban drainasekawasan semakin ringan dan kemungkinan banjir yangdisebabkan pembangunan perumahan Sukolilo Dian Regency 2pun kecil.

Berikut perhitungan efisiensi bak penampung air hujandalam mereduksi run off di kawasan Perumahan Dian SukoliloRegency 2:

Debit limpasan air hujan kawasan Perumahan SukoliloDian Regency 2 tanpa adanya bak penampung air hujan= 214.471.941,58 l/hari (Tabel 5.37)

Debit limpasan tiap tipe rumah (49,59 dan 79) tanpaadanya bak penampung air hujan adalah:

Tabel 5.48 Total Q limpasan rumah tanpa bak penampungTipe Jumlah

RumahQ limpasan

(l/hari)49 241 295914,359 198 303814,4779 145 298688,02

Sumber: Hasil Perhitungan, 2014

Page 62: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

110

Debit limpasan yang tertampung oleh bak tangkapan airhujan elevated tank adalah:

Tabel 5.49 Total air hujan yang tertampung

TipeRumah

Volume(l/hari)

Jumlahrumah

Volumetotal

(l/hari)49 470 241 113097,4859 517 198 131392,6579 818 145 122088,64

TOTAL 366578,76Sumber: Hasil Perhitungan, 2014

= 100%= . ,. . , 100%= 0,17 %

Maka efisiensi bak penampung air hujan dalam mengurangi runoff yang diterapkan pada setiap unit rumah tipe 49,59 dan 79 dikawasan Perumahan Sukolilo Dian Regency 2 adalah sebesar0,17%.

Sedangkan efisiensi bak penampung air hujan dalam mengurangirun off per tipe 49, 59 dan 79 adalah:

Tipe 49= . ,. , 100%= 38,2 %

Tipe 59= . ,. , 100%

Page 63: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

111

= 43,24 %

Tipe 79= . ,, 100%= 40,8 %

5.7.2 BOQ dan RAB dalam membangun bak tangkapan airhujan (elevated tank)

Tahapan akhir dari kajian ini adalah melakukan perhitungan jenisdan jumlah material yang dipelukan untuk pemasangan sistem dilapangan (rumah). Perhitungan jenis dan jumlah materialdidasarkan pada perencanaan yang telah dilakukan sebelumnya.Perhitungan BOQ dan RAB ini meliputi:

1. Perhitungan BOQ dan RAB untuk Talang dan Pipa2. Perhitungan BOQ dan RAB untuk Aksesoris Talang dan

Pipa3. Perhitungan BOQ dan RAB untuk Tangki dan Menara

Air

A. Bill of Quantity (BOQ)Bill of Quantity ini dibuat dengan tujuan untukmengetahui jumlah peralatan yang dibutuhkan dalamperencanaan pembuatan sistem penampung air hujansehingga dapat mempermudah dalam menghitung danmerencanakan biayanya.

- BOQ Talang dan PipaTabel 5.50 BOQ Talang dan Pipa

No Jenis Barang Material Satuan Panjang JumlahTipe 491 Talang Datar @ 3m Galvalum meter 10 42 Pipa Ø 80mm (3")@

4mPVC meter 14.083 4

Page 64: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

112

No Jenis Barang Material Satuan Panjang JumlahTipe 591 Talang Datar @ 3m Galvalum meter 9 32 Pipa Ø 80mm (3")@

4mPVC meter 13.34 4

Tipe791 Talang Datar @ 3m Galvalum meter 10 42 Pipa Ø 80mm (3")@

4mPVC meter 15.75 4

Sumber: Hasil Perhitungan, 2014

- BOQ Aksesoris Talang dan PipaTabel 5.51 BOQ Aksesoris Talang dan Pipa

No Jenis Barang Material Satuan JumlahTipe 491 Talang Sudut Dalam Galvalum buah -2 Talang Sudut Luar Galvalum buah -3 Pipa Lengkung PVC buah 44 Corong Penyambung Galvalum buah 25 Penutup talang Galvalum buah 46 Penahan pipa Galvalum buah 47 Penggantung Talang Galvalum buah 68 Spacer Galvalum buah 69 Penyambung talang Galvalum buah 2

10 Sepatu pipa Galvalum buah 111 Tee (3") PVC buah 212 Saringan Kawat buah 313 Valve 3" PVC buah 114 Paku Asbes skrup buah 26Tipe 591 Talang Sudut Dalam Galvalum buah -2 Talang Sudut Luar Galvalum buah -3 Pipa Lengkung PVC buah 4

Page 65: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

113

No Jenis Barang Material Satuan Jumlah4 Corong Penyambung Galvalum buah 25 Penutup talang Galvalum buah 46 Penahan pipa Galvalum buah 37 Penggantung Talang Galvalum buah 58 Spacer Galvalum buah 59 Penyambung talang Galvalum buah 1

10 Sepatu pipa Galvalum buah 111 Tee (3") PVC buah 212 Saringan Kawat buah 313 Valve 3" PVC buah 114 Paku Asbes skrup buah 21Tipe791 Talang Sudut Dalam Galvalum buah -2 Talang Sudut Luar Galvalum buah -3 Pipa Lengkung PVC buah 64 Corong Penyambung Galvalum buah 35 Penutup talang Galvalum buah 66 Penahan pipa Galvalum buah 47 Penggantung Talang Galvalum buah 98 Spacer Galvalum buah 99 Penyambung talang Galvalum buah 3

10 Sepatu pipa Galvalum buah 111 Tee (3") PVC buah 212 Saringan Kawat buah 413 Valve 3" PVC buah 114 Paku Asbes skrup buah 35

Sumber: Hasil Perhitungan, 2014

Page 66: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

114

- BOQ Tangki dan Menara AirTabel 5.52 BOQ Tangki dan Menara Air

No Jenis Barang Material Satuan JumlahTipe 49

1 Tangki Fiber buah 1

2 Menara air(120x120x230)

Siku5x5x5cm buah 1

Tipe 591 Tangki Fiber buah 1

2 Menara air(120x120x230)

Siku5x5x5cm buah 1

Tipe 791 Tangki Fiber buah 1

2 Menara air(120x120x230)

Siku5x5x5cm buah 1

Sumber: Hasil Perhitungan, 2014

B. Cost Estimates/Rencana Anggaran Biaya (RAB)Rencana anggaran biaya ini didapatkan dari daftar jenisdan jumlah material yang dibutuhkan dalam perencanaanpembuatan sistem penampung air hujan sehinggadidapatkan total biaya yang diperlukan dalampemasangan sistem.- RAB Rumah tipe 49

Tabel 5.53 RAB Rumah tipe 49

No. DETAILHARGASATUAN

(Rp)

JUMLAHHARGA

(Rp)a. Bahan

1 4 btg Talang Datar 89,500 358,000

2 4 btg Pipa Tegak (3") 85,400 341,600

3 4 btg Pipa Lengkung 28,560 114,240

4 2 btg Corong Penyambung 82,500 165,000

5 4 btg Penutup talang 38,500 154,000

Page 67: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

115

No. DETAILHARGASATUAN

(Rp)

JUMLAHHARGA

(Rp)6 4 btg Penahan pipa 35,500 142,000

7 6 btg Penggantung Talang 32,500 195,000

8 6 btg Spacer 16,000 96,000

9 2 btg Penyambung talang 35,500 71,000

10 1 btg Sepatu pipa 98,500 98,500

11 2 btg Tee (3") 57,120 114,240

12 3 btg Saringan 15,000 45,000

13 1 btg Valve 3" 17,900 17,900

14 26 buah Paku Asbes skrup 3,700 96,200

15 1 buah Tangki 1,625,000 1,625,000

16 1 buah Menara air(120x120x230)

2,000,000 2,000,000

Sub Jumlah 5,633,680b. upahPemasangan Talang

1 0,025 org/hari Mandor 119,500 29.875

2 0,8 org/hari Tukang 99,400 795.200

3 0,500 org/hari Pembantu Tukang 94,400 472.000Pemasangan Talang Pembuluh Pipa Pvc 3"

1 0,0675 org/hari Tukang 99,400 94.490

2 0,034 org/hari Pembantu Tukang 94,400 44.802Pemasangan Menara dan Distribusi Menara 1,000,000

Sub Jumlah 2,436,367

TOTAL 6,635,116

Sumber: Hasil Perhitungan, 2014

Page 68: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

116

- RAB Rumah tipe 59Tabel 5.54 RAB Rumah tipe 59

No. DETAILHARGASATUAN

(Rp)

JUMLAHHARGA

(Rp)a. Bahan

1 3 btg Talang Datar 89,500 268,5002 4 btg Pipa Tegak (3") 85,400 341,6003 4 btg Pipa Lengkung 28,560 114,2404 2 btg Corong Penyambung 82,500 165,0005 4 btg Penutup talang 38,500 154,0006 3 btg Penahan pipa 35,500 106,5007 5 btg Penggantung Talang 32,500 162,5008 5 btg Spacer 16,000 80,0009 1 btg Penyambung talang 35,500 35,500

10 1 btg Sepatu pipa 98,500 98,50011 2 btg Tee (3") 57,120 114,24012 3 btg Saringan 15,000 45,00013 1 btg Valve 3" 17,900 17,90014 21 buah Paku Asbes skrup 3,700 77,70015 1 buah Tangki 1,750,000 1,750,00016 1 buah Menara air

(120x120x230)2,000,000 2,000,000

Sub Jumlah 5,531,180b, upahPemasangan Talang

1 0,025 org/hari Mandor 119,500 26,8882 0,8 org/hari Tukang 99,400 715,6803 0,500 org/hari Pembantu Tukang 94,400 424,800

Pemasangan Talang Pembuluh Pipa Pvc 3"1 0,0675 org/hari Tukang 99,400 89,5052 0,034 org/hari Pembantu Tukang 94,400 42,438

Page 69: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

117

No. DETAILHARGASATUAN

(Rp)

JUMLAHHARGA

(Rp)Pemasangan Menara dan Distribusi Menara 1,000,000

Sub Jumlah 2,299,311

TOTAL 6,532,479

Sumber: Hasil Perhitungan, 2014

- RAB Rumah tipe 79Tabel 5.55 Rumah tipe 79

No DETAILHARGASATUAN

(Rp)

JUMLAHHARGA

(Rp)a. Bahan

1 4 btg Talang Datar 89,500 358,0002 4 btg Pipa Tegak (3") 85,400 341,6003 6 btg Pipa Lengkung 28,560 171,3604 3 btg Corong Penyambung 82,500 247,5005 6 btg Penutup talang 38,500 231,0006 4 btg Penahan pipa 35,500 142,0007 9 btg Penggantung Talang 32,500 292,5008 9 btg Spacer 16,000 144,0009 3 btg Penyambung talang 35,500 106,50010 1 btg Sepatu pipa 98,500 98,50011 2 btg Tee (3") 57,120 114,24012 4 btg Saringan 15,000 60,00013 1 btg Valve 3" 17,900 17,90014 35 buah Paku Asbes skrup 3,700 129,50015 1 buah Tangki 2,300,000 2,300,00016 1 buah Menara air

(120x120x230)2,000,000 2,000,000

Sub Jumlah 6,754,600b. upah

Page 70: BAB 5 ANALISIS DAN PEMBAHASAN 5.1 Analisis … pemindahan stasiun hujan, stasiun hujan hilang, maintenance stasiun curah hujan, bencana alam, dan lain sebagainya. Hal-hal tersebut

118

No DETAILHARGASATUAN

(Rp)

JUMLAHHARGA

(Rp)Pemasangan Talang

1 0,025 org/hari Mandor 119,500 29,8752 0,8 org/hari Tukang 99,400 795,2003 0,500 org/hari Pembantu Tukang 94,400 472,000

Pemasangan Talang Pembuluh Pipa Pvc 3"1 0,0675 org/hari Tukang 99,400 105,6752 0,034 org/hari Pembantu Tukang 94,400 50,105

Pemasangan Menara dan Distribusi Menara 1,000,000Sub Jumlah 2,452,855

TOTAL 7,756,053

Sumber: Hasil Perhitungan, 2014

Sehingga didapatkan Racangan Anggaran Biaya Total per unitrumah seperti yang disajikan pada Tabel 5.57 berikut:

Tabel 5.56 RAB TotalNo Tipe Rumah Total (Rp)1 Tipe 49 6,635,1162 Tipe 59 6,532,4793 Tipe 79 7,756,053

Sumber: Hasil Perhitungan, 2014