81
Avoiding Death by Vacuum Decay Cutting on the MSSM parameter space Wolfgang Gregor Hollik DESY Hamburg Theory February 18 2016 | Theory Seminar Zeuthen W. G. H. Avoiding Death by Vacuum Decay

Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

  • Upload
    others

  • View
    25

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Avoiding Death by Vacuum Decay

Cutting on the MSSM parameter space

Wolfgang Gregor Hollik

DESY Hamburg Theory

February 18 2016 | Theory Seminar Zeuthen

W. G. H. Avoiding Death by Vacuum Decay

Page 2: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

The end is nigh. . .

W. G. H. Avoiding Death by Vacuum Decay

Page 3: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Motivation and Outline

www.

haar

etz.

com

“I think, we have it!”Rolf Heuer

W. G. H. Avoiding Death by Vacuum Decay

Page 4: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Motivation and Outline

www.

thed

aily

star

.net

“Eureka!”Archimedes

W. G. H. Avoiding Death by Vacuum Decay

Page 5: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

What do we have?

[par

ticl

ezoo

]

W. G. H. Avoiding Death by Vacuum Decay

Page 6: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Having pinned down the missing piece. . .

[Hambye, Riesselmann: Phys.Rev. D55 (1997) 7255]

W. G. H. Avoiding Death by Vacuum Decay

Page 7: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

The SM phase diagram

0 50 100 150 2000

50

100

150

200

Higgs mass Mh in GeV

Top

mas

sM

tin

GeV

Instability

Non

-perturbativity

Stability

Meta-stab

ility

[Deg

rass

iet

al.JH

EP

1208

(201

2)09

8]

W. G. H. Avoiding Death by Vacuum Decay

Page 8: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Back again

[Hambye, Riesselmann: Phys.Rev. D55 (1997) 7255]

W. G. H. Avoiding Death by Vacuum Decay

Page 9: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Constraining the SM Higgs sector

Theoretical considerationsλ < 4π ↪→ perturbativityλ > 0 ↪→ unbounded from below, aka vacuum stability

trivial at the classical (i.e. tree) level

V (Φ) = m2Φ†Φ + λ(Φ†Φ

)2Quantum level

[courtesy of Max Zoller]

dominant contribution: top quark (yt ∼ 1)dependence on the energy scale: β function!

W. G. H. Avoiding Death by Vacuum Decay

Page 10: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Constraining the SM Higgs sector

Theoretical considerationsλ < 4π ↪→ perturbativityλ > 0 ↪→ unbounded from below, aka vacuum stability

trivial at the classical (i.e. tree) level

V (Φ) = m2Φ†Φ + λ(Φ†Φ

)2Quantum level

[courtesy of Max Zoller]

dominant contribution: top quark (yt ∼ 1)dependence on the energy scale: β function!

W. G. H. Avoiding Death by Vacuum Decay

Page 11: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Energy scale dependence

Scale-independent loop-corrected effective potential

Qd

dQVloop(λi, φ,Q) = 0

Approximation for large field values

Vloop(φ) = λ(φ)φ4,

evaluated at Q ∼ φ

β function for coupling λi

βi(λi) = Qdλi(Q)

dQ

running of λ determines stability of the loop potentialupper bound: Landau pole; lower bound: λ > 0

W. G. H. Avoiding Death by Vacuum Decay

Page 12: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Precise analysis: up to three loops!

[Zoller 2014]

W. G. H. Avoiding Death by Vacuum Decay

Page 13: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Precise analysis: up to three loops!

[Zoller 2014]

W. G. H. Avoiding Death by Vacuum Decay

Page 14: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Stability, instability or metastability?

[Courtesy of Max Zoller]

W. G. H. Avoiding Death by Vacuum Decay

Page 15: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Stability, instability or metastability?

[Courtesy of Max Zoller]

W. G. H. Avoiding Death by Vacuum Decay

Page 16: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Metastability of the Standard Model

mh = 125 GeV: metastable electroweak vacuummetastability: decay time of false vacuum largeinstability scale around 1010...12 GeV

SM sufficiently stableneutrino masses missing

Why New Physics?

Why Supersymmetry?mh = 125 GeV: very suitable for light MSSM Higgsmetastability → absolute stability

Task: Do not introduce further instabilities!(generically difficult)

W. G. H. Avoiding Death by Vacuum Decay

Page 17: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Metastability of the Standard Model

mh = 125 GeV: metastable electroweak vacuummetastability: decay time of false vacuum largeinstability scale around 1010...12 GeV

SM sufficiently stableneutrino masses missing

Why New Physics?

Why Supersymmetry?mh = 125 GeV: very suitable for light MSSM Higgsmetastability → absolute stability

Task: Do not introduce further instabilities!(generically difficult)

W. G. H. Avoiding Death by Vacuum Decay

Page 18: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Metastability of the Standard Model

mh = 125 GeV: metastable electroweak vacuummetastability: decay time of false vacuum largeinstability scale around 1010...12 GeV

SM sufficiently stableneutrino masses missing

Why New Physics?

Why Supersymmetry?mh = 125 GeV: very suitable for light MSSM Higgsmetastability → absolute stability

Task: Do not introduce further instabilities!(generically difficult)

W. G. H. Avoiding Death by Vacuum Decay

Page 19: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Metastability of the Standard Model

mh = 125 GeV: metastable electroweak vacuummetastability: decay time of false vacuum largeinstability scale around 1010...12 GeV

SM sufficiently stableneutrino masses missing

Why New Physics?

Why Supersymmetry?mh = 125 GeV: very suitable for light MSSM Higgsmetastability → absolute stability

Task: Do not introduce further instabilities!

(generically difficult)

W. G. H. Avoiding Death by Vacuum Decay

Page 20: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Metastability of the Standard Model

mh = 125 GeV: metastable electroweak vacuummetastability: decay time of false vacuum largeinstability scale around 1010...12 GeV

SM sufficiently stableneutrino masses missing

Why New Physics?

Why Supersymmetry?mh = 125 GeV: very suitable for light MSSM Higgsmetastability → absolute stability

Task: Do not introduce further instabilities!(generically difficult)

W. G. H. Avoiding Death by Vacuum Decay

Page 21: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Supersymmetry

relates bosonic and fermionic degrees of freedom: absolute zerothe only non-trivial extension of Poincaré symmetry

[Par

ticl

eFe

ver]

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

W. G. H. Avoiding Death by Vacuum Decay

Page 22: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Supersymmetry

relates bosonic and fermionic degrees of freedom: absolute zerothe only non-trivial extension of Poincaré symmetry

[Par

ticl

eFe

ver]

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

W. G. H. Avoiding Death by Vacuum Decay

Page 23: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Supersymmetry

relates bosonic and fermionic degrees of freedom: absolute zerothe only non-trivial extension of Poincaré symmetry

[Par

ticl

eFe

ver]

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

W. G. H. Avoiding Death by Vacuum Decay

Page 24: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

The Higgs sector of the MSSM and its stability

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

Higgs potential of 2HDM type II

V = m211 H

†dHd +m2

22 H†uHu +

(m2

12 Hu ·Hd + h.c.)

+λ12

(H†dHd

)2+λ22

(H†uHu

)2+ λ3

(H†uHu

)(H†dHd

)+ λ4

(H†uHd

)(H†dHu

)+ {λ5, λ6, λ7}

In the MSSM: tree potential calculated from D-terms and Lsoft

m2 tree

11 = |µ|2 +m2Hd, λtree1 = λtree2 = −λtree3 =

g2 + g′2

4,

m2 tree

22 = |µ|2 +m2Hu, λtree4 =

g2

2,

m2 tree

12 = Bµ, λtree5 = λtree6 = λtree7 = 0.

W. G. H. Avoiding Death by Vacuum Decay

Page 25: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

The Higgs sector of the MSSM and its stability

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

Higgs potential of 2HDM type II

V = m211 H

†dHd +m2

22 H†uHu +

(m2

12 Hu ·Hd + h.c.)

+λ12

(H†dHd

)2+λ22

(H†uHu

)2+ λ3

(H†uHu

)(H†dHd

)+ λ4

(H†uHd

)(H†dHu

)+ {λ5, λ6, λ7}

In the MSSM: tree potential calculated from D-terms and Lsoft

m2 tree

11 = |µ|2 +m2Hd, λtree1 = λtree2 = −λtree3 =

g2 + g′2

4,

m2 tree

22 = |µ|2 +m2Hu, λtree4 =

g2

2,

m2 tree

12 = Bµ, λtree5 = λtree6 = λtree7 = 0.

W. G. H. Avoiding Death by Vacuum Decay

Page 26: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

The Higgs sector of the MSSM and its stability

WMSSM = µHd·Hu−Y eijHd·LL,iER,j+Y

uijHu·QL,iUR,j−Y d

ijHd·QL,iDR,j

Higgs potential of 2HDM type II

V = m211 H

†dHd +m2

22 H†uHu +

(m2

12 Hu ·Hd + h.c.)

+λ12

(H†dHd

)2+λ22

(H†uHu

)2+ λ3

(H†uHu

)(H†dHd

)+ λ4

(H†uHd

)(H†dHu

)+ {λ5, λ6, λ7}

Unbounded from below requirements

λ1 > 0 , λ2 > 0 , λ3 > −√λ1λ2

and others. . . [Gunion, Haber 2003]

always fulfilled in the MSSM @ tree

Extending the treeloop corrections? [Gorbahn, Jäger, Nierste, Trine 2011]

W. G. H. Avoiding Death by Vacuum Decay

Page 27: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Effective 2HDM [Gorbahn, Jäger, Nierste, Trine 2011]

integrating out heavy SUSY particlesrequirement of large SUSY scale MSUSY �MA ∼ veweffective theory: generic 2HDM, λi calculated from SUSYloops

H

H

H

H

tL

tR tL

tR

H

H

H

H

χ0

collecting all SUSY contributions:

λi = λi(tanβ, µ,M1,M2, m2Q, m

2u, m

2d, m

2L, m

2e, Au, Ad, Ae).

W. G. H. Avoiding Death by Vacuum Decay

Page 28: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Effective 2HDM [Gorbahn, Jäger, Nierste, Trine 2011]

integrating out heavy SUSY particlesrequirement of large SUSY scale MSUSY �MA ∼ veweffective theory: generic 2HDM, λi calculated from SUSYloops

H

H

H

H

tL

tR tL

tR

H

H

H

H

χ0

collecting all SUSY contributions:

λi = λi(tanβ, µ,M1,M2, m2Q, m

2u, m

2d, m

2L, m

2e, Au, Ad, Ae).

W. G. H. Avoiding Death by Vacuum Decay

Page 29: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Triviality bounds on the effective 2HDM

simple check:

λ1 > 0 , λ2 > 0 , λ3 > −√λ1λ2,

where now

λi = λtreei +λinoi + λsfermi

16π2.

Severe UFB limitsBounds on λ1,2,3 transfer into bounds on m0, At, µ, . . .

W. G. H. Avoiding Death by Vacuum Decay

Page 30: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Recovery from unbounded from below???

V (φ) = −µ2φ2 + λφ4

W. G. H. Avoiding Death by Vacuum Decay

Page 31: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Recovery from unbounded from below???

V (φ) = −µ2φ2 − λφ4

W. G. H. Avoiding Death by Vacuum Decay

Page 32: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Recovery from unbounded from below???

V (φ) = −µ2φ2 − λφ4+λ(6)φ6

W. G. H. Avoiding Death by Vacuum Decay

Page 33: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Calculating the 1-loop effeective potential

tL

tR

h h+ + + + . . .

+

tL,R

h0u

h0u

+ + . . . +

h0u

h0u

h

h

tL,R

tL,R

tR,L + . . .

dominant contribution from third generation squarksquadrilinear couplings (∼ |Yt|2)trilinear coupling to a linear combination (µ∗Yth

†d −Ath

0u)

series summable to an infinite number of external legs

Do not stop after renormalizable / dim 4 terms!

W. G. H. Avoiding Death by Vacuum Decay

Page 34: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Calculating the 1-loop effeective potential

tL

tR

h h+ + + + . . .

+

tL,R

h0u

h0u

+ + . . . +

h0u

h0u

h

h

tL,R

tL,R

tR,L + . . .

dominant contribution from third generation squarksquadrilinear couplings (∼ |Yt|2)trilinear coupling to a linear combination (µ∗Yth

†d −Ath

0u)

series summable to an infinite number of external legsDo not stop after renormalizable / dim 4 terms!

W. G. H. Avoiding Death by Vacuum Decay

Page 35: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

All roads lead to Rome. . .

1-loop effective potential [Coleman, Weinberg 1973]

V1(hu, hd) =1

64π2STrM4(hu, hd)

[ln

(M2(hu, hd)

Q2

)− 3

2

]

field dependent massM(hu, hd)STr accounts for spin degrees of freedom

same result can be obtained by the tadpole method

T ∼ ∂

∂hV1(h) ↪→ V1(h) ∼

∫dh T (h)

[Lee, Sciaccaluga 1975]

functional methods: effective potential for arbitrary number ofscalars: V1(φ1, φ2, . . . φn) [Jackiw 1973]

W. G. H. Avoiding Death by Vacuum Decay

Page 36: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

The reasoning behind

The effective potential

Veff(φ): average energy density

The ground state of the theoryVeff minimized:

dVeffdφ

∣∣∣∣φ=v

= 0

Technically:generating function for 1PI n-point Green’s functions:

Veff(φ) = −∞∑n=2

G(n)(pi = 0)φn

conversely: calculate all 1PI n-point functions → Veff(with subleties)

W. G. H. Avoiding Death by Vacuum Decay

Page 37: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

The reasoning behind

The effective potential

Veff(φ): average energy density

The ground state of the theoryVeff minimized:

dVeffdφ

∣∣∣∣φ=v

= 0

Technically:generating function for 1PI n-point Green’s functions:

Veff(φ) = −∞∑n=2

G(n)(pi = 0)φn

conversely: calculate all 1PI n-point functions → Veff(with subleties)

W. G. H. Avoiding Death by Vacuum Decay

Page 38: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

The reasoning behind

The effective potential

Veff(φ): average energy density

The ground state of the theoryVeff minimized:

dVeffdφ

∣∣∣∣φ=v

= 0

Technically:generating function for 1PI n-point Green’s functions:

Veff(φ) = −∞∑n=2

G(n)(pi = 0)φn

conversely: calculate all 1PI n-point functions → Veff(with subleties)

W. G. H. Avoiding Death by Vacuum Decay

Page 39: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

The reasoning behind

The effective potential

Veff(φ): average energy density

The ground state of the theoryVeff minimized:

dVeffdφ

∣∣∣∣φ=v

= 0

Technically:generating function for 1PI n-point Green’s functions:

Veff(φ) = −∞∑n=2

G(n)(pi = 0)φn

conversely: calculate all 1PI n-point functions → Veff

(with subleties)

W. G. H. Avoiding Death by Vacuum Decay

Page 40: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

The reasoning behind

The effective potential

Veff(φ): average energy density

The ground state of the theoryVeff minimized:

dVeffdφ

∣∣∣∣φ=v

= 0

Technically:generating function for 1PI n-point Green’s functions:

Veff(φ) = −∞∑n=2

G(n)(pi = 0)φn

conversely: calculate all 1PI n-point functions → Veff(with subleties)

W. G. H. Avoiding Death by Vacuum Decay

Page 41: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Summing up external legs

H

H

H

H

tL

tR tL

tR

+ + + . . .

most dominant contribution from top Yukawa yt and Atcan be easily summed for mtR

= mtL≡M

1-PI potential as generating function for 1-PI Green’s functions

−V1−PI(φ) = Γ1−PI(φ) =∑n

1

n!Gn(pext = 0)φn

“classical” field value φ→ 〈0|φ|0〉dV (φ)dφ = 0 determines ground state of the theory

W. G. H. Avoiding Death by Vacuum Decay

Page 42: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Summing up external legs

H

H

H

H

tL

tR tL

tR

+ + + . . .

h

tL

tR

h = h0†d −Atµ∗Yt

h0u

V1 ∼∑n

ann!2

(h†h)n

,ann!2

=1

n(n− 1)(n− 2)

V1 =NcM

4

32π2[(1 + x)2 log(1 + x) + (1− x)2 log(1− x)− 3x2

]Q2 = M2 x2 = |µYt|2h†h/M4, m2

tL= m2

tR= M2

W. G. H. Avoiding Death by Vacuum Decay

Page 43: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Summing up external legs

H

H

H

H

tL

tR tL

tR

+ + + . . .

h

tL

tR

h = h0†d −Atµ∗Yt

h0u

V1 ∼∑n

ann!2

(h†h)n

,ann!2

=1

n(n− 1)(n− 2)

V1 =NcM

4

32π2[(1 + x)2 log(1 + x) + (1− x)2 log(1− x)− 3x2

]Q2 = M2 x2 = |µYt|2h†h/M4, m2

tL= m2

tR= M2

W. G. H. Avoiding Death by Vacuum Decay

Page 44: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Summing up external legs

H

H

H

H

tL

tR tL

tR

+ + + . . .

h

tL

tR

h = h0†d −Atµ∗Yt

h0u

V1 ∼∑n

ann!2

(h†h)n

,ann!2

=1

n(n− 1)(n− 2)

V1 =NcM

4

32π2[(1 + x)2 log(1 + x) + (1− x)2 log(1− x)− 3x2

]Q2 = M2 x2 = |µYt|2h†h/M4, m2

tL= m2

tR= M2

W. G. H. Avoiding Death by Vacuum Decay

Page 45: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

trilinear ∼ h(h0d, h0u), quadrilinear ∼ |h0u|2

diagrams with mixed contributions

tL,R

tL,Rh0

u

h0

u

gummi bear factor

(2n+ k − 1)!

k!(2n− 1)! www.idn.uni-bremen.de/biologiedidaktik

W. G. H. Avoiding Death by Vacuum Decay

Page 46: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

trilinear ∼ h(h0d, h0u), quadrilinear ∼ |h0u|2

diagrams with mixed contributions

h0

u

h0

u

h

h

tL,R

tL,R

tR,L

gummi bear factor

(2n+ k − 1)!

k!(2n− 1)! www.idn.uni-bremen.de/biologiedidaktik

W. G. H. Avoiding Death by Vacuum Decay

Page 47: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

trilinear ∼ h(h0d, h0u), quadrilinear ∼ |h0u|2

diagrams with mixed contributions

h0

u

h0

u

h

h

tL,R

tL,R

tR,L

gummi bear factor

(2n+ k − 1)!

k!(2n− 1)! www.idn.uni-bremen.de/biologiedidaktik

W. G. H. Avoiding Death by Vacuum Decay

Page 48: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

trilinear ∼ h(h0d, h0u), quadrilinear ∼ |h0u|2

diagrams with mixed contributions

h0

u

h0

u

h

h

tL,R

tL,R

tR,L

gummi bear factor

(2n+ k − 1)!

k!(2n− 1)! www.idn.uni-bremen.de/biologiedidaktik

W. G. H. Avoiding Death by Vacuum Decay

Page 49: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

tL

tR

h h+ + + + . . .

+

tL,R

h0

u h0

u

+ + . . . +

h0

u

h0

u

h

h

tL,R

tL,R

tR,L + . . .

W. G. H. Avoiding Death by Vacuum Decay

Page 50: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Summing up (ctd.)

Field dependent stop mass

M2t(h0u, h

0d) =

(m2tL

+ |Yth0u|2 Ath0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

tR+ |Yth0u|2

)

V1 ∼∞∑n=0

∞∑k=0

akn x2nyk , x2 =

|µYt|2h†hM4

, y =|Yth0u|2

M2

=

∞∑n=0

∞∑k=0

1

n(2n+ k − 1)(2n+ k − 2)

(2n+ k − 1)!

k!(2n− 1)!x2nyk

=[

(1 + y + x)2 log(1 + y + x)

+(1 + y − x)2 log(1 + y − x)− 3(x2 + y2 + 2y)]

W. G. H. Avoiding Death by Vacuum Decay

Page 51: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Features of the resummed series

V1(h0u, h

0d) =

NcM4

32π2

[(1 + y + x)2 log(1 + y + x)

+ (1 + y − x)2 log(1 + y − x)

− 3(x2 + y2 + 2y)

]

x2 =|µYt|2h†hM4

, h = h0∗d −Atµ∗Yt

h0u, y =|Yth0u|2

M2

branch cut at x− y = ±1: take real part (analytic cont.)ignore imaginary part: log(1 + y − x) = 1

2 log((1 + y − x)2

)always bounded from belowminimum independent of Higgs parameters from tree potentialminimum determined by SUSY scale parameters

W. G. H. Avoiding Death by Vacuum Decay

Page 52: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Tree, loop and tree + loop

(a)

x

V(x)

10.90.80.70.60.50.40.30.20.10

0.5

0.4

0.3

0.2

0.1

0

-0.1

W. G. H. Avoiding Death by Vacuum Decay

Page 53: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Tree, loop and tree + loop

(b)

x

V(x)

43.532.521.510.50

8

6

4

2

0

-2

-4

W. G. H. Avoiding Death by Vacuum Decay

Page 54: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Tree, loop and tree + loop

(c)

x

V(x)

1.41.210.80.60.40.20

4

3

2

1

0

-1

-2

-3

W. G. H. Avoiding Death by Vacuum Decay

Page 55: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Tree, loop and tree + loop

(d)

x

V(x)

1.41.210.80.60.40.20

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

W. G. H. Avoiding Death by Vacuum Decay

Page 56: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Cooking up phenomenologically viable parameters

Minimum at the electroweak scale v = 246 GeV

m2 tree

11 = m2 tree

12 tanβ − v2

2cos(2β)λtree1 − 1

v cosβ

δ

δφdV1

∣∣∣∣φu,d→ 0χu,d→ 0

,

m2 tree

22 = m2 tree

12 cotβ +v2

2cos(2β)λtree1 − 1

v sinβ

δ

δφuV1

∣∣∣∣φu,d→ 0χu,d→ 0

.

mh = 125 GeV

using FeynHiggs 2.10.0 to determine light Higgs mass byadjusting At (several solutions: signAt = − signµ)connection to potential: mA

pseudoscalar mass mA less dependent on higher loopsdecoupling limit: mA,mH± ,mH � mh

include sbottom (drives minimum), take Ab = 0

W. G. H. Avoiding Death by Vacuum Decay

Page 57: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

tanβ resummation for bottom yukawa coupling

Yukawa coupling not given directly by the mass

yb =mb

vd(1 + ∆b)

∆gluinob =

2αs3π

µMG tanβC0(mb1, mb2

,MG),

∆higgsinob =

Y 2t

16π2µAt tanβC0(mt1

, mt2, µ).

20 000 40 000 60 000 80 000 100 000

MG

GeV

0.4

0.6

0.8

1.0

1.2

DbHgluinoL

-4000 -2000 2000 4000Μ

-0.2

-0.1

0.1

0.2

DbHhiggsinoL

W. G. H. Avoiding Death by Vacuum Decay

Page 58: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Discussion of stability

✷ ✂ ✶✵✽

✹ ✂ ✶✵✽

✻ ✂ ✶✵✽

�✷ ✂ ✶✵✽

✷✵✵ ✹✵✵ ✻✵✵

✈✉ ✰ ✣✉ ❂●❡❱

✁✄❢❢ ❂ ●❡❱☎

✆✝

tanβ = 40

mA = 800 GeV

M = 1 TeV

µ = 3.75 TeV

At ' −1.5 TeV

W. G. H. Avoiding Death by Vacuum Decay

Page 59: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Discussion of stability

✷ ✂ ✶✵✽

✹ ✂ ✶✵✽

✻ ✂ ✶✵✽

�✷ ✂ ✶✵✽

✷✵✵ ✹✵✵ ✻✵✵

✈✉ ✰ ✣✉ ❂●❡❱

✁✄❢❢ ❂ ●❡❱☎

☎✽

✆✝

tanβ = 40

mA = 800 GeV

M = 1 TeV

µ = 3.83 TeV

At ' −1.5 TeV

W. G. H. Avoiding Death by Vacuum Decay

Page 60: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

[ww

w.b

bcam

eric

a.co

m]

W. G. H. Avoiding Death by Vacuum Decay

Page 61: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Naive exclusions: Constraint in µ-tanβ

MSUSY = 2TeVMSUSY = 1TeV

µ/TeV

tanβ

54321

60

50

40

30

20

10

W. G. H. Avoiding Death by Vacuum Decay

Page 62: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

New interpretation

Access to Charge and Color breaking minima

µ = 3910 GeVµ = 3860 GeVµ = 3810 GeV

vu +ϕu/GeV

V eff/G

eV4

6004002000

6× 108

5× 108

4× 108

3× 108

2× 108

1× 108

0× 1

−1× 108

−2× 108

−3× 108

−4× 108

W. G. H. Avoiding Death by Vacuum Decay

Page 63: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

New interpretation

Access to Charge and Color breaking minima

M2t(h0u, h

0d) =

(m2Q + |Yth0u|2 Ath

0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

t + |Yth0u|2)

M2b(h0u, h

0d) =

(m2Q + |Ybh0d|2 Abh

0d − µ∗Ybh0∗u

A∗bh0∗d − µY ∗b h0u m2

b + |Ybh0d|2)

non-trivial behaviour of sfermions masses with Higgs vev

:

m2b1,2

(h0u, h0d) =

m2Q + m2

b

2+ |Ybh0d|2

± 1

2

√(m2

Q − m2b)

2 + 4|Abh0d − µ∗Ybh0∗u |2

expand theory around new minimum: m2b2< 0

tachyonic squark mass!

W. G. H. Avoiding Death by Vacuum Decay

Page 64: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

New interpretation

Access to Charge and Color breaking minima

M2t(h0u, h

0d) =

(m2Q + |Yth0u|2 Ath

0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

t + |Yth0u|2)

M2b(h0u, h

0d) =

(m2Q + |Ybh0d|2 Abh

0d − µ∗Ybh0∗u

A∗bh0∗d − µY ∗b h0u m2

b + |Ybh0d|2)

non-trivial behaviour of sfermions masses with Higgs vev:

m2b1,2

(h0u, h0d) =

m2Q + m2

b

2+ |Ybh0d|2

± 1

2

√(m2

Q − m2b)

2 + 4|Abh0d − µ∗Ybh0∗u |2

expand theory around new minimum: m2b2< 0

tachyonic squark mass!

W. G. H. Avoiding Death by Vacuum Decay

Page 65: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

New interpretation

Access to Charge and Color breaking minima

M2t(h0u, h

0d) =

(m2Q + |Yth0u|2 Ath

0u − µ∗Yth0∗d

A∗th0∗u − µY ∗t h0d m2

t + |Yth0u|2)

M2b(h0u, h

0d) =

(m2Q + |Ybh0d|2 Abh

0d − µ∗Ybh0∗u

A∗bh0∗d − µY ∗b h0u m2

b + |Ybh0d|2)

non-trivial behaviour of sfermions masses with Higgs vev:

m2b1,2

(h0u, h0d) =

m2Q + m2

b

2+ |Ybh0d|2

± 1

2

√(m2

Q − m2b)

2 + 4|Abh0d − µ∗Ybh0∗u |2

expand theory around new minimum: m2b2< 0

tachyonic squark mass!

W. G. H. Avoiding Death by Vacuum Decay

Page 66: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

[com

mons

.wik

imed

ia.o

rg]

W. G. H. Avoiding Death by Vacuum Decay

Page 67: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Rolling down the hill

What does a tachyonic mass mean?

mass ⇔ second derivative: m2φ = ∂2V/∂φ2

m2φ < 0 ⇔ negative curvature

non-convex potential: imaginary partlog(1 + y − x) ∼ log(m2

φ)

-100 -50 50 100 b�

L

-2´107

2´107

4´107

6´107

8´107

1´108

V Hb� LL

W. G. H. Avoiding Death by Vacuum Decay

Page 68: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Rolling down the hill

What does a tachyonic mass mean?

mass ⇔ second derivative: m2φ = ∂2V/∂φ2

m2φ < 0 ⇔ negative curvature

non-convex potential: imaginary partlog(1 + y − x) ∼ log(m2

φ)

-100 -50 50 100 b�

L

-2´107

2´107

4´107

6´107

8´107

1´108

V Hb� LL

W. G. H. Avoiding Death by Vacuum Decay

Page 69: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

A more complete picture

Including colored directions

V treeb

= b∗L(M2Q

+ |Ybvd|2)bL + b∗R(M2b

+ |Ybvd|2)bR

−[b∗L(µ∗Ybh

0†u −Abvd)bR + h. c.

]+ |Yb|2|bL|2|bR|2

+ D-terms.

D-flat direction: minimizing D-term contribution

D-terms: g2φ4

VD =g218

(|h0u|2 − |h0d|2 +

1

3|bL|2 +

2

3|bR|2

)2+g228

(|h0u|2 − |h0d|2 + |bL|2

)2+g236

(|bL|2 − |bR|2

)2.

will always take over for large field valuestake e.g. bL = bR = b and |h0d|2 = |h0u|2 + |b|2|

W. G. H. Avoiding Death by Vacuum Decay

Page 70: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

A more complete picture

Including colored directions

V treeb

= b∗L(M2Q

+ |Ybvd|2)bL + b∗R(M2b

+ |Ybvd|2)bR

−[b∗L(µ∗Ybh

0†u −Abvd)bR + h. c.

]+ |Yb|2|bL|2|bR|2

+ D-terms.

D-flat direction: minimizing D-term contribution

D-terms: g2φ4

VD =g218

(|h0u|2 − |h0d|2 +

1

3|bL|2 +

2

3|bR|2

)2+g228

(|h0u|2 − |h0d|2 + |bL|2

)2+g236

(|bL|2 − |bR|2

)2.

will always take over for large field valuestake e.g. bL = bR = b and |h0d|2 = |h0u|2 + |b|2|

W. G. H. Avoiding Death by Vacuum Decay

Page 71: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

A more complete picture

Including colored directions

V treeb

= b∗L(M2Q

+ |Ybvd|2)bL + b∗R(M2b

+ |Ybvd|2)bR

−[b∗L(µ∗Ybh

0†u −Abvd)bR + h. c.

]+ |Yb|2|bL|2|bR|2

+ D-terms.

D-flat direction: minimizing D-term contribution

D-terms: g2φ4

VD =g218

(|h0u|2 − |h0d|2 +

1

3|bL|2 +

2

3|bR|2

)2+g228

(|h0u|2 − |h0d|2 + |bL|2

)2+g236

(|bL|2 − |bR|2

)2.

will always take over for large field valuesor h0d = 0 and b = h0u [large D-term]

W. G. H. Avoiding Death by Vacuum Decay

Page 72: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

CCB minima and the one-loop Higgs potential

From CCC to CCBpreviously “safe” false but CC conserving minima turn into todeep global minima with 〈bL〉 = 〈bR〉 6= 0 and 〈h0u〉 6= vu

W. G. H. Avoiding Death by Vacuum Decay

Page 73: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

CCB minima and the one-loop Higgs potential

From CCC to CCBpreviously “safe” false but CC conserving minima turn into todeep global minima with 〈bL〉 = 〈bR〉 6= 0 and 〈h0u〉 6= vu

W. G. H. Avoiding Death by Vacuum Decay

Page 74: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Analytic bounds at the tree-level

1 choose appropriate direction ↪→ one-field problem

V treeφ = m2φ2 −Aφ3 + λφ4

h0u = b, h0d = 0

2 identify parameters, e.g. m2 = m2Q + m2

b +m2Hu

+ µ2,

λ = Y 2b +

g21+g22

2 , A = 2µYb

3 necessary condition: m2 > A2

4λ ↪→ second minimum not belowfirst (trivial) one)

h0u = b, h0

d = 0

m2Hu

+ µ2 + m2Q + m2

b >(µYb)2

Y 2b + (g21 + g22)/2

W. G. H. Avoiding Death by Vacuum Decay

Page 75: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Analytic bounds at the tree-level

1 choose appropriate direction ↪→ one-field problem

V treeφ = m2φ2 −Aφ3 + λφ4

h0u = b, h0d = 0

2 identify parameters, e.g. m2 = m2Q + m2

b +m2Hu

+ µ2,

λ = Y 2b +

g21+g22

2 , A = 2µYb

3 necessary condition: m2 > A2

4λ ↪→ second minimum not belowfirst (trivial) one)

h0u = b, h0

d = 0

m2Hu

+ µ2 + m2Q + m2

b >(µYb)2

Y 2b + (g21 + g22)/2

W. G. H. Avoiding Death by Vacuum Decay

Page 76: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Analytic bounds at the tree-level

1 choose appropriate direction ↪→ one-field problem

V treeφ = m2φ2 −Aφ3 + λφ4

h0u = b, h0d = 0

2 identify parameters, e.g. m2 = m2Q + m2

b +m2Hu

+ µ2,

λ = Y 2b +

g21+g22

2 , A = 2µYb

3 necessary condition: m2 > A2

4λ ↪→ second minimum not belowfirst (trivial) one)

|h0d|2 = |h0

u|2 + |b|2, b = αh0u

m211(1 + α2) +m2

22 ± 2m212

√1 + α2 + α2(m2

Q + m2b) >

µ2α4

2 + 3α2

W. G. H. Avoiding Death by Vacuum Decay

Page 77: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

µ/GeV

tanβ

5000450040003500300025002000

60

50

40

30

20

10

0

W. G. H. Avoiding Death by Vacuum Decay

Page 78: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Conclusions

the Higgs potential in the SM is meta/un/stableMSSM: multi-scalar theory, has several unwanted minimaformation of new CCB conserving minima at the 1-loop levelstability of the electroweak vacuum: bounds on µ-tanβ

instability of electroweak vacuum by second minimum in“standard model direction” ∼ vu: global CCB minimummore severe bounds [new CCB constraints]CCB constraints for non-vanishing D-Termsquantum tunneling: either very long- or very short-lived

W. G. H. Avoiding Death by Vacuum Decay

Page 79: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Finally. . .

Greetings from Señor Higgs(courtesy of Jens Hoff)

W. G. H. Avoiding Death by Vacuum Decay

Page 80: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

Backup

Slides

W. G. H. Avoiding Death by Vacuum Decay

Page 81: Avoiding Death by Vacuum Decaywghollik/vacuum_zeuthen.pdf · W. G. H. Avoiding Death by Vacuum Decay. The SM phase diagram 0 50 100 150 200 0 50 100 150 200 HiggsmassM h inGeV Top

References

Wolfgang Gregor Hollik: “Charge and color breaking constraints inthe Minimal Supersymmetric Standard Model associated with thebottom Yukawa coupling” Physics Letters B 752 (2016) 7 – 12

Wolfgang Gregor Hollik: “Neutrinos meet Supersymmetry: QuantumAspects of Neutrinophysics in Supersymmetric Theories”, PhDThesis, Karlsruhe 2015

Markus Bobrowski, Guillaume Chalons, Wolfgang G. Hollik, UlrichNierste: “Vacuum stability of the effective Higgs potential in theMinimal Supersymmetric Standard Model” Physical Review D 90,035025 (2014)

W. G. H. Avoiding Death by Vacuum Decay