72
Weibull Reliability Analysis = http://www.rt.cs.boeing.com/MEA/stat/reliability.html Fritz Scholz (425-865-3623, 7L-22) Boeing Phantom Works Mathematics & Computing Technology Weibull Reliability Analysis—FWS-5/1999—1

B Weibull Reliability Analysis W - University of Washington...and also for some other censored data scenarios 2 R.B. D’Agostino and M.A. Stephens, Goodness-of-Fit Techniques, Marcel

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Weibull Reliability Analysis

    =⇒ http://www.rt.cs.boeing.com/MEA/stat/reliability.html

    Fritz Scholz (425-865-3623, 7L-22)Boeing Phantom WorksMathematics & Computing Technology

    Weibull Reliability Analysis—FWS-5/1999—1

  • Wallodi Weibull

    Weibull Reliability Analysis—FWS-5/1999—2

  • Seminal Paper

    Weibull Reliability Analysis—FWS-5/1999—3

  • The Weibull Distribution

    •Weibull distribution, useful uncertainty model for– wearout failure time T

    when governed by wearout of weakest subpart– material strength T

    when governed by embedded flaws or weaknesses,

    • It has often been found useful based on empirical data (e.g. Y2K)• It is also theoretically founded on the weakest link principle

    T = min (X1, . . . , Xn) ,

    with X1, . . . , Xn statistically independent random strengths orfailure times of the n “links” comprising the whole.The Xi must have a natural finite lower endpoint,e.g., link strength ≥ 0 or subpart time to failure ≥ 0. ↪→

    Weibull Reliability Analysis—FWS-5/1999—4

  • Theoretical Basis

    • Under weak conditions Extreme Value Theory shows1 that forlarge n

    P (T ≤ t) ≈ 1− exp−

    t− τα

    β for t ≥ τ, α > 0, β > 0

    • The above approximation has very much the same spirit as theCentral Limit Theorem which under some weak conditions onthe Xi asserts that the distribution of T = X1 + . . .+Xn isapproximately bell-shaped normal or Gaussian

    • Assuming a Weibull model for T , material strength or cycle time tofailure, amounts to treating the above approximation as an equality

    F (t) = P (T ≤ t) = 1− exp−

    t− τα

    β for t ≥ τ, α > 0, β > 0

    1see: E. Castillo, Extreme Value Theory in Engineering, Academic Press, 1988

    Weibull Reliability Analysis—FWS-5/1999—5

  • Weibull Reproductive Property

    If X1, . . . ,Xn are statistically independent

    with Xi ∼ Weibull(αi, β) then

    P (min(X1, . . . ,Xn) > t) = P (X1 > t)× · · · × P (Xn > t)

    =n∏i=1

    exp−

    tαi

    β = exp

    − n∑i=1

    tαi

    β

    = exp−

    β

    Hence T = min(X1, . . . ,Xn) ∼ Weibull(α,β) with

    α = n∑i=1α−βi

    −1/β

    Weibull Reliability Analysis—FWS-5/1999—6

  • Weibull Parameters

    The Weibull distribution may be controlled by 2 or 3 parameters:

    • the threshold parameter τ

    T ≥ τ with probability 1τ = 0 =⇒ 2-parameter Weibull model.

    • the characteristic life or scale parameter α > 0

    P (T ≤ τ + α) = 1− exp−

    αα

    β = 1− exp(−1) = .632

    regardless of the value β > 0

    • the shape parameter β > 0, usually β ≥ 1

    Weibull Reliability Analysis—FWS-5/1999—7

  • 2-Parameter Weibull Model

    •We focus on analysis using the 2-parameter Weibull model

    •Methods and software tools much better developed

    • Estimation of τ in the 3-parameter Weibull modelleads to complications

    •When a 3-parameter Weibull model is assumed,it will be stated explicitly

    Weibull Reliability Analysis—FWS-5/1999—8

  • Relation of α & β to Statistical Parameters

    • The expectation or mean value of T

    µ = E(T ) =∫ ∞0 t f(t) dt = αΓ(1 + 1/β)

    with Γ(t) =∫ ∞0 exp(−x)x

    t−1 dx

    • The variance of Tσ2 = E(T − µ)2 =

    ∫ ∞0 (t− µ)

    2f(t) dt = α2[Γ(1 + 2/β)− Γ2(1 + 1/β)

    ]

    • p-quantile tp of T , i.e., by definition P (T ≤ tp) = p

    tp = α [− log(1− p)]1/β , for p = 1− exp(−1) = .632 =⇒ tp = α

    Weibull Reliability Analysis—FWS-5/1999—9

  • Weibull Density

    • The cumulative distribution function F (t) = P (T ≤ t) is justone way to describe the distribution of the random quantity T

    • The density function f(t) is another representation (τ = 0)

    f(t) = F ′(t) =dF (t)dt

    α

    β−1

    exp−

    β t ≥ 0

    P (t ≤ T ≤ t+ dt) ≈ f(t) dt

    F (t) =∫ t0 f(x) dx

    Weibull Reliability Analysis—FWS-5/1999—10

  • Weibull Density & Distribution Function

    0 5000 10000 15000 20000

    cycles

    Weibull density α = 10000, β = 2.5total area under density = 1

    cumulative distribution functionp

    p

    0

    1

    Weibull Reliability Analysis—FWS-5/1999—11

  • Weibull Densities: Effect of τ

    cycles

    prob

    abili

    ty d

    ensi

    ty

    0 2000 4000

    τ = 0 τ = 1000 τ = 2000

    α = 1000, β = 2.5

    Weibull Reliability Analysis—FWS-5/1999—12

  • Weibull Densities: Effect of α

    cycles

    prob

    abili

    ty d

    ensi

    ty

    0 2000 4000 6000 8000

    α = 1000

    α = 2000

    α = 3000

    τ = 0, β = 2.5

    Weibull Reliability Analysis—FWS-5/1999—13

  • Weibull Densities: Effect of β

    cycles

    prob

    abili

    ty d

    ensi

    ty

    0 1000 2000 3000 4000

    β = .5

    β = 1β = 2

    β = 4

    β = 7

    τ = 0, α = 1000

    Weibull Reliability Analysis—FWS-5/1999—14

  • Failure Rate or Hazard Function

    • A third representation of the Weibull distribution is through thehazard or failure rate function

    λ(t) =f(t)

    1− F (t) =β

    α

    β−1

    • λ(t) is increasing t for β > 1 (wearout)• λ(t) is decreasing t for β < 1• λ(t) is constant for β = 1 (exponential distribution)

    P (t ≤ T ≤ t+ dt|T ≥ t) = P (t ≤ T ≤ t+ dt)P (T ≥ t) ≈

    f(t) dt1− F (t) = λ(t) dt

    F (t) = 1−exp(−

    ∫ t0 λ(x) dx

    )and f(t) = λ(t) exp

    (−

    ∫ t0 λ(x) dx

    )

    Weibull Reliability Analysis—FWS-5/1999—15

  • Exponential Distribution

    • The exponential distribution is a special case: β = 1 & τ = 0

    F (t) = P (T ≤ t) = 1− exp− t

    α

    for t ≥ 0

    • This distribution is useful when parts fail due torandom external influences and not due to wear out

    • Characterized by the memoryless property,a part that has not failed by time t is as good as new,past stresses without failure are water under the bridge

    • Good for describing lifetimes of electronic components,failures due to external voltage spikes or overloads

    Weibull Reliability Analysis—FWS-5/1999—16

  • Unknown Parameters

    • Typically will not know the Weibull distribution: α, β unknown

    •Will only have sample data =⇒ estimates α̂, β̂get estimated Weibull model for failure time distribution=⇒ double uncertaintyuncertainty of failure time & uncertainty of estimated model

    • Samples of failure times are sometimes very small,only 7 fuse pins or 8 ball bearings tested until failure,long lifetimes make destructive testing difficult

    • Variability issues are often not sufficiently appreciatedhow do small sample sizes affect our confidence inestimates and predictions concerning future failure experiences?

    Weibull Reliability Analysis—FWS-5/1999—17

  • Estimation Uncertainty

    0 20000 40000 60000 80000

    0.0

    0.00

    002

    0.00

    004

    cycles

    A Weibull Population: Histogram for N = 10,000 & Density

    • ••• •••• •

    63.2% 36.8%

    characteristic life = 30,000shape = 2.5

    true modelestimated model from 9 data points

    Weibull Reliability Analysis—FWS-5/1999—18

  • Weibull Parameters & Sample Estimates

    t = t p p-quantile

    p=P(T < t )

    αcharacteristic life = 30,000

    63.2% 36.8%

    shape parameter β = 4

    •• ••• •• •• • •• ••• ••• ••• •• • •••• • •

    25390 3.02 33860 4.27 29410 5.01

    parameter estimates from three samples of size n = 10

    Weibull Reliability Analysis—FWS-5/1999—19

  • Generation of Weibull Samples

    • Using the quantile relationship tp = α [− log(1− p)]1/β

    one can generate a Weibull random sample of size n by

    – generating a random sample U1, . . . , Un

    from a uniform [0, 1] distribution

    – and computing Ti = α [− log(1− Ui)]1/β, i = 1, . . . , n.

    – Then T1, . . . , Tn can be viewed as a random sample of size n

    from a Weibull population or Weibull distribution

    with parameters α & β.

    • Simulations are useful in gaining insight on estimation procedures

    Weibull Reliability Analysis—FWS-5/1999—20

  • Graphical Methods

    • Suppose we have a complete Weibull sample of size n: T1, . . . , Tn

    • Sort these values from lowest to highest: T(1) ≤ T(2) ≤ . . . ≤ T(n)• Recall that the p-quantile is tp = α [− log(1− p)]1/β

    • Compute tp1 < . . . < tpn for pi = (i− .5)/n, i = 1, . . . , n

    • Plot the points (T(i), tpi), i = 1, . . . , n and expect

    these points to cluster around main diagonal

    Weibull Reliability Analysis—FWS-5/1999—21

  • Weibull Quantile-Quantile Plot: Known Parameters

    •••••

    •• •••••

    ••••••• •••

    • • • • ••• •••••

    •••••••••••• ••

    ••• •••••••••••

    ••••••••••••

    •• ••••••••

    ••• •••••••

    • •••

    ••

    T

    tp

    0 5000 10000 15000

    050

    0010

    000

    1500

    0

    Weibull Reliability Analysis—FWS-5/1999—22

  • Weibull QQ-Plot: Unknown Parameters

    • Previous plot requires knowledge of the unknown parameters α & β

    • Note that

    log (tp) = log(α) + wp/β , where wp = log [− log(1− p)]

    • Expect points(log[T(i)], wpi

    ), i = 1, . . . , n, to cluster around line

    with slope 1/β and intercept log(α)

    • This suggests estimating α & β from a fitted least squares line

    Weibull Reliability Analysis—FWS-5/1999—23

  • Maximum Likelihood Estimation

    • If t1, . . . , tn are the observed sample values one can contemplatethe probability of obtaining such a sample or of values nearby, i.e.,

    P (T1 ∈ [t1 − dt/2, t1 + dt/2], . . . , Tn ∈ [tn − dt/2, tn + dt/2])

    = P (T1 ∈ [t1 − dt/2, t1 + dt/2])× · · · × P (Tn ∈ [tn − dt/2, tn + dt/2])

    ≈ fα,β(t1)dt× · · · × fα,β(tn)dt

    where f(t) = fα,β(t) is the Weibull density with parameters (α, β)

    •Maximum likelihood estimation maximizes this probabilityover α & β =⇒ maximum likelihood estimates (m.l.e.s) α̂ and β̂

    Weibull Reliability Analysis—FWS-5/1999—24

  • General Remarks on Estimation

    •MLEs tend to be optimal in large samples (lots of theory)

    •Method is very versatile in extending to may other data scenarios

    censoring and covariates

    • Least squares method applied to QQ-plot is not entirely appropriate

    tends to be unduly affected by stray observations

    not as versatile to extend to other situations

    Weibull Reliability Analysis—FWS-5/1999—25

  • Weibull Plot: n = 20

    cycles/hours

    prob

    abili

    ty

    ••

    •• •••

    ••••

    •••• •• •

    10 20 50 100 200 500 1000

    .001

    .010

    .100

    .200

    .500

    .900

    .990

    .632

    true model, Weibull( 100 , 3 )m.l.e. model, Weibull( 108 , 3.338 )least squares model, Weibull( 107.5 , 3.684 )

    Weibull Reliability Analysis—FWS-5/1999—26

  • Weibull Plot: n = 100

    cycles/hours

    prob

    abili

    ty

    ••

    ••• •

    • ••••••••••••••••••••••••

    ••••••••••••••••••

    ••••••••••••••••••••••

    ••••••••••••••••••••••••

    •• ••

    10 20 50 100 200 500 1000

    .001

    .010

    .100

    .200

    .500

    .900

    .990

    .632

    true model, Weibull( 100 , 3 )m.l.e. model, Weibull( 102.8 , 2.981 )least squares model, Weibull( 102.2 , 3.144 )

    Weibull Reliability Analysis—FWS-5/1999—27

  • Tests of Fit (Graphical)

    • The Weibull plots provide an informal diagnosticfor checking the Weibull model assumption

    • The anticipated linearity is based on the Weibull model properties

    • Strong nonlinearity indicates that the model is not Weibull

    • Sorting out nonlinearity from normal statistical point scattertakes a lot of practice and a good sense for the effect

    of sample size on the variation in point scatter

    • Formal tests of fit are available for complete samples2

    and also for some other censored data scenarios2R.B. D’Agostino and M.A. Stephens, Goodness-of-Fit Techniques, Marcel Dekker 1986

    Weibull Reliability Analysis—FWS-5/1999—28

  • Formal Goodness-of-Fit Tests

    • Let Fα̂,β̂(t) be the fitted Weibull distribution function

    • Let F̂n(t) = #{Ti≤ t; i=1,...,n}n be the empirical distribution function

    • Compute a discrepancy metric D between Fα̂,β̂ and F̂n,

    DKS(Fα̂,β̂, F̂n) = supt

    ∣∣∣∣∣Fα̂,β̂(t)− F̂n(t)∣∣∣∣∣ Kolmogorov-Smirnov

    DCvM(Fα̂,β̂, F̂n) =∫ ∞0

    (Fα̂,β̂(t)− F̂n(t)

    )2fα̂,β̂(t) dt Cramer-von Mises

    DAD(Fα̂,β̂, F̂n) =∫ ∞0

    (Fα̂,β̂(t)− F̂n(t)

    )2Fα̂,β̂(t)(1− Fα̂,β̂(t))

    fα̂,β̂(t) dt Anderson-Darling

    • The distributions of D, when sampling from a Weibull population,are known and p-values of observed values d of D can be calculated

    p = P (D ≥ d) =⇒ BCSLIB: HSPFIT

    Weibull Reliability Analysis—FWS-5/1999—29

  • Kolmogorov-Smirnov Distance

    0 50 100 150 200 250

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    K-S distance

    ••• •• • •• • •

    n = 10

    Weibull Reliability Analysis—FWS-5/1999—30

  • Weibull Plots: n = 10

    ••

    •••

    3.8 4.2 4.6 5.0

    -3-2

    -10

    1 p(KS) = 0.62p(CvM) = 0.54

    p(AD) = 0.62

    n = 10 •

    ••

    •••

    4.0 4.4 4.8-3

    -2-1

    01 p(KS) = 0.28

    p(CvM) = 0.27

    p(AD) = 0.35

    ••

    •••

    3.8 4.4 5.0

    -3-2

    -10

    1 p(KS) = 0.88p(CvM) = 0.62

    p(AD) = 0.66

    ••••

    ••

    3.8 4.2 4.6 5.0

    -3-2

    -10

    1 p(KS) = 0.88p(CvM) = 0.64

    p(AD) = 0.69

    •••

    •••

    4.0 4.4 4.8

    -3-2

    -10

    1 p(KS) = 0.72p(CvM) = 0.53

    p(AD) = 0.6

    ••

    ••••

    3.8 4.2 4.6

    -3-2

    -10

    1 p(KS) = 0.16p(CvM) = 0.21

    p(AD) = 0.32

    ••

    ••••

    4.0 4.4 4.8

    -3-2

    -10

    1 p(KS) = 0.34p(CvM) = 0.23

    p(AD) = 0.22

    •••

    ••

    3.8 4.2 4.6

    -3-2

    -10

    1 p(KS) = 0.86p(CvM) = 0.56

    p(AD) = 0.57

    Weibull Reliability Analysis—FWS-5/1999—31

  • Weibull Plots: n = 20

    ••

    ••••••••

    ••••••

    ••

    3.5 4.0 4.5 5.0

    -3-2

    -10

    1

    p(KS) = 0.55

    p(CvM) = 0.49

    p(AD) = 0.49

    n = 20 •

    ••

    ••

    ••••••••••••••

    2.5 3.5 4.5-3

    -2-1

    01

    p(KS) = 0.13

    p(CvM) = 0.027

    p(AD) = 0.028

    ••

    ••••••

    ••••

    • •••

    ••

    4.2 4.6

    -3-2

    -10

    1

    p(KS) = 0.12

    p(CvM) = 0.053

    p(AD) = 0.048

    ••

    ••••••

    • •••

    ••••

    ••

    3.8 4.2 4.6 5.0

    -3-2

    -10

    1

    p(KS) = 0.46

    p(CvM) = 0.39

    p(AD) = 0.38

    ••

    ••••

    ••••••••••••

    3.6 4.0 4.4 4.8

    -3-2

    -10

    1

    p(KS) = 0.46

    p(CvM) = 0.41

    p(AD) = 0.41

    ••••••• •

    ••••

    ••• •

    ••

    3.0 4.0 5.0

    -3-2

    -10

    1

    p(KS) = 0.47

    p(CvM) = 0.63

    p(AD) = 0.69

    ••••••

    ••••••• •

    • •••

    4.0 4.4 4.8

    -3-2

    -10

    1

    p(KS) = 0.85

    p(CvM) = 0.6

    p(AD) = 0.64

    •••

    •••••••••••• •

    ••

    3.6 4.0 4.4 4.8

    -3-2

    -10

    1

    p(KS) = 0.04

    p(CvM) = 0.017

    p(AD) = 0.023

    Weibull Reliability Analysis—FWS-5/1999—32

  • Weibull Plots: n = 50

    ••••••••••

    •••••••••••••••••••••••••••••••••••••••

    2.0 3.0 4.0 5.0

    -4-3

    -2-1

    01

    p(KS) = 0.7

    p(CvM) = 0.41

    p(AD) = 0.43

    n = 50 •

    •••• •

    ••••••••••• •

    •••••••••••••

    •••••••••••••••••••

    3.0 4.0 5.0-4

    -3-2

    -10

    1

    p(KS) = 0.22

    p(CvM) = 0.35

    p(AD) = 0.32

    •••• •

    •••••• • •

    ••••••••••••••••••• •••

    ••••••••

    ••••••

    3.5 4.0 4.5

    -4-3

    -2-1

    01

    p(KS) = 0.15

    p(CvM) = 0.23

    p(AD) = 0.12

    ••

    •••••••••••••••

    ••••••••••••••••••••••

    •••••••••

    3.5 4.5

    -4-3

    -2-1

    01

    p(KS) = 0.76

    p(CvM) = 0.49

    p(AD) = 0.52

    •••• •

    ••••••••

    ••••••••

    ••••••••••••••

    ••••••••

    •••• •

    3.5 4.0 4.5

    -4-3

    -2-1

    01

    p(KS) = 0.88

    p(CvM) = 0.66

    p(AD) = 0.72

    ••

    •••••••••••••••

    ••••••••••••••••••••••

    •••••••

    • ••

    3.5 4.0 4.5 5.0

    -4-3

    -2-1

    01

    p(KS) = 0.27

    p(CvM) = 0.22

    p(AD) = 0.23

    ••

    ••••••••

    •••••••

    ••••••••••••••••••••••••••

    •••••

    3.5 4.0 4.5 5.0

    -4-3

    -2-1

    01

    p(KS) = 0.85

    p(CvM) = 0.56

    p(AD) = 0.62

    •••

    • •••••••••••••••••••••

    ••••••••••••• •

    •••••••• •

    3.5 4.0 4.5 5.0

    -4-3

    -2-1

    01

    p(KS) = 0.18

    p(CvM) = 0.035

    p(AD) = 0.039

    Weibull Reliability Analysis—FWS-5/1999—33

  • Weibull Plots: n = 100

    ••• •

    •••••

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    ••••••••• •

    3.0 4.0 5.0

    -4-2

    0

    p(KS) = 0.58

    p(CvM) = 0.26

    p(AD) = 0.3

    n = 100 •

    ••• •

    ••• ••

    •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    ••••••••••••••••••••••

    •••• •

    3.5 4.5-4

    -20

    p(KS) = 0.86

    p(CvM) = 0.68

    p(AD) = 0.72

    ••• •

    ••• ••

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    ••••••••

    ••

    3.0 4.0 5.0

    -4-2

    0

    p(KS) = 0.61

    p(CvM) = 0.48

    p(AD) = 0.55

    ••••

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    •••••••••••••••••••••••••••

    3.5 4.5

    -4-2

    0

    p(KS) = 0.21

    p(CvM) = 0.26

    p(AD) = 0.43

    •••••••••

    ••••••••••••••••••

    •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    •••• •

    3.0 4.0 5.0

    -4-2

    0

    p(KS) = 0.47

    p(CvM) = 0.3

    p(AD) = 0.37

    ••

    •••••••

    •••••••

    ••••••••••••••••••••••••••

    •••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    3.0 4.0 5.0

    -4-2

    0

    p(KS) = 0.053

    p(CvM) = 0.025

    p(AD) = 0.032

    ••••••

    ••••••••••

    •••••••••••

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••

    ••••••••••••••••••

    3.5 4.5

    -4-2

    0

    p(KS) = 0.87

    p(CvM) = 0.58

    p(AD) = 0.6

    ••• •

    •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    2.5 3.5 4.5

    -4-2

    0

    p(KS) = 0.72

    p(CvM) = 0.45

    p(AD) = 0.43

    Weibull Reliability Analysis—FWS-5/1999—34

  • Estimates and Confidence Bounds/Intervals

    • For a target θθ = α, θ = β, θ = tp = α[− log(1− p)]1/β, or θ = Pα,β(T ≤ t)

    one gets corresponding m.l.e θ̂ by replacing (α, β) by (α̂, β̂)

    • Such estimates vary around the target due to sampling variation

    • Capture the estimation uncertainty via confidence bounds

    • For 0 < γ < 1 get 100γ% lower/upper confidence bounds θ̂L,γ & θ̂U,γ

    P(θ̂L,γ ≤ θ

    )= γ or P

    (θ ≤ θ̂U,γ

    )= γ

    • For γ > .5 get a 100(2γ − 1)% confidence interval by [θ̂L,γ, θ̂U,γ]

    P(θ̂L,γ ≤ θ ≤ θ̂U,γ

    )= 2γ − 1 = γ?

    Weibull Reliability Analysis—FWS-5/1999—35

  • Confidence Bounds & Sampling Variation, n = 10

    90%

    con

    fiden

    ce in

    terv

    als

    1 2 3 4 5

    2500

    035

    000

    samples

    L: Lawless Exact Method (RAP); B: Bain Exact Method (Tables); M: MLE Approximate Method

    L B M

    true α

    90%

    con

    fiden

    ce in

    terv

    als

    1 2 3 4 5

    02

    46

    8

    L B M

    true β

    Weibull Reliability Analysis—FWS-5/1999—36

  • Confidence Bounds & Sampling Variation, n = 10

    95%

    low

    er c

    onfid

    ence

    bou

    nds

    1 2 3 4 5

    050

    0015

    000

    2500

    0

    samples

    L: Lawless Exact Method (RAP); B: Bain Exact Method (Tables); M: MLE Approximate Method

    L B Mtrue 10-percentile

    95%

    upp

    er c

    onfid

    ence

    bou

    nds

    1 2 3 4 5

    0.0

    0.10

    0.20

    L B M

    true P(T < 10,000)

    Weibull Reliability Analysis—FWS-5/1999—37

  • Confidence Bounds & Effect of n

    • ••

    • • • • •

    95%

    con

    fiden

    ce in

    terv

    als

    1500

    025

    000

    3500

    0

    • • •• •

    • ••

    • • • •

    5 10 20 50 100 200 500 1000sample size

    true α

    ••

    • • • • • •

    95%

    con

    fiden

    ce in

    terv

    als

    12

    34

    56

    7

    ••

    • •• •

    ••

    • • • •

    true β

    Weibull Reliability Analysis—FWS-5/1999—38

  • Confidence Bounds & Effect of n

    • • • • • • • •

    95%

    upp

    er c

    onfid

    ence

    bou

    nds

    0.0

    0.05

    0.15

    sample size

    • • • • •

    5 10 20 50 100 200 500 1000

    true P(T < 10000)

    • • •• • • • •

    95%

    low

    er c

    onfid

    ence

    bou

    nds

    5000

    1000

    020

    000

    • •• • •

    true t .10

    Weibull Reliability Analysis—FWS-5/1999—39

  • Incomplete Data or Censored Failure Times

    • Type I censoring or time censoring:units are tested until failure or until a prespecified time has elapsed

    • Type II censoring or failure censoring:only the r lowest values of the total sample of size n become knownthis shows up when we put n units on test simultaneously andterminate the test after the first r units have failed

    • Interval censoring, inspection data, grouped data:ith unit is only known to have failed between two knowninspection time points, i.e., failure time Ti falls in (si, ei]only bracketing intervals (si, ei), i = 1, . . . , n, become known

    Weibull Reliability Analysis—FWS-5/1999—40

  • Incomplete Data or Censored Failure Times (continued)

    •Random right censoring:units are observed until failed or removed from observationdue to other causes (different failure modes, competing risks)

    •Multiple right censoring:units are put into service at different timesand times to failure or censoring are observed

    • Data can also combine several of the above censoring phenomena

    • It is important that the censoring mechanism should not correlatewith the (potential) failure times,i.e., no censoring of anticipated failures

    •All data (censored & uncensored) should enter analysisWeibull Reliability Analysis—FWS-5/1999—41

  • Type I or Time Censored Data: n = 10

    cycles

    0 2000 4000 6000 8000 10000

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10unit

    ?

    ?

    X

    X

    ?

    X

    X

    ?

    ?

    X

    Weibull Reliability Analysis—FWS-5/1999—42

  • Type II or Failure Censored Data: n = 10

    cycles

    0 2000 4000 6000 8000 10000

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10unit

    X

    X

    X

    X

    X

    X

    ?

    ?

    ?

    ?

    Weibull Reliability Analysis—FWS-5/1999—43

  • Interval Censored Data: n = 10

    cycles

    0 2000 4000 6000 8000 10000

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10unit

    •( ]

    ?

    •( ?

    •( ]

    ?

    •( ]

    •( ?

    ?

    •( ]

    ?

    Weibull Reliability Analysis—FWS-5/1999—44

  • Multiply Right Censored Data: n = 10

    cycles

    0 2000 4000 6000 8000 10000

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10unit

    X

    ?

    X

    X

    X

    X

    ?

    ?

    ?

    ?

    Weibull Reliability Analysis—FWS-5/1999—45

  • Nonparametric MLEs of CDF

    • For complete, type I & II censored data the nonparametric MLE is

    F̂ (t) =#{Ti ≤ t; i = 1, . . . , n}

    n,

    −∞ < t t

    where p̂i = di/ni, ni = # units known to be at risk just prior to t?iand di = # units that failed at t?i

    • The nonparametric MLE for interval censored data is complicated

    Weibull Reliability Analysis—FWS-5/1999—46

  • Empirical CDF (complete samples)

    0 5000 15000 25000

    0.0

    0.4

    0.8

    n = 10

    empirical and trueand Weibull mledistribution functions

    0 5000 15000 25000

    0.0

    0.4

    0.8

    n = 30

    0 5000 15000 25000

    0.0

    0.4

    0.8

    n = 50

    0 5000 15000 25000

    0.0

    0.4

    0.8

    n = 100

    Weibull Reliability Analysis—FWS-5/1999—47

  • Nonparametric MLE for Type I Censored Data

    0 5000 15000 25000

    0.0

    0.4

    0.8

    ...n = 10

    nonparametric mle of CDFWeibull mle of CDFand true CDF

    0 5000 15000 25000

    0.0

    0.4

    0.8

    ... ... .n = 30

    0 5000 15000 25000

    0.0

    0.4

    0.8

    .. . .... ..n = 50

    0 5000 15000 25000

    0.0

    0.4

    0.8

    . ... . ... . ... .. .. . .n = 100

    Weibull Reliability Analysis—FWS-5/1999—48

  • Nonparametric MLE for Type II Censored Data

    0 5000 15000 25000

    0.0

    0.4

    0.8

    . . .n = 10

    nonparametric mle of CDFWeibull mle of CDFand true CDF

    0 5000 15000 25000

    0.0

    0.4

    0.8

    ... . ... .n = 30

    0 5000 15000 25000

    0.0

    0.4

    0.8

    ..... ... .. . .. ..n = 50

    0 5000 15000 25000

    0.0

    0.4

    0.8

    ................. ....... . .n = 100

    Weibull Reliability Analysis—FWS-5/1999—49

  • Kaplan-Meier Estimates (multiply right censored samples)

    0 5000 15000 25000

    0.0

    0.4

    0.8

    .. .. ....n = 10

    Kaplan-Meier CDFWeibull mle for CDFtrue CDF

    0 5000 15000 25000

    0.0

    0.4

    0.8

    ... . .. .. .. .. . .. .. .n = 30

    0 5000 15000 25000

    0.0

    0.4

    0.8

    ... ... .. .. .. .. ... .. . .. .. ... .n = 50

    0 5000 15000 25000

    0.0

    0.4

    0.8

    .. ... .. .. ... .. .. . ... ..... .. ...... .. .. .. ... ... .. .... ... .. .. .n = 100

    Weibull Reliability Analysis—FWS-5/1999—50

  • Nonparametric MLE for Interval Censored Data

    cycles

    CD

    F

    0 5000 10000 15000

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    superimposed is the true Weibull(10000,2.5)

    that generated the 1,000 interval censored data cases

    inspection points roughly 3000 cycles apart

    Weibull Reliability Analysis—FWS-5/1999—51

  • Nonparametric MLE for Interval Censored Data

    cycles

    CD

    F

    0 5000 10000 15000

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    superimposed is the true Weibull(10000,2.5)

    that generated the 10,000 interval censored data cases

    inspection intervals randomly generated from same Weibull

    Weibull Reliability Analysis—FWS-5/1999—52

  • Application to Y2K Questionnaire Return Data

    days

    prob

    abili

    ty o

    f que

    stio

    nnai

    re r

    etur

    n

    0 50 100 150 200 250 300

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    estimated .99-quantile

    8124 cases

    Weibull Reliability Analysis—FWS-5/1999—53

  • Plotting Positions for Weibull Plots (Censored Case)

    • For complete samples we plotted (log[T(i)], log [− log(1− pi)]) with

    pi =i− .5n

    =12[F̂ (T(i)) + F̂ (T(i−1))

    ]=

    12

    in

    +i− 1n

    • For type I & II & multiply right censored samples

    we plot in analogy (log[T?(i)], log [− log(1− pi)]), where

    T?(1) < . . . < T?(k) are the k distinct observed failure times and

    pi =12

    [F̂ (T?(i)) + F̂ (T

    ?(i−1))

    ]

    and F̂ (t) is the nonparametric MLE of F (t) for the censored sample

    Weibull Reliability Analysis—FWS-5/1999—54

  • Weibull Plot, Multiply Right Censored Sample n = 50

    cycles/hours

    prob

    abili

    ty

    ••

    • •••

    ••••• •

    •••••• •

    •••••

    •••

    10 20 50 100 200 500 1000

    .001

    .010

    .100

    .200

    .500

    .900

    .990

    .632

    true model, Weibull( 100 , 3 )m.l.e. model, Weibull( 96.27 , 2.641 ) n = 50least squares model, Weibull( 96.3 , 2.541 ) n = 50

    Weibull Reliability Analysis—FWS-5/1999—55

  • Confidence Bounds for Censored Data

    • For complete & type II censored data RAP computes exact coverageconfidence bounds for α, β, tp, and P (T ≤ t).

    •WEIBREG and commercial software (Weibull++, WeibullSMITH,common statistical packages) compute approximate confidencebounds for above targets, based on large sample m.l.e. theory

    • RAP & WEIBREG are Boeing code, runs within DOS modeof Windows95 (interface clumsy, but job gets done), contact me

    • Boeing has a site license for Weibull++ Version 4in the Puget Sound areacontact David Twigg (425) 717-1221, [email protected]

    • There is a Weibull++ Version 5 out

    Weibull Reliability Analysis—FWS-5/1999—56

  • Weibull Plot With Confidence Bound

    1 2 3 5 10 20 50 100 200 500 1000

    0.001

    0.010

    0.100

    0.200

    0.500

    0.900

    0.990

    0.999

    ••

    ••••••••••

    alpha = 102.4 [ 82.52 , 143.8 ] 95 % beta = 2.524 [ 1.352 , 3.696 ] 95 %n = 30 , r = 13

    Weibull Reliability Analysis—FWS-5/1999—57

  • Weibull Plot With Confidence Bound (Variation)

    1 2 3 5 10 20 50 100 200 500 1000

    0.001

    0.010

    0.100

    0.200

    0.500

    0.900

    0.990

    0.999

    •••

    •••••••••

    alpha = 89.79 [ 77.4 , 109.4 ] 95 % beta = 3.674 [ 2.15 , 5.198 ] 95 %n = 30 , r = 13

    Weibull Reliability Analysis—FWS-5/1999—58

  • Weibull Regression Model & Analysis

    • Recall tp = α[− log(1− p)]1/β orlog(tp) = log(α) + wp/β with wp = log[− log(1− p)]

    • Often we deal with failure data collected under different conditions– different part types– different environmental conditions– different part users

    • Regression model on log(α) (multiplicative on α)log(αi) = b1Zi1 + . . .+ bpZip

    where Zi1, . . . , Zip are known covariates for ith unit

    • Now we have p+ 1 unknown parameters β, b1, . . . , bp• parameter estimates & confidence bounds using MLEs

    Weibull Reliability Analysis—FWS-5/1999—59

  • Accelerated Life Testing: Inverse Power Law

    • Units last too long under normal usage conditions• Increase “stress” to accelerate failure time• Increase voltage and accelerate life via inverse power law

    T (Volt) = T (VoltU) VoltVoltU

    c

    , where usually c < 0

    this meansα(Volt) = α (VoltU)

    VoltVoltU

    c

    or log [α(Volt)] = log [α (VoltU)] + c log (Volt)− c log (VoltU)

    = b1 + b2Z

    with

    b1 = log [α (VoltU)]− c log (VoltU) , b2 = c, and Z = log (Volt)

    Weibull Reliability Analysis—FWS-5/1999—60

  • Accelerated Life Testing: Arrhenius Model

    • Another way of accelerating failure in processes involvingchemical reaction rates is to increase the temperature

    • Arrhenius proposed the following acceleration model withtemperature measured in Kelvin (tempK = temp◦C + 273.15)

    T (temp) = T (tempU) exp κtemp

    − κtempU

    or

    log [α(temp)] = log [α(tempU)] +κ

    temp− κ

    tempU

    = b1 + b2Z

    with

    b1 = log [α(tempU)]−κ

    tempU, b2 = κ, and Z = temp−1

    Weibull Reliability Analysis—FWS-5/1999—61

  • Pooling Data With Different α’s

    • Suppose we have three groups of failure dataT1, . . . , Tn1 ∼ W(α̃1, β), Tn1+1, . . . , Tn1+n2 ∼ W(α̃2, β),

    Tn1+n2+1, . . . , Tn1+n2+n3 ∼ W(α̃3, β)•We can analyze the whole data set of N = n1 + n2 + n3 values jointly

    using the following model for αj and dummy covariates Z1,j, Z2,j & Z3,j

    log(αj) = b1Z1,j + b2Z2,j + b3Z3,j , j = 1, 2, . . . , N

    where b1 = log(α̃1), b2 = log(α̃2)−log(α̃1), and b3 = log(α̃3)−log(α̃1)Z1,j = 1 for j = 1, . . . , N, Z2,j = 1 for j = n1 + 1, . . . , n1 + n2, & Z2,j = 0 else,

    and Z3,j = 1 for j = n1 + n2 + 1, . . . , N, & Z3,j = 0 else.

    • Advantage: Smaller estimation error

    Weibull Reliability Analysis—FWS-5/1999—62

  • Pooling Data (continued)

    log(α1) = b1 · 1 + b2 · 0 + b3 · 0 = log(α̃1)... ...

    log(αn1) = b1 · 1 + b2 · 0 + b3 · 0 = log(α̃1)... ...log(αn1+1) = b1 · 1 + b2 · 1 + b3 · 0 = log(α̃1) + [log(α̃2)− log(α̃1)] = log(α̃2)... ...log(αn1+n2) = b1 · 1 + b2 · 1 + b3 · 0 = log(α̃1) + [log(α̃2)− log(α̃1)] = log(α̃2)... ...log(αn1+n2+1) = b1 · 1 + b2 · 0 + b3 · 1 = log(α̃1) + [log(α̃3)− log(α̃1)] = log(α̃3)... ...log(αN) = b1 · 1 + b2 · 0 + b3 · 1 = log(α̃1) + [log(α̃3)− log(α̃1)] = log(α̃3)

    Weibull Reliability Analysis—FWS-5/1999—63

  • Accelerated Life Testing: Model & Data

    Voltage

    thou

    sand

    cyc

    les

    •••••

    • •••••

    ••

    50 100 150 200 250 300 350 400 450 500

    1

    2

    5

    10

    20

    50

    100

    200

    Weibull Reliability Analysis—FWS-5/1999—64

  • Accelerated Life Testing: Model, Data & MLEs

    Voltage

    thou

    sand

    cyc

    les

    •••••

    • •••••

    ••

    mle line

    true line

    mle for .01-quantile

    95% lower bound for .01-quantile

    50 100 150 200 250 300 350 400 450 500

    1

    2

    5

    10

    20

    50

    100

    200

    Weibull Reliability Analysis—FWS-5/1999—65

  • Analysis for Data from Exponential Distribution

    • T ∼ E(θ) Exponential with mean θ, i.e., E(θ) =W(α = θ, β = 1)

    • It suffices to get confidence bounds for θ since all other quantitiesof interest are explicit and monotone functions of θ

    Fθ(t0) = Pθ(T ≤ t0) = 1− exp(−t0/θ)

    Rθ(t0) = Pθ(T > t0) = exp(−t0/θ)and

    tp(θ) = θ [− log(1− p)]

    Weibull Reliability Analysis—FWS-5/1999—66

  • Complete & Type II Censored Exponential Samples

    • T ∼ E(θ) Exponential with mean θ, E(θ) =W(α = θ, β = 1)

    • For complete exponential samples T1, . . . , Tn ∼ E(θ)or for a type II censored sample of this type,

    i.e., with observed r lowest values T(1) ≤ . . . ≤ T(r), 1 ≤ r ≤ n,one gets 100γ% lower confidence bounds for θ by computing

    θ̂L,γ =2× TTTχ22r,γ

    ,

    where TTT = T(1) + · · ·+ T(r) + (n− r)T(r) = Total Time on Test,and χ22r,γ = γ-quantile of the χ22r distribution

    get this in Excel via = GAMMAINV(γ, r, 1) or = CHIINV(1 − γ, 2r)/2

    • These bounds have exact confidence coverage properties

    Weibull Reliability Analysis—FWS-5/1999—67

  • Multiply Right Censored Exponential Data

    • Here we define TTT = T1 + . . .+ Tn as the total time on testbut now Ti is either the observed failure time of the ith part

    or the observed right censoring time of the ith part

    The number r of observed failures is random here, 0 ≤ r ≤ n

    • Approximate 100γ% lower confidence bounds for θ are computed as

    θ̂L,γ =2× TTTχ22r+2,γ

    • This also holds for r = 0, i.e., no failures at all over exposure period

    Weibull Reliability Analysis—FWS-5/1999—68

  • Weibull Shortcut Methods for Known β

    • T ∼ W(α, β) (Weibull) ⇒ Tβ ∼ E(θ) Exponential with mean θ = αβ

    • As 100γ% lower confidence bound for α compute

    α̂L,γ =

    2× TTT (β)χ2f,γ

    1/β

    where for complete or type II censored samples we take f = 2r and

    TTT = Tβ(1) + · · ·+ Tβ(r) + (n− r)T

    β(r)

    and for multiply right censored data we take f = 2r + 2 and

    TTT = Tβ1 + · · ·+ Tβn .

    • Sensitivity should be studied by repeating analyses for several β’s

    Weibull Reliability Analysis—FWS-5/1999—69

  • A- and B-Allowables, ABVAL Program

    •My first Weibull work led to the program ABVAL (1983)supporting Cecil Parsons and Ron Zabora w.r.t. MIL-HDBK-5

    • ABVAL computes A- and B-Allowables based on samplesfrom the 3-parameter Weibull distribution.

    – The A-Allowable is a 95% lower confidence boundfor 99% of the population, i.e., for the .01-quantile.

    – The B-Allowable is a 95% lower confidence boundfor 90% of the population, i.e., for the .10-quantile.

    • Hybrid approach of using Mann-Fertig threshold estimatecombined with maximum likelihood estimates for α and β,took lot of simulation and tuning and is very specialized in itscapabilities• It is now a method in MIL-HDBK-5, I still maintain software

    Weibull Reliability Analysis—FWS-5/1999—70

  • Selected References

    • Abernethy, R.B. (1996), The New Weibull Handbook, 2nd edition,Reliability Analysis Center 800-526-4802

    • Bain, L.J. (1978), Statistical Analysis of Reliability and Life-TestingModels, Marcel Dekker, New York

    • Kececioglu, D. (1993/4), Reliability & Life Testing Handbook Vol. 1& 2, Prentice Hall PTR, Upper Saddle River, NJ.

    • Lawless, J.F. (1982), Statistical Models and Methods for LifetimeData, John Wiley & Sons, New York

    •Mann, N.R., Schafer, R.E., and Singpurwalla, N.D. (1974), Methodsfor Statistical Analysis of Reliability and Life Data, John Wiley &Sons, New York

    ⇒Meeker, W.Q. and Escobar, L.A. (1998), Statistical Methods forReliability Data, John Wiley & Sons, New York

    Weibull Reliability Analysis—FWS-5/1999—71

  • •Meeker, W.Q. and Hahn, G.J. (1985), Volume 10: How to Plan anAccelerated Life Test—Some Practical Guidelines, American Societyfor Quality Control

    • Nelson, W. (1982), Applied Life Data Analysis, John Wiley & Sons,New York— (1985), “Weibull analysis of reliability data with few or nofailures,” Journal of Quality Technology 17, 140-146— (1990), Accelerated Testing, Statistical Models, Test Plans andData Analyses, John Wiley & Sons, New York

    • Scholz, F.W. (1994), “Weibull and Gumbel distribution exactconfidence bounds.” BCSTECH-94-019 (RAP)— (1996) “Maximum likelihood estimation for type I censoredWeibull data including covariates.” ISSTECH-96-022— (1997), “Confidence bounds for type I censored Weibull dataincluding covariates.” SSGTECH-97-025 (WEIBREG)The Boeing Company, P.O. Box 3707, MS-7L-22, Seattle WA 98124-2207

    Weibull Reliability Analysis—FWS-5/1999—72