165
Automorphisms C. LEHR , M. MATIGNON Plan Introduction Monodromy and automo Automorphism groups Covers of the affine line Structure of G ,1 (f ) Bounds for |G ,1 (f )| Characterization of G , Actions of p-groups Nakajima condition More about G 2 Riemann surfaces Ray class fields Big actions Maximal curves Monodromy Marked stable model Potentially good reductio Genus 2 Références Automorphisms and monodromy C. LEHR 1 M. MATIGNON 2 1 MPI Bonn 2 Laboratoire A2X Bordeaux Workshop Chuo University April 2006

Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Automorphisms and monodromy

C. LEHR 1 M. MATIGNON2

1MPI Bonn 2Laboratoire A2X Bordeaux

Workshop Chuo University April 2006

Page 2: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

PlanIntroduction

Monodromy and automorphism groupsAutomorphism groups of curves in char.p > 0

p -cyclic covers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groups over a curve C with g(C) ≥ 2Big actions (I)Condition (N) and G2

Riemann surfacesRay class fieldsBig actions (II)Maximal curves

Monodromy polynomialMarked stable modelPotentially good reductionGenus 2

References

Page 3: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

PlanIntroduction

Monodromy and automorphism groupsAutomorphism groups of curves in char.p > 0

p -cyclic covers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groups over a curve C with g(C) ≥ 2Big actions (I)Condition (N) and G2

Riemann surfacesRay class fieldsBig actions (II)Maximal curves

Monodromy polynomialMarked stable modelPotentially good reductionGenus 2

References

Page 4: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

PlanIntroduction

Monodromy and automorphism groupsAutomorphism groups of curves in char.p > 0

p -cyclic covers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groups over a curve C with g(C) ≥ 2Big actions (I)Condition (N) and G2

Riemann surfacesRay class fieldsBig actions (II)Maximal curves

Monodromy polynomialMarked stable modelPotentially good reductionGenus 2

References

Page 5: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

PlanIntroduction

Monodromy and automorphism groupsAutomorphism groups of curves in char.p > 0

p -cyclic covers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groups over a curve C with g(C) ≥ 2Big actions (I)Condition (N) and G2

Riemann surfacesRay class fieldsBig actions (II)Maximal curves

Monodromy polynomialMarked stable modelPotentially good reductionGenus 2

References

Page 6: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

PlanIntroduction

Monodromy and automorphism groupsAutomorphism groups of curves in char.p > 0

p -cyclic covers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groups over a curve C with g(C) ≥ 2Big actions (I)Condition (N) and G2

Riemann surfacesRay class fieldsBig actions (II)Maximal curves

Monodromy polynomialMarked stable modelPotentially good reductionGenus 2

References

Page 7: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Monodromy and automorphism groups.

I R is a strictly henselian DVR of inequalcharacteristic (0, p).K := FrR ; for example K/Qur

p finite.π a uniformizing parameter.k := RK /πRK .C/K smooth projective curve, g(C) ≥ 1.

I C has potentially good reduction over K if there isL/K (finite) such that C ×K L has a smooth modelover RL. Then:

I There is a minimal extension L/K with thisproperty ; it is Galois and called the monodromyextension.

I Gal(L/K ) is the monodromy group.I Its p-Sylow subgroup is the wild monodromy

group .

Page 8: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Monodromy and automorphism groups.

I R is a strictly henselian DVR of inequalcharacteristic (0, p).K := FrR ; for example K/Qur

p finite.π a uniformizing parameter.k := RK /πRK .C/K smooth projective curve, g(C) ≥ 1.

I C has potentially good reduction over K if there isL/K (finite) such that C ×K L has a smooth modelover RL. Then:

I There is a minimal extension L/K with thisproperty ; it is Galois and called the monodromyextension.

I Gal(L/K ) is the monodromy group.I Its p-Sylow subgroup is the wild monodromy

group .

Page 9: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Monodromy and automorphism groups.

I R is a strictly henselian DVR of inequalcharacteristic (0, p).K := FrR ; for example K/Qur

p finite.π a uniformizing parameter.k := RK /πRK .C/K smooth projective curve, g(C) ≥ 1.

I C has potentially good reduction over K if there isL/K (finite) such that C ×K L has a smooth modelover RL. Then:

I There is a minimal extension L/K with thisproperty ; it is Galois and called the monodromyextension.

I Gal(L/K ) is the monodromy group.I Its p-Sylow subgroup is the wild monodromy

group .

Page 10: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Monodromy and automorphism groups.

I R is a strictly henselian DVR of inequalcharacteristic (0, p).K := FrR ; for example K/Qur

p finite.π a uniformizing parameter.k := RK /πRK .C/K smooth projective curve, g(C) ≥ 1.

I C has potentially good reduction over K if there isL/K (finite) such that C ×K L has a smooth modelover RL. Then:

I There is a minimal extension L/K with thisproperty ; it is Galois and called the monodromyextension.

I Gal(L/K ) is the monodromy group.I Its p-Sylow subgroup is the wild monodromy

group .

Page 11: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Monodromy and automorphism groups.

I R is a strictly henselian DVR of inequalcharacteristic (0, p).K := FrR ; for example K/Qur

p finite.π a uniformizing parameter.k := RK /πRK .C/K smooth projective curve, g(C) ≥ 1.

I C has potentially good reduction over K if there isL/K (finite) such that C ×K L has a smooth modelover RL. Then:

I There is a minimal extension L/K with thisproperty ; it is Galois and called the monodromyextension.

I Gal(L/K ) is the monodromy group.I Its p-Sylow subgroup is the wild monodromy

group .

Page 12: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I The base change C ×K K alg induces anhomomorphism ϕ : Gal(K alg/K ) → Autk Cs, whereCs is the special fiber of the smooth model overRL and L = (K alg)ker ϕ.

I Let ` be a prime number, then,n` := v`(|Gal(L/K )|) ≤ v`(|Autk Cs|).

I If ` /∈ {2, p}, then `n` is bounded by the maximalorder of an `-cyclic subgroup of GL2g(Z/`Z) i.e.`n` ≤ O(g).

I If p > 2, thennp ≤ inf 6̀=2,p vp(|GL2g(Z/`Z)|) = a + [a/p] + ...,where a = [ 2g

p−1 ].This gives an exponential type bound in g for|Autk Cs|. This justifies our interest in looking atStichtenoth ([St 73]) and Singh ([Si 73]).

Page 13: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I The base change C ×K K alg induces anhomomorphism ϕ : Gal(K alg/K ) → Autk Cs, whereCs is the special fiber of the smooth model overRL and L = (K alg)ker ϕ.

I Let ` be a prime number, then,n` := v`(|Gal(L/K )|) ≤ v`(|Autk Cs|).

I If ` /∈ {2, p}, then `n` is bounded by the maximalorder of an `-cyclic subgroup of GL2g(Z/`Z) i.e.`n` ≤ O(g).

I If p > 2, thennp ≤ inf 6̀=2,p vp(|GL2g(Z/`Z)|) = a + [a/p] + ...,where a = [ 2g

p−1 ].This gives an exponential type bound in g for|Autk Cs|. This justifies our interest in looking atStichtenoth ([St 73]) and Singh ([Si 73]).

Page 14: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I The base change C ×K K alg induces anhomomorphism ϕ : Gal(K alg/K ) → Autk Cs, whereCs is the special fiber of the smooth model overRL and L = (K alg)ker ϕ.

I Let ` be a prime number, then,n` := v`(|Gal(L/K )|) ≤ v`(|Autk Cs|).

I If ` /∈ {2, p}, then `n` is bounded by the maximalorder of an `-cyclic subgroup of GL2g(Z/`Z) i.e.`n` ≤ O(g).

I If p > 2, thennp ≤ inf 6̀=2,p vp(|GL2g(Z/`Z)|) = a + [a/p] + ...,where a = [ 2g

p−1 ].This gives an exponential type bound in g for|Autk Cs|. This justifies our interest in looking atStichtenoth ([St 73]) and Singh ([Si 73]).

Page 15: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I The base change C ×K K alg induces anhomomorphism ϕ : Gal(K alg/K ) → Autk Cs, whereCs is the special fiber of the smooth model overRL and L = (K alg)ker ϕ.

I Let ` be a prime number, then,n` := v`(|Gal(L/K )|) ≤ v`(|Autk Cs|).

I If ` /∈ {2, p}, then `n` is bounded by the maximalorder of an `-cyclic subgroup of GL2g(Z/`Z) i.e.`n` ≤ O(g).

I If p > 2, thennp ≤ inf 6̀=2,p vp(|GL2g(Z/`Z)|) = a + [a/p] + ...,where a = [ 2g

p−1 ].This gives an exponential type bound in g for|Autk Cs|. This justifies our interest in looking atStichtenoth ([St 73]) and Singh ([Si 73]).

Page 16: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Theorem([Ra 90]). Let YK → XK be a Galois cover with groupG. Let us assume that:

I G is nilpotent.I XK has a smooth model X.I The Zariski closure B of the branch locus BK in X

is étale over RK .

Then,

I the special fiber of the stable model YK istree-like, i.e. the Jacobian of YK has potentiallygood reduction.

I Raynaud’s proof is qualitative and it seems difficultto give a constructive one in the simplest cases.

I We have given in [Le-Ma3] such a proof in thecase of p-cyclic covers of the projective line.

Page 17: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Theorem([Ra 90]). Let YK → XK be a Galois cover with groupG. Let us assume that:

I G is nilpotent.I XK has a smooth model X.I The Zariski closure B of the branch locus BK in X

is étale over RK .

Then,

I the special fiber of the stable model YK istree-like, i.e. the Jacobian of YK has potentiallygood reduction.

I Raynaud’s proof is qualitative and it seems difficultto give a constructive one in the simplest cases.

I We have given in [Le-Ma3] such a proof in thecase of p-cyclic covers of the projective line.

Page 18: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Theorem([Ra 90]). Let YK → XK be a Galois cover with groupG. Let us assume that:

I G is nilpotent.I XK has a smooth model X.I The Zariski closure B of the branch locus BK in X

is étale over RK .

Then,

I the special fiber of the stable model YK istree-like, i.e. the Jacobian of YK has potentiallygood reduction.

I Raynaud’s proof is qualitative and it seems difficultto give a constructive one in the simplest cases.

I We have given in [Le-Ma3] such a proof in thecase of p-cyclic covers of the projective line.

Page 19: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Theorem([Ra 90]). Let YK → XK be a Galois cover with groupG. Let us assume that:

I G is nilpotent.I XK has a smooth model X.I The Zariski closure B of the branch locus BK in X

is étale over RK .

Then,

I the special fiber of the stable model YK istree-like, i.e. the Jacobian of YK has potentiallygood reduction.

I Raynaud’s proof is qualitative and it seems difficultto give a constructive one in the simplest cases.

I We have given in [Le-Ma3] such a proof in thecase of p-cyclic covers of the projective line.

Page 20: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Theorem([Ra 90]). Let YK → XK be a Galois cover with groupG. Let us assume that:

I G is nilpotent.I XK has a smooth model X.I The Zariski closure B of the branch locus BK in X

is étale over RK .

Then,

I the special fiber of the stable model YK istree-like, i.e. the Jacobian of YK has potentiallygood reduction.

I Raynaud’s proof is qualitative and it seems difficultto give a constructive one in the simplest cases.

I We have given in [Le-Ma3] such a proof in thecase of p-cyclic covers of the projective line.

Page 21: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Theorem([Ra 90]). Let YK → XK be a Galois cover with groupG. Let us assume that:

I G is nilpotent.I XK has a smooth model X.I The Zariski closure B of the branch locus BK in X

is étale over RK .

Then,

I the special fiber of the stable model YK istree-like, i.e. the Jacobian of YK has potentiallygood reduction.

I Raynaud’s proof is qualitative and it seems difficultto give a constructive one in the simplest cases.

I We have given in [Le-Ma3] such a proof in thecase of p-cyclic covers of the projective line.

Page 22: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

p-cyclic covers of the affine line

k is an algebraically closed of char. p > 0.I f (X ) ∈ Xk [X ] monic,deg f = m > 1 prime to p,

monic.I Cf : W p − W = f (X ). Let ∞ be the point of Cf

above X = ∞ and z a local parameter. Then,g := g(Cf ) = p−1

2 (m − 1) > 0.I G∞(f ) := {σ ∈ Autk Cf | σ(∞) = ∞}.I G∞,1(f ) := {σ ∈ Autk Cf | v∞(σ(z) − z) ≥ 2} , the

p-Sylow.I ([St 73]) Let g(Cf ) ≥ 2, then G∞,1(f ) is a p-Sylow

of Autk Cf .I It is normal except for f (X ) = X m where m|1 + p.

Page 23: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

p-cyclic covers of the affine line

k is an algebraically closed of char. p > 0.I f (X ) ∈ Xk [X ] monic,deg f = m > 1 prime to p,

monic.I Cf : W p − W = f (X ). Let ∞ be the point of Cf

above X = ∞ and z a local parameter. Then,g := g(Cf ) = p−1

2 (m − 1) > 0.I G∞(f ) := {σ ∈ Autk Cf | σ(∞) = ∞}.I G∞,1(f ) := {σ ∈ Autk Cf | v∞(σ(z) − z) ≥ 2} , the

p-Sylow.I ([St 73]) Let g(Cf ) ≥ 2, then G∞,1(f ) is a p-Sylow

of Autk Cf .I It is normal except for f (X ) = X m where m|1 + p.

Page 24: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

p-cyclic covers of the affine line

k is an algebraically closed of char. p > 0.I f (X ) ∈ Xk [X ] monic,deg f = m > 1 prime to p,

monic.I Cf : W p − W = f (X ). Let ∞ be the point of Cf

above X = ∞ and z a local parameter. Then,g := g(Cf ) = p−1

2 (m − 1) > 0.I G∞(f ) := {σ ∈ Autk Cf | σ(∞) = ∞}.I G∞,1(f ) := {σ ∈ Autk Cf | v∞(σ(z) − z) ≥ 2} , the

p-Sylow.I ([St 73]) Let g(Cf ) ≥ 2, then G∞,1(f ) is a p-Sylow

of Autk Cf .I It is normal except for f (X ) = X m where m|1 + p.

Page 25: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

p-cyclic covers of the affine line

k is an algebraically closed of char. p > 0.I f (X ) ∈ Xk [X ] monic,deg f = m > 1 prime to p,

monic.I Cf : W p − W = f (X ). Let ∞ be the point of Cf

above X = ∞ and z a local parameter. Then,g := g(Cf ) = p−1

2 (m − 1) > 0.I G∞(f ) := {σ ∈ Autk Cf | σ(∞) = ∞}.I G∞,1(f ) := {σ ∈ Autk Cf | v∞(σ(z) − z) ≥ 2} , the

p-Sylow.I ([St 73]) Let g(Cf ) ≥ 2, then G∞,1(f ) is a p-Sylow

of Autk Cf .I It is normal except for f (X ) = X m where m|1 + p.

Page 26: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

p-cyclic covers of the affine line

k is an algebraically closed of char. p > 0.I f (X ) ∈ Xk [X ] monic,deg f = m > 1 prime to p,

monic.I Cf : W p − W = f (X ). Let ∞ be the point of Cf

above X = ∞ and z a local parameter. Then,g := g(Cf ) = p−1

2 (m − 1) > 0.I G∞(f ) := {σ ∈ Autk Cf | σ(∞) = ∞}.I G∞,1(f ) := {σ ∈ Autk Cf | v∞(σ(z) − z) ≥ 2} , the

p-Sylow.I ([St 73]) Let g(Cf ) ≥ 2, then G∞,1(f ) is a p-Sylow

of Autk Cf .I It is normal except for f (X ) = X m where m|1 + p.

Page 27: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

p-cyclic covers of the affine line

k is an algebraically closed of char. p > 0.I f (X ) ∈ Xk [X ] monic,deg f = m > 1 prime to p,

monic.I Cf : W p − W = f (X ). Let ∞ be the point of Cf

above X = ∞ and z a local parameter. Then,g := g(Cf ) = p−1

2 (m − 1) > 0.I G∞(f ) := {σ ∈ Autk Cf | σ(∞) = ∞}.I G∞,1(f ) := {σ ∈ Autk Cf | v∞(σ(z) − z) ≥ 2} , the

p-Sylow.I ([St 73]) Let g(Cf ) ≥ 2, then G∞,1(f ) is a p-Sylow

of Autk Cf .I It is normal except for f (X ) = X m where m|1 + p.

Page 28: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Structure of G∞,1(f )

I Let ρ(X ) = X , ρ(W ) = W + 1, then< ρ >= G∞,2 ⊂ Z (G∞,1)

I 0 →< ρ >→ G∞,1 → V → 0,V = {τy | τy(X ) = X + y , y ∈ k}.f (X + y) = f (X ) + f (y) + (F − Id)(P(X , y)),P(X , y) ∈ Xk [X ].V ' (Z/pZ)v as a subgroup of k .

I Let τy(W ) := W + ay + P(X , y), ay ∈ Fp, then[τy , τz ] = ρε(y ,z), where ε : V × V → Fp is analternating form.

I ε is non degenerated iff < ρ >= Z (G∞,1).

Page 29: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Structure of G∞,1(f )

I Let ρ(X ) = X , ρ(W ) = W + 1, then< ρ >= G∞,2 ⊂ Z (G∞,1)

I 0 →< ρ >→ G∞,1 → V → 0,V = {τy | τy(X ) = X + y , y ∈ k}.f (X + y) = f (X ) + f (y) + (F − Id)(P(X , y)),P(X , y) ∈ Xk [X ].V ' (Z/pZ)v as a subgroup of k .

I Let τy(W ) := W + ay + P(X , y), ay ∈ Fp, then[τy , τz ] = ρε(y ,z), where ε : V × V → Fp is analternating form.

I ε is non degenerated iff < ρ >= Z (G∞,1).

Page 30: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Structure of G∞,1(f )

I Let ρ(X ) = X , ρ(W ) = W + 1, then< ρ >= G∞,2 ⊂ Z (G∞,1)

I 0 →< ρ >→ G∞,1 → V → 0,V = {τy | τy(X ) = X + y , y ∈ k}.f (X + y) = f (X ) + f (y) + (F − Id)(P(X , y)),P(X , y) ∈ Xk [X ].V ' (Z/pZ)v as a subgroup of k .

I Let τy(W ) := W + ay + P(X , y), ay ∈ Fp, then[τy , τz ] = ρε(y ,z), where ε : V × V → Fp is analternating form.

I ε is non degenerated iff < ρ >= Z (G∞,1).

Page 31: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Structure of G∞,1(f )

I Let ρ(X ) = X , ρ(W ) = W + 1, then< ρ >= G∞,2 ⊂ Z (G∞,1)

I 0 →< ρ >→ G∞,1 → V → 0,V = {τy | τy(X ) = X + y , y ∈ k}.f (X + y) = f (X ) + f (y) + (F − Id)(P(X , y)),P(X , y) ∈ Xk [X ].V ' (Z/pZ)v as a subgroup of k .

I Let τy(W ) := W + ay + P(X , y), ay ∈ Fp, then[τy , τz ] = ρε(y ,z), where ε : V × V → Fp is analternating form.

I ε is non degenerated iff < ρ >= Z (G∞,1).

Page 32: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Bounds for |G∞,1(f )|

LemmaIf f (X ) =

1≤i≤m tiX i ∈ k [X ] is monic, then:I ∆(f )(X , Y ) := f (X + Y ) − f (X ) − f (Y ) =

R(X , Y ) + (F − Id)(Pf (X , Y )),where R ∈

bmp c≤ipn(i)<m, (i ,p)=1 k [Y ]X ipn(i)

and

Pf ∈ Xk [X , Y ].

I Pf = (Id + F + ... + F n−1)(∆(f )) mod X [ m−1p ]+1.

I Let us denote by Adf (Y ) the content ofR(X , Y ) ∈ k [Y ][X ].

I Adf (Y ) is an additive and separable polynomial.I Z (Adf (Y )) ' V.

Page 33: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Bounds for |G∞,1(f )|

LemmaIf f (X ) =

1≤i≤m tiX i ∈ k [X ] is monic, then:I ∆(f )(X , Y ) := f (X + Y ) − f (X ) − f (Y ) =

R(X , Y ) + (F − Id)(Pf (X , Y )),where R ∈

bmp c≤ipn(i)<m, (i ,p)=1 k [Y ]X ipn(i)

and

Pf ∈ Xk [X , Y ].

I Pf = (Id + F + ... + F n−1)(∆(f )) mod X [ m−1p ]+1.

I Let us denote by Adf (Y ) the content ofR(X , Y ) ∈ k [Y ][X ].

I Adf (Y ) is an additive and separable polynomial.I Z (Adf (Y )) ' V.

Page 34: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Bounds for |G∞,1(f )|

LemmaIf f (X ) =

1≤i≤m tiX i ∈ k [X ] is monic, then:I ∆(f )(X , Y ) := f (X + Y ) − f (X ) − f (Y ) =

R(X , Y ) + (F − Id)(Pf (X , Y )),where R ∈

bmp c≤ipn(i)<m, (i ,p)=1 k [Y ]X ipn(i)

and

Pf ∈ Xk [X , Y ].

I Pf = (Id + F + ... + F n−1)(∆(f )) mod X [ m−1p ]+1.

I Let us denote by Adf (Y ) the content ofR(X , Y ) ∈ k [Y ][X ].

I Adf (Y ) is an additive and separable polynomial.I Z (Adf (Y )) ' V.

Page 35: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Bounds for |G∞,1(f )|

LemmaIf f (X ) =

1≤i≤m tiX i ∈ k [X ] is monic, then:I ∆(f )(X , Y ) := f (X + Y ) − f (X ) − f (Y ) =

R(X , Y ) + (F − Id)(Pf (X , Y )),where R ∈

bmp c≤ipn(i)<m, (i ,p)=1 k [Y ]X ipn(i)

and

Pf ∈ Xk [X , Y ].

I Pf = (Id + F + ... + F n−1)(∆(f )) mod X [ m−1p ]+1.

I Let us denote by Adf (Y ) the content ofR(X , Y ) ∈ k [Y ][X ].

I Adf (Y ) is an additive and separable polynomial.I Z (Adf (Y )) ' V.

Page 36: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Bounds for |G∞,1(f )|

LemmaIf f (X ) =

1≤i≤m tiX i ∈ k [X ] is monic, then:I ∆(f )(X , Y ) := f (X + Y ) − f (X ) − f (Y ) =

R(X , Y ) + (F − Id)(Pf (X , Y )),where R ∈

bmp c≤ipn(i)<m, (i ,p)=1 k [Y ]X ipn(i)

and

Pf ∈ Xk [X , Y ].

I Pf = (Id + F + ... + F n−1)(∆(f )) mod X [ m−1p ]+1.

I Let us denote by Adf (Y ) the content ofR(X , Y ) ∈ k [Y ][X ].

I Adf (Y ) is an additive and separable polynomial.I Z (Adf (Y )) ' V.

Page 37: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Let m − 1 = `ps with (`, p) = 1.I ([St 73]) |G∞,1| = p deg Adf ≤ p(m − 1)2, i.e.

|G∞,1|

g2 ≤ 4p(p−1)2 .

I ([St 73]) s = 0 i.e. (m − 1, p) = 1, then |G∞,1| = p.I If s > 0,

I ` > 1, p = 2, then |G∞,1|g ≤ 2

3 .

I ` > 1, p > 2, then |G∞,1|g ≤ p

p−1 .

I ([St 73]) ` > 1, m = 1 + ps, then |G∞,1|g ≤ 2ps p

p−1

(with equality for f (X ) = X 1+ps).

Page 38: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Let m − 1 = `ps with (`, p) = 1.I ([St 73]) |G∞,1| = p deg Adf ≤ p(m − 1)2, i.e.

|G∞,1|

g2 ≤ 4p(p−1)2 .

I ([St 73]) s = 0 i.e. (m − 1, p) = 1, then |G∞,1| = p.I If s > 0,

I ` > 1, p = 2, then |G∞,1|g ≤ 2

3 .

I ` > 1, p > 2, then |G∞,1|g ≤ p

p−1 .

I ([St 73]) ` > 1, m = 1 + ps, then |G∞,1|g ≤ 2ps p

p−1

(with equality for f (X ) = X 1+ps).

Page 39: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Let m − 1 = `ps with (`, p) = 1.I ([St 73]) |G∞,1| = p deg Adf ≤ p(m − 1)2, i.e.

|G∞,1|

g2 ≤ 4p(p−1)2 .

I ([St 73]) s = 0 i.e. (m − 1, p) = 1, then |G∞,1| = p.I If s > 0,

I ` > 1, p = 2, then |G∞,1|g ≤ 2

3 .

I ` > 1, p > 2, then |G∞,1|g ≤ p

p−1 .

I ([St 73]) ` > 1, m = 1 + ps, then |G∞,1|g ≤ 2ps p

p−1

(with equality for f (X ) = X 1+ps).

Page 40: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Let m − 1 = `ps with (`, p) = 1.I ([St 73]) |G∞,1| = p deg Adf ≤ p(m − 1)2, i.e.

|G∞,1|

g2 ≤ 4p(p−1)2 .

I ([St 73]) s = 0 i.e. (m − 1, p) = 1, then |G∞,1| = p.I If s > 0,

I ` > 1, p = 2, then |G∞,1|g ≤ 2

3 .

I ` > 1, p > 2, then |G∞,1|g ≤ p

p−1 .

I ([St 73]) ` > 1, m = 1 + ps, then |G∞,1|g ≤ 2ps p

p−1

(with equality for f (X ) = X 1+ps).

Page 41: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Let m − 1 = `ps with (`, p) = 1.I ([St 73]) |G∞,1| = p deg Adf ≤ p(m − 1)2, i.e.

|G∞,1|

g2 ≤ 4p(p−1)2 .

I ([St 73]) s = 0 i.e. (m − 1, p) = 1, then |G∞,1| = p.I If s > 0,

I ` > 1, p = 2, then |G∞,1|g ≤ 2

3 .

I ` > 1, p > 2, then |G∞,1|g ≤ p

p−1 .

I ([St 73]) ` > 1, m = 1 + ps, then |G∞,1|g ≤ 2ps p

p−1

(with equality for f (X ) = X 1+ps).

Page 42: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Let m − 1 = `ps with (`, p) = 1.I ([St 73]) |G∞,1| = p deg Adf ≤ p(m − 1)2, i.e.

|G∞,1|

g2 ≤ 4p(p−1)2 .

I ([St 73]) s = 0 i.e. (m − 1, p) = 1, then |G∞,1| = p.I If s > 0,

I ` > 1, p = 2, then |G∞,1|g ≤ 2

3 .

I ` > 1, p > 2, then |G∞,1|g ≤ p

p−1 .

I ([St 73]) ` > 1, m = 1 + ps, then |G∞,1|g ≤ 2ps p

p−1

(with equality for f (X ) = X 1+ps).

Page 43: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Characterization of G∞,1(f )

I We consider the extensions of type0 → N ' Z/pZ → G → (Z/pZ)n → 0 (note thatG∞,1(f ) is an extension of this type). ThenG′ ⊂ N ⊂ Z (G).

I If G′ = Z (G), G is called extraspecial.I Then, |G| = p2s+1 and there are 2 isomorphism

classes for a given s.I If p > 2, we denote by E(p3) (resp. M(p3)) the

non abelian group of order p3 and exponent p(resp. p2). Then, G ' E(p3) ∗E(p3) ∗ ... ∗ E(p3) orM(p3) ∗ E(p3) ∗ ... ∗ E(p3), according as theexponent is p or p2.

I If p = 2, then G ' D8 ∗ D8 ∗ ... ∗ D8 orQ8 ∗ D8 ∗ ... ∗ D8 (in both cases, the exponent is22).

I If G′ ⊂ Z (G), G is a subgroup of an extraspecialgroup E with Z (E) = N ⊂ G.

Page 44: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Characterization of G∞,1(f )

I We consider the extensions of type0 → N ' Z/pZ → G → (Z/pZ)n → 0 (note thatG∞,1(f ) is an extension of this type). ThenG′ ⊂ N ⊂ Z (G).

I If G′ = Z (G), G is called extraspecial.I Then, |G| = p2s+1 and there are 2 isomorphism

classes for a given s.I If p > 2, we denote by E(p3) (resp. M(p3)) the

non abelian group of order p3 and exponent p(resp. p2). Then, G ' E(p3) ∗E(p3) ∗ ... ∗ E(p3) orM(p3) ∗ E(p3) ∗ ... ∗ E(p3), according as theexponent is p or p2.

I If p = 2, then G ' D8 ∗ D8 ∗ ... ∗ D8 orQ8 ∗ D8 ∗ ... ∗ D8 (in both cases, the exponent is22).

I If G′ ⊂ Z (G), G is a subgroup of an extraspecialgroup E with Z (E) = N ⊂ G.

Page 45: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Characterization of G∞,1(f )

I We consider the extensions of type0 → N ' Z/pZ → G → (Z/pZ)n → 0 (note thatG∞,1(f ) is an extension of this type). ThenG′ ⊂ N ⊂ Z (G).

I If G′ = Z (G), G is called extraspecial.I Then, |G| = p2s+1 and there are 2 isomorphism

classes for a given s.I If p > 2, we denote by E(p3) (resp. M(p3)) the

non abelian group of order p3 and exponent p(resp. p2). Then, G ' E(p3) ∗E(p3) ∗ ... ∗ E(p3) orM(p3) ∗ E(p3) ∗ ... ∗ E(p3), according as theexponent is p or p2.

I If p = 2, then G ' D8 ∗ D8 ∗ ... ∗ D8 orQ8 ∗ D8 ∗ ... ∗ D8 (in both cases, the exponent is22).

I If G′ ⊂ Z (G), G is a subgroup of an extraspecialgroup E with Z (E) = N ⊂ G.

Page 46: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Characterization of G∞,1(f )

I We consider the extensions of type0 → N ' Z/pZ → G → (Z/pZ)n → 0 (note thatG∞,1(f ) is an extension of this type). ThenG′ ⊂ N ⊂ Z (G).

I If G′ = Z (G), G is called extraspecial.I Then, |G| = p2s+1 and there are 2 isomorphism

classes for a given s.I If p > 2, we denote by E(p3) (resp. M(p3)) the

non abelian group of order p3 and exponent p(resp. p2). Then, G ' E(p3) ∗E(p3) ∗ ... ∗ E(p3) orM(p3) ∗ E(p3) ∗ ... ∗ E(p3), according as theexponent is p or p2.

I If p = 2, then G ' D8 ∗ D8 ∗ ... ∗ D8 orQ8 ∗ D8 ∗ ... ∗ D8 (in both cases, the exponent is22).

I If G′ ⊂ Z (G), G is a subgroup of an extraspecialgroup E with Z (E) = N ⊂ G.

Page 47: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Characterization of G∞,1(f )

I We consider the extensions of type0 → N ' Z/pZ → G → (Z/pZ)n → 0 (note thatG∞,1(f ) is an extension of this type). ThenG′ ⊂ N ⊂ Z (G).

I If G′ = Z (G), G is called extraspecial.I Then, |G| = p2s+1 and there are 2 isomorphism

classes for a given s.I If p > 2, we denote by E(p3) (resp. M(p3)) the

non abelian group of order p3 and exponent p(resp. p2). Then, G ' E(p3) ∗E(p3) ∗ ... ∗ E(p3) orM(p3) ∗ E(p3) ∗ ... ∗ E(p3), according as theexponent is p or p2.

I If p = 2, then G ' D8 ∗ D8 ∗ ... ∗ D8 orQ8 ∗ D8 ∗ ... ∗ D8 (in both cases, the exponent is22).

I If G′ ⊂ Z (G), G is a subgroup of an extraspecialgroup E with Z (E) = N ⊂ G.

Page 48: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Characterization of G∞,1(f )

I We consider the extensions of type0 → N ' Z/pZ → G → (Z/pZ)n → 0 (note thatG∞,1(f ) is an extension of this type). ThenG′ ⊂ N ⊂ Z (G).

I If G′ = Z (G), G is called extraspecial.I Then, |G| = p2s+1 and there are 2 isomorphism

classes for a given s.I If p > 2, we denote by E(p3) (resp. M(p3)) the

non abelian group of order p3 and exponent p(resp. p2). Then, G ' E(p3) ∗E(p3) ∗ ... ∗ E(p3) orM(p3) ∗ E(p3) ∗ ... ∗ E(p3), according as theexponent is p or p2.

I If p = 2, then G ' D8 ∗ D8 ∗ ... ∗ D8 orQ8 ∗ D8 ∗ ... ∗ D8 (in both cases, the exponent is22).

I If G′ ⊂ Z (G), G is a subgroup of an extraspecialgroup E with Z (E) = N ⊂ G.

Page 49: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 1]). Let f (X ) = XΣ(F )(X ) ∈ Xk [X ],Σ(F ) =

0≤i≤s aiF i ∈ k{F} an additivepolynomial with deg f = 1 + ps. Then,

I Adf (Y ) = F s(∑

0≤i≤s(ai F i + F−iai)(Y )), apalyndromic polynomial.

I G∞,1(f ) is an extraspecial group with cardinalp2s+1 and exponent p for p > 2, and of typeQ8 ∗ D8 ∗ ... ∗ D8 for p = 2.

I Theorem([Le-Ma 1]). If G is an extension of type0 → Z/pZ → G → (Z/pZ)n → 0, there isf ∈ Xk [X ] with G ' G∞,1(f ).

I Sketch proof: Extraspecial groups with exponentp2 are realized by a modification by a Witt cocycleof the polynomial f in the theorem above.

I We can see G as a subgroup of an extraspecialgroup E , then we realize E with fE and a suitablemodification of f E will limit G∞,1(fE ) to G.

Page 50: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 1]). Let f (X ) = XΣ(F )(X ) ∈ Xk [X ],Σ(F ) =

0≤i≤s aiF i ∈ k{F} an additivepolynomial with deg f = 1 + ps. Then,

I Adf (Y ) = F s(∑

0≤i≤s(ai F i + F−iai)(Y )), apalyndromic polynomial.

I G∞,1(f ) is an extraspecial group with cardinalp2s+1 and exponent p for p > 2, and of typeQ8 ∗ D8 ∗ ... ∗ D8 for p = 2.

I Theorem([Le-Ma 1]). If G is an extension of type0 → Z/pZ → G → (Z/pZ)n → 0, there isf ∈ Xk [X ] with G ' G∞,1(f ).

I Sketch proof: Extraspecial groups with exponentp2 are realized by a modification by a Witt cocycleof the polynomial f in the theorem above.

I We can see G as a subgroup of an extraspecialgroup E , then we realize E with fE and a suitablemodification of f E will limit G∞,1(fE ) to G.

Page 51: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 1]). Let f (X ) = XΣ(F )(X ) ∈ Xk [X ],Σ(F ) =

0≤i≤s aiF i ∈ k{F} an additivepolynomial with deg f = 1 + ps. Then,

I Adf (Y ) = F s(∑

0≤i≤s(ai F i + F−iai)(Y )), apalyndromic polynomial.

I G∞,1(f ) is an extraspecial group with cardinalp2s+1 and exponent p for p > 2, and of typeQ8 ∗ D8 ∗ ... ∗ D8 for p = 2.

I Theorem([Le-Ma 1]). If G is an extension of type0 → Z/pZ → G → (Z/pZ)n → 0, there isf ∈ Xk [X ] with G ' G∞,1(f ).

I Sketch proof: Extraspecial groups with exponentp2 are realized by a modification by a Witt cocycleof the polynomial f in the theorem above.

I We can see G as a subgroup of an extraspecialgroup E , then we realize E with fE and a suitablemodification of f E will limit G∞,1(fE ) to G.

Page 52: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 1]). Let f (X ) = XΣ(F )(X ) ∈ Xk [X ],Σ(F ) =

0≤i≤s aiF i ∈ k{F} an additivepolynomial with deg f = 1 + ps. Then,

I Adf (Y ) = F s(∑

0≤i≤s(ai F i + F−iai)(Y )), apalyndromic polynomial.

I G∞,1(f ) is an extraspecial group with cardinalp2s+1 and exponent p for p > 2, and of typeQ8 ∗ D8 ∗ ... ∗ D8 for p = 2.

I Theorem([Le-Ma 1]). If G is an extension of type0 → Z/pZ → G → (Z/pZ)n → 0, there isf ∈ Xk [X ] with G ' G∞,1(f ).

I Sketch proof: Extraspecial groups with exponentp2 are realized by a modification by a Witt cocycleof the polynomial f in the theorem above.

I We can see G as a subgroup of an extraspecialgroup E , then we realize E with fE and a suitablemodification of f E will limit G∞,1(fE ) to G.

Page 53: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 1]). Let f (X ) = XΣ(F )(X ) ∈ Xk [X ],Σ(F ) =

0≤i≤s aiF i ∈ k{F} an additivepolynomial with deg f = 1 + ps. Then,

I Adf (Y ) = F s(∑

0≤i≤s(ai F i + F−iai)(Y )), apalyndromic polynomial.

I G∞,1(f ) is an extraspecial group with cardinalp2s+1 and exponent p for p > 2, and of typeQ8 ∗ D8 ∗ ... ∗ D8 for p = 2.

I Theorem([Le-Ma 1]). If G is an extension of type0 → Z/pZ → G → (Z/pZ)n → 0, there isf ∈ Xk [X ] with G ' G∞,1(f ).

I Sketch proof: Extraspecial groups with exponentp2 are realized by a modification by a Witt cocycleof the polynomial f in the theorem above.

I We can see G as a subgroup of an extraspecialgroup E , then we realize E with fE and a suitablemodification of f E will limit G∞,1(fE ) to G.

Page 54: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 1]). Let f (X ) = XΣ(F )(X ) ∈ Xk [X ],Σ(F ) =

0≤i≤s aiF i ∈ k{F} an additivepolynomial with deg f = 1 + ps. Then,

I Adf (Y ) = F s(∑

0≤i≤s(ai F i + F−iai)(Y )), apalyndromic polynomial.

I G∞,1(f ) is an extraspecial group with cardinalp2s+1 and exponent p for p > 2, and of typeQ8 ∗ D8 ∗ ... ∗ D8 for p = 2.

I Theorem([Le-Ma 1]). If G is an extension of type0 → Z/pZ → G → (Z/pZ)n → 0, there isf ∈ Xk [X ] with G ' G∞,1(f ).

I Sketch proof: Extraspecial groups with exponentp2 are realized by a modification by a Witt cocycleof the polynomial f in the theorem above.

I We can see G as a subgroup of an extraspecialgroup E , then we realize E with fE and a suitablemodification of f E will limit G∞,1(fE ) to G.

Page 55: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (I)

I Theorem([Le-Ma 1]). Let f (X ) ∈ Xk [X ] with (deg f , p) = 1.

If |G∞,1|g > p

p−1 (23 for p = 2), then

f (X ) = cX + XΣ(F )(X ) ∈ k [X ].

I Sketch proof: One shows that monomials in f witha degree /∈ 1 + pN will limit the degree of Adf .

I Let (C, G) with G ⊂ Autk C. We say that (C, G) isa big action if G is a p-group and(N) gC > 0 and |G|

gC> 2p

p−1 .

It follows from ([Na 87]) that there is ∞ ∈ C, withI C → C/G ' P1

k −∞ is étale and G = G∞,1.I G∞,2 6= G∞,1 and C/G∞,2 ' P1

kI Then, G∞,1/G∞,2 acts as a group of translations

of the affine line C/G∞,2 − {∞}.I Transfert of condition (N) to quotients. Let

(C, G) a big action, if H C G and if g(C/H) > 0,then (C/H, G/H) is a big action.

Page 56: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (I)

I Theorem([Le-Ma 1]). Let f (X ) ∈ Xk [X ] with (deg f , p) = 1.

If |G∞,1|g > p

p−1 (23 for p = 2), then

f (X ) = cX + XΣ(F )(X ) ∈ k [X ].

I Sketch proof: One shows that monomials in f witha degree /∈ 1 + pN will limit the degree of Adf .

I Let (C, G) with G ⊂ Autk C. We say that (C, G) isa big action if G is a p-group and(N) gC > 0 and |G|

gC> 2p

p−1 .

It follows from ([Na 87]) that there is ∞ ∈ C, withI C → C/G ' P1

k −∞ is étale and G = G∞,1.I G∞,2 6= G∞,1 and C/G∞,2 ' P1

kI Then, G∞,1/G∞,2 acts as a group of translations

of the affine line C/G∞,2 − {∞}.I Transfert of condition (N) to quotients. Let

(C, G) a big action, if H C G and if g(C/H) > 0,then (C/H, G/H) is a big action.

Page 57: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (I)

I Theorem([Le-Ma 1]). Let f (X ) ∈ Xk [X ] with (deg f , p) = 1.

If |G∞,1|g > p

p−1 (23 for p = 2), then

f (X ) = cX + XΣ(F )(X ) ∈ k [X ].

I Sketch proof: One shows that monomials in f witha degree /∈ 1 + pN will limit the degree of Adf .

I Let (C, G) with G ⊂ Autk C. We say that (C, G) isa big action if G is a p-group and(N) gC > 0 and |G|

gC> 2p

p−1 .

It follows from ([Na 87]) that there is ∞ ∈ C, withI C → C/G ' P1

k −∞ is étale and G = G∞,1.I G∞,2 6= G∞,1 and C/G∞,2 ' P1

kI Then, G∞,1/G∞,2 acts as a group of translations

of the affine line C/G∞,2 − {∞}.I Transfert of condition (N) to quotients. Let

(C, G) a big action, if H C G and if g(C/H) > 0,then (C/H, G/H) is a big action.

Page 58: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (I)

I Theorem([Le-Ma 1]). Let f (X ) ∈ Xk [X ] with (deg f , p) = 1.

If |G∞,1|g > p

p−1 (23 for p = 2), then

f (X ) = cX + XΣ(F )(X ) ∈ k [X ].

I Sketch proof: One shows that monomials in f witha degree /∈ 1 + pN will limit the degree of Adf .

I Let (C, G) with G ⊂ Autk C. We say that (C, G) isa big action if G is a p-group and(N) gC > 0 and |G|

gC> 2p

p−1 .

It follows from ([Na 87]) that there is ∞ ∈ C, withI C → C/G ' P1

k −∞ is étale and G = G∞,1.I G∞,2 6= G∞,1 and C/G∞,2 ' P1

kI Then, G∞,1/G∞,2 acts as a group of translations

of the affine line C/G∞,2 − {∞}.I Transfert of condition (N) to quotients. Let

(C, G) a big action, if H C G and if g(C/H) > 0,then (C/H, G/H) is a big action.

Page 59: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (I)

I Theorem([Le-Ma 1]). Let f (X ) ∈ Xk [X ] with (deg f , p) = 1.

If |G∞,1|g > p

p−1 (23 for p = 2), then

f (X ) = cX + XΣ(F )(X ) ∈ k [X ].

I Sketch proof: One shows that monomials in f witha degree /∈ 1 + pN will limit the degree of Adf .

I Let (C, G) with G ⊂ Autk C. We say that (C, G) isa big action if G is a p-group and(N) gC > 0 and |G|

gC> 2p

p−1 .

It follows from ([Na 87]) that there is ∞ ∈ C, withI C → C/G ' P1

k −∞ is étale and G = G∞,1.I G∞,2 6= G∞,1 and C/G∞,2 ' P1

kI Then, G∞,1/G∞,2 acts as a group of translations

of the affine line C/G∞,2 − {∞}.I Transfert of condition (N) to quotients. Let

(C, G) a big action, if H C G and if g(C/H) > 0,then (C/H, G/H) is a big action.

Page 60: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (I)

I Theorem([Le-Ma 1]). Let f (X ) ∈ Xk [X ] with (deg f , p) = 1.

If |G∞,1|g > p

p−1 (23 for p = 2), then

f (X ) = cX + XΣ(F )(X ) ∈ k [X ].

I Sketch proof: One shows that monomials in f witha degree /∈ 1 + pN will limit the degree of Adf .

I Let (C, G) with G ⊂ Autk C. We say that (C, G) isa big action if G is a p-group and(N) gC > 0 and |G|

gC> 2p

p−1 .

It follows from ([Na 87]) that there is ∞ ∈ C, withI C → C/G ' P1

k −∞ is étale and G = G∞,1.I G∞,2 6= G∞,1 and C/G∞,2 ' P1

kI Then, G∞,1/G∞,2 acts as a group of translations

of the affine line C/G∞,2 − {∞}.I Transfert of condition (N) to quotients. Let

(C, G) a big action, if H C G and if g(C/H) > 0,then (C/H, G/H) is a big action.

Page 61: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (I)

I Theorem([Le-Ma 1]). Let f (X ) ∈ Xk [X ] with (deg f , p) = 1.

If |G∞,1|g > p

p−1 (23 for p = 2), then

f (X ) = cX + XΣ(F )(X ) ∈ k [X ].

I Sketch proof: One shows that monomials in f witha degree /∈ 1 + pN will limit the degree of Adf .

I Let (C, G) with G ⊂ Autk C. We say that (C, G) isa big action if G is a p-group and(N) gC > 0 and |G|

gC> 2p

p−1 .

It follows from ([Na 87]) that there is ∞ ∈ C, withI C → C/G ' P1

k −∞ is étale and G = G∞,1.I G∞,2 6= G∞,1 and C/G∞,2 ' P1

kI Then, G∞,1/G∞,2 acts as a group of translations

of the affine line C/G∞,2 − {∞}.I Transfert of condition (N) to quotients. Let

(C, G) a big action, if H C G and if g(C/H) > 0,then (C/H, G/H) is a big action.

Page 62: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Condition (N) and G2

In this section (C, G) is a big action. Let Gi be thelower ramification groups.

I Let H C G and H with index p in G2 (H exists!),then (C/H, G/H) is a big action.

I (G/H)2 = G2/H ' Z/pZ.I There is S(F ) ∈ k{F},

f1 = cX + XΣ(F )(X ) ∈ k [X ] with C/H ' Cf1 .I If G2 ' (Z/pZ)t , then k(C) = k(X , W1, ..., Wt ) and

℘(W1, ..., Wt ) = (f1(X ), f2(X ), ..., ft (X )) ∈ (k [X ])t

I f1(X ), .., ft (X ) are Fp-free mod ℘(k [X ]).I The group extension

0 → G2 → G1 → V = (Z/pZ)v → 0 induces arepresentation ρ : V → Glt (Fp)

I dual to the one given by V acting via translation:(v ∈ V )× (f1(X ), f2(X ), ..., ft (X )) mod ℘(k [X ])t →→ (f1(X + v), f2(X + v), ..., ft (X + v))mod ℘(k [X ])t

Page 63: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Condition (N) and G2

In this section (C, G) is a big action. Let Gi be thelower ramification groups.

I Let H C G and H with index p in G2 (H exists!),then (C/H, G/H) is a big action.

I (G/H)2 = G2/H ' Z/pZ.I There is S(F ) ∈ k{F},

f1 = cX + XΣ(F )(X ) ∈ k [X ] with C/H ' Cf1 .I If G2 ' (Z/pZ)t , then k(C) = k(X , W1, ..., Wt ) and

℘(W1, ..., Wt ) = (f1(X ), f2(X ), ..., ft (X )) ∈ (k [X ])t

I f1(X ), .., ft (X ) are Fp-free mod ℘(k [X ]).I The group extension

0 → G2 → G1 → V = (Z/pZ)v → 0 induces arepresentation ρ : V → Glt (Fp)

I dual to the one given by V acting via translation:(v ∈ V )× (f1(X ), f2(X ), ..., ft (X )) mod ℘(k [X ])t →→ (f1(X + v), f2(X + v), ..., ft (X + v))mod ℘(k [X ])t

Page 64: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Condition (N) and G2

In this section (C, G) is a big action. Let Gi be thelower ramification groups.

I Let H C G and H with index p in G2 (H exists!),then (C/H, G/H) is a big action.

I (G/H)2 = G2/H ' Z/pZ.I There is S(F ) ∈ k{F},

f1 = cX + XΣ(F )(X ) ∈ k [X ] with C/H ' Cf1 .I If G2 ' (Z/pZ)t , then k(C) = k(X , W1, ..., Wt ) and

℘(W1, ..., Wt ) = (f1(X ), f2(X ), ..., ft (X )) ∈ (k [X ])t

I f1(X ), .., ft (X ) are Fp-free mod ℘(k [X ]).I The group extension

0 → G2 → G1 → V = (Z/pZ)v → 0 induces arepresentation ρ : V → Glt (Fp)

I dual to the one given by V acting via translation:(v ∈ V )× (f1(X ), f2(X ), ..., ft (X )) mod ℘(k [X ])t →→ (f1(X + v), f2(X + v), ..., ft (X + v))mod ℘(k [X ])t

Page 65: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Condition (N) and G2

In this section (C, G) is a big action. Let Gi be thelower ramification groups.

I Let H C G and H with index p in G2 (H exists!),then (C/H, G/H) is a big action.

I (G/H)2 = G2/H ' Z/pZ.I There is S(F ) ∈ k{F},

f1 = cX + XΣ(F )(X ) ∈ k [X ] with C/H ' Cf1 .I If G2 ' (Z/pZ)t , then k(C) = k(X , W1, ..., Wt ) and

℘(W1, ..., Wt ) = (f1(X ), f2(X ), ..., ft (X )) ∈ (k [X ])t

I f1(X ), .., ft (X ) are Fp-free mod ℘(k [X ]).I The group extension

0 → G2 → G1 → V = (Z/pZ)v → 0 induces arepresentation ρ : V → Glt (Fp)

I dual to the one given by V acting via translation:(v ∈ V )× (f1(X ), f2(X ), ..., ft (X )) mod ℘(k [X ])t →→ (f1(X + v), f2(X + v), ..., ft (X + v))mod ℘(k [X ])t

Page 66: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Condition (N) and G2

In this section (C, G) is a big action. Let Gi be thelower ramification groups.

I Let H C G and H with index p in G2 (H exists!),then (C/H, G/H) is a big action.

I (G/H)2 = G2/H ' Z/pZ.I There is S(F ) ∈ k{F},

f1 = cX + XΣ(F )(X ) ∈ k [X ] with C/H ' Cf1 .I If G2 ' (Z/pZ)t , then k(C) = k(X , W1, ..., Wt ) and

℘(W1, ..., Wt ) = (f1(X ), f2(X ), ..., ft (X )) ∈ (k [X ])t

I f1(X ), .., ft (X ) are Fp-free mod ℘(k [X ]).I The group extension

0 → G2 → G1 → V = (Z/pZ)v → 0 induces arepresentation ρ : V → Glt (Fp)

I dual to the one given by V acting via translation:(v ∈ V )× (f1(X ), f2(X ), ..., ft (X )) mod ℘(k [X ])t →→ (f1(X + v), f2(X + v), ..., ft (X + v))mod ℘(k [X ])t

Page 67: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Condition (N) and G2

In this section (C, G) is a big action. Let Gi be thelower ramification groups.

I Let H C G and H with index p in G2 (H exists!),then (C/H, G/H) is a big action.

I (G/H)2 = G2/H ' Z/pZ.I There is S(F ) ∈ k{F},

f1 = cX + XΣ(F )(X ) ∈ k [X ] with C/H ' Cf1 .I If G2 ' (Z/pZ)t , then k(C) = k(X , W1, ..., Wt ) and

℘(W1, ..., Wt ) = (f1(X ), f2(X ), ..., ft (X )) ∈ (k [X ])t

I f1(X ), .., ft (X ) are Fp-free mod ℘(k [X ]).I The group extension

0 → G2 → G1 → V = (Z/pZ)v → 0 induces arepresentation ρ : V → Glt (Fp)

I dual to the one given by V acting via translation:(v ∈ V )× (f1(X ), f2(X ), ..., ft (X )) mod ℘(k [X ])t →→ (f1(X + v), f2(X + v), ..., ft (X + v))mod ℘(k [X ])t

Page 68: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Condition (N) and G2

In this section (C, G) is a big action. Let Gi be thelower ramification groups.

I Let H C G and H with index p in G2 (H exists!),then (C/H, G/H) is a big action.

I (G/H)2 = G2/H ' Z/pZ.I There is S(F ) ∈ k{F},

f1 = cX + XΣ(F )(X ) ∈ k [X ] with C/H ' Cf1 .I If G2 ' (Z/pZ)t , then k(C) = k(X , W1, ..., Wt ) and

℘(W1, ..., Wt ) = (f1(X ), f2(X ), ..., ft (X )) ∈ (k [X ])t

I f1(X ), .., ft (X ) are Fp-free mod ℘(k [X ]).I The group extension

0 → G2 → G1 → V = (Z/pZ)v → 0 induces arepresentation ρ : V → Glt (Fp)

I dual to the one given by V acting via translation:(v ∈ V )× (f1(X ), f2(X ), ..., ft (X )) mod ℘(k [X ])t →→ (f1(X + v), f2(X + v), ..., ft (X + v))mod ℘(k [X ])t

Page 69: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Imρ is a unipotent subgroup of Glt(Fp) which isthe identity iff G2 ⊂ Z (G). In this casefi(X ) = ciX + XΣi(F )(X ) where Σi(F ) ∈ k{F}and v ∈ V is a commun zero to the palyndromicpolynomials Adfi ∈ k{F , F−1}.

I Let f1 := X (αF )(X ) = αX 1+p with αp + α = 0 ;then Adf1 = Y p2

− Y .I Let f2 := X 1+2p − X 2+p, thenI f2(X + Y ) − f2(X ) − f2(Y ) = 2(Y p − Y )X 1+p +

(Y − Y p2)X 2p + (Y 2p2

− Y 2 + 2Y 1+p − 2Y p+p2)X p

mod ℘(k [X , Y ])I If y ∈ Z (Adf1) = Fp2 one has

f2(X + y) = 2(yp−y)α f1(X ) + f2(X ) + ℘(P2).

I y → 2(yp−y)α is a non zero linear form over Fp2 with

value in Fp.I |G| = p2p2 and g = p−1

2 (p + p ∗ 2p).I

|G|g = 2p

p−1p2

1+2p .

I|G|g2 = 4p

(p−1)2p

(1+2p)2 .

Page 70: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Imρ is a unipotent subgroup of Glt(Fp) which isthe identity iff G2 ⊂ Z (G). In this casefi(X ) = ciX + XΣi(F )(X ) where Σi(F ) ∈ k{F}and v ∈ V is a commun zero to the palyndromicpolynomials Adfi ∈ k{F , F−1}.

I Let f1 := X (αF )(X ) = αX 1+p with αp + α = 0 ;then Adf1 = Y p2

− Y .I Let f2 := X 1+2p − X 2+p, thenI f2(X + Y ) − f2(X ) − f2(Y ) = 2(Y p − Y )X 1+p +

(Y − Y p2)X 2p + (Y 2p2

− Y 2 + 2Y 1+p − 2Y p+p2)X p

mod ℘(k [X , Y ])I If y ∈ Z (Adf1) = Fp2 one has

f2(X + y) = 2(yp−y)α f1(X ) + f2(X ) + ℘(P2).

I y → 2(yp−y)α is a non zero linear form over Fp2 with

value in Fp.I |G| = p2p2 and g = p−1

2 (p + p ∗ 2p).I

|G|g = 2p

p−1p2

1+2p .

I|G|g2 = 4p

(p−1)2p

(1+2p)2 .

Page 71: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Imρ is a unipotent subgroup of Glt(Fp) which isthe identity iff G2 ⊂ Z (G). In this casefi(X ) = ciX + XΣi(F )(X ) where Σi(F ) ∈ k{F}and v ∈ V is a commun zero to the palyndromicpolynomials Adfi ∈ k{F , F−1}.

I Let f1 := X (αF )(X ) = αX 1+p with αp + α = 0 ;then Adf1 = Y p2

− Y .I Let f2 := X 1+2p − X 2+p, thenI f2(X + Y ) − f2(X ) − f2(Y ) = 2(Y p − Y )X 1+p +

(Y − Y p2)X 2p + (Y 2p2

− Y 2 + 2Y 1+p − 2Y p+p2)X p

mod ℘(k [X , Y ])I If y ∈ Z (Adf1) = Fp2 one has

f2(X + y) = 2(yp−y)α f1(X ) + f2(X ) + ℘(P2).

I y → 2(yp−y)α is a non zero linear form over Fp2 with

value in Fp.I |G| = p2p2 and g = p−1

2 (p + p ∗ 2p).I

|G|g = 2p

p−1p2

1+2p .

I|G|g2 = 4p

(p−1)2p

(1+2p)2 .

Page 72: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Imρ is a unipotent subgroup of Glt(Fp) which isthe identity iff G2 ⊂ Z (G). In this casefi(X ) = ciX + XΣi(F )(X ) where Σi(F ) ∈ k{F}and v ∈ V is a commun zero to the palyndromicpolynomials Adfi ∈ k{F , F−1}.

I Let f1 := X (αF )(X ) = αX 1+p with αp + α = 0 ;then Adf1 = Y p2

− Y .I Let f2 := X 1+2p − X 2+p, thenI f2(X + Y ) − f2(X ) − f2(Y ) = 2(Y p − Y )X 1+p +

(Y − Y p2)X 2p + (Y 2p2

− Y 2 + 2Y 1+p − 2Y p+p2)X p

mod ℘(k [X , Y ])I If y ∈ Z (Adf1) = Fp2 one has

f2(X + y) = 2(yp−y)α f1(X ) + f2(X ) + ℘(P2).

I y → 2(yp−y)α is a non zero linear form over Fp2 with

value in Fp.I |G| = p2p2 and g = p−1

2 (p + p ∗ 2p).I

|G|g = 2p

p−1p2

1+2p .

I|G|g2 = 4p

(p−1)2p

(1+2p)2 .

Page 73: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Imρ is a unipotent subgroup of Glt(Fp) which isthe identity iff G2 ⊂ Z (G). In this casefi(X ) = ciX + XΣi(F )(X ) where Σi(F ) ∈ k{F}and v ∈ V is a commun zero to the palyndromicpolynomials Adfi ∈ k{F , F−1}.

I Let f1 := X (αF )(X ) = αX 1+p with αp + α = 0 ;then Adf1 = Y p2

− Y .I Let f2 := X 1+2p − X 2+p, thenI f2(X + Y ) − f2(X ) − f2(Y ) = 2(Y p − Y )X 1+p +

(Y − Y p2)X 2p + (Y 2p2

− Y 2 + 2Y 1+p − 2Y p+p2)X p

mod ℘(k [X , Y ])I If y ∈ Z (Adf1) = Fp2 one has

f2(X + y) = 2(yp−y)α f1(X ) + f2(X ) + ℘(P2).

I y → 2(yp−y)α is a non zero linear form over Fp2 with

value in Fp.I |G| = p2p2 and g = p−1

2 (p + p ∗ 2p).I

|G|g = 2p

p−1p2

1+2p .

I|G|g2 = 4p

(p−1)2p

(1+2p)2 .

Page 74: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Imρ is a unipotent subgroup of Glt(Fp) which isthe identity iff G2 ⊂ Z (G). In this casefi(X ) = ciX + XΣi(F )(X ) where Σi(F ) ∈ k{F}and v ∈ V is a commun zero to the palyndromicpolynomials Adfi ∈ k{F , F−1}.

I Let f1 := X (αF )(X ) = αX 1+p with αp + α = 0 ;then Adf1 = Y p2

− Y .I Let f2 := X 1+2p − X 2+p, thenI f2(X + Y ) − f2(X ) − f2(Y ) = 2(Y p − Y )X 1+p +

(Y − Y p2)X 2p + (Y 2p2

− Y 2 + 2Y 1+p − 2Y p+p2)X p

mod ℘(k [X , Y ])I If y ∈ Z (Adf1) = Fp2 one has

f2(X + y) = 2(yp−y)α f1(X ) + f2(X ) + ℘(P2).

I y → 2(yp−y)α is a non zero linear form over Fp2 with

value in Fp.I |G| = p2p2 and g = p−1

2 (p + p ∗ 2p).I

|G|g = 2p

p−1p2

1+2p .

I|G|g2 = 4p

(p−1)2p

(1+2p)2 .

Page 75: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Imρ is a unipotent subgroup of Glt(Fp) which isthe identity iff G2 ⊂ Z (G). In this casefi(X ) = ciX + XΣi(F )(X ) where Σi(F ) ∈ k{F}and v ∈ V is a commun zero to the palyndromicpolynomials Adfi ∈ k{F , F−1}.

I Let f1 := X (αF )(X ) = αX 1+p with αp + α = 0 ;then Adf1 = Y p2

− Y .I Let f2 := X 1+2p − X 2+p, thenI f2(X + Y ) − f2(X ) − f2(Y ) = 2(Y p − Y )X 1+p +

(Y − Y p2)X 2p + (Y 2p2

− Y 2 + 2Y 1+p − 2Y p+p2)X p

mod ℘(k [X , Y ])I If y ∈ Z (Adf1) = Fp2 one has

f2(X + y) = 2(yp−y)α f1(X ) + f2(X ) + ℘(P2).

I y → 2(yp−y)α is a non zero linear form over Fp2 with

value in Fp.I |G| = p2p2 and g = p−1

2 (p + p ∗ 2p).I

|G|g = 2p

p−1p2

1+2p .

I|G|g2 = 4p

(p−1)2p

(1+2p)2 .

Page 76: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Imρ is a unipotent subgroup of Glt(Fp) which isthe identity iff G2 ⊂ Z (G). In this casefi(X ) = ciX + XΣi(F )(X ) where Σi(F ) ∈ k{F}and v ∈ V is a commun zero to the palyndromicpolynomials Adfi ∈ k{F , F−1}.

I Let f1 := X (αF )(X ) = αX 1+p with αp + α = 0 ;then Adf1 = Y p2

− Y .I Let f2 := X 1+2p − X 2+p, thenI f2(X + Y ) − f2(X ) − f2(Y ) = 2(Y p − Y )X 1+p +

(Y − Y p2)X 2p + (Y 2p2

− Y 2 + 2Y 1+p − 2Y p+p2)X p

mod ℘(k [X , Y ])I If y ∈ Z (Adf1) = Fp2 one has

f2(X + y) = 2(yp−y)α f1(X ) + f2(X ) + ℘(P2).

I y → 2(yp−y)α is a non zero linear form over Fp2 with

value in Fp.I |G| = p2p2 and g = p−1

2 (p + p ∗ 2p).I

|G|g = 2p

p−1p2

1+2p .

I|G|g2 = 4p

(p−1)2p

(1+2p)2 .

Page 77: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Imρ is a unipotent subgroup of Glt(Fp) which isthe identity iff G2 ⊂ Z (G). In this casefi(X ) = ciX + XΣi(F )(X ) where Σi(F ) ∈ k{F}and v ∈ V is a commun zero to the palyndromicpolynomials Adfi ∈ k{F , F−1}.

I Let f1 := X (αF )(X ) = αX 1+p with αp + α = 0 ;then Adf1 = Y p2

− Y .I Let f2 := X 1+2p − X 2+p, thenI f2(X + Y ) − f2(X ) − f2(Y ) = 2(Y p − Y )X 1+p +

(Y − Y p2)X 2p + (Y 2p2

− Y 2 + 2Y 1+p − 2Y p+p2)X p

mod ℘(k [X , Y ])I If y ∈ Z (Adf1) = Fp2 one has

f2(X + y) = 2(yp−y)α f1(X ) + f2(X ) + ℘(P2).

I y → 2(yp−y)α is a non zero linear form over Fp2 with

value in Fp.I |G| = p2p2 and g = p−1

2 (p + p ∗ 2p).I

|G|g = 2p

p−1p2

1+2p .

I|G|g2 = 4p

(p−1)2p

(1+2p)2 .

Page 78: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 4]) Assume G2 is non abelian, thenG2 = G′.

I Sketch proof: If G′ 6= G2, there is H C G withG′ ⊂ H ⊂ G2 and [G2 : H] = p.(C/H, G/H) is abig action ;

I C/H : W p − W = f := XΣ(F )(X ),deg(f ) = 1 + ps.

I (AutC/H)∞,1 := E is extraspecial with orderp2s+1.

I G/H is abelian and normal in E .I ([Hu 67] Satz 13.7 p. 353) |G/H| ≤ ps+1 and so

|G/H|/g(C/H) ≤ 2ps+1

(p−1)ps = 2pp−1 , a contradiction.

We deduce the following corollary from ([Su 86]4.21 p.75).

I CorollaryIf |G2| = p3, then G2 is abelian.

Page 79: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 4]) Assume G2 is non abelian, thenG2 = G′.

I Sketch proof: If G′ 6= G2, there is H C G withG′ ⊂ H ⊂ G2 and [G2 : H] = p.(C/H, G/H) is abig action ;

I C/H : W p − W = f := XΣ(F )(X ),deg(f ) = 1 + ps.

I (AutC/H)∞,1 := E is extraspecial with orderp2s+1.

I G/H is abelian and normal in E .I ([Hu 67] Satz 13.7 p. 353) |G/H| ≤ ps+1 and so

|G/H|/g(C/H) ≤ 2ps+1

(p−1)ps = 2pp−1 , a contradiction.

We deduce the following corollary from ([Su 86]4.21 p.75).

I CorollaryIf |G2| = p3, then G2 is abelian.

Page 80: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 4]) Assume G2 is non abelian, thenG2 = G′.

I Sketch proof: If G′ 6= G2, there is H C G withG′ ⊂ H ⊂ G2 and [G2 : H] = p.(C/H, G/H) is abig action ;

I C/H : W p − W = f := XΣ(F )(X ),deg(f ) = 1 + ps.

I (AutC/H)∞,1 := E is extraspecial with orderp2s+1.

I G/H is abelian and normal in E .I ([Hu 67] Satz 13.7 p. 353) |G/H| ≤ ps+1 and so

|G/H|/g(C/H) ≤ 2ps+1

(p−1)ps = 2pp−1 , a contradiction.

We deduce the following corollary from ([Su 86]4.21 p.75).

I CorollaryIf |G2| = p3, then G2 is abelian.

Page 81: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 4]) Assume G2 is non abelian, thenG2 = G′.

I Sketch proof: If G′ 6= G2, there is H C G withG′ ⊂ H ⊂ G2 and [G2 : H] = p.(C/H, G/H) is abig action ;

I C/H : W p − W = f := XΣ(F )(X ),deg(f ) = 1 + ps.

I (AutC/H)∞,1 := E is extraspecial with orderp2s+1.

I G/H is abelian and normal in E .I ([Hu 67] Satz 13.7 p. 353) |G/H| ≤ ps+1 and so

|G/H|/g(C/H) ≤ 2ps+1

(p−1)ps = 2pp−1 , a contradiction.

We deduce the following corollary from ([Su 86]4.21 p.75).

I CorollaryIf |G2| = p3, then G2 is abelian.

Page 82: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 4]) Assume G2 is non abelian, thenG2 = G′.

I Sketch proof: If G′ 6= G2, there is H C G withG′ ⊂ H ⊂ G2 and [G2 : H] = p.(C/H, G/H) is abig action ;

I C/H : W p − W = f := XΣ(F )(X ),deg(f ) = 1 + ps.

I (AutC/H)∞,1 := E is extraspecial with orderp2s+1.

I G/H is abelian and normal in E .I ([Hu 67] Satz 13.7 p. 353) |G/H| ≤ ps+1 and so

|G/H|/g(C/H) ≤ 2ps+1

(p−1)ps = 2pp−1 , a contradiction.

We deduce the following corollary from ([Su 86]4.21 p.75).

I CorollaryIf |G2| = p3, then G2 is abelian.

Page 83: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 4]) Assume G2 is non abelian, thenG2 = G′.

I Sketch proof: If G′ 6= G2, there is H C G withG′ ⊂ H ⊂ G2 and [G2 : H] = p.(C/H, G/H) is abig action ;

I C/H : W p − W = f := XΣ(F )(X ),deg(f ) = 1 + ps.

I (AutC/H)∞,1 := E is extraspecial with orderp2s+1.

I G/H is abelian and normal in E .I ([Hu 67] Satz 13.7 p. 353) |G/H| ≤ ps+1 and so

|G/H|/g(C/H) ≤ 2ps+1

(p−1)ps = 2pp−1 , a contradiction.

We deduce the following corollary from ([Su 86]4.21 p.75).

I CorollaryIf |G2| = p3, then G2 is abelian.

Page 84: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 4]) Assume G2 is non abelian, thenG2 = G′.

I Sketch proof: If G′ 6= G2, there is H C G withG′ ⊂ H ⊂ G2 and [G2 : H] = p.(C/H, G/H) is abig action ;

I C/H : W p − W = f := XΣ(F )(X ),deg(f ) = 1 + ps.

I (AutC/H)∞,1 := E is extraspecial with orderp2s+1.

I G/H is abelian and normal in E .I ([Hu 67] Satz 13.7 p. 353) |G/H| ≤ ps+1 and so

|G/H|/g(C/H) ≤ 2ps+1

(p−1)ps = 2pp−1 , a contradiction.

We deduce the following corollary from ([Su 86]4.21 p.75).

I CorollaryIf |G2| = p3, then G2 is abelian.

Page 85: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Riemann surfacesI In characteristic 0, an analogue of big actions is

given by the actions of a finite group G on acompact Riemann surface C with gC ≥ 2 suchthat |G| = 84(gC − 1) (we say that C is anHurwitz curve) ([Co 90]).

I Let us mention Klein’s quartic (G ' PSL2(F7)) ([El99]).

I The Fricke-Macbeath curves with genus 7(G ' PSL2(F8)) ([Mc] 65).

I Let C be an Hurwitz curve with genus gC . Letn > 1 and Cn the maximal unramified Galoiscover whose group is abelian with exponent n.The Galois group of Cn/C is (Z/nZ)2gC . It followsfrom the unicity of Cn that the k -automorphisms ofC have n2g prolongations to Cn. ThereforegCn − 1 = n2g(gC − 1) and n2g |Autk C| ≤ |Autk Cn|,where |Autk Cn| ≥ 84(gCn − 1) ; Cn is an Hurwitzcurve ([Mc] 61).

Page 86: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Riemann surfacesI In characteristic 0, an analogue of big actions is

given by the actions of a finite group G on acompact Riemann surface C with gC ≥ 2 suchthat |G| = 84(gC − 1) (we say that C is anHurwitz curve) ([Co 90]).

I Let us mention Klein’s quartic (G ' PSL2(F7)) ([El99]).

I The Fricke-Macbeath curves with genus 7(G ' PSL2(F8)) ([Mc] 65).

I Let C be an Hurwitz curve with genus gC . Letn > 1 and Cn the maximal unramified Galoiscover whose group is abelian with exponent n.The Galois group of Cn/C is (Z/nZ)2gC . It followsfrom the unicity of Cn that the k -automorphisms ofC have n2g prolongations to Cn. ThereforegCn − 1 = n2g(gC − 1) and n2g |Autk C| ≤ |Autk Cn|,where |Autk Cn| ≥ 84(gCn − 1) ; Cn is an Hurwitzcurve ([Mc] 61).

Page 87: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Riemann surfacesI In characteristic 0, an analogue of big actions is

given by the actions of a finite group G on acompact Riemann surface C with gC ≥ 2 suchthat |G| = 84(gC − 1) (we say that C is anHurwitz curve) ([Co 90]).

I Let us mention Klein’s quartic (G ' PSL2(F7)) ([El99]).

I The Fricke-Macbeath curves with genus 7(G ' PSL2(F8)) ([Mc] 65).

I Let C be an Hurwitz curve with genus gC . Letn > 1 and Cn the maximal unramified Galoiscover whose group is abelian with exponent n.The Galois group of Cn/C is (Z/nZ)2gC . It followsfrom the unicity of Cn that the k -automorphisms ofC have n2g prolongations to Cn. ThereforegCn − 1 = n2g(gC − 1) and n2g |Autk C| ≤ |Autk Cn|,where |Autk Cn| ≥ 84(gCn − 1) ; Cn is an Hurwitzcurve ([Mc] 61).

Page 88: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Riemann surfacesI In characteristic 0, an analogue of big actions is

given by the actions of a finite group G on acompact Riemann surface C with gC ≥ 2 suchthat |G| = 84(gC − 1) (we say that C is anHurwitz curve) ([Co 90]).

I Let us mention Klein’s quartic (G ' PSL2(F7)) ([El99]).

I The Fricke-Macbeath curves with genus 7(G ' PSL2(F8)) ([Mc] 65).

I Let C be an Hurwitz curve with genus gC . Letn > 1 and Cn the maximal unramified Galoiscover whose group is abelian with exponent n.The Galois group of Cn/C is (Z/nZ)2gC . It followsfrom the unicity of Cn that the k -automorphisms ofC have n2g prolongations to Cn. ThereforegCn − 1 = n2g(gC − 1) and n2g |Autk C| ≤ |Autk Cn|,where |Autk Cn| ≥ 84(gCn − 1) ; Cn is an Hurwitzcurve ([Mc] 61).

Page 89: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Ray class fields

I If (C, G) is a big action then C → C/G is an étalecover of the affine line whose group is a p-group ;it follows that the Hasse-Witt invariant of C iszero ; therefore, in order to adapt the previousproof to char. p > 0, one needs to acceptramification. This is done with the so called rayclass fields of function fields over finite fields.

I Let K := Fq(X ) where q = pe, S the set of finiterational places (X − v), v ∈ Fq and m ∈ N. LetK alg be an algebraic closure. Let K m

S ⊂ K alg, thebiggest abelian extension L of K with conductor≤ m∞ and such that the places in S arecompletely decomposed.

Page 90: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Ray class fields

I If (C, G) is a big action then C → C/G is an étalecover of the affine line whose group is a p-group ;it follows that the Hasse-Witt invariant of C iszero ; therefore, in order to adapt the previousproof to char. p > 0, one needs to acceptramification. This is done with the so called rayclass fields of function fields over finite fields.

I Let K := Fq(X ) where q = pe, S the set of finiterational places (X − v), v ∈ Fq and m ∈ N. LetK alg be an algebraic closure. Let K m

S ⊂ K alg, thebiggest abelian extension L of K with conductor≤ m∞ and such that the places in S arecompletely decomposed.

Page 91: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I ([La 99], [Au 00]) The constant field of KmS is Fq

and GS(m) := Gal(K mS /K ) ' (1 + TFq[[T ]])/ <

1 + T mFq[[T ]], 1 − vT , v ∈ Fq >, is a p-group.I ([Le-Ma 4]) Let Cm/Fq be the smooth projective

curve with function field KmS . The translations

X → X + v , v ∈ Fq stabilize S and ∞ ; they canbe extended to Fq-automorphisms of K m

S . In thisway, we get an action of a p-group G(m) on Cm

with 0 → GS(m) → G(m) → Fq → 0I ([Au 00]) If nm := |GS(m)|, then

gCm = 1 + nm(−1 + m/2) − (1/2)∑

0≤j≤m−1 nj ≤nm(−1 + m/2)

Page 92: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I ([La 99], [Au 00]) The constant field of KmS is Fq

and GS(m) := Gal(K mS /K ) ' (1 + TFq[[T ]])/ <

1 + T mFq[[T ]], 1 − vT , v ∈ Fq >, is a p-group.I ([Le-Ma 4]) Let Cm/Fq be the smooth projective

curve with function field KmS . The translations

X → X + v , v ∈ Fq stabilize S and ∞ ; they canbe extended to Fq-automorphisms of K m

S . In thisway, we get an action of a p-group G(m) on Cm

with 0 → GS(m) → G(m) → Fq → 0I ([Au 00]) If nm := |GS(m)|, then

gCm = 1 + nm(−1 + m/2) − (1/2)∑

0≤j≤m−1 nj ≤nm(−1 + m/2)

Page 93: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I ([La 99], [Au 00]) The constant field of KmS is Fq

and GS(m) := Gal(K mS /K ) ' (1 + TFq[[T ]])/ <

1 + T mFq[[T ]], 1 − vT , v ∈ Fq >, is a p-group.I ([Le-Ma 4]) Let Cm/Fq be the smooth projective

curve with function field KmS . The translations

X → X + v , v ∈ Fq stabilize S and ∞ ; they canbe extended to Fq-automorphisms of K m

S . In thisway, we get an action of a p-group G(m) on Cm

with 0 → GS(m) → G(m) → Fq → 0I ([Au 00]) If nm := |GS(m)|, then

gCm = 1 + nm(−1 + m/2) − (1/2)∑

0≤j≤m−1 nj ≤nm(−1 + m/2)

Page 94: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I|G(m)|

gCm≥ nmq

nm(−1+m/2) = q−1+m/2 . This is a “big

action” as soon as q−1+m/2 > 2p

p−1 (we haveG2 = GS(m))

I Let Nq := |Cm(Fq)|. Then, Nq = 1 + |G(m)|, andthe quotient |G(m)|

gCm∼ Nq

gCm.

I ([La 99]) If q = pe,m2 := pde/2e+1 + p + 1 is thesmallest conductor m such that the exponent ofGm

S is > p.I If e > 2, (Cm2 , G(m2)) is a big action and G2 is

abelian with exponent p2.

Page 95: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I|G(m)|

gCm≥ nmq

nm(−1+m/2) = q−1+m/2 . This is a “big

action” as soon as q−1+m/2 > 2p

p−1 (we haveG2 = GS(m))

I Let Nq := |Cm(Fq)|. Then, Nq = 1 + |G(m)|, andthe quotient |G(m)|

gCm∼ Nq

gCm.

I ([La 99]) If q = pe,m2 := pde/2e+1 + p + 1 is thesmallest conductor m such that the exponent ofGm

S is > p.I If e > 2, (Cm2 , G(m2)) is a big action and G2 is

abelian with exponent p2.

Page 96: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I|G(m)|

gCm≥ nmq

nm(−1+m/2) = q−1+m/2 . This is a “big

action” as soon as q−1+m/2 > 2p

p−1 (we haveG2 = GS(m))

I Let Nq := |Cm(Fq)|. Then, Nq = 1 + |G(m)|, andthe quotient |G(m)|

gCm∼ Nq

gCm.

I ([La 99]) If q = pe,m2 := pde/2e+1 + p + 1 is thesmallest conductor m such that the exponent ofGm

S is > p.I If e > 2, (Cm2 , G(m2)) is a big action and G2 is

abelian with exponent p2.

Page 97: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I|G(m)|

gCm≥ nmq

nm(−1+m/2) = q−1+m/2 . This is a “big

action” as soon as q−1+m/2 > 2p

p−1 (we haveG2 = GS(m))

I Let Nq := |Cm(Fq)|. Then, Nq = 1 + |G(m)|, andthe quotient |G(m)|

gCm∼ Nq

gCm.

I ([La 99]) If q = pe,m2 := pde/2e+1 + p + 1 is thesmallest conductor m such that the exponent ofGm

S is > p.I If e > 2, (Cm2 , G(m2)) is a big action and G2 is

abelian with exponent p2.

Page 98: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (II)From now on, k is any algebraically closed fieldand (C, G) is a big action.

I If G2 ' Z/pnZ, then n = 1 ([Le-Ma 4]).I Sketch proof: Let H = Gpn−2

2 then (C/H, G/H) is abig action, so one can assume that n = 2. ThenC → C/G2 is given by ℘(W0, W1) = (f0, f1) withf0 = XΣ(F )(X ), deg f0 = 1 + ps.

I Let v ∈ V := Z (Adf0) and P ∈ k [X ] withf0(X + v) = f0(X ) + ℘(P) alors f1(X + v)− f1(X ) =

`(v)f0(X ) + 1p (f0(X )p + P(X )p −P(X )p2

− (f0(X ) +

P(X ))p − f0(X + v)p + (f0(X + v) + P(X )p)p)

I = `(v)f0(X ) +∑

1≤i≤p−1(−1)i−1

i v iX p−i+ps+1

mod X ps+1where ` : V → Fp is a linear form.

I For G2 abelian with exponent pe, e ≥ 2, one canexpect for its p-rank a lower bound in O(log(gC)).This is the case in the preceding situation i.e.(C, G) = (Cm2 , G(m2)) ([M. Rocher, thesis inpreparation]).

Page 99: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (II)From now on, k is any algebraically closed fieldand (C, G) is a big action.

I If G2 ' Z/pnZ, then n = 1 ([Le-Ma 4]).I Sketch proof: Let H = Gpn−2

2 then (C/H, G/H) is abig action, so one can assume that n = 2. ThenC → C/G2 is given by ℘(W0, W1) = (f0, f1) withf0 = XΣ(F )(X ), deg f0 = 1 + ps.

I Let v ∈ V := Z (Adf0) and P ∈ k [X ] withf0(X + v) = f0(X ) + ℘(P) alors f1(X + v)− f1(X ) =

`(v)f0(X ) + 1p (f0(X )p + P(X )p −P(X )p2

− (f0(X ) +

P(X ))p − f0(X + v)p + (f0(X + v) + P(X )p)p)

I = `(v)f0(X ) +∑

1≤i≤p−1(−1)i−1

i v iX p−i+ps+1

mod X ps+1where ` : V → Fp is a linear form.

I For G2 abelian with exponent pe, e ≥ 2, one canexpect for its p-rank a lower bound in O(log(gC)).This is the case in the preceding situation i.e.(C, G) = (Cm2 , G(m2)) ([M. Rocher, thesis inpreparation]).

Page 100: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (II)From now on, k is any algebraically closed fieldand (C, G) is a big action.

I If G2 ' Z/pnZ, then n = 1 ([Le-Ma 4]).I Sketch proof: Let H = Gpn−2

2 then (C/H, G/H) is abig action, so one can assume that n = 2. ThenC → C/G2 is given by ℘(W0, W1) = (f0, f1) withf0 = XΣ(F )(X ), deg f0 = 1 + ps.

I Let v ∈ V := Z (Adf0) and P ∈ k [X ] withf0(X + v) = f0(X ) + ℘(P) alors f1(X + v)− f1(X ) =

`(v)f0(X ) + 1p (f0(X )p + P(X )p −P(X )p2

− (f0(X ) +

P(X ))p − f0(X + v)p + (f0(X + v) + P(X )p)p)

I = `(v)f0(X ) +∑

1≤i≤p−1(−1)i−1

i v iX p−i+ps+1

mod X ps+1where ` : V → Fp is a linear form.

I For G2 abelian with exponent pe, e ≥ 2, one canexpect for its p-rank a lower bound in O(log(gC)).This is the case in the preceding situation i.e.(C, G) = (Cm2 , G(m2)) ([M. Rocher, thesis inpreparation]).

Page 101: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (II)From now on, k is any algebraically closed fieldand (C, G) is a big action.

I If G2 ' Z/pnZ, then n = 1 ([Le-Ma 4]).I Sketch proof: Let H = Gpn−2

2 then (C/H, G/H) is abig action, so one can assume that n = 2. ThenC → C/G2 is given by ℘(W0, W1) = (f0, f1) withf0 = XΣ(F )(X ), deg f0 = 1 + ps.

I Let v ∈ V := Z (Adf0) and P ∈ k [X ] withf0(X + v) = f0(X ) + ℘(P) alors f1(X + v)− f1(X ) =

`(v)f0(X ) + 1p (f0(X )p + P(X )p −P(X )p2

− (f0(X ) +

P(X ))p − f0(X + v)p + (f0(X + v) + P(X )p)p)

I = `(v)f0(X ) +∑

1≤i≤p−1(−1)i−1

i v iX p−i+ps+1

mod X ps+1where ` : V → Fp is a linear form.

I For G2 abelian with exponent pe, e ≥ 2, one canexpect for its p-rank a lower bound in O(log(gC)).This is the case in the preceding situation i.e.(C, G) = (Cm2 , G(m2)) ([M. Rocher, thesis inpreparation]).

Page 102: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Big actions (II)From now on, k is any algebraically closed fieldand (C, G) is a big action.

I If G2 ' Z/pnZ, then n = 1 ([Le-Ma 4]).I Sketch proof: Let H = Gpn−2

2 then (C/H, G/H) is abig action, so one can assume that n = 2. ThenC → C/G2 is given by ℘(W0, W1) = (f0, f1) withf0 = XΣ(F )(X ), deg f0 = 1 + ps.

I Let v ∈ V := Z (Adf0) and P ∈ k [X ] withf0(X + v) = f0(X ) + ℘(P) alors f1(X + v)− f1(X ) =

`(v)f0(X ) + 1p (f0(X )p + P(X )p −P(X )p2

− (f0(X ) +

P(X ))p − f0(X + v)p + (f0(X + v) + P(X )p)p)

I = `(v)f0(X ) +∑

1≤i≤p−1(−1)i−1

i v iX p−i+ps+1

mod X ps+1where ` : V → Fp is a linear form.

I For G2 abelian with exponent pe, e ≥ 2, one canexpect for its p-rank a lower bound in O(log(gC)).This is the case in the preceding situation i.e.(C, G) = (Cm2 , G(m2)) ([M. Rocher, thesis inpreparation]).

Page 103: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (I)Let us assume that (C, G) is a big action.

I Let i0 with G2 = G3 = .... = Gi0 % Gi0+1. Theng(C/Gi0+1) = 1

2(|G2/Gi0+1| − 1)(i0 − 1).

I If 0 < M ≤ |G|

g2C

, then

I |Gi0+1| ≤1M

|G/Gi0+1|

g2C/Gi0+1

≤ 1M

4|G2/Gi0+1|

(|G2/Gi0+1|−1)2 .

I Theorem([Le-Ma 1]) If |G|

g2C≥ 4

(p−1)2 there is Σ(F ) ∈ k{F}

and f = cX + XΣ(F )(X ) ∈ k [X ] with C ' Cf .Moreover there are two possibilities for G:

I|G|

g2C

= 4p(p−1)2 and G = G∞,1(f ) or

I|G|

g2C

= 4(p−1)2 and G ⊂ G∞,1(f ) has index p.

I Note that the sequence pn

(pn−1)2 is decreasing and

that |Gi0+1| ∈ pN . We deduce bounds for|G2/Gi0+1|, |Gi0+1| and so for |G2|.

Page 104: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (I)Let us assume that (C, G) is a big action.

I Let i0 with G2 = G3 = .... = Gi0 % Gi0+1. Theng(C/Gi0+1) = 1

2(|G2/Gi0+1| − 1)(i0 − 1).

I If 0 < M ≤ |G|

g2C

, then

I |Gi0+1| ≤1M

|G/Gi0+1|

g2C/Gi0+1

≤ 1M

4|G2/Gi0+1|

(|G2/Gi0+1|−1)2 .

I Theorem([Le-Ma 1]) If |G|

g2C≥ 4

(p−1)2 there is Σ(F ) ∈ k{F}

and f = cX + XΣ(F )(X ) ∈ k [X ] with C ' Cf .Moreover there are two possibilities for G:

I|G|

g2C

= 4p(p−1)2 and G = G∞,1(f ) or

I|G|

g2C

= 4(p−1)2 and G ⊂ G∞,1(f ) has index p.

I Note that the sequence pn

(pn−1)2 is decreasing and

that |Gi0+1| ∈ pN . We deduce bounds for|G2/Gi0+1|, |Gi0+1| and so for |G2|.

Page 105: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (I)Let us assume that (C, G) is a big action.

I Let i0 with G2 = G3 = .... = Gi0 % Gi0+1. Theng(C/Gi0+1) = 1

2(|G2/Gi0+1| − 1)(i0 − 1).

I If 0 < M ≤ |G|

g2C

, then

I |Gi0+1| ≤1M

|G/Gi0+1|

g2C/Gi0+1

≤ 1M

4|G2/Gi0+1|

(|G2/Gi0+1|−1)2 .

I Theorem([Le-Ma 1]) If |G|

g2C≥ 4

(p−1)2 there is Σ(F ) ∈ k{F}

and f = cX + XΣ(F )(X ) ∈ k [X ] with C ' Cf .Moreover there are two possibilities for G:

I|G|

g2C

= 4p(p−1)2 and G = G∞,1(f ) or

I|G|

g2C

= 4(p−1)2 and G ⊂ G∞,1(f ) has index p.

I Note that the sequence pn

(pn−1)2 is decreasing and

that |Gi0+1| ∈ pN . We deduce bounds for|G2/Gi0+1|, |Gi0+1| and so for |G2|.

Page 106: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (I)Let us assume that (C, G) is a big action.

I Let i0 with G2 = G3 = .... = Gi0 % Gi0+1. Theng(C/Gi0+1) = 1

2(|G2/Gi0+1| − 1)(i0 − 1).

I If 0 < M ≤ |G|

g2C

, then

I |Gi0+1| ≤1M

|G/Gi0+1|

g2C/Gi0+1

≤ 1M

4|G2/Gi0+1|

(|G2/Gi0+1|−1)2 .

I Theorem([Le-Ma 1]) If |G|

g2C≥ 4

(p−1)2 there is Σ(F ) ∈ k{F}

and f = cX + XΣ(F )(X ) ∈ k [X ] with C ' Cf .Moreover there are two possibilities for G:

I|G|

g2C

= 4p(p−1)2 and G = G∞,1(f ) or

I|G|

g2C

= 4(p−1)2 and G ⊂ G∞,1(f ) has index p.

I Note that the sequence pn

(pn−1)2 is decreasing and

that |Gi0+1| ∈ pN . We deduce bounds for|G2/Gi0+1|, |Gi0+1| and so for |G2|.

Page 107: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (I)Let us assume that (C, G) is a big action.

I Let i0 with G2 = G3 = .... = Gi0 % Gi0+1. Theng(C/Gi0+1) = 1

2(|G2/Gi0+1| − 1)(i0 − 1).

I If 0 < M ≤ |G|

g2C

, then

I |Gi0+1| ≤1M

|G/Gi0+1|

g2C/Gi0+1

≤ 1M

4|G2/Gi0+1|

(|G2/Gi0+1|−1)2 .

I Theorem([Le-Ma 1]) If |G|

g2C≥ 4

(p−1)2 there is Σ(F ) ∈ k{F}

and f = cX + XΣ(F )(X ) ∈ k [X ] with C ' Cf .Moreover there are two possibilities for G:

I|G|

g2C

= 4p(p−1)2 and G = G∞,1(f ) or

I|G|

g2C

= 4(p−1)2 and G ⊂ G∞,1(f ) has index p.

I Note that the sequence pn

(pn−1)2 is decreasing and

that |Gi0+1| ∈ pN . We deduce bounds for|G2/Gi0+1|, |Gi0+1| and so for |G2|.

Page 108: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (I)Let us assume that (C, G) is a big action.

I Let i0 with G2 = G3 = .... = Gi0 % Gi0+1. Theng(C/Gi0+1) = 1

2(|G2/Gi0+1| − 1)(i0 − 1).

I If 0 < M ≤ |G|

g2C

, then

I |Gi0+1| ≤1M

|G/Gi0+1|

g2C/Gi0+1

≤ 1M

4|G2/Gi0+1|

(|G2/Gi0+1|−1)2 .

I Theorem([Le-Ma 1]) If |G|

g2C≥ 4

(p−1)2 there is Σ(F ) ∈ k{F}

and f = cX + XΣ(F )(X ) ∈ k [X ] with C ' Cf .Moreover there are two possibilities for G:

I|G|

g2C

= 4p(p−1)2 and G = G∞,1(f ) or

I|G|

g2C

= 4(p−1)2 and G ⊂ G∞,1(f ) has index p.

I Note that the sequence pn

(pn−1)2 is decreasing and

that |Gi0+1| ∈ pN . We deduce bounds for|G2/Gi0+1|, |Gi0+1| and so for |G2|.

Page 109: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (I)Let us assume that (C, G) is a big action.

I Let i0 with G2 = G3 = .... = Gi0 % Gi0+1. Theng(C/Gi0+1) = 1

2(|G2/Gi0+1| − 1)(i0 − 1).

I If 0 < M ≤ |G|

g2C

, then

I |Gi0+1| ≤1M

|G/Gi0+1|

g2C/Gi0+1

≤ 1M

4|G2/Gi0+1|

(|G2/Gi0+1|−1)2 .

I Theorem([Le-Ma 1]) If |G|

g2C≥ 4

(p−1)2 there is Σ(F ) ∈ k{F}

and f = cX + XΣ(F )(X ) ∈ k [X ] with C ' Cf .Moreover there are two possibilities for G:

I|G|

g2C

= 4p(p−1)2 and G = G∞,1(f ) or

I|G|

g2C

= 4(p−1)2 and G ⊂ G∞,1(f ) has index p.

I Note that the sequence pn

(pn−1)2 is decreasing and

that |Gi0+1| ∈ pN . We deduce bounds for|G2/Gi0+1|, |Gi0+1| and so for |G2|.

Page 110: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (II)

We still assume that (C, G) is a big action.I One can push the “classification ” of big actions

up to the condition |G|

g2C≥ 4

(p2−1)2 . Namely

I One first show that |G2| divides p3.I The condition G2 = G′

1 implies that G2 is abelian.I Applying ([Mr 71]) to the case of abelian

extensions with group Z/pZ × Z/p2Z one showsthat G2 has exponent p (we have seen above thatG2 is cyclic iff G2 = Z/pZ).

I Theorem([Le-Ma 4]) For all M > 0, the set |G|

g2C

> M, for

(C, G) a big action with G2 abelian with exponentp, is finite.

Page 111: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (II)

We still assume that (C, G) is a big action.I One can push the “classification ” of big actions

up to the condition |G|

g2C≥ 4

(p2−1)2 . Namely

I One first show that |G2| divides p3.I The condition G2 = G′

1 implies that G2 is abelian.I Applying ([Mr 71]) to the case of abelian

extensions with group Z/pZ × Z/p2Z one showsthat G2 has exponent p (we have seen above thatG2 is cyclic iff G2 = Z/pZ).

I Theorem([Le-Ma 4]) For all M > 0, the set |G|

g2C

> M, for

(C, G) a big action with G2 abelian with exponentp, is finite.

Page 112: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (II)

We still assume that (C, G) is a big action.I One can push the “classification ” of big actions

up to the condition |G|

g2C≥ 4

(p2−1)2 . Namely

I One first show that |G2| divides p3.I The condition G2 = G′

1 implies that G2 is abelian.I Applying ([Mr 71]) to the case of abelian

extensions with group Z/pZ × Z/p2Z one showsthat G2 has exponent p (we have seen above thatG2 is cyclic iff G2 = Z/pZ).

I Theorem([Le-Ma 4]) For all M > 0, the set |G|

g2C

> M, for

(C, G) a big action with G2 abelian with exponentp, is finite.

Page 113: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (II)

We still assume that (C, G) is a big action.I One can push the “classification ” of big actions

up to the condition |G|

g2C≥ 4

(p2−1)2 . Namely

I One first show that |G2| divides p3.I The condition G2 = G′

1 implies that G2 is abelian.I Applying ([Mr 71]) to the case of abelian

extensions with group Z/pZ × Z/p2Z one showsthat G2 has exponent p (we have seen above thatG2 is cyclic iff G2 = Z/pZ).

I Theorem([Le-Ma 4]) For all M > 0, the set |G|

g2C

> M, for

(C, G) a big action with G2 abelian with exponentp, is finite.

Page 114: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Maximal curves (II)

We still assume that (C, G) is a big action.I One can push the “classification ” of big actions

up to the condition |G|

g2C≥ 4

(p2−1)2 . Namely

I One first show that |G2| divides p3.I The condition G2 = G′

1 implies that G2 is abelian.I Applying ([Mr 71]) to the case of abelian

extensions with group Z/pZ × Z/p2Z one showsthat G2 has exponent p (we have seen above thatG2 is cyclic iff G2 = Z/pZ).

I Theorem([Le-Ma 4]) For all M > 0, the set |G|

g2C

> M, for

(C, G) a big action with G2 abelian with exponentp, is finite.

Page 115: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Sketch proof: We saw that |G2| and so t arebounded above. We can assume that the G2

cover is given by the fi , 1 ≤ i ≤ t withm1 ≤ m2 ≤ ... ≤ mt where mi := deg fi and insuch a way thatdeg(

1≤i≤t λi fi) ∈ {mi , 1 ≤ i ≤ t} for[λi ] ∈ Pt−1(Fp).

I If Imρ is trivial.I Then mi − 1 = pνi and ν1 ≤ ... ≤ νtI |G| = pt |V | ≤ pt+2ν1 .I gC = (p−1)

2 (∑

1≤i≤t pi−1pνi )

I M ≤ pt |V |g2 ≤ 4pt

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2

I νi − ν1 is bounded above.I

p2ν1

|V | ≤ 4pt

M(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 and so { p2ν1

|V | } is

finite.I { |G|

g2C

= 4pt |V |p−2ν1

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 } is finite.

Page 116: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Sketch proof: We saw that |G2| and so t arebounded above. We can assume that the G2

cover is given by the fi , 1 ≤ i ≤ t withm1 ≤ m2 ≤ ... ≤ mt where mi := deg fi and insuch a way thatdeg(

1≤i≤t λi fi) ∈ {mi , 1 ≤ i ≤ t} for[λi ] ∈ Pt−1(Fp).

I If Imρ is trivial.I Then mi − 1 = pνi and ν1 ≤ ... ≤ νtI |G| = pt |V | ≤ pt+2ν1 .I gC = (p−1)

2 (∑

1≤i≤t pi−1pνi )

I M ≤ pt |V |g2 ≤ 4pt

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2

I νi − ν1 is bounded above.I

p2ν1

|V | ≤ 4pt

M(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 and so { p2ν1

|V | } is

finite.I { |G|

g2C

= 4pt |V |p−2ν1

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 } is finite.

Page 117: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Sketch proof: We saw that |G2| and so t arebounded above. We can assume that the G2

cover is given by the fi , 1 ≤ i ≤ t withm1 ≤ m2 ≤ ... ≤ mt where mi := deg fi and insuch a way thatdeg(

1≤i≤t λi fi) ∈ {mi , 1 ≤ i ≤ t} for[λi ] ∈ Pt−1(Fp).

I If Imρ is trivial.I Then mi − 1 = pνi and ν1 ≤ ... ≤ νtI |G| = pt |V | ≤ pt+2ν1 .I gC = (p−1)

2 (∑

1≤i≤t pi−1pνi )

I M ≤ pt |V |g2 ≤ 4pt

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2

I νi − ν1 is bounded above.I

p2ν1

|V | ≤ 4pt

M(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 and so { p2ν1

|V | } is

finite.I { |G|

g2C

= 4pt |V |p−2ν1

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 } is finite.

Page 118: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Sketch proof: We saw that |G2| and so t arebounded above. We can assume that the G2

cover is given by the fi , 1 ≤ i ≤ t withm1 ≤ m2 ≤ ... ≤ mt where mi := deg fi and insuch a way thatdeg(

1≤i≤t λi fi) ∈ {mi , 1 ≤ i ≤ t} for[λi ] ∈ Pt−1(Fp).

I If Imρ is trivial.I Then mi − 1 = pνi and ν1 ≤ ... ≤ νtI |G| = pt |V | ≤ pt+2ν1 .I gC = (p−1)

2 (∑

1≤i≤t pi−1pνi )

I M ≤ pt |V |g2 ≤ 4pt

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2

I νi − ν1 is bounded above.I

p2ν1

|V | ≤ 4pt

M(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 and so { p2ν1

|V | } is

finite.I { |G|

g2C

= 4pt |V |p−2ν1

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 } is finite.

Page 119: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Sketch proof: We saw that |G2| and so t arebounded above. We can assume that the G2

cover is given by the fi , 1 ≤ i ≤ t withm1 ≤ m2 ≤ ... ≤ mt where mi := deg fi and insuch a way thatdeg(

1≤i≤t λi fi) ∈ {mi , 1 ≤ i ≤ t} for[λi ] ∈ Pt−1(Fp).

I If Imρ is trivial.I Then mi − 1 = pνi and ν1 ≤ ... ≤ νtI |G| = pt |V | ≤ pt+2ν1 .I gC = (p−1)

2 (∑

1≤i≤t pi−1pνi )

I M ≤ pt |V |g2 ≤ 4pt

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2

I νi − ν1 is bounded above.I

p2ν1

|V | ≤ 4pt

M(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 and so { p2ν1

|V | } is

finite.I { |G|

g2C

= 4pt |V |p−2ν1

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 } is finite.

Page 120: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Sketch proof: We saw that |G2| and so t arebounded above. We can assume that the G2

cover is given by the fi , 1 ≤ i ≤ t withm1 ≤ m2 ≤ ... ≤ mt where mi := deg fi and insuch a way thatdeg(

1≤i≤t λi fi) ∈ {mi , 1 ≤ i ≤ t} for[λi ] ∈ Pt−1(Fp).

I If Imρ is trivial.I Then mi − 1 = pνi and ν1 ≤ ... ≤ νtI |G| = pt |V | ≤ pt+2ν1 .I gC = (p−1)

2 (∑

1≤i≤t pi−1pνi )

I M ≤ pt |V |g2 ≤ 4pt

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2

I νi − ν1 is bounded above.I

p2ν1

|V | ≤ 4pt

M(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 and so { p2ν1

|V | } is

finite.I { |G|

g2C

= 4pt |V |p−2ν1

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 } is finite.

Page 121: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Sketch proof: We saw that |G2| and so t arebounded above. We can assume that the G2

cover is given by the fi , 1 ≤ i ≤ t withm1 ≤ m2 ≤ ... ≤ mt where mi := deg fi and insuch a way thatdeg(

1≤i≤t λi fi) ∈ {mi , 1 ≤ i ≤ t} for[λi ] ∈ Pt−1(Fp).

I If Imρ is trivial.I Then mi − 1 = pνi and ν1 ≤ ... ≤ νtI |G| = pt |V | ≤ pt+2ν1 .I gC = (p−1)

2 (∑

1≤i≤t pi−1pνi )

I M ≤ pt |V |g2 ≤ 4pt

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2

I νi − ν1 is bounded above.I

p2ν1

|V | ≤ 4pt

M(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 and so { p2ν1

|V | } is

finite.I { |G|

g2C

= 4pt |V |p−2ν1

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 } is finite.

Page 122: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Sketch proof: We saw that |G2| and so t arebounded above. We can assume that the G2

cover is given by the fi , 1 ≤ i ≤ t withm1 ≤ m2 ≤ ... ≤ mt where mi := deg fi and insuch a way thatdeg(

1≤i≤t λi fi) ∈ {mi , 1 ≤ i ≤ t} for[λi ] ∈ Pt−1(Fp).

I If Imρ is trivial.I Then mi − 1 = pνi and ν1 ≤ ... ≤ νtI |G| = pt |V | ≤ pt+2ν1 .I gC = (p−1)

2 (∑

1≤i≤t pi−1pνi )

I M ≤ pt |V |g2 ≤ 4pt

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2

I νi − ν1 is bounded above.I

p2ν1

|V | ≤ 4pt

M(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 and so { p2ν1

|V | } is

finite.I { |G|

g2C

= 4pt |V |p−2ν1

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 } is finite.

Page 123: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Sketch proof: We saw that |G2| and so t arebounded above. We can assume that the G2

cover is given by the fi , 1 ≤ i ≤ t withm1 ≤ m2 ≤ ... ≤ mt where mi := deg fi and insuch a way thatdeg(

1≤i≤t λi fi) ∈ {mi , 1 ≤ i ≤ t} for[λi ] ∈ Pt−1(Fp).

I If Imρ is trivial.I Then mi − 1 = pνi and ν1 ≤ ... ≤ νtI |G| = pt |V | ≤ pt+2ν1 .I gC = (p−1)

2 (∑

1≤i≤t pi−1pνi )

I M ≤ pt |V |g2 ≤ 4pt

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2

I νi − ν1 is bounded above.I

p2ν1

|V | ≤ 4pt

M(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 and so { p2ν1

|V | } is

finite.I { |G|

g2C

= 4pt |V |p−2ν1

(p−1)2(P

1≤i≤t pi−1pνi−ν1 )2 } is finite.

Page 124: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I If Imρ isn’t trivial.I There is a smallest i0 such that

fi0+1(X ) 6= cX + XΣ(F )(X ).I For v ∈ V

fi0+1(X + v) = fi0+1(X ) +∑

1≤i≤i0`i(v)fi(X )

mod ℘(k [X ])I `i is a non zero linear form on the Fp-space V .I Let W := ∩1≤i≤i0 ker `i ; |W | ≥ |V |

pi0.

I gC = (p−1)2 (

1≤i≤t pi−1(mi − 1)) ≥(p−1)

2 (pi0(mi0+1 − 1)).I

2p|W |(p−1)(mi0+1−1) ≤ 2p

p−1

I gC ≥ p−12 pi0(mi0+1 − 1) ≥ p−1

2 |V |

I M ≤ pt |V |g2 ≤ 4pt |V |

(p−1)2|V |2

I |V | is bounded above and g2C ≤ pt |V |

M is alsobounded above .

I { |G|

g2C

= |G2||V |

g2C

} is finite. ///

Page 125: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I If Imρ isn’t trivial.I There is a smallest i0 such that

fi0+1(X ) 6= cX + XΣ(F )(X ).I For v ∈ V

fi0+1(X + v) = fi0+1(X ) +∑

1≤i≤i0`i(v)fi(X )

mod ℘(k [X ])I `i is a non zero linear form on the Fp-space V .I Let W := ∩1≤i≤i0 ker `i ; |W | ≥ |V |

pi0.

I gC = (p−1)2 (

1≤i≤t pi−1(mi − 1)) ≥(p−1)

2 (pi0(mi0+1 − 1)).I

2p|W |(p−1)(mi0+1−1) ≤ 2p

p−1

I gC ≥ p−12 pi0(mi0+1 − 1) ≥ p−1

2 |V |

I M ≤ pt |V |g2 ≤ 4pt |V |

(p−1)2|V |2

I |V | is bounded above and g2C ≤ pt |V |

M is alsobounded above .

I { |G|

g2C

= |G2||V |

g2C

} is finite. ///

Page 126: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I If Imρ isn’t trivial.I There is a smallest i0 such that

fi0+1(X ) 6= cX + XΣ(F )(X ).I For v ∈ V

fi0+1(X + v) = fi0+1(X ) +∑

1≤i≤i0`i(v)fi(X )

mod ℘(k [X ])I `i is a non zero linear form on the Fp-space V .I Let W := ∩1≤i≤i0 ker `i ; |W | ≥ |V |

pi0.

I gC = (p−1)2 (

1≤i≤t pi−1(mi − 1)) ≥(p−1)

2 (pi0(mi0+1 − 1)).I

2p|W |(p−1)(mi0+1−1) ≤ 2p

p−1

I gC ≥ p−12 pi0(mi0+1 − 1) ≥ p−1

2 |V |

I M ≤ pt |V |g2 ≤ 4pt |V |

(p−1)2|V |2

I |V | is bounded above and g2C ≤ pt |V |

M is alsobounded above .

I { |G|

g2C

= |G2||V |

g2C

} is finite. ///

Page 127: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I If Imρ isn’t trivial.I There is a smallest i0 such that

fi0+1(X ) 6= cX + XΣ(F )(X ).I For v ∈ V

fi0+1(X + v) = fi0+1(X ) +∑

1≤i≤i0`i(v)fi(X )

mod ℘(k [X ])I `i is a non zero linear form on the Fp-space V .I Let W := ∩1≤i≤i0 ker `i ; |W | ≥ |V |

pi0.

I gC = (p−1)2 (

1≤i≤t pi−1(mi − 1)) ≥(p−1)

2 (pi0(mi0+1 − 1)).I

2p|W |(p−1)(mi0+1−1) ≤ 2p

p−1

I gC ≥ p−12 pi0(mi0+1 − 1) ≥ p−1

2 |V |

I M ≤ pt |V |g2 ≤ 4pt |V |

(p−1)2|V |2

I |V | is bounded above and g2C ≤ pt |V |

M is alsobounded above .

I { |G|

g2C

= |G2||V |

g2C

} is finite. ///

Page 128: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I If Imρ isn’t trivial.I There is a smallest i0 such that

fi0+1(X ) 6= cX + XΣ(F )(X ).I For v ∈ V

fi0+1(X + v) = fi0+1(X ) +∑

1≤i≤i0`i(v)fi(X )

mod ℘(k [X ])I `i is a non zero linear form on the Fp-space V .I Let W := ∩1≤i≤i0 ker `i ; |W | ≥ |V |

pi0.

I gC = (p−1)2 (

1≤i≤t pi−1(mi − 1)) ≥(p−1)

2 (pi0(mi0+1 − 1)).I

2p|W |(p−1)(mi0+1−1) ≤ 2p

p−1

I gC ≥ p−12 pi0(mi0+1 − 1) ≥ p−1

2 |V |

I M ≤ pt |V |g2 ≤ 4pt |V |

(p−1)2|V |2

I |V | is bounded above and g2C ≤ pt |V |

M is alsobounded above .

I { |G|

g2C

= |G2||V |

g2C

} is finite. ///

Page 129: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I If Imρ isn’t trivial.I There is a smallest i0 such that

fi0+1(X ) 6= cX + XΣ(F )(X ).I For v ∈ V

fi0+1(X + v) = fi0+1(X ) +∑

1≤i≤i0`i(v)fi(X )

mod ℘(k [X ])I `i is a non zero linear form on the Fp-space V .I Let W := ∩1≤i≤i0 ker `i ; |W | ≥ |V |

pi0.

I gC = (p−1)2 (

1≤i≤t pi−1(mi − 1)) ≥(p−1)

2 (pi0(mi0+1 − 1)).I

2p|W |(p−1)(mi0+1−1) ≤ 2p

p−1

I gC ≥ p−12 pi0(mi0+1 − 1) ≥ p−1

2 |V |

I M ≤ pt |V |g2 ≤ 4pt |V |

(p−1)2|V |2

I |V | is bounded above and g2C ≤ pt |V |

M is alsobounded above .

I { |G|

g2C

= |G2||V |

g2C

} is finite. ///

Page 130: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I If Imρ isn’t trivial.I There is a smallest i0 such that

fi0+1(X ) 6= cX + XΣ(F )(X ).I For v ∈ V

fi0+1(X + v) = fi0+1(X ) +∑

1≤i≤i0`i(v)fi(X )

mod ℘(k [X ])I `i is a non zero linear form on the Fp-space V .I Let W := ∩1≤i≤i0 ker `i ; |W | ≥ |V |

pi0.

I gC = (p−1)2 (

1≤i≤t pi−1(mi − 1)) ≥(p−1)

2 (pi0(mi0+1 − 1)).I

2p|W |(p−1)(mi0+1−1) ≤ 2p

p−1

I gC ≥ p−12 pi0(mi0+1 − 1) ≥ p−1

2 |V |

I M ≤ pt |V |g2 ≤ 4pt |V |

(p−1)2|V |2

I |V | is bounded above and g2C ≤ pt |V |

M is alsobounded above .

I { |G|

g2C

= |G2||V |

g2C

} is finite. ///

Page 131: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I If Imρ isn’t trivial.I There is a smallest i0 such that

fi0+1(X ) 6= cX + XΣ(F )(X ).I For v ∈ V

fi0+1(X + v) = fi0+1(X ) +∑

1≤i≤i0`i(v)fi(X )

mod ℘(k [X ])I `i is a non zero linear form on the Fp-space V .I Let W := ∩1≤i≤i0 ker `i ; |W | ≥ |V |

pi0.

I gC = (p−1)2 (

1≤i≤t pi−1(mi − 1)) ≥(p−1)

2 (pi0(mi0+1 − 1)).I

2p|W |(p−1)(mi0+1−1) ≤ 2p

p−1

I gC ≥ p−12 pi0(mi0+1 − 1) ≥ p−1

2 |V |

I M ≤ pt |V |g2 ≤ 4pt |V |

(p−1)2|V |2

I |V | is bounded above and g2C ≤ pt |V |

M is alsobounded above .

I { |G|

g2C

= |G2||V |

g2C

} is finite. ///

Page 132: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I If Imρ isn’t trivial.I There is a smallest i0 such that

fi0+1(X ) 6= cX + XΣ(F )(X ).I For v ∈ V

fi0+1(X + v) = fi0+1(X ) +∑

1≤i≤i0`i(v)fi(X )

mod ℘(k [X ])I `i is a non zero linear form on the Fp-space V .I Let W := ∩1≤i≤i0 ker `i ; |W | ≥ |V |

pi0.

I gC = (p−1)2 (

1≤i≤t pi−1(mi − 1)) ≥(p−1)

2 (pi0(mi0+1 − 1)).I

2p|W |(p−1)(mi0+1−1) ≤ 2p

p−1

I gC ≥ p−12 pi0(mi0+1 − 1) ≥ p−1

2 |V |

I M ≤ pt |V |g2 ≤ 4pt |V |

(p−1)2|V |2

I |V | is bounded above and g2C ≤ pt |V |

M is alsobounded above .

I { |G|

g2C

= |G2||V |

g2C

} is finite. ///

Page 133: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I If Imρ isn’t trivial.I There is a smallest i0 such that

fi0+1(X ) 6= cX + XΣ(F )(X ).I For v ∈ V

fi0+1(X + v) = fi0+1(X ) +∑

1≤i≤i0`i(v)fi(X )

mod ℘(k [X ])I `i is a non zero linear form on the Fp-space V .I Let W := ∩1≤i≤i0 ker `i ; |W | ≥ |V |

pi0.

I gC = (p−1)2 (

1≤i≤t pi−1(mi − 1)) ≥(p−1)

2 (pi0(mi0+1 − 1)).I

2p|W |(p−1)(mi0+1−1) ≤ 2p

p−1

I gC ≥ p−12 pi0(mi0+1 − 1) ≥ p−1

2 |V |

I M ≤ pt |V |g2 ≤ 4pt |V |

(p−1)2|V |2

I |V | is bounded above and g2C ≤ pt |V |

M is alsobounded above .

I { |G|

g2C

= |G2||V |

g2C

} is finite. ///

Page 134: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I If Imρ isn’t trivial.I There is a smallest i0 such that

fi0+1(X ) 6= cX + XΣ(F )(X ).I For v ∈ V

fi0+1(X + v) = fi0+1(X ) +∑

1≤i≤i0`i(v)fi(X )

mod ℘(k [X ])I `i is a non zero linear form on the Fp-space V .I Let W := ∩1≤i≤i0 ker `i ; |W | ≥ |V |

pi0.

I gC = (p−1)2 (

1≤i≤t pi−1(mi − 1)) ≥(p−1)

2 (pi0(mi0+1 − 1)).I

2p|W |(p−1)(mi0+1−1) ≤ 2p

p−1

I gC ≥ p−12 pi0(mi0+1 − 1) ≥ p−1

2 |V |

I M ≤ pt |V |g2 ≤ 4pt |V |

(p−1)2|V |2

I |V | is bounded above and g2C ≤ pt |V |

M is alsobounded above .

I { |G|

g2C

= |G2||V |

g2C

} is finite. ///

Page 135: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Monodromy polynomial ([Le-Ma 3])

I Let C −→ P1K birationally given by the equation:

Z p0 = f (X0) =

1≤i≤m(X0 − xi)ni ∈ R[X0],

(ni , p) = 1 and (deg f , p) = 1,v(xi − xj) = v(xi ) = 0 for i 6= j .

I f ′(Y )/f (Y ) = S1(Y )/S0(Y ), (S0(Y ), S1(Y )) = 1 ;then deg(S1(Y )) = m − 1 and deg(S0(Y )) = m .

I f (X + Y ) = f (Y )((1 + a1(Y )X + ... + ar (Y )X r )p −∑

r+1≤i≤n Ai(Y )X i), où r + 1 = [n/p],ai(Y ), Ai(Y ) ∈ K (Y ).

I There is a unique α such that r < pα < n < pα+1

I There is T (Y ) ∈ R[Y ] with

Apα(Y ) = −(

1p

pα−1

)

p.S1(Y )pα

+pT (Y )S0(Y )pα .

I L(Y ) := S1(Y )pα

+ pT (Y ). This is a polynomial ofdegree pα(m − 1) which is called the monodromypolynomial of f (Y ).

Page 136: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Monodromy polynomial ([Le-Ma 3])

I Let C −→ P1K birationally given by the equation:

Z p0 = f (X0) =

1≤i≤m(X0 − xi)ni ∈ R[X0],

(ni , p) = 1 and (deg f , p) = 1,v(xi − xj) = v(xi ) = 0 for i 6= j .

I f ′(Y )/f (Y ) = S1(Y )/S0(Y ), (S0(Y ), S1(Y )) = 1 ;then deg(S1(Y )) = m − 1 and deg(S0(Y )) = m .

I f (X + Y ) = f (Y )((1 + a1(Y )X + ... + ar (Y )X r )p −∑

r+1≤i≤n Ai(Y )X i), où r + 1 = [n/p],ai(Y ), Ai(Y ) ∈ K (Y ).

I There is a unique α such that r < pα < n < pα+1

I There is T (Y ) ∈ R[Y ] with

Apα(Y ) = −(

1p

pα−1

)

p.S1(Y )pα

+pT (Y )S0(Y )pα .

I L(Y ) := S1(Y )pα

+ pT (Y ). This is a polynomial ofdegree pα(m − 1) which is called the monodromypolynomial of f (Y ).

Page 137: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Monodromy polynomial ([Le-Ma 3])

I Let C −→ P1K birationally given by the equation:

Z p0 = f (X0) =

1≤i≤m(X0 − xi)ni ∈ R[X0],

(ni , p) = 1 and (deg f , p) = 1,v(xi − xj) = v(xi ) = 0 for i 6= j .

I f ′(Y )/f (Y ) = S1(Y )/S0(Y ), (S0(Y ), S1(Y )) = 1 ;then deg(S1(Y )) = m − 1 and deg(S0(Y )) = m .

I f (X + Y ) = f (Y )((1 + a1(Y )X + ... + ar (Y )X r )p −∑

r+1≤i≤n Ai(Y )X i), où r + 1 = [n/p],ai(Y ), Ai(Y ) ∈ K (Y ).

I There is a unique α such that r < pα < n < pα+1

I There is T (Y ) ∈ R[Y ] with

Apα(Y ) = −(

1p

pα−1

)

p.S1(Y )pα

+pT (Y )S0(Y )pα .

I L(Y ) := S1(Y )pα

+ pT (Y ). This is a polynomial ofdegree pα(m − 1) which is called the monodromypolynomial of f (Y ).

Page 138: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Monodromy polynomial ([Le-Ma 3])

I Let C −→ P1K birationally given by the equation:

Z p0 = f (X0) =

1≤i≤m(X0 − xi)ni ∈ R[X0],

(ni , p) = 1 and (deg f , p) = 1,v(xi − xj) = v(xi ) = 0 for i 6= j .

I f ′(Y )/f (Y ) = S1(Y )/S0(Y ), (S0(Y ), S1(Y )) = 1 ;then deg(S1(Y )) = m − 1 and deg(S0(Y )) = m .

I f (X + Y ) = f (Y )((1 + a1(Y )X + ... + ar (Y )X r )p −∑

r+1≤i≤n Ai(Y )X i), où r + 1 = [n/p],ai(Y ), Ai(Y ) ∈ K (Y ).

I There is a unique α such that r < pα < n < pα+1

I There is T (Y ) ∈ R[Y ] with

Apα(Y ) = −(

1p

pα−1

)

p.S1(Y )pα

+pT (Y )S0(Y )pα .

I L(Y ) := S1(Y )pα

+ pT (Y ). This is a polynomial ofdegree pα(m − 1) which is called the monodromypolynomial of f (Y ).

Page 139: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Monodromy polynomial ([Le-Ma 3])

I Let C −→ P1K birationally given by the equation:

Z p0 = f (X0) =

1≤i≤m(X0 − xi)ni ∈ R[X0],

(ni , p) = 1 and (deg f , p) = 1,v(xi − xj) = v(xi ) = 0 for i 6= j .

I f ′(Y )/f (Y ) = S1(Y )/S0(Y ), (S0(Y ), S1(Y )) = 1 ;then deg(S1(Y )) = m − 1 and deg(S0(Y )) = m .

I f (X + Y ) = f (Y )((1 + a1(Y )X + ... + ar (Y )X r )p −∑

r+1≤i≤n Ai(Y )X i), où r + 1 = [n/p],ai(Y ), Ai(Y ) ∈ K (Y ).

I There is a unique α such that r < pα < n < pα+1

I There is T (Y ) ∈ R[Y ] with

Apα(Y ) = −(

1p

pα−1

)

p.S1(Y )pα

+pT (Y )S0(Y )pα .

I L(Y ) := S1(Y )pα

+ pT (Y ). This is a polynomial ofdegree pα(m − 1) which is called the monodromypolynomial of f (Y ).

Page 140: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Monodromy polynomial ([Le-Ma 3])

I Let C −→ P1K birationally given by the equation:

Z p0 = f (X0) =

1≤i≤m(X0 − xi)ni ∈ R[X0],

(ni , p) = 1 and (deg f , p) = 1,v(xi − xj) = v(xi ) = 0 for i 6= j .

I f ′(Y )/f (Y ) = S1(Y )/S0(Y ), (S0(Y ), S1(Y )) = 1 ;then deg(S1(Y )) = m − 1 and deg(S0(Y )) = m .

I f (X + Y ) = f (Y )((1 + a1(Y )X + ... + ar (Y )X r )p −∑

r+1≤i≤n Ai(Y )X i), où r + 1 = [n/p],ai(Y ), Ai(Y ) ∈ K (Y ).

I There is a unique α such that r < pα < n < pα+1

I There is T (Y ) ∈ R[Y ] with

Apα(Y ) = −(

1p

pα−1

)

p.S1(Y )pα

+pT (Y )S0(Y )pα .

I L(Y ) := S1(Y )pα

+ pT (Y ). This is a polynomial ofdegree pα(m − 1) which is called the monodromypolynomial of f (Y ).

Page 141: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Special fiber of the easy model

We mean the R-model CR defined byZ p

0 = f (X0) =∏

1≤i≤m(X0 − xi)ni ∈ R[X0] (cf. fig 1).

FIG.: CR ⊗R k −→ P1k with singularities and branch locus

Page 142: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 3]) The components with genus > 0 ofthe marked stable model of C correspondbijectively to the Gauss valuations vXj

withρjXj = X0 − yj , where yj is a zero of themonodromy polynomial L(Y )

I ρj ∈ Ralg satisfies

v(ρj ) = max{1i v

(

λp

Ai (yj )

)

for r + 1 ≤ i ≤ n}.

I The dual graph of the special fiber of the markedstable model of C is an oriented tree whose endsare in bijection with the components of genus > 0.

Page 143: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 3]) The components with genus > 0 ofthe marked stable model of C correspondbijectively to the Gauss valuations vXj

withρjXj = X0 − yj , where yj is a zero of themonodromy polynomial L(Y )

I ρj ∈ Ralg satisfies

v(ρj ) = max{1i v

(

λp

Ai (yj )

)

for r + 1 ≤ i ≤ n}.

I The dual graph of the special fiber of the markedstable model of C is an oriented tree whose endsare in bijection with the components of genus > 0.

Page 144: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I Theorem([Le-Ma 3]) The components with genus > 0 ofthe marked stable model of C correspondbijectively to the Gauss valuations vXj

withρjXj = X0 − yj , where yj is a zero of themonodromy polynomial L(Y )

I ρj ∈ Ralg satisfies

v(ρj ) = max{1i v

(

λp

Ai (yj )

)

for r + 1 ≤ i ≤ n}.

I The dual graph of the special fiber of the markedstable model of C is an oriented tree whose endsare in bijection with the components of genus > 0.

Page 145: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Potentially good reduction with m = 1 + ps

Theorem([Le-Ma 3])

I p > 2, q = pn, n ≥ 1, K = Qurp (pp/(q+1)) and

C −→ P1K is birationally defined by the equation

Z p0 = f (X0) = 1 + pp/(q+1)X q

0 + X q+10 .

I Then, C has potentially good reduction and L(Y )is irreducible over K .

I The monodromy L/K is the extension of thedecomposition field of L(Y ) obtained by adjoiningthe p-roots f (y)1/p , for y describing the zeroes ofL(Y ).

I The monodromy group is the extraspecial groupwith exponent p2 and order pq2 (which is maximalfor this conductor).

Page 146: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Potentially good reduction with m = 1 + ps

Theorem([Le-Ma 3])

I p > 2, q = pn, n ≥ 1, K = Qurp (pp/(q+1)) and

C −→ P1K is birationally defined by the equation

Z p0 = f (X0) = 1 + pp/(q+1)X q

0 + X q+10 .

I Then, C has potentially good reduction and L(Y )is irreducible over K .

I The monodromy L/K is the extension of thedecomposition field of L(Y ) obtained by adjoiningthe p-roots f (y)1/p , for y describing the zeroes ofL(Y ).

I The monodromy group is the extraspecial groupwith exponent p2 and order pq2 (which is maximalfor this conductor).

Page 147: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Potentially good reduction with m = 1 + ps

Theorem([Le-Ma 3])

I p > 2, q = pn, n ≥ 1, K = Qurp (pp/(q+1)) and

C −→ P1K is birationally defined by the equation

Z p0 = f (X0) = 1 + pp/(q+1)X q

0 + X q+10 .

I Then, C has potentially good reduction and L(Y )is irreducible over K .

I The monodromy L/K is the extension of thedecomposition field of L(Y ) obtained by adjoiningthe p-roots f (y)1/p , for y describing the zeroes ofL(Y ).

I The monodromy group is the extraspecial groupwith exponent p2 and order pq2 (which is maximalfor this conductor).

Page 148: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Potentially good reduction with m = 1 + ps

Theorem([Le-Ma 3])

I p > 2, q = pn, n ≥ 1, K = Qurp (pp/(q+1)) and

C −→ P1K is birationally defined by the equation

Z p0 = f (X0) = 1 + pp/(q+1)X q

0 + X q+10 .

I Then, C has potentially good reduction and L(Y )is irreducible over K .

I The monodromy L/K is the extension of thedecomposition field of L(Y ) obtained by adjoiningthe p-roots f (y)1/p , for y describing the zeroes ofL(Y ).

I The monodromy group is the extraspecial groupwith exponent p2 and order pq2 (which is maximalfor this conductor).

Page 149: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Curves of genus 2 ([Le-Ma 3])

I Case p = 2 and m = 5 ( i.e. curves with genus 2over a 2-adic field ⊂ Qtame

2 ).I There are 3 types of degeneration for the marked

stable model.I

genus 1curves

genus 1curves

genus 2curveP1

k

P1k

Type 1Gal(K ′/K )w ↪→ Q8 × Q8 Gal(K ′/K )w ↪→ (Q8 × Q8) o Z/2Z Gal(K ′/K )w ↪→ Q8 ∗ D8

original component

Type 2

original componentP1

k original componentP1

k

Type 3

Page 150: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Curves of genus 2 ([Le-Ma 3])

I Case p = 2 and m = 5 ( i.e. curves with genus 2over a 2-adic field ⊂ Qtame

2 ).I There are 3 types of degeneration for the marked

stable model.I

genus 1curves

genus 1curves

genus 2curveP1

k

P1k

Type 1Gal(K ′/K )w ↪→ Q8 × Q8 Gal(K ′/K )w ↪→ (Q8 × Q8) o Z/2Z Gal(K ′/K )w ↪→ Q8 ∗ D8

original component

Type 2

original componentP1

k original componentP1

k

Type 3

Page 151: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

Curves of genus 2 ([Le-Ma 3])

I Case p = 2 and m = 5 ( i.e. curves with genus 2over a 2-adic field ⊂ Qtame

2 ).I There are 3 types of degeneration for the marked

stable model.I

genus 1curves

genus 1curves

genus 2curveP1

k

P1k

Type 1Gal(K ′/K )w ↪→ Q8 × Q8 Gal(K ′/K )w ↪→ (Q8 × Q8) o Z/2Z Gal(K ′/K )w ↪→ Q8 ∗ D8

original component

Type 2

original componentP1

k original componentP1

k

Type 3

Page 152: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I C −→ P1K is birationally defined by the equation

Z p0 = f (X0) with

f (X0) = 1 + b2X 20 + b3X 3

0 + b4X 40 + X 5

0 ∈ R[X0].I Now, we see that the monodromy can be maximal

for the 3 types of degeneration.

I a) f (X0) = 1 + 23/5X 20 + X 3

0 + 22/5X 40 + X 5

0 andK = Qur

2 (21/15) ;I C has a marked stable model of type 1.I The maximal monodromy group is ' Q8 × Q8.

Page 153: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I C −→ P1K is birationally defined by the equation

Z p0 = f (X0) with

f (X0) = 1 + b2X 20 + b3X 3

0 + b4X 40 + X 5

0 ∈ R[X0].I Now, we see that the monodromy can be maximal

for the 3 types of degeneration.

I a) f (X0) = 1 + 23/5X 20 + X 3

0 + 22/5X 40 + X 5

0 andK = Qur

2 (21/15) ;I C has a marked stable model of type 1.I The maximal monodromy group is ' Q8 × Q8.

Page 154: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I C −→ P1K is birationally defined by the equation

Z p0 = f (X0) with

f (X0) = 1 + b2X 20 + b3X 3

0 + b4X 40 + X 5

0 ∈ R[X0].I Now, we see that the monodromy can be maximal

for the 3 types of degeneration.

I a) f (X0) = 1 + 23/5X 20 + X 3

0 + 22/5X 40 + X 5

0 andK = Qur

2 (21/15) ;I C has a marked stable model of type 1.I The maximal monodromy group is ' Q8 × Q8.

Page 155: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I C −→ P1K is birationally defined by the equation

Z p0 = f (X0) with

f (X0) = 1 + b2X 20 + b3X 3

0 + b4X 40 + X 5

0 ∈ R[X0].I Now, we see that the monodromy can be maximal

for the 3 types of degeneration.

I a) f (X0) = 1 + 23/5X 20 + X 3

0 + 22/5X 40 + X 5

0 andK = Qur

2 (21/15) ;I C has a marked stable model of type 1.I The maximal monodromy group is ' Q8 × Q8.

Page 156: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I C −→ P1K is birationally defined by the equation

Z p0 = f (X0) with

f (X0) = 1 + b2X 20 + b3X 3

0 + b4X 40 + X 5

0 ∈ R[X0].I Now, we see that the monodromy can be maximal

for the 3 types of degeneration.

I a) f (X0) = 1 + 23/5X 20 + X 3

0 + 22/5X 40 + X 5

0 andK = Qur

2 (21/15) ;I C has a marked stable model of type 1.I The maximal monodromy group is ' Q8 × Q8.

Page 157: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I b) Let K = Qur2 (a) with a9 = 2 and

f (X0) = 1 + a3X 20 + a6X 3

0 + X 50 .

I C has a marked stable model of type 2.I The maximal monodromy group is

' (Q8 × Q8) o Z/2Z, where Z/2Z exchanges the2 factors.

I c) K = Qur2 and . f (X0) = 1 + X 4

0 + X 50 .

I C has potentially good reduction (i.e. is of type 3)I The maximal monodromy group is ' Q8 ∗ D8.

Page 158: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I b) Let K = Qur2 (a) with a9 = 2 and

f (X0) = 1 + a3X 20 + a6X 3

0 + X 50 .

I C has a marked stable model of type 2.I The maximal monodromy group is

' (Q8 × Q8) o Z/2Z, where Z/2Z exchanges the2 factors.

I c) K = Qur2 and . f (X0) = 1 + X 4

0 + X 50 .

I C has potentially good reduction (i.e. is of type 3)I The maximal monodromy group is ' Q8 ∗ D8.

Page 159: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I b) Let K = Qur2 (a) with a9 = 2 and

f (X0) = 1 + a3X 20 + a6X 3

0 + X 50 .

I C has a marked stable model of type 2.I The maximal monodromy group is

' (Q8 × Q8) o Z/2Z, where Z/2Z exchanges the2 factors.

I c) K = Qur2 and . f (X0) = 1 + X 4

0 + X 50 .

I C has potentially good reduction (i.e. is of type 3)I The maximal monodromy group is ' Q8 ∗ D8.

Page 160: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I b) Let K = Qur2 (a) with a9 = 2 and

f (X0) = 1 + a3X 20 + a6X 3

0 + X 50 .

I C has a marked stable model of type 2.I The maximal monodromy group is

' (Q8 × Q8) o Z/2Z, where Z/2Z exchanges the2 factors.

I c) K = Qur2 and . f (X0) = 1 + X 4

0 + X 50 .

I C has potentially good reduction (i.e. is of type 3)I The maximal monodromy group is ' Q8 ∗ D8.

Page 161: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I b) Let K = Qur2 (a) with a9 = 2 and

f (X0) = 1 + a3X 20 + a6X 3

0 + X 50 .

I C has a marked stable model of type 2.I The maximal monodromy group is

' (Q8 × Q8) o Z/2Z, where Z/2Z exchanges the2 factors.

I c) K = Qur2 and . f (X0) = 1 + X 4

0 + X 50 .

I C has potentially good reduction (i.e. is of type 3)I The maximal monodromy group is ' Q8 ∗ D8.

Page 162: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

I b) Let K = Qur2 (a) with a9 = 2 and

f (X0) = 1 + a3X 20 + a6X 3

0 + X 50 .

I C has a marked stable model of type 2.I The maximal monodromy group is

' (Q8 × Q8) o Z/2Z, where Z/2Z exchanges the2 factors.

I c) K = Qur2 and . f (X0) = 1 + X 4

0 + X 50 .

I C has potentially good reduction (i.e. is of type 3)I The maximal monodromy group is ' Q8 ∗ D8.

Page 163: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

R. Auer, Ray class fields of global function fieldswith many rational places, Acta Arith. 95 (2000),no. 2, 97–122.

M. Conder, Hurwitz groups: a brief survey, Bull.Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 359–370.

N. Elkies, The Klein quartic in number theory, Theeightfold way, 51–101, Math. Sci. Res. Inst. Publ.,35, Cambridge Univ. Press, Cambridge, 1999.

K. Lauter, A formula for constructing curves overfinite fields with many rational points, J. NumberTheory 74 (1999), no. 1, 56–72.

C. Lehr, M. Matignon, Automorphism groups forp-cyclic covers of the affine line, Compos. Math.141 (2005), no. 5, 1213–1237.

Page 164: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

C. Lehr, M. Matignon,Automorphisms of curvesand stable reduction, in Problems from theworkshop on "Automorphisms of Curves" (Leiden,August, 2004), edited by G. Cornelissen andF.Oort, Rend. Sem. Math. Univ. Padova. Vol. 113(2005), 151-158.

C. Lehr, M. Matignon, Wild monodromy andautomorphisms of curves , Duke math. J. àparaître.

C. Lehr, M. Matignon, Curves with a big p-groupaction, En préparation.

A. M. Macbeath, On a theorem of Hurwitz, Proc.Glasgow Math. Assoc. 5 1961 90–96 (1961).

A. M. Macbeath, On a curve of genus 7, Proc.London Math. Soc. (3) 15 1965 527–542.

Page 165: Automorphisms and monodromy - u-bordeaux.frmmatigno/chuoslides.pdfAutomorphisms C. LEHR, M. MATIGNON Plan Introduction Monodromy and automorphism groups Automorphism groups Covers

Automorphisms

C. LEHR , M. MATIGNON

Plan

IntroductionMonodromy and automorphism groups

Automorphism groupsCovers of the affine lineStructure of G∞,1(f )Bounds for |G∞,1(f )|Characterization of G∞,1(f )

Actions of p-groupsNakajima conditionMore about G2Riemann surfacesRay class fieldsBig actionsMaximal curves

MonodromyMarked stable modelPotentially good reductionGenus 2

Références

M. Marshall, Ramification groups of abelian localfield extensions, Canad. J. Math. 23 (1971)271–281.

S. Nakajima, p-ranks and automorphism groups ofalgebraic curves, Trans. Amer. Math. Soc. 303,595-607 (1987).

M. Raynaud, p-groupes et réduction semi-stabledes courbes, The Grothendieck Festschrift, Vol.3,Basel-Boston-Berlin: Birkhäuser (1990).

B. Singh, On the group of automorphisms offunction field of genus at least two, J. Pure Appl.Algebra 4 (1974), 205–229.

H. Stichtenoth, Über die Automorphismengruppeeines algebraischen Funktionenkörpers vonPrimzahlcharakteristik. I, II. Arch. Math. 24 (1973)527–544 , 615–631.

M. Suzuki, Group theory II, Grundlehren derMathematischen Wissenschaften 248.Springer-Verlag, New York, 1986.