40
April 2013 NASA/TM2013-217986 Flight Avionics Hardware Roadmap Avionics Steering Committee https://ntrs.nasa.gov/search.jsp?R=20130013356 2018-05-23T07:11:35+00:00Z

Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

Embed Size (px)

Citation preview

Page 1: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

April 2013

NASA/TM–2013-217986

Flight Avionics Hardware Roadmap

Avionics Steering Committee

https://ntrs.nasa.gov/search.jsp?R=20130013356 2018-05-23T07:11:35+00:00Z

Page 2: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA scientific and technical information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI program operates under the

auspices of the Agency Chief Information Officer.

It collects, organizes, provides for archiving, and

disseminates NASA’s STI. The NASA STI

program provides access to the NASA Aeronautics

and Space Database and its public interface, the

NASA Technical Report Server, thus providing one

of the largest collections of aeronautical and space

science STI in the world. Results are published in

both non-NASA channels and by NASA in the

NASA STI Report Series, which includes the

following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase

of research that present the results of NASA

Programs and include extensive data or

theoretical analysis. Includes compilations of

significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counterpart of peer-

reviewed formal professional papers, but

having less stringent limitations on manuscript

length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of

specialized interest, e.g., quick release reports,

working papers, and bibliographies that contain

minimal annotation. Does not contain extensive

analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia, seminars,

or other meetings sponsored or co-

sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and feeds,

providing information desk and personal search

support, and enabling data exchange services.

For more information about the NASA STI

program, see the following:

Access the NASA STI program home page

at http://www.sti.nasa.gov

E-mail your question to [email protected]

Fax your question to the NASA STI

Information Desk at 443-757-5803

Phone the NASA STI Information Desk at

443-757-5802

Write to:

STI Information Desk

NASA Center for AeroSpace Information

7115 Standard Drive

Hanover, MD 21076-1320

Page 3: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

April 2013

NASA/TM–2013-217986

Flight Avionics Hardware Roadmap

Avionics Steering Committee

Page 4: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

Available from:

NASA Center for AeroSpace Information

7115 Standard Drive

Hanover, MD 21076-1320

443-757-5802

Page 5: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

1

PrefaceAll roadmaps represent a snapshot in time and are expected to evolve over time. ThisroadmapusedthebestavailableinformationfrommultiplesourcestobuildastrategyforNASA’sAvionicsSteeringCommittee(ASC)whichrepresentsthroughitslinemanagementrepresentatives the agency’s avionics workforce chartered out of the Office of ChiefEngineer (OCE). It is understood that Centers, Directorates, Divisions, Offices, and otherorganizationsmaybeindependentlyengaginginroadmappingeffortswithoverlaptothisASC effort. Whenever possible we have attempted to draw from these other efforts inbuilding this roadmap.TheASCrecognizes thevalueof roadmappingatmany levelsandviewstheseactivitiesassynergistic.

Theapproachtakenbytheroadmappingteamwasto focuson“the80‐percentsolution,”i.e., to identify technologies forNASAuse thatwouldmeeton theorderof80‐percentofdefinedNASAneeds,specificallyavoidinghigh‐costtechnologieswithlimitedutilitytothebroaderNASAmission set. The teamalso focusedondeveloping adocument thatwouldinform, but not proscribe, future NASA technology development investments such ascommon avionics, high‐performance space computing, or next generation spacecraftinterconnectinitiatives.

Page 6: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

2

CoreTeamMembers Dr.RobertHodson,LaRC,AvionicsTechnologyRoadmapStudyLead MaryMcCabe,JSC,HumanInterfaceTechnologyLead PaulPaulick,KSC,InstrumentationTechnologyLead TimRuffner,GRC,CD&HTechnologyLead RafiSome,JPL,FoundationalTechnologyCo‐Lead Dr.YuanChen,LARC,FoundationalTechnologyCo‐Lead SharadaVitalpur,JSC,CommunicationsandTrackingTechnologyLead MarkHughes,SSC KuokLing,ARC MattRedifer,DFRC ShawnWallace,MSFC

AcknowledgementsSpecial thanks to the many others that supported this roadmapping effort: JacqueMyrann/JSC, Andy Romero/JSC, Vic Studer/JSC, Stephen Horan/LaRC, WilliamHopkins/MSFC, Polly Estabrook/JPL, Vanessa Kuroda/ARC, David Buchanan/GRC, Dr.Fernando Figueroa/SSC, William Witherow/MSFC, Angela Shields/MSFC, Dr. JamesCurrie/MSFC, Peter Johnson/KSC, Aaron Sherman/KSC, Dr. Joe Zhou/LaRC, NeilCoffey/LaRC,NickTrombetta/LaRC.

 

Page 7: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

3

ContentsPreface...........................................................................................................................................................................1 

CoreTeamMembers...............................................................................................................................................2 

Acknowledgements.................................................................................................................................................2 

Contents........................................................................................................................................................................3 

ListofFigures.............................................................................................................................................................5 

Introduction................................................................................................................................................................6 

NASAMissions...........................................................................................................................................................7 

FoundationalTechnology..................................................................................................................................10 

ProcessorTechnologyandRadiation‐HardeningbyDesign(RHBD)Library........................10 

Radiation‐Hardened(RH)ExtremeTemperatureTechnology.....................................................11 

ElectronicPackagingTechnology..............................................................................................................12 

RHBDNetworkTechnology..........................................................................................................................13 

RHMemoryTechnology.................................................................................................................................14 

RHReconfigurableField‐ProgrammableGateArrays(FPGAs)forComputingTechnology...................................................................................................................................................................................15 

Nano‐electronicTechnology........................................................................................................................16 

CommandandDataHandling(C&DH)Technology................................................................................17 

Processing............................................................................................................................................................17 

NetworkDevicesandInterconnectHardware.....................................................................................19 

RHBDMemoryCards/Subsystems............................................................................................................19 

SpaceflightInstrumentation.............................................................................................................................20 

Sensors..................................................................................................................................................................20 

Sensor/InstrumentationSystems..............................................................................................................21 

CommunicationsandTracking........................................................................................................................23 

NetworkingCommunications(InternetworkingCommunications)..........................................23 

OpticalCommunicationsforDeepSpace................................................................................................23 

MiniaturereconfigurablecommunicationsforBeyondEarthOrbitEVAapplications......24 

Space‐BasedRadiosUsingUltraWideBandorOtherFormats....................................................24 

Low Power, High Rate RF to Support High‐rate Communications from NEN and DeepSpaceNetwork(DSN)(BridgeGaptoOptical).....................................................................................25 

LowVoltage/LowPowerTransceiverModuleEnergyHarvestingTechnology...................25 

Page 8: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

4

SpectrumanalysistoolforLowEarthOrbit(LEO),DSN,etc.........................................................25 

C&TRevolutionaryConcepts.......................................................................................................................26 

HumanInterfaceTechnology...........................................................................................................................27 

AuditoryInterfaceTechnologies................................................................................................................27 

TactileInterfaceTechnologies....................................................................................................................28 

VisualInterfaceTechnologies......................................................................................................................29 

Multi‐SenseInterfaceTechnologies..........................................................................................................31 

Acronyms..................................................................................................................................................................33 

Page 9: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

5

ListofFiguresFigure1.ExampletechnologyflowfromfoundationaltechnologiesthroughNASAmissions...........................................................................................................................................................................................6Figure2.PotentialfutureNASAmissionsandcapabilities(vehicles,stages,habitats,etc)....7Figure3.FoundationalTechnologytimeline.............................................................................................10Figure4.CommandandDataHandlingTechnologytimeline...........................................................17Figure5.SpaceflightInstrumentationTechnologytimeline..............................................................20Figure6.CommunicationsandTrackingTechnologytimeline.........................................................23Figure7.HumanInterfaceTechnologytimeline.....................................................................................27

Page 10: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

6

IntroductionAs part of NASA’s Avionics Steering Committee’s stated goal “to advance the avionicsdiscipline ahead of program and project needs,” the committee initiated a multi‐Centertechnology roadmapping activity to create a comprehensive avionics roadmap. Theroadmapisintendedtostrategicallyguideavionicstechnologydevelopmenttoeffectivelymeet future NASA missions’ needs. The scope of the roadmap aligns with the twelveavionics elements defined in the ASC charter, but is subdivided into the following fiveareas:

FoundationalTechnology(includingdevicesandcomponents)

CommandandDataHandling

SpaceflightInstrumentation

CommunicationandTracking

HumanInterfaces

This effort addressed only flight avionics hardware and did not consider ground‐basedelectronics,flightsoftware,orgroundsoftware.Thedecisiontofocusonflightavionicswasdrivenbythefollowingconsiderations:

1. Generalpurposeground‐basedelectronicssuchasareused tosupportgeneraldesign,test,andsimulationactivitieswillutilizestate‐of‐the‐artcommercial‐off‐the‐shelfproductsandthereisnoreasonforNASAtotrackorinvestinitasatechnologyarea.

2. Ground computing that will benefit from utilization of the sameelectronic/avionicsequipmentthatisusedforflightsystems,e.g.,hardware‐in‐the‐looptestbeds,shouldbeusingthe flightavionicschosenforthemissionormission set that they are supporting, and thus will be driven by the flightavionicsthatarethesubjectofthisroadmap.

Foundationaltechnologycompriseslow‐levelfabricationandmaterialstechnologies(suchasComplementaryMetal‐OxideSemiconductor [CMOS]processes),devicesbuilton thesetechnologies (such as transistors), and components built up from these devices (such asprocessorsandmemorychips).CommandandDataHandling,SpaceflightInstrumentation,Communication and Tracking, and Human Interfaces are avionics subsystem‐leveltechnologyareasthatareenabledbyandbuiltfromfoundationaltechnologycomponents.Avionics systemsareconsidered tobematureenough forproject infusionatTechnologyReadinessLevel(TRL)6.ProjectscanthenutilizethesesystemstobuildcapabilitiesthatenableorenhanceNASAmissions.Seetheexampletechnologyflowbelow.

Page 11: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

7

Foundational Technology

time in years

C&DH

Instrumentation

Missions & Capabilities

5 10 15 20

F1 F2 F3 F4

CDH1

I1

Device& Components

Systems & Subsystems in Technology Categories

Missions, Vehicles & Stages

Figure1.ExampletechnologyflowfromfoundationaltechnologiesthroughNASAmissions

The subsystem categories (Command and Data Handling, Spaceflight Instrumentation,Communication andTracking, andHuman Interfaces)were those areas identified by theASCcharterascomprising“avionics.”Theroadmappingteamanalyzedeachofthe14OfficeoftheChiefTechnologist(OCT)TechnologyRoadmapstoidentifytechnologyneedsineachoftheseareastosupportfutureNASAprojectsandmappedthemintothesesubcategories.

The roadmap looksoutover a20‐yearperiod.Thenear term tends to focusonevolvingtechnologies while longer‐term technologies tend to be more revolutionary thanevolutionary.Thislong‐termviewallowsforabalancedpush‐pulltechnologyportfolioanddevelopmentstrategywithbroadTRLdiversity.Along‐termtechnologyviewalsorequiresthat the roadmap be revisited periodically as new and unforeseen breakthroughs occur,NASA’smissionschange,andfundingprofilesaffecttechnologytimelines.

NASAMissions

time in years

PotentialMissions & Capabilities

MARS SAMPLE RETURN MARS SAMPLE RETURN

COM. CREW SLS TF MPCV LUNAR SURFACE EL. LUNAR ASCENT STAGE

ROBOTIC MISSIONS  (MARS) SLS DSH IN‐SPACE PROP.

ROBOTIC MISSIONS  (MOON) CRYO PROP

ROBOTIC MISSIONS  (NEA) LUNAR DESCENT STAGE

SEV

2011 2020 2030

Figure2.PotentialfutureNASAmissionsandcapabilities(vehicles,stages,habitats,etc).

Page 12: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

8

AnewclassoffutureNASAmissionsistheprimarydriverofavionicstechnology.AsNASAmissionsmovefartherfromEarthandbecomeincreasinglymorecomplex,newchallengesarise.Insupportofnewexplorationandsciencedestinations,NASAhasadoptedaflexiblecapabilities‐basedapproach.Thisallowscertainvehicles,habitats,satellites,andstagestobe designed and built without a specific destination being selected. Current DesignReferenceMissions (DRMs) and roadmaps focus onNear Earth Asteroids (NEA), Earth’sMoon,Mars,andprimitivebodieswithinthesolarsystemaswellasoperationsinuniqueorbits such as the L1 and L2 Lagrange Points. From an avionics perspective these newcapabilities and missions will present unique challenges. Key avionics drivers will bereliability and autonomy. Long‐duration crewed missions as well as space‐basedobservatories and solar system tours will require sophisticated reliability and faulttolerance. The current exploration DRMs call for 348 to 399 days of reliable operation,whileroboticsciencemissionsspecifymanyyearsofunattendedoperation.Furthermore,the communicationdelays and challengingorbitaldynamicsofNEAandextreme sciencemissions require increased autonomy and on‐board decision infrastructure. Traditionalsolutionstoreliabilityandautonomyincreaseprocessingdemandsandredundancywhichinturndrivessystemmassandpower.Advancedtechnologiesandapproachesareneededtosupportthesechallengingmissions.

NASA’sshort‐termstrategyistocontinueroboticexplorationoftheMoon,Mars,andNEAs.TheLunarAtmosphere andDustEnvironmentExplorer is scheduled for launch in2013,Mars Science Laboratory launched this year, Mars Atmosphere and Volatile Evolutionmissionistargetinga2013launch,theExobiologyonMarsmissionhasa2016launch,andthe Origins‐Spectral Interpretation‐Resource Identification‐Security‐Regolith Explorer,missionisplanningtolaunchanasteroidsampleandreturnmissionin2016.

While robotic exploration continues,NASAwill developcapabilities in supportofhumanexploration to destinations such as the Moon, a NEA, and eventually Mars. The NASAHuman Architecture Team has identified nine transportation elements: Solar ElectricsPropulsion, Chemical Propulsion Stage, Deep Space Habitat, Space Exploration Vehicle,LunarOrbitRendezvousLander,CargoCarrier,SpaceLaunchSystem(SLS),Multi‐PurposeCrewVehicle (MPCV), andNuclear Thermal Propulsion. The first two elements, SLS andMPCV,areplannedfor2020,withtestflightsasearlyas2017.Otherelementsdepictedinlater years on the roadmap build capability for more sophisticated and challengingmissions.Extremelychallengingroboticmissions(i.e.,MarsSampleReturn)arealsobeingconsidered.

Thesemissions,characterizedbylongduration,vastdistances,harshenvironments,andinsomecasesthehumanelement,requirenewavionicstechnologiestobedevelopedtomeetmissionrequirementsforexplorationandsafelybringcrewsbacktoEarth.

In the following sections, we identify the key technologies needed to support thesemissionsandthetimeframesinwhichtheyareneeded,orareexpectedtobeavailable.

Page 13: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

9

Manyofthesetechnologiesareanticipatedtobedevelopedbyindustryorotheragenciese.g.,DepartmentofDefense,DepartmentofEnergy,andneedonlybemonitored to tracktheirprogressanddeterminewhentheycanbeadoptedforinsertionintoNASAmissions.AminorityofthetechnologiesdiscussedbelowwillrequireNASAinvestmenttomatureinawaythatwillbeofusetoNASA.

Page 14: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

10

FoundationalTechnology

Figure3.FoundationalTechnologytimeline.

ProcessorTechnologyandRadiation‐HardeningbyDesign(RHBD)LibraryF1:45‐Nanometer(nm)commercialmulti‐coreprocessor

F2:32‐nmcommercialmulti‐coreprocessor

F3:RHBDbulkCMOSLibraryfordigitalApplication‐SpecificIntegratedCircuits(ASICs)byQMLIBM90‐nmCMOSline

F4:RHBDSilicon‐On‐Insulator(SOI)LibrarydigitalASICsbyQMLIBM45‐nmSOIline

F5:90‐nmbulkCMOSor45‐nmSOIRHBDmulti‐coreprocessor

ABoeing‐developedRHBD90‐nmbulkCMOSstandardcelllibrarywasoriginallyfundedbytheDefenseThreatReductionAgency(DTRA)andtheDefenseAdvancedResearchProjectsAgency (DARPA) and is currently in the process of being commercialized by severalcompanies. The library provides the capability to relatively inexpensively developradiation‐hardened digital ASICs. A QML‐certified line is expected to be implemented atIBMwithexpectedQMLcertificationin2014.ItisexpectedthatDTRAwillinitiateafollowon45‐nmRBHDprogramwiththeIBMSOICMOSprocesswithatargetcompletiondateof2014.Similareffortsareongoingatothercompanies.NASAdoesnotneedtoinvestinthissemiconductor technology, though additional funding could be used to accelerate thedevelopmentscheduleandtoinfluencethetypesofcellstobedeveloped,thetestingtobeperformed, and the selection and fidelity of the development vehicles to bedesigned/validated.However,NASAcanusethisstandardcelllibraryandassociatedtoolsto develop ASICs and standard products at greatly reduced costs, compared to currentapproaches.

DigitalASICs,withpossibleextensioninsomeenvironmentstomixed‐signalASICs,basedon SOI RHBD have the potential to operate beyond the military standard temperaturerange of ‐55°C to 125°C, as well as providing radiation hardness. CMOS and SOI aredemonstrated to generally work well at low temperatures with faster speed and lowerleakage current, but work is required to determine operational characteristics over the

Page 15: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

11

wider temperature range and to develop design rules, tools, and possibly circuit librarymodifications toenablewider temperatureoperation.Thiswill requireNASA investmentasonlyNASAwillutilize these capabilities,but it leverages theDTRA/DARPAsponsoredRHBDstandardcelllibraryandassociatedtoolset.

A general purpose multi‐core processor and a Single Instruction Multiple Data (SIMD)multicore processor utilizing 90‐nm RHBD have been developed or are in development,andcouldbereadyformission insertionwithinarelativelyshorttime.Theseprocessorsarederivedfromcommercialprocessorsandsimilar to thecommercial two‐ to four‐coremachinescurrentlyinuse.TheMaestroprocessorcontains49generalpurposeprocessorcores, four high speed Double Data Rate (DDR) 2 memory ports, four 10 Gigabits PerSecond(Gb/s)XAUI Input/Output(I/O)portsaswellasGigabitEthernetandGPIOportsandissimilartoaclustercomputerarchitectureonasinglechip.Whilethisprocessorhasbeen incorporated into several board‐level products for evaluation and softwaredevelopment, it is not applicable, in general, to NASA missions due to a lack of powermanagementandfaulttolerancecapabilities.Asecond‐generationmachineineither90‐nmRHBD, or in 45‐nm SOI CMOSRHBD, based on theMaestro architecture and compatiblewith theMaestro software suite,would support a broad range ofNASAmissions andberelatively easily inserted into future missions. Depending on technology selection andlevelsofpowermanagementandfaulttoleranceincluded,itcouldbeavailableatTRL6inthe2013‐15timeframe.Suchamachinewouldbegreatlyenhancing,ifnotbeenabling,forMarsSampleReturn,Asteroid/CometSampleReturn,NEA,andhumanandhuman‐roboticprecursormissions.

Radiation‐Hardened(RH)ExtremeTemperatureTechnologyF6:0.5‐Micrometer(µm)Silicon‐Germanium(SiGe)RHanalogASICs

F7:130‐nm/180‐nmSiGeRHanalogASICs

F8:0.5‐µmSiGeRHwidetemperatureanaloginterfaceandanalog/digitalconversioncomponent

F9:130‐nmSiGeRHwidetemperatureanaloginterfaceandanalog/digitalconversioncomponent

F10:RHwidetemperatureSiGeswitchingpointofloadconverterin0.5‐µm

F11:RHwidetemperatureSiGeswitchingpointofloadconverterin130‐nm

F12:Siliconcarbide(SiC)mixedsignalelectronicsforhightemperatureapplication

F13:Galliumnitride(GaN)radiofrequencyelectronicsforhightemperatureapplications

F14:StructuredRHwidetemperatureASICs

SOIandSiGehavebeendemonstratedasthedigitalandanalogtechnologiesofchoiceforradiation‐hardened extreme environment electronic application in a wide temperature

Page 16: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

12

range beyond the military standard of ‐55°C to 125°C. SOI and SiGe for extremetemperature radiation‐hardened analog ASICs exhibiting radiation hardness to 300kilorads (krad) and capable of operation over a temperature range of at least ‐140°C to125°Chavebeendemonstrated.AnalogASICsin0.35‐µmSOIand0.5‐µmSiGehaveeitherbeendevelopedorarebeingdevelopedformotorcontrolsystemscapableofoperatingforlong lifetimes in the Mars environment (‐135°C to 85°C). Currently, the 0.5‐µm SiGetechnologyneedsadditionalinvestmenttocompletecircuitlibraryandtoolsdevelopment.A next‐generation SOI and SiGe extreme temperature RH technology would provideadditional capability, reduced power, and long‐term availability of the technology.Recommended target date for completion of a 0.5‐µm SiGe circuit library and calibratedtool set is2013 tosupport futuremissions, includingMars2018andprojectedprimitivebody science missions. A recommended target date for completion of 180/130‐nmtechnology is2016 tosupportabroadrangeof futuremissions includingExtraVehicularActivity(EVA),primitivebodies,andfutureMarsmissions.

SiC andGaNhavebeendemonstratedaspotential technologies forRHhigh temperatureapplicationsbeyond300°C.Therehavebeenmanyprocessandreliabilityimprovementsaswellasdesignenhancementsinthesetechnologiesduringthepastyearsthatpositionthemas themost promising candidates for high temperature applications for NASAmissions,especiallyaninsitumissiontoVenus.

RHstructuredASICsarebecomingavailabletoday.Thesecomponentscansurviveextremeenvironments,providequickturnaround,andbeprocuredatrelativelylowcostfordigitalandmixed‐signalASICs(theymaynotbeasradiationhardenedorasextremetemperaturecapableasSOIorSiGeRHBDASICs,buttheyaresignificantlylowercost,fasterturnaround,and suitable for a broad range of missions). Need date is 2014 to support all futuremissions.WithadditionalinvestmentbyNASA,developmentofadditionalconfigurationsofstructured ASICs, as well as additional extreme temperature characterization of thesedevicescanbeprovidedbythecompaniescurrentlydevelopingthesecomponents.

ElectronicPackagingTechnologyF15:Advancedelectronicpackagingqualification

F16:ThroughSiliconVia(TSV)chipstacktechnologyforspacequalificationandapplications

Thereareseveraladvancedpackagingtechnologiesthatwouldimprovemass,volume,andpower of spacecraft avionics. Candidate technologies include: stackedchips/packages/modules, high density interconnect, and chip‐on‐board technologies.Guidelines and design rules for use in space environments, as well as qualificationrequirementsandprocedures,needtobedevelopedforaminimalbutoptimumsubsetofavailable commercial packaging technologies. Once this is done, qualification of thisoptimal subset can proceed. This is not a traditional technology investment, but an

Page 17: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

13

adaptation andqualification of existing commercial/military technologies, and should becoordinated with programs such as the NASA Electronic Parts and Packaging Program.Recommendedtargetdate is2014tosupportMars2018,Europa,andfuturescienceandexplorationmissions,allofwhichwillbenefitfromthevolumeandmassreductionoftheseadvancedpackagingtechnologies.

TSVchipstacksallowdirectstackingofsiliconchipswithmetalizedviasplacedanywherethroughout the chip. This basic technology, developedby theMassachusetts Institute ofTechnology (MIT) Lincoln Laboratory, is currently available from several commercialvendors.Itprovidestheabilitytodevelopaseriesofstackableintegratedcircuitsthatcanbemixedandmatchedasnecessarytoproviderequiredcapability.Theadvantagehereisthat due to extremely short distances and low capacitance of interconnect, the stackessentiallyoperatesasasinglechipwithall thepowerandspeedadvantages inherentinmonolithic systems. Additionally, due to elimination of single chip packaging andinterconnect, volume andmass are reduced and reliability increased. The technology isbeingdevelopedforcommercialuse,butNASAuserequiresextensionofthetechnologytoextreme temperatures and acrossmultiple semiconductor processes, e.g., SOI CMOS andSiGe. Recommended target date is 2018 to support futuremissions including EVA andsmall/micro‐satellitesforallexplorationandsciencemissions.

RHBDNetworkTechnologyF17:90‐nmCMOSRHBDnetworkinterfaceandswitchcomponents

F18:45‐nmSOIRHBDnetworkinterfaceandswitchcomponents

F19:RHfiberoptictransceiversfor>3‐Gb/sdataprocessandtransmit

Future NASA space missions will require extremely high bandwidth spacecraftinterconnect systems. The venerable 1 Megabit Per Second (Mb/s) 1553 is beingsuperseded by 250‐Mb/s SpaceWire and, in the Human Exploration and OperationsMissionDirectorate (HEOMD), by the upcoming 1‐Gb/s Time‐TriggeredGigabit Ethernet(TTGbE) standard. Next generation missions, however, with multi‐gigabit instruments,onboard science, and autonomy processing, will require multi‐gigabit interconnectbandwidthaswellasreal‐timedeterminism,faulttolerance,power/bandwidthscalability,and seamless interoperability between copper, fiber optic, and wireless physical (phy)medialayers.Hostdatatransmissionmodesincludingbroadcast/multicast/point‐to‐point,andsynchronous/asynchronouswillalsoberequired.Severalstandardsforspacesystemsarelikelytoemerge,includingtime‐triggered10‐gigabitethernet,aspaceversionofSerialRapid I/O, and Space Fiber. The Next Generation Spacecraft Interconnect Systemcommittee is developing one such standardwith participation fromNASA, theAir ForceResearch Laboratory, Space and Missile Command, the National Reconnaissance Office(NRO), the Naval Research Laboratory, the American Institute of Aeronautics andAstronautics, VITA, Lockheed Martin Airospace Corp., Boeing Corp., British Aviation

Page 18: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

14

Electronics, Honeywell Corp., and others. Network interfaces, routers, switches, andendpoints supporting these protocols, as well as Serializer/Dererializers and phy‐layertransceiverswillbeforthcomingfromspaceavionicsandcomponentvendors,mostlikelyimplemented in 90‐nm and belowRHBD technologies. There is a concern that, as in thepast,offeringsfrommultiplevendorswillnotbeinteroperable.TheNGSISisattemptingtoensure interoperability by virtue of a tight specification and validation criteria thatguarantee interoperability, but NASAwill need to invest resources to ensure that thesestandardsmeetuniqueNASArequirementsaswellastoensurebothinteroperabilityandeaseofuseofcomponentofferings.

Copperinterconnectatthesespeedsisrelativelywellunderstood,butdifficulttoachieveinradiationhardenedandextremetemperaturecapableversionswiththedesiredisolation,fault tolerance, and power management features that are available in fiber optic. Fiberoptic implementations, however, do not provide extreme radiation and temperaturetolerance,while copperwire implementationsarenotwell suited to longer transmissiondistancesanddonotoffergoodisolationathighfrequency.

Radiationhardenedfiberopticphy‐layertechnologyisprogressingtothepointwhereitisaviablealternativetocopperinmanyspacecraftsystems.Radiationtoleranceof100kradhasbeenachievedwithdataratesof>3Gb/Soverhundredsofmetersinextremelysmallpackageswitheasyassembly,andgoodtoleranceoftemperature,vibration,andshock.Inadditiontoreducingpowerandprovidingelectromagneticinterference‐freeoperationandelectrical isolation, thisphy‐layermediumcanprovidetransparentandseamlesschip‐to‐chip, board‐to‐board, and box‐to‐box interconnect.NASA investment is required tomeetNASA’s unique requirements (radiation, shock, vibration, temperature, long life, highreliability).Therecommendedtargetdateis2014tosupportfuturehighdataratescienceinstrumentsandexplorationmissions.

Wirelessinterconnectphy‐layerisnotbeingaddressed.Wirelessinterconnectoffersahostof advantages inNASAmissions, eliminating themass, power, andunreliabilityof cablesand connectors, providing ease of integration and test, and allowing simplerreconfiguration,sparing,faulttolerance,andretrofittingofsystems.NASAsupportwillberequired to develop a wireless standard compatible with the advanced protocol(s)currentlyunderdevelopmentandinteroperablewithwireandfiberopticbasedsystems.

RHMemoryTechnologyF20:HighdensityRHmemorycomponentsinStaticRAM(SRAM)andDynamicRAMtechnologies

F21:20‐nmSilicon‐Oxide‐Nitride‐OxideSilicon(SONOS)andPhase‐ChangeRAM(PCRAM)flashmemory

F22:130‐nmFerroelectricRAM(FeRAM)flashmemory

F23:65‐nmMagnetoresistiveRAM(MRAM)flashmemory

Page 19: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

15

F24:Resistivememory

Currently,radiationhardenedCMOSSRAM,SONOSandPCRAMareavailableasvolatileandnon‐volatilememoryoptionsupto16‐Mbperdie.One‐time‐programmableProgrammableRead‐Only Memories and Metal‐Nitride‐Oxide‐Silicon electrically Erasable PROMs havebeenusedinspaceapplicationssincethe1990s.Today,RHhigh‐densitymemoriesutilizingmoreadvancedmemory technologiesareneeded for spacesystems toprovide improvedpower utilization at orders of magnitude increase in density (which translates to mass,volume,andcomplexityreduction).WhileRHBDcanbeappliedtoachieveRHnon‐volatilememory cells at the cost of additional power and density, other non‐volatile memorytechnologies,suchasPCRAM,MRAM,FeRAMandResistiveRAM,provideimproveddensityandpowerutilizationwithimprovedradiationtolerance.Thesememorycelltechnologieswill, however, still require RH CMOS control logic, which can be provided by RHBDtechnologies with minimal impact to overall component power or density. Thesealternative memory cell technologies are at relatively low TRL levels and will requireinvestment to mature them into reliable, manufacturable technologies and to then usethese memory technologies to develop memory components and embeddable macrossuitableforuseinNASAmissions.

RHReconfigurable Field‐ProgrammableGateArrays (FPGAs) forComputingTechnologyF25:RHFPGAsforreconfigurablecomputing

F26:RHreconfigurablecompute‐elementchipsforreconfigurablecomputing

Radiation‐hardenedandextremetemperature‐capableFGPAsforuseinavionicssystems,both as single function implementation vehicles and as core elements in reconfigurablecomputingarerequiredtomeettheprocessingthroughput,flexibility,faulttolerance,andpower‐to‐performancelevelsdesiredforfutureNASAspacecraft.ThesecomponentscanbedevelopedbyutilizingRHBDlibrariesandprocessesfromseveralsources.

Radiation‐hardeneddevices,fault‐tolerantarchitectures,reusablecores,developmenttoolsand practices, and validation and integration standards are needed for reconfigurablecomputingforspacesystemapplications.Thesedeficienciestranslatetotechnologygapsinthe reconfigurable computing development path from the FPGA‐based reconfigurablemachines of today to more general morphware‐based machines of tomorrow. Inovercoming these gaps, technology developments in fault tolerance, system‐on‐chiparchitectures, design‐time tools and reconfigurable hardware run‐time systems, and re‐usabilityviaintegrationstandardsandsystemmodularityarerequired.

In addition to standardFPGAarchitectures, higher level reconfigurable architectures arehighly desirable as they provide the ability to work at higher levels of integration atreducedpowerforagivenlevelofperformance. Insteadofworkingatthevirtualgateorlook‐up table level, these devices work at the compute‐element level, allowing higher

Page 20: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

16

powerefficiencyandsimplifieddesign.AswithFPGAs,theyneedtobeimplementedin90‐nmandbelowRHBDtechnologies.

Nano‐electronicTechnologyF27:Carbonnanowire‐basedtransistorsandelectronics

F28:Carbonnanotube‐basedtransistorsandelectronics

F29:Graphene‐basedTerahertz(THz)transistortechnology

F30:Graphene‐basedhigh‐speedcircuitsandelectronics

Nano‐technology including carbon nanowire, carbon nanotube, and graphene‐basedtechnologies are promising candidates to sustain the relentless progress in scaling forCMOSdevices.Withnanowireandnanotubefield‐effecttransistorsanddevicesaswellasgraphene‐based 300GHz transistors having been demonstrated, the nanotechnologyroadmap projects THz transistor technology by 2020, and graphene‐based high‐speedcircuits andelectronicsby2028. Nanowire,nanotubeand/orgraphene‐basedASICSareprojected to replace silicon‐based electronics in future electronic systems and can beappliedinmostapplications,suchasdigital,photonics,analog,andmixed‐signal.

Fundamentally,thesenano‐technologiesofferhigherlevelsofintegrationandlowerpowerthroughsmallertransistorsandhigherelectronmobilitythanisachievableinsilicon‐basedtechnologies.Theyalsoofferinherentradiationhardnessandrobustnesstoenvironmentalstresses.Grapheneisamono‐layerofcarbonina“chickenwire”configuration.Itoffershighelectron mobility and radiation hardness at extremely small feature size and thus lowpower. Transistor equivalent structures have been built using stacked (mono) layers ofgraphene and separating dielectrics, but deposition and patterningmethods suitable forlarge‐scalemanufacturinghavenotyetbeendeveloped.Carbonenanotubeandnanowiretechnologiespromiseextremelyhighconductivitywiringbothon‐chipandoff,butsuitablemanufacturing technologies have not yet been developed. Investment by NASA will berequired to tailor these technologies and devices toNASA’s unique requirements, but asthesetechnologiesarenotyetatTRL3,itisnotclearwhatinvestmentswillberequiredtomeetNASAneeds.

 

Page 21: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

17

CommandandDataHandling(C&DH)Technology

C&DH

time in years

2020 20302011

CDH1

CDH2

CDH3

CDH4

CDH5

CDH6

CDH7

CDH8

CDH10CDH9

CDH12

CDH11

CDH13

Figure4.CommandandDataHandlingTechnologytimeline.

C&DHreferstotheboard‐andsubsystem‐level integratedcomponentsusingdevicesandfoundationaltechnologies. NASA’s futureendeavorswilloftenrequire integrateddevicesandsystemswhichareRHBDandcapableofperformingwiththelowestmassandpowerprofiles that can be achieved. However, it is also expected that some commercial non‐radiation hardened, higher performance capabilities should also be leveraged to meetperformance, fault tolerance and recovery, power management, or other uniquerequirements.ItisexpectedthatthesesystemswillhavesomeinherentradiationtolerancebutnottothelevelofRHBDdevicesandsystems.

ProcessingCDH1:SingleBoardComputer(SBC)–90‐nmRHBDmulticoreprocessor

CDH2:SBC–45‐nmRHBDmulticoreprocessor

High performance multicore computing in the commercial sector provides orders ofmagnitude increase in processing throughput as compared to independent chips withseveralprocessorsonaboard.NASAshouldleveragetheworkthattheNROhasinvestedthroughBoeingtodevelopaRHBDmulticoreprocessorcalledMaestro49,basedupontheTilera Tile64 processor, itself an outgrowth of the Raw processor developed byMIT forDARPAs Polymorphic Computing Program. In addition to the processor itself, NROdeveloped a complete software suite aswell as software development tools and system.FinaltestanddebugoftheMaestrosystemaswellasradiationtestingiscurrentlyunderway.However,specificshortfallsoftheMaestrodesigninclude:insufficientfaulttolerance,non‐deterministic programmingmodel, highpower consumption and thermal load, poorpowerandenergymanagementandscalability,andseverelysuboptimalI/Oandmemoryinterfaces. NASAcan leverageall of thispreviousworkbydevelopinganext generationMaestro‐typemachinebyadding fault tolerance,powermanagement,andotherrequisitefeatures.

CDH3:SBC–45‐nmnon‐RHBDmulticoreprocessor

CDH4:SBC–32‐nmnon‐RHBDmulticoreprocessor

Non‐RHDB CMOS and SOI technology advances (90‐nm down to 32‐nm) should beleveragedtothegreatestextentpossibletoprovidelow‐cost,high‐performanceoptionsfor

Page 22: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

18

non‐critical, specialized applications. Both general‐purpose processing as well asspecializedcomputingarchitecturetrendsshouldbeleveraged.

CDH5:Lowpower,extremeenvironment45‐nmSystemOnChip(SOC)

Withtheadventof90‐nm,45‐nm,andeventually32‐nmcommercialandRHBDASICS,aswell as radiation‐hardened, structured ASICS now becoming available, it is feasible todevelop extremely lowmass/volume/power, highly capable avionics as a SOC for smallspacecraft.Suchadevicewould,ideally,bebuiltfromasetofstandardizedmodular,plugand play IP modules that could be relatively easily ported and validated in a modular,piece‐wisefashiontonextgenerationsemiconductorprocesses.

CDH7:RHDBreconfigurablecomputerarchitecture

Reconfigurable (or hybrid) computing architectures take advantage of the flexibility ofsoftware incombinationwiththehighperformanceofhardwarebyprocessingwithveryflexiblehigh‐speedcomputingfabricslikeFPGAs.Thisenablestheloadingofanewcircuiton the reconfigurable fabric of the FPGA during runtime. It is expected that NASA’smissions will require ever‐increasing autonomy to make real‐time and non‐real‐timedecisions.Inaddition,theflexibilityaffordedbyreconfigurablesystemswillresultinlowermass‐to‐orbittoperformawiderrangeoffunctionsforanyparticularmission.

CDH10:Three‐Dimensional(3‐D),highly‐integratedcomputersystem

Three‐dimensional integration uses multiple vertical layers of transistors to improveperformanceinsteadofthesinglelayeroftransistorsthatmostmodernintegratedcircuitsusetoday.3‐Dintegratedcircuitscanbebuiltusingwafer‐on‐wafer,die‐on‐wafer,ordie‐on‐diemethodologies to potentially offer vast improvements in cost, bandwidth, power,and volume using TSV technology. TSV allows semiconductor die and wafers tointerconnect toeachotherathigher levelsofdensity. A3‐D,highly‐integratedcomputersystem with processing, interface, and memory resources based upon TSV technologymightbepossibleinthe2025–2030timeframe.

CDH11:Ultra‐lowpowerradiation‐hardened,graphene‐basedcomputer

Grapheneisbasicallya layerofcarbonthat isonlyoneatomthickwithextremelystrongphysicalpropertiesandhighlyconductiveofelectricity.Electronscanflyacrossgrapheneatblazingspeeds.Thefuturepotentialofthismaterial is immenseandit isexpectedthatgraphene will eventually change the entire landscape of computing infrastructure as areplacement for silicon. A radiation‐hardened, low‐power computer based upon thistechnologywouldbeenablingforfutureNASAmissions.

CDH13:Digitalsignalprocessing

In addition to multicore Multiple Instruction stream Multiple Data stream (MIMD)processors, NASA can leverage other technologies being developed for the signalprocessingcommunity.TheseincludeSIMDandVeryLongInstructionWordarchitectures

Page 23: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

19

with high memory bandwidth and multiple processing units for image processing andotherhighlyparallelizableapplications.

NetworkDevicesandInterconnectHardwareCDH8:90‐nmand45‐nmRHBDcard‐levelnetworkinterfacecontrollersandnetworkswitches

CDH9:Highperformance(10‐Gb/s+),lowpower,scalableinterconnect

CDH11:Gigabit‐ratenetworkrouter

Networkinterfacecontroller,switch,androutertechnologymaturationisneeded.Networkswitch technologies are needed to support fault tolerant networking in building highlyreliable systems and tomeet data transfer demands for futuremissions. Coupling time‐triggeredswitchtechnologiesandothercommercialnetworktechnologieswithradiation‐hardened/radiation‐tolerant processes will produce next generation high‐speed low‐powernetworkingarchitectures,includingcomponentssuchasgigabitnetworkrouters.

RHBDMemoryCards/SubsystemsCDH6:Volatilemassmemorycards/subsytems

CHD12:Non‐volatilemassmemorycards/subsystems

Commercialmemorycardshavepoorradiationcharacteristics,whiletraditionalradiationhardenedmemorydevicesare lowdensityandrelativelyslow.Radiation‐hardened,high‐density,high‐speedmemorydevices(volatileandnon‐volatile)areneededincombinationwith advanced processors and instruments to survive the expected environments thatNASAwillencounterandtoprovidetherequiredperformance.Radiationhardened,multi‐gigabit DDR2 and DDR3 SDRAMs are feasible and necessary to build these systems. Inaddition to cards and modules, file‐based recorders are needed for data storage andretrievalindata‐centricarchitecturesrequiredforautonomoussystems.

Page 24: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

20

SpaceflightInstrumentation

Instrumentation

time in years

2020 20302011

I7 I3I12 I13

I2I8I4

I5 I14I10

I11I6

I9

I1

Figure5.SpaceflightInstrumentationTechnologytimeline.

Spaceflight instrumentation refers to the sensors and systems used to measureenvironmentsorbehaviorsofspaceflightsystems,subsystems,orcomponents.Asensorisgenerally a single device used for making measurements, or a highly miniature set ofcomponentsabletomake‘smart’measurements.A‘smart’measurementresultsfromthebasic sensor reading being manipulated (e.g., adjusting the reading based upon acalibrationcurveortakingmultiplemeasurementsandsynthesizingthemintoasingledatapoint).

An instrumentation system is composed of multiple distributed elements, modules, orcomponentsthatfunctiontogethertoprocesssensormeasurements.

SensorsI1:Miniaturizedspace‐qualifiedpressuresensorsforwidetemperaturerangemeasurements

SOI MicroElectroMechanical Systems(MEMS) pressure sensors are highly radiationtolerant and can measure real‐time pressure at high temperatures and in harshenvironments. Transducers can be packaged for a wide range of temperature (‐250F to+350F).

I2:DiamondMEMSpressuresensor 

Current approaches tohydrazinemeasurements require isolationof thepressure sensorfromthehydrazineenvironment,reducingaccuracyofthemeasurementandproducingapotential failure point. These failure points are realized regularly on longer durationmissionsandoftenrequireadditionalsensorsbeflownasaback‐up.Theproposedsensoreliminates these systems providing simpler measurement approaches, improvedmeasurementaccuracy leadingtoreducedmarginrequirements,andeliminatestheneedforredundantsensorsonlongerdurationmissions.

I3:Opticalfluidsensingforhighvibrationandshockenvironments

Designsusingopticalsensorsbasedupon laserexcitationand interferometric techniquestodeterminefluiddepthinflow,orfluidamountwhendominatedbysurfacetensionandviscosity forces, rather thangravity, shouldbedeveloped.Applications includecryogenicstoragetanksandtheflowofreactivecoolingfluids.

Page 25: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

21

I4:Multi‐channelcryogenicpressuresensorforhighvibrationandshockenvironments

Designsusingminiaturepiezo‐resistivesiliconpressuresensorstomeasurecryogenicfluidpressure accurately to within 0.25‐percent full scale should be developed. Applicationsinclude rocket engines, cryogenic wind‐tunnels, industrial cooling, and cryogenic gasproduction.

I5:Moleculardetection/tracegasdetectionsensors

Development of intelligent, autonomous, distributed sensors (wired and wireless) forhighlysensitivegasdetectionisdesired.Thesensorsarebasedonnanostructuresthatcanpotentiallyrespondtoasinglemolecule.

I6:Developmentofcryogenicvideocameras

Developmentsinsensingofcryopropellantsinmicrogravityandunderimpulseareneededfor in‐space propulsion systems for characterization of liquid level, slosh, and flow.Currently,videoimagingisdonethroughconventionalcameraslookingthroughwindowswhichcanpresent fractureproblems.Alternativeapproachesto immersethe imager intothe fluids present problems of both thermal control and assurance that the imagerhardwaredoesnotcontaminatethefluids.

Sensor/InstrumentationSystemsI7:RadioFrequency(RF)Identification(RFID)/SurfaceAcousticWave(SAW)wirelessinstrumentationsystem

TechnologybasedonSAWdevelopmentat thedevice level andwith the interrogatorRFsystem should be developed. A SAW‐based instrumentation system helps to reduceinstrumentationdesigncomplexityandavionicsmasswhilereducingpowerrequirementsthroughpassivesensing.

I8:SpacecraftIntegratedSystemHealthManagement(ISHM)/IntegratedVehicleHealthManagement(IVHM)

Developmentof reliable,believable (i.e., no false‐positives) sensingdevices toenable theISHM/IVHMtypeof implementations isneeded. ISHMsystems include: sensors, anomalydetection, diagnosis, prognostics, user interfaces to provide integrated awareness ofsystemcondition,andnewsystemsengineeringprocessesenabledbyintelligentelementsthatarepartoftheISHMknowledgearchitecture.

I9:Distributed/reconfigurablesensormodulesinspacecraft

Developments in reconfigurable distributed avionics architecture can be based upon asmall number of multi‐purpose modules that can be individually changed to drive andsenseavarietyofmechanicalandelectricalcomponents,characterizedgenerallyaseitheramulti‐purpose electronic drivemodule or amulti‐functional signal‐conditioningmodule.The generic drivemodule can be configured to drive and control a variety of spacecraft

Page 26: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

22

avionicscomponents:valves,motors,solenoids,pinpullers,thermostats,andheaters. Agenericsensormodulewillbeable tosenseandrecorddata fromavarietyofspacecraftavionicssensors:thermocouples,resistivetemperaturedevices,potentiometers,encoders,tachometers,accelerometers,gyroscopes,andlevelandpressuresensors.

I10:Smallsatattitudedetermination/controlinstruments

Development of inexpensive attitude determination/control instruments for smallsatellites(e.g.,nanosatorcubesat)isdesired.Theseinstrumentsmustbedesignedtouselowpowerandsmallvolumeandprovidehighprecisiontoincreasepointingaccuracy.

I11:Autonomouslandinginstrumentation

Developmentofprecision landingandhazardavoidance instrumentationforautonomouslandings is needed including instruments and associated processing systems for high‐precision vehicle velocity vector determination, and altitude and attitude determination.ExamplesincludeDopplerlidarvelocimeters,flashlidar,andradarmappingsystems.

I12:Dockingandcloseproximityoperationsinstrumentation

Instrumentsandassociatedprocessingsystems thatenablesafereal‐timenavigationandmaneuveringincloseproximitytosmallbodies,e.g.,cometsandasteroidsaswellassmallmoons and other primitive, low mass (low gravity) objects are desired. Used forautonomous robotic, teleoperated robotic, and crewed missions, these instruments areenabling for future solar system exploration and science missions. Examples includeDopplerlidarvelocimeters,flashlidar,andradarmappingsystems.

I13:Portablephoto‐acousticsystemforplanetaryexploration

Photo‐acoustic systems are designed to detect specific molecular species with highsensitivity (up to parts per trillion), using an array of microphones and array ofinfrared/ultraviolet light‐emitting diodes to determine exact location and quantity ofgaseousspeciesofinterest.

I14:Autonomouslabonachip

Development of miniature autonomous instrument sensors using ‘smart’ materials (i.e.,materialswith properties that can change in a controlled fashion by external stimuli) isdesired. These instrument sensors have built‐in capabilities to support sampling, sensorcleaning,andwasterejectionschemes.

Page 27: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

23

CommunicationsandTracking

C&T

time in years

2020 20302011

CT2CT1

CT4

CT3

CT5

CT6 CT7CT8

CT9

CT10

CT11CT12

CT13CT14

CT19 CT20 CT21 CT22CT15

CT16

CT17

CT18

Figure6.CommunicationsandTrackingTechnologytimeline.

NetworkingCommunications(InternetworkingCommunications)CT1:DelayTolerantNetworking(DTN)technologymaturationandvalidationusingmulti‐center,InternationalPartnerandpotentiallyInternationalSpaceStation(ISS).

CT2:CommunicationsSecurity(COMSEC)/missionassurancetechnologiesfornetworkedspacecommunications

CT3:Meshnetworkingprotocols–ad‐hocprotocols(includesEVAapplicationsforin‐spaceandsurfacecommunications)

CT4:Surfacewirelessnetworks

CT5:Navigation/locationawarenetworking

Current space communication scenarios, for the most part, have involved fundamentalpoint‐to‐point links between a spacecraft and Earth. Today’s specialized link‐layerprotocolsandcarefullyplannedandscheduledlinkoperationshavethusfarbeenadequateto meet the needs of missions. However, with a more networked communicationsarchitecture that is envisioned for deep space exploration and planetary surfaceoperations, existing protocols and methodologies will need to evolve. Internetworkingprotocols that handle long link propagation delays and outages, and support surfacewireless and proximity, quality of service, network management and informationassurance, ad‐hoc networking, etc., are critical in providing reliable, end‐to‐endcommunications. Theabove foundational technologiesprovide thenecessary frameworkfornetworkedcommunicationsfordeepspaceexploration.

OpticalCommunicationsforDeepSpaceCT6:OCTopticalcommunicationsdemonstration

CT7:DeepSpace(DS)opticalterminal

CT8:DSopticalgroundstations

Page 28: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

24

NASA is currently migrating to Ka‐band for high‐rate communications. However, it isanticipatedthatthedemandforhigherdatarateswillexceedthecapacityavailableintheKa‐band spectrum given the mass and power constraints. At this stage, opticalcommunicationsprovideaccess tounregulated spectrumandwill support thedata ratesneededbythenextgeneration instruments,sensors,etc. Mainchallenges fordeepspaceare the atmospheric issues and accurate acquisition and tracking of the target. TheseadvanceswillbemadewithOCTTDMandotherdevelopmentaltestobjectives.

Miniature reconfigurable communications for Beyond Earth Orbit EVAapplicationsCT1:DTN

CT3:Meshnetworkingprotocols–ad‐hocprotocols(includesEVAapplicationsforin‐spaceandsurfacecommunications)

CT5:Surfacewirelessnetworks

CT9:MethodsforproximitytrackingorlocalizationinaGlobalPositioningSystem(GPS)‐deprivedenvironment

Methods for proximity tracking or localization are required for both robotic and humansurface‐ and space‐based operations. In some cases, proximity tracking is required tosupplementglobal trackingbyprovidinggreateraccuracyrelative to local landmarks. Inother cases, proximity tracking is required during outages or gaps in a global trackingservice. Examples include a robotic element or rover finding itsway back to a base orintra‐habitatnavigationbyafree‐flyerwithinISSoradeepspacehabitat.

Space‐BasedRadiosUsingUltraWideBandorOtherFormatsCT1:DTN

CT2:COMSEC

CT3:Meshnetworkingprotocols–ad‐hocprotocols(includesEVAapplicationsforin‐spaceandsurfacecommunications)

CT4:Surfacewirelessnetworks

CT9:MethodsforproximitytrackingorlocalizationinaGPS‐deprivedenvironment

A next generation, miniature, reconfigurable radio is called for to support the mass,volume, and power constraints of deep space exploration suits (2018‐2020). It shouldincorporateDTN,meshnetworking,surfacewirelessnetworks,navigation/locationawarenetworking, wearable antenna, etc., to provide a system capable of supporting in‐spaceEVAaswellassurfaceEVA/roboticmissions.

Page 29: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

25

LowPower,HighRateRFtoSupportHigh‐rateCommunicationsfromNENandDeepSpaceNetwork(DSN)(BridgeGaptoOptical)CT10:Lowpower/masstransceiversforhighercarrierfrequenciessuchasX‐band,Ka‐band

Tobridgethegaptoopticalcommunicationsfromdeepspaceaswellastoprovidehigh‐ratecommunicationsbetweenexplorationvehicles(space–to‐spaceorspace‐to‐surface),alow‐power,high‐rateKa‐bandsystemwithhigherordermodulation,coding,etc.reducingthemassandpowerrequiredisneeded. Massandpowerreductionscomewithcoding,miniaturization,advancedsemiconductortechnology,etc.

LowVoltage/LowPowerTransceiverModuleEnergyHarvestingTechnologyCT11:Developmentofspace‐qualifiedlowpowerV‐bandtransceiversforvehicle/satelliteinternalenvironments

CT12:RFenergyharvestingtechnologiestodriveV‐bandtransceivers

CT14:Chipantennasforintegrationwithtransmitterortransceiverelectronics

V‐bandcouldbebeneficialforspace‐to‐space(vacuumenvironment)atveryhighdataratelinks. Either vehicle to vehicle, or long haul. Hardware technologywould include spacequalifiedantennas,transceivers,andpoweramplifiers.V‐bandcouldalsobeusedinternaltothespacevehicleforsensordatatransfer/highdataratedevicessuchasHighDefinition(HD)video,displays,laptops,andbiomedicalhardware.

Sensorswithintegratedtransmitterssuchasathermocouplewithtransmitterallrunoffofparasiticenergysources.V‐bandcouldbeusedinternaltothespacevehicleforsensordatatransfer/high data rate devices such as HD video, displays, laptops and biomedicalhardware.

SpectrumanalysistoolforLowEarthOrbit(LEO),DSN,etc.CT15:UnifiedtrajectoryandlinkanalysistoolforLEO

CT16:Augmentationfordeepspace

CT17:Augmentationforplanetarysurfaces

Aspectrumanalysistoolisneededthatwillassistdesignersinpredictingcommunicationsperformance for LEO and deep space applications that is aimed at providing analysissupportaswellasassistanceinpreparingdataforspectrumapplications.Thistoolcouldbe seen as a product that calls a commercial product such as Satellite Tool Kit forunderlying computations for orbits and access. It would also provide supplementarycomputations needed for the analysis, such as DSN interference estimates, ITU surfacepowerconstraintestimates,etc.

Page 30: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

26

C&TRevolutionaryConceptsCT19:Quantumkeying

CT20:SuperconductingQuantumInterferenceFilter(SQIF)

CT21:X‐raycommunications

CT22:Quantumcommunications

FromOCT–TA05: Advancementof X‐raynavigationusingX‐ray emittingpulsars couldprovidetheabilitytoautonomouslydeterminepositionanywhereinthesolarsystemjustas GPS does for Earth inhabitants. Successful development of SQIF technology wouldchangetheparadigmforRFcommunicationtodetectingthemagneticfieldinsteadoftheelectricfieldandprovidemagnitudesofimprovementinourcommunicationsystems.

Page 31: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

27

HumanInterfaceTechnology

Human Interface

time in years2020 2030

H1H2

H3H4

H5

H6

H7

H8

H9

H10H11

H12

H13

2011

H14

H15

H16

H17 H18 H19

Figure7.HumanInterfaceTechnologytimeline.

Computer‐HumanInterfaceisaninterdisciplinaryfieldwhichisfocusedontheinteractionbetween human users and computer systems including the user interface and theunderlying processes which produce the interactions. From the human perspective,interactionwiththeworldaroundusisachievedthroughourfivesenses:hearing(auditoryinterfaces), touch (tactile interfaces), sight (visual interfaces), smell (olfactory interfaces)andtaste(gustationinterfaces).Olfactoryandgustationinterfaceshavenotbeenincludedinthisroadmapbecausetheyareextremelyimmaturetechnologiesanditisunclearwhichdisciplineareawillimplementthesetypesofinterfaces(electrical,chemical,etc).

AuditoryInterfaceTechnologiesH1:Miniaturizedspace‐qualifiedmicrophones

H2:Miniaturizedspace‐qualifiedspeakers

Several technologies are under development which will miniaturize microphones andspeakersandallowapplicationsinnewcontexts.Forexample,developmentofdistributedplanararraymicrophones,coupledwithMEMStechnology,willfacilitateubiquitousvoicecommunicationswithoutuseofcrew‐wornorhand‐heldmicrophones.Also,customizationof commercialbone conduction technology forusewith traditionaldynamic andelectretmicrophoneswillimprovevoicecommunicationsandspeechrecognition.Asforspeakers,implementationofedgevibratedanddistributedmodetechnologywillproducelowmass,lowpower,andspaceefficientloudspeakers.

H3:Speech/voicerecognitionalgorithms

H4:Speech‐to‐text/text‐to‐speechalgorithms

Development of accurate speech recognition technology capable of adapting tophysiologicaleffectsofspaceflightonthehumanvocaltractisrequired.Thisareaincludesdevelopment of a redundant speech recognizer for reliable voice control of systems.Additionally, optimization of speech‐to‐text/text‐to‐speech technology is required tosupport low data rate/high latency communication links. This technology will improve

Page 32: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

28

space‐to‐groundcommunicationsonhighlatencylinksbyprovidingtextualconversionofdialogandcanbeusedforreal‐timedictationinflight.Thiswillincludecomputerspeech.

TactileInterfaceTechnologiesH5:PhysiologicalComputing(PC)

PC is a term used to describe any computing systemwhich uses real‐time physiologicaldata as an input stream to control the user interface. Themost basic PC is one whichrecordsasignalsuchasheartrateanddisplaysittotheviewerviaascreen.Othersystems,such as brain‐computer interfaces or unvoiced speech recognition, take a stream ofphysiologicaldata(electricalactivityfromthebrainormuscles)andconvert it intoinputcontrol at the interface, e.g., to move a cursor or select a command. Other types of PCsimply monitor physiology in order to assess psychological states and trigger real‐timeadaptation.Forexample,ifthesystemdetectshighbloodpressure,itmayassumetheuserisexperiencinghighfrustrationandofferhelp.TheapplicationsforPCrangefromadaptiveautomation in an aircraft cockpit to computer gameswhere electrical activity is used toinitiateparticularcommands.

H6:Computerhaptics

Hapticsisahighlyinterdisciplinarytechnologyareawhichaimstodefinehowhumansandmachines touch, explore, andmanipulate objects in real, virtual, or teleoperatedworlds.Hapticshavebeenusedtoallowteleoperatorstofeelwhatarobottouchesandtoincreaserealismintrainingapplications. Flightsimulatorsequippedwithforcefeedbackjoysticksprovide a convincing example for the importance of simulation technology and thesignificant role haptics play in training. Just as flight simulators are used to train pilotsnowadays,itis,forexample,anticipatedsurgicalsimulatorswillbeusedtotrainphysiciansin the near future.Moreover, several studies in the past have shown the significance ofhapticsinteleoperationtasksinrealandvirtualworlds.Forexample,artificialforcefieldsnotonlyenableustotrainthehumanoperatorinvirtualenvironments,butalsohelphimorherexecutetheteleoperatedtaskbetterandfasterintherealworld.

Significantprogresshasbeenmadeinhaptics,buttherearestillmanyresearchquestionswaitingtobeanswered. Oneoftheconstantchallengesinintegratinghapticsintovirtualenvironments is the need for a variety of haptic devices with the requisite degrees offreedom, range, resolution, and frequency bandwidth, both in terms of forces anddisplacements. Another area of hardwaredesignwhich requires further investigation ismultifingeredhapticdevicesandtactiledisplays. Ithasbeendemonstrated,aswegatherinformation about the shape and size of an object through touch, our fingers and handmove in an optimal manner. Moreover, robotics studies show at least three fingers arenecessary for stable grasp.On the other hand, there are only a fewmultifingered hapticdeviceswhicharecommerciallyavailabletoday.

Page 33: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

29

VisualInterfaceTechnologiesH7:Two‐Dimensional(2D)displays

Traditional 2D displays are constantly evolving. The next generation of these visualdisplaysappearstobeOrganicLight‐EmittingDiode(OLED)technologywhichsignificantlyreducessize,weight,andpowerrequirementsforvisualdisplays. Also,dependingontheapplication, e‐Ink displays could have similar benefits. However, other technologies areemergingwhichcouldhaveimpactbeyondOLED,suchasquantumdot,bistable,andlaser‐phosphordisplays.

H8:Autostereoscopicdisplays

Autostereoscopic displays are able to provide binocular depth perception without thehindrance of specialized headgear or filter/shutter glasses. At its simplest, this is 3‐Dtelevision(3DTV).However,thetechnologyisalsoprogressingtowarddigitalholographicprintsandvideo.Someofthevarioustechnologieswhicharecompetingtobestimplementan autostereoscopic display are parallax barrier, lenticular, volumetric, electro‐holographic,andlightfielddisplays.

H9:Transparentanddeformabledisplays

Additional layers of capability which are being added to display technologies aretransparency and deformation. These capabilities lead toward development of moreuseablenear‐to‐eyedisplays,aswellasnewwaystounobtrusivelyintegratedisplaysintothe environment. These capabilities are being explored through traditional 2D‐typedisplays,aswellasthroughprojectionandprintabledisplays.

H10:Near‐to‐EyeDisplay(NED)

NEDs have been classified into one of three categories based on the mode of imagepresentation.MonocularNEDsusuallyhaveonlyonedisplay; inbinocular(stereo)NEDs,twodisparateimagesarepresentedontwodisplays;inbi‐ocularmodethesameimageispresentedontwodisplays.DifferenttypesofNEDarebeneficialfordifferentapplications.TwoofthemostimpactfulapplicationsofNEDsarevirtualreality(presentinganentirelyvirtualworldtotheuser)andaugmentedreality(presentingdigital informationontotherealworld).

H11:Panoramicmotionimageryacquisition

Panoramic image acquisition is basedonmosaic approachesdeveloped in the context ofstillimagery.Mosaicsarecreatedfrommultipleoverlappingsub‐imagespiecedtogethertoformahigh‐resolution,panoramicorwidefield‐of‐viewimage.Whilestillimagerymosaicsand panoramas are common, high‐resolution real‐time panoramic video is an emergingarea.Forpanoramic,real‐timeHDvideo,anarrayofvideocamerasviewthescene,whileadigital recordingandplaybacksystemmaintainsprecise framesynchronization,allowingtheframestobestitchedtogether.Thechallengesencounteredinthisprocessspanissues

Page 34: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

30

incameracalibration,imageprocessing,compression,networking,computergraphics,andhigh‐performancecomputing.

H12:Radiation‐tolerantHDimagers

The image sensors used for spaceflight applications have historically been commerciallyavailablesensorswhicharevettedthroughradiationtestingonthegroundandflownforalimitedlifetimeuntiltheydegradetoapredeterminedlimit.Then,theyarediscardedandreplaced. For long‐duration missions beyond LEO, radiation‐tolerant high‐definitionimagerswillberequired.

H13:EfficientHDmotionimagerycompression

Motion imagery compression reduces theamountofdataused to representdigital videoimages, and combines spatial image compression and temporal motion compensation.Most video compression is lossy— it operateson thepremisemuchof thedatapresentbeforecompressionisnotnecessaryforachievinggoodperceptualquality.Someformsofdatacompressionarelossless.Thismeansthedataisdecompressed,resultinginabit‐for‐bit perfectmatchwith the original.While lossless compression of video is possible, it israrely used, since lossy compression results in far higher compression ratios at anacceptable level of quality. However, in spaceflight applications where very few or nohumans are present, video is the primary method we have to experience the missionenvironment. Future NASA missions will require higher compression ratios withoutsacrificingimagequality.

H14:Computervision

Computervisionisthefieldconcernedwiththeautomatedprocessingofimagesfromtherealworld toextractand interpret informationona real‐timebasis. It is thescienceandtechnology of machines which see. Here, “see” means the machine is able to extractinformationfromanimage,tosolvesometask,orperhapsunderstandthesceneineitherabroad or limited sense. The field includes scene reconstruction, event detection, videotracking (3D human body tracking, including eye/gaze tracking, object recognition,learning,indexing,motionestimationandimagerestoration).

H15:Computer‐mediatedreality

Computer‐mediatedrealityreferstotheabilitytoaddorsubtractinformationorotherwisemanipulateone'sperceptionof reality through theuseof awearable computerorhand‐held device. Typically, it is the user's visual perception of the environment which ismediated.Thisisdonethroughtheuseofsomekindofelectronicdevicewhichcanactasavisual filterbetweentherealworldandwhat theuserperceives. The fieldofcomputer‐mediatedrealityencompassesaugmentedreality(addingorsubtractingdigitalinformationtotherealworld)andvirtualreality(immersionintoacompletelydigitalworld).

Page 35: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

31

Multi‐SenseInterfaceTechnologiesH16:ElectronicTextiles(e‐Textiles)

E‐textiles are fabrics which have electronics and interconnections woven into themoffering physical flexibility and size which cannot be achieved with existing electronicmanufacturing techniques. Components and interconnections are intrinsic to the fabricand thus are less visible and not susceptible to becoming tangled or snagged by thesurroundings. Ane‐textile canbeworn ineverydaysituationswherecurrentlyavailablewearable computers would hinder the user. E‐textiles can also more easily adapt tochangesinthecomputationalandsensingrequirementsofanapplication,ausefulfeatureforpowermanagementandcontextawareness.

H17:Virtualwindow

Avirtualwindowutilizesdigital technology to simulate anopticalwindow including thechanges in perspective due to the movements of the observer. The ultimateimplementation would include autostereoscopic video/displays, panoramic motionimagery acquisition, ambiance audio, pan/tilt/zoom for situational awareness, andradiationtolerantvideoandgraphics.

H18:Telepresence

Telepresencereferstoasetoftechnologieswhichallowapersontofeelasifheorshewerepresent,togivetheappearanceofbeingpresent,ortohaveaneffectviateleroboticsataplace other than his or her true location. Telepresence requires the user’s senses beprovidedwith stimuli to give the feeling of being in the other location. Additionally, theusermaybegiventheabilitytoaffecttheremotelocation.Inthiscase,theuser'sposition,movements,actions,voice,etc.,maybesensed,transmitted,andduplicatedintheremotelocation to bring about this effect. Therefore, information may be traveling in bothdirectionsbetweentheuserandtheremotelocation.

H19:Immersiveenvironment

An immersive digital environment is an artificial, interactive, computer‐created scene orworldwithinwhichausercanimmerseone’sself.Immersivedigitalenvironmentscouldbesynonymouswithvirtualrealitywithout the implicationactualreality isbeingsimulated.An immersive digital environment could be a model of reality but it could also be acomplete fantasy user interface or abstraction as long as the user of the environment isimmersedwithinit.Thedefinitionofimmersioniswideandvariablebuthereitisassumedtosimplymeantheuserfeelslikeheorsheispartofthesimulateduniverse.Thesuccesswithwhichanimmersivedigitalenvironmentcanactuallyimmersetheuserisdependentonmanyfactorssuchasbelievable3Dcomputergraphics,surroundsound,interactiveuserinput, andother factors suchas simplicity, functionality, andpotential forenjoyment.Tocreate a sense of full immersion, the five senses (sight, sound, touch, smell, taste)must

Page 36: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

32

perceive the digital environment to be physically real. Immersive technology canperceptuallyfoolthesensesthrough:

Panoramic3Dorholographicdisplays(visual) Surroundsoundacoustics(auditory) Hapticsandforcefeedback(tactile) Smellreplication(olfactory) Tastereplication(gustation)

Some potential applications for an immersive environment include crew recreation,training,andtroubleshooting.

   

Page 37: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

33

Acronyms2D Two‐Dimensional

3‐D Three‐Dimensional

ASC AvionicsSteeringCommittee

ASIC Application‐SpecificIntegratedCircuit

C Celsius

C&DH CommandandDataHandling

CMOS ComplementaryMetal‐OxideSemiconductor

COMSEC CommunicationsSecurity

DARPA DefenseAdvancedResearchProjectsAgency

DDR DoubleDataRate

DRM DesignReferenceMission

DS DeepSpace

DSN DeepSpaceNetwork

DTN Delay‐TolerantNetwork

DTRA DefenseThreatReductionAgency

EVA ExtravehicularActivity

FeRAM FerroelectricRandom‐AccessMemory

FPGA FieldProgrammableGateArray

GaN GalliumNitride

Gb/s GigabitsPerSecond

GPS GlobalPositioningSystem

HD HighDefinition

I/O Input/Output

ISHM IntegratedSystemHealthManagement

ISS InternationalSpaceStation

IVHM IntegratedVehicleHealthManagement

krad Kilorad

Page 38: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

34

LEO LowEarthOrbit

Mb/s MegabitPerSecond

MEM Microelectromechanical

MIT MassachusettsInstituteofTechnology

MPCV Multi‐PurposeCrewVehicle

MRAM MagnetoresistiveRandomAccessMemory

NEA NearEarthAsteroid

NED Near‐to‐EyeDisplay

nm Nanometer

NRO NationalReconnaissanceOffice

OCT OfficeoftheChiefTechnologist

OLED OrganicLight‐EmittingDiode

phy Physical

PC PhysiologicalComputing

PCRAM Phase‐ChangeRandom‐AccessMemory

RAM RandomAccessMemory

QML

RF RadioFrequency

RFID RadioFrequencyIdentificaiton

RH RadiationHardened

RHBD RadiationHardeningByDesign

SAW SurfaceAcousticWave

SBC SingleBoardComputer

SDRAM SynchronousDynamicRandomAccessMemory

SiGe Silicon‐Germanium

SiC SiliconCarbide

SIMD SingleInstructionMultipleData

SLS SpaceLaunchSystem

SOC SystemOnChip

SOI Silicon‐On‐Insulator

Page 39: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

35

SONOS Silicon‐Oxide‐Nitride‐OxideSilicon

SQIF SuperconductingQuantumInterferenceFilter

SRAM StaticRandomAccessMemory

THz Terahertz

TRL TechnologyReadinessLevel

TSV ThroughSiliconVia

µm Micrometer

Page 40: Avionics Steering Committee - NASA Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-2199 April 2013 NASA/TM–2013-217986 Flight Avionics …

REPORT DOCUMENTATION PAGEForm Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum 4. TITLE AND SUBTITLE

Flight Avionics Hardware Roadmap

5a. CONTRACT NUMBER

6. AUTHOR(S)

Hodson, Robert F.; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt; Wallace, Shawn

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research CenterHampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space AdministrationWashington, DC 20546-0001

8. PERFORMING ORGANIZATION REPORT NUMBER

L-20245

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENTUnclassified - UnlimitedSubject Category 33Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: [email protected])

14. ABSTRACT

As part of NASA’s Avionics Steering Committee’s stated goal “to advance the avionics discipline ahead of program and project needs,” the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions’ needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.

15. SUBJECT TERMS

Avionics; Hardware; Roadmap

18. NUMBER OF PAGES

40

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF ABSTRACT

UU

Prescribed by ANSI Std. Z39.18Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

NASA/TM-2013-217986

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

04 - 201301-