Automatic control theory.ppt

Embed Size (px)

Citation preview

  • 7/27/2019 Automatic control theory.ppt

    1/53

    Automatic control theory

    A Courseused for analyzing and

    designing a automatic control system

  • 7/27/2019 Automatic control theory.ppt

    2/53

    Chapter 1 I ntroduction

    Figure 1.1

    * Operating principle

    * Feedback control

    1) A water-level control system

    21 centuryinformation age, cybernetics(control theory), system

    approach and information theory , three science theory mainstay(supports)in 21 century.

    1.1 Automatic control

    A machine(or system) work by machine-self, not by manual operation.

    1.2 Automatic control systems

    1.2.1 examples

  • 7/27/2019 Automatic control theory.ppt

    3/53

    Chapter 1 I ntroduction

    Wat er exi t

    wat er

    ent rance

    f l oat

    l ever

    Fi gure 1. 2

    * Operating

    principle* Feedback

    control

    2) A temperature Control system(shown in Fig.1.3)

    M

    +

    e

    ua=k( u

    r- u

    f)

    ur

    uf

    ampl i f i er

    t hermo

    met er

    Gear

    assembl y

    cont ai ner

    Fi gure 1. 3

    * Operating principle

    * Feedback

    control(error)

    Another example of the water-level

    control is shown in figure 1.2.

  • 7/27/2019 Automatic control theory.ppt

    4/53

    Chapter 1 I ntroduction

    3) A DC-Motor control system

    M

    M

    +

    -

    +

    r egul at or

    t r i gger

    rect i f i er

    DC

    mot or

    t echomet er

    l oad

    e

    Uf( Feedback)

    ur

    Fi g. 1. 4

    ua

    Uk=k( u

    r- u

    f)

    * Principle

    * Feedback control(error)

  • 7/27/2019 Automatic control theory.ppt

    5/53

    Chapter 1 I ntroduction

    4) A servo (following) control system

    ser vopot ent i omet er

    M

    +

    -

    I nput

    Tr

    out put

    Tc

    ser vomechani sm

    ser vo mot or

    ser vomodul at or

    l oad

    * principle

    * feedback(error)

    Fig. 1.5

  • 7/27/2019 Automatic control theory.ppt

    6/53

    Chapter 1 I ntroduction

    * principle

    * feedback(error)

    gover nment

    ( Fami l y pl anni ng commi t t ee)

    census

    soci et y

    excess

    procreat e

    Desi re

    popul at i on popul at i on+

    - Pol i cy orstatutes

    Fig. 1.6

    5) A feedback control system model of the family planning

    (similar to the social, economic, and political realm(sphere or field))

  • 7/27/2019 Automatic control theory.ppt

    7/53

    Chapter 1 I ntroduction

    x2

    x3

    Si gnal

    ( var i abl e)xxx

    Component s

    ( devi ces)

    +

    -

    +x1 eAdders ( compar i son)

    e=x1+x

    3- x

    2

    x

    Fig. 1.7

    Example:

    1.2.2 block diagram of control systems

    The block diagram description for a control system :Convenience

  • 7/27/2019 Automatic control theory.ppt

    8/53

    Chapter 1 I ntroduction

    amplifier Motor Gearing Valve

    Actuator

    Water

    container

    Processcontroller

    Float

    measurement

    (Sensor)

    Error

    Feedback

    signal

    resistance comparator

    Desiredwater level

    Input

    Actual

    water level

    Output

    Fig. 1.8

    For the Fig.1.1, The

    water level control

    system:

    Figure 1.1

  • 7/27/2019 Automatic control theory.ppt

    9/53

    Chapter 1 I ntroduction

    For the Fig. 1.4, The DC-Motor control system

    Desi red

    rot ate speedn

    Regul at or Tri gger Rect i f i er DCmot or

    Techomet er

    Actuator

    Processcont rol l er

    measurement ( Sensor)

    comparat or

    Act ual

    rot ate speedn

    Error

    Feedback si gnal

    Reference

    i nput ur

    Output n

    Fig. 1.9

    auk

    ua

    uf

    e

  • 7/27/2019 Automatic control theory.ppt

    10/53

    Chapter 1 I ntroduction

    1.2.3 Fundamental structure of control systems

    1) Open loop control systems

    Cont rol l er Act uat or Process

    Di st urbance

    ( Noi se)

    I nput r(t)

    Ref erence

    desi red out put

    Out put c( t )

    ( act ual out put )

    Cont rol

    si gnal

    Act uat i ng

    si gnal

    uk

    uact

    Fi g. 1. 10

    Features: Only there is a forward action from the input to the

    output.

  • 7/27/2019 Automatic control theory.ppt

    11/53

    Chapter 1 I ntroduction

    2) Closed loop (feedback) control systems

    Cont rol l er Act uat or Process

    Di sturbance

    ( Noi se)

    I nput r( t )

    Ref erence

    desi red out put

    Out put c( t )

    ( act ual out put )

    Cont rol

    si gnal

    Actuat i ng

    si gnal

    uk

    uact

    Fi g. 1. 11

    measur ementFeedback si gnal b( t )

    +-

    ( +)

    e( t ) =

    r ( t ) - b( t )

    Features:

    1) measuring the output (controlled variable) . 2) Feedback.

    not only there is a forward action , also a backward actionbetween the output and the input (measuring the output and

    comparing it with the input).

  • 7/27/2019 Automatic control theory.ppt

    12/53

    Chapter 1 I ntroduction

    Notes: 1) Positive feedback; 2) Negative feedbackFeedback.

    1.3 types of control systems

    1) linear systems versus Nonlinear systems.

    2) Time-invariant systems vs. Time-varying systems.

    3) Continuous systems vs. Discrete (data) systems.

    4) Constant input modulation vs. Servo control systems.

    1.4 Basic performance requirements of control systems

    1) Stability.

    2) Accuracy (steady state performance).

    3) Rapidness (instantaneous characteristic).

  • 7/27/2019 Automatic control theory.ppt

    13/53

    Chapter 1 I ntroduction

    1.5 An outline of this text

    1) Three parts:mathematical modeling; performance analysis;

    compensation (design).

    2) Three types of systems:l inear continuous; nonlinear continuous; l inear discrete.

    3) three performances:stability, accuracy, rapidness.

    in all: to discuss the theoretical approaches of the control

    system analysis and design.

    1.6 Control system design process

    shown in F ig.1.12

  • 7/27/2019 Automatic control theory.ppt

    14/53

    Chapter 1 I ntroduction

    1. Establish control goals

    2. Identify the variables to control

    3. Write the specifications

    for the variables

    4. Establish the system configuration

    Identify the actuator

    5.Obtain a model of the process,

    the actuator and the sensor

    6.Describe a controller and select

    key parameters to be adjusted

    7. Optimize the parameters and

    analyze the performance

    Performance does not

    Meet the specifications

    Finalize the design

    Performance

    meet the

    specifications

    Fig.1.12

  • 7/27/2019 Automatic control theory.ppt

    15/53

    Chapter 1 I ntroduction

    1.7 Sequential design example: disk drive read system

    Actuator

    motor

    Arm

    SpindleTrack a

    Track b

    Head slider

    Rotation

    of arm Disk

    Fig.1.13 A disk drive read system

    A disk drive read system Shown in F ig.1.13

    Configuration Principle

  • 7/27/2019 Automatic control theory.ppt

    16/53

    Chapter 1 I ntroduction

    Sequential design:

    here we are concerned with the design steps 1,2,3, and 4 of F ig.1.12.

    (1) Identify the control goal:

    (2) Identify the variables to control:

    Position the reader head to read the date stored on a track on the disk.

    the position of the read head.

    (3) Write the initial specification for the variables:

    The disk rotates at a speed of between 1800 and 7200 rpm and the read head

    flies above the disk at a distance of less than 100 nm.

    The initial specification for the position accuracy to be controlled:

    1 m (leas than 1 m ) and to be able to move the head from track a to track b

    within 50 ms, if possible.

  • 7/27/2019 Automatic control theory.ppt

    17/53

    Chapter 1 I ntroduction

    (4) Establish an initial system configuration:It is obvious : we should propose a closed loop system, not

    a open loop system.

    An initial system configuration can be shown as in Fig.1.13.

    Control

    device

    Actuator

    motor

    Read

    arm

    sensor

    Desiredhead

    position

    error Actualhead

    position

    Fig.1.13 system configuration for disk drive

    We will consider the design of the disk dr ive fur ther in the after -

    mentioned chapters.

  • 7/27/2019 Automatic control theory.ppt

    18/53

    Chapter 1 I ntroduction

    Exercise: E1.6, P1.3, P1.13

  • 7/27/2019 Automatic control theory.ppt

    19/53

    Chapter 2 mathematical models of systems

    2.1 Introduction

    Controller Actuator Process

    Disturbance

    Input r(t)

    desired output

    temperature

    Output T(t)

    actual

    output

    temperature

    Control

    signal

    Actuating

    signal

    uk uac

    Fig. 2.1

    temperature

    measurement

    Feedback signalb(t)

    +

    -()

    e(t)=

    r(t)-b(t)

    1) Easy to discuss the full possible types of the control systemsin terms of thesystems mathematical characteristics.

    2) The basisanalyzing or designing the control systems.

    For example, we design a temperature Control system :

    The keydesigning the controller how produce uk.

    2.1.1 Why

  • 7/27/2019 Automatic control theory.ppt

    20/53

    Chapter 2 mathematical models of systems

    2.1.3 How get1) theoretical approaches 2) experimental approaches

    3) discrimination learning

    2.1.2 What is Mathematical models of the control systemsthe mathematical

    relationships between the systems variables.

    Different characteristic of the processdifferentuk:

    T(t)

    uk

    T1

    T2

    uk12uk11

    uk21

    For T1

    12

    11

    k

    k

    u

    u

    For T1

    22

    21

    k

    k

    u

    u

  • 7/27/2019 Automatic control theory.ppt

    21/53

    Chapter 2 mathematical models of systems

    2.2.1 Examples

    2.2 Input-output description of the physical systemsdifferential

    equations

    2.1.4 types

    1) Differential equations2) Transfer function

    3) Block diagramsignal flow graph

    4) State variables(modern control theory)

    The input-output descriptiondescription of the mathematical

    relationship between the output variable and the input variable of the

    physical systems.

  • 7/27/2019 Automatic control theory.ppt

    22/53

    Chapter 2 mathematical models of systems

    ur

    uc

    R L

    C

    i

    define: input ur output ucwe have

    rccc

    crc

    uu

    dt

    duRC

    dt

    udLC

    dt

    duCiuudt

    diLRi

    2

    2

    rccc uu

    dt

    duT

    dt

    udTTT

    R

    LTRCmake 12

    2

    2121:

    Example 2.1 : A passive circuit

  • 7/27/2019 Automatic control theory.ppt

    23/53

    Chapter 2 mathematical models of systems

    Example 2.2 : A mechanism

    y

    k

    f

    F

    m

    Define: input Foutput y. We have:

    Fkydt

    dyf

    dt

    ydm

    td

    ydm

    dt

    dyfkyF

    2

    2

    2

    2

    Fk

    ydt

    dyT

    dt

    ydTThavewe

    Tf

    m

    Tk

    f

    makeweIf

    1:

    :

    12

    2

    21

    2,1

    Compare with example 2.1: ucy; urF analogous systems

  • 7/27/2019 Automatic control theory.ppt

    24/53

    Chapter 2 mathematical models of systems

    Example 2.3 : An operational amplifier (Op-amp) circuit

    ur uc

    R1

    C

    R2

    R4

    R1

    R3

    i3

    i1

    i2

    +-

    Input ur output uc

    )3........(....................).........(1

    )2...(........................................

    )1)......(()(1

    223

    3

    112

    2342333

    iRuR

    i

    R

    uii

    iiRdtiiC

    iRu

    c

    r

    c

    (2)(3); (2)(1); (3)(1)

    r

    r

    CRRR

    RR

    R

    RR

    c

    c

    CR udt

    du

    udt

    du

    )( 432

    32

    4 1

    32

    )(:

    )(;;: 432

    32

    1

    324

    r

    r

    c

    c

    udt

    du

    kudt

    du

    Thavewe

    CRRR

    RRk

    R

    RRTCRmake

  • 7/27/2019 Automatic control theory.ppt

    25/53

    Chapter 2 mathematical models of systemsExample 2.4 : A DC motor

    ua

    w1

    Ra La

    ia

    M

    w3

    w2 ( J

    3, f

    3)

    ( J1

    , f1

    )

    ( J2

    , f2

    )

    Mf

    i 1i

    2Input ua output 1

    )4.....(

    )3.....(....................)2.....(....................

    )1....(

    11

    1

    fdt

    dJMM

    CEiCM

    uEiRdt

    diL

    ea

    am

    aaaaa

    a

    (4)(2)(1) and (3)(1):

    MCC

    RM

    CC

    Lu

    C

    CCfR

    CCJR

    CCfL

    CCJL

    me

    a

    me

    aa

    e

    mea

    mea

    mea

    mea

    1

    )1()( 111

  • 7/27/2019 Automatic control theory.ppt

    26/53

    Chapter 2 mathematical models of systems

    ):(

    ..........................

    ......

    ......

    :

    321211

    21

    22

    21

    321

    21

    2221

    3

    21

    21

    iiifromderivedbecan

    torqueequivalent

    ii

    MM

    ntcoefficiefrictionequivalentii

    f

    i

    fff

    inertiaofmomentequivalent

    ii

    J

    i

    JJJ

    here

    f

    Make:

    constant-timeelectricfriction

    CC

    fRT

    constant-timeelectric-mechanicalCC

    JRT

    constant-timemagnetic-electricR

    LT

    me

    af

    me

    am

    a

    ae

    -.......

    .......

    ............

  • 7/27/2019 Automatic control theory.ppt

    27/53

    Chapter 2 mathematical models of systems

    a

    e

    mme uCdt

    dT

    dt

    dTT 12

    2

    Assume the motor idle: Mf= 0, and neglect the friction: f= 0,

    we have:

    )(11

    )1()( 111

    MTMTT

    J

    u

    C

    TTTTTT

    mmeae

    fmfeme

    The differential equation description of the DC motor is:

  • 7/27/2019 Automatic control theory.ppt

    28/53

    Chapter 2 mathematical models of systems

    Example 2.5 : A DC-Motor control system

    +

    t r i ggerUf

    ur

    -M

    M

    +

    -rect i f i er

    DC

    mot or

    t echomet er

    l oad

    ua-

    uk

    R3

    R1

    R1

    R2 R3

    w

    Input urOutput ; neglect the friction:

    (4)MTMTT

    J

    u

    Cdt

    dT

    dt

    dTT

    (3)uku(2)u

    (1)uukuuR

    Ru

    mmeae

    mme

    kaf

    frfrk

    )......(11

    ...........................................

    ..................................)......()(

    2

    2

    2

    112

  • 7/27/2019 Automatic control theory.ppt

    29/53

    Chapter 2 mathematical models of systems

    2134we have

    )(1

    )1( 211

    212

    2

    MMTJ

    Tu

    Ckkkk

    dt

    dT

    dt

    dTT e

    mr

    eCmme e

    2.2.2 steps to obtain the input-output description (differential

    equation) of control systems

    1) Determine the output and input variables of the control systems.

    2) Write the differential equations of each systems components in

    terms of the physical laws of the components.* necessary assumption and neglect.

    * proper approximation.

  • 7/27/2019 Automatic control theory.ppt

    30/53

    Chapter 2 mathematical models of systems

    2.2.3 General form of the input-output equation of the linear

    control systemsA nth-order differential equation:

    mnrbrbrbrbrb

    yayayayay

    mmmmm

    nnnnn

    .........)1(1)2(

    2)1(

    1)(

    0

    )1(1

    )2(2

    )1(1

    )(

    3) dispel the intermediate(across) variables to get the input-output

    description which only contains the output and input variables.

    4) Formalize the input-output equation to be the standard form:

    Input variableon the right of the input-output equation .

    Output variableon the left of the input-output equation.Writing polynomialaccording to the falling-power order.

    Suppose: input routput y

  • 7/27/2019 Automatic control theory.ppt

    31/53

    Chapter 2 mathematical models of systems

    2.3 Linearization of the nonlinear components2.3.1 what is nonlinearity

    The output is not linearly vary with the linear variation of the

    systems (or components) input nonlinear systems (or

    components).2.3.2 How do the linearizationSuppose: y = f(r)

    The Taylor series expansion about the operating point r0 is:

    ))(()(

    )(!3

    )()(!2

    )())(()()(

    00)1(

    0

    30

    0)3(20

    0)2(00

    )1(0

    rrrfrf

    rrrfrrrfrrrfrfrf

    00 :)()(: rrrandrfrfymake

    equationionlinearizatrrfywehave ............)(: 0'

  • 7/27/2019 Automatic control theory.ppt

    32/53

    Chapter 2 mathematical models of systems

    Examples:

    Example 2.6 : Elasticity equation kxxF )(

    25.0;1.1;65.12:suppose 0 xpointoperatingk

    11.1225.01.165.12)()( 1.00'1' xFxkxF

    equationionlinearizatxF

    xxxFxF

    ..............11.12:isthat

    )(11.12)()(:havewe 00

    Example 2.7 : Fluxograph equation

    pkpQ )(

    QFlux; ppressure difference

  • 7/27/2019 Automatic control theory.ppt

    33/53

    Chapter 2 mathematical models of systems

    equationionlinearizatpp

    kQ

    p

    kpQbecause

    ...........2

    :thus

    2)(':

    0

    2.4 Transfer function

    Another form of the input-output(external) description of control

    systems, different from the differential equations.

    2.4.1 definitionTransfer function:The ratio of the Laplace transform of the

    output variable to the Laplace transform of the input variable,with

    all initial condition assumed to be zero and for the linear systems,

    that is:

  • 7/27/2019 Automatic control theory.ppt

    34/53

    Chapter 2 mathematical models of systems

    )()()(

    sR

    sCsG

    C(s)Laplace transform of the output variable

    R(s)Laplace transform of the input variable

    G(s)transfer function

    * Only for the linear and stationary(constant parameter) systems.

    * Zero initial conditions.

    * Dependent on the configuration and the coefficients of thesystems, independent on the input and output variables.

    2.4.2 How to obtain the transfer function of a system

    1) If the impulse responseg(t) is known

    Notes:

  • 7/27/2019 Automatic control theory.ppt

    35/53

    Chapter 2 mathematical models of systems

    )()( tgLsG

    1)()()(if,)(

    )()( sRttr

    sR

    sCsG

    Because:

    We have:

    Then:

    Example 2.8 :)2(

    )5(2

    2

    35)(35)(

    2

    ss

    s

    sssGetg

    t

    2) If the output response c(t) and the input r(t) are known

    We have: )(

    )()(

    trL

    tcLsG

    )()()( tgLsCsG

  • 7/27/2019 Automatic control theory.ppt

    36/53

    Chapter 2 mathematical models of systems

    Example 2.9:

    responseUnit step

    sssssCetc

    functionUnit stepsttr

    t

    .........

    )3(

    3

    3

    11)(1)(

    ........

    1

    R(s))(1)(

    3

    Then:

    3

    3

    1

    )3(3

    )(

    )()(

    ss

    ss

    sR

    sCsG

    3) If the input-output differential equation is knownAssume: zero initial conditions;

    Make: Laplace transform of the differential equation;

    Deduce: G(s)=C(s)/R(s).

  • 7/27/2019 Automatic control theory.ppt

    37/53

    Chapter 2 mathematical models of systems

    Example 2.10:

    432

    65

    )(6)(5)(4)(3)(2

    )(6)(5)(4)(3)(2

    2

    2

    ss

    s

    R(s)

    C(s)G(s)

    sRssRsCssCsCs

    trtrtctctc

    4) For a circuit

    * Transform a circuit into a operator circuit.

    *Deduce the C(s)/R(s) in terms of thecircuits theory.

  • 7/27/2019 Automatic control theory.ppt

    38/53

    Chapter 2 mathematical models of systems

    Example 2.11: For a electric circuit:

    ucur C1 C2

    R1

    R2

    uc( s )

    1/ C1s 1/ C2s

    R1

    R2

    ur( s )

    2112222111

    r

    c

    r

    rc

    CR; TCR; TCRT

    sTTTsTTsU

    sUsG

    sUsTTTsTT

    sCR

    sCsU

    sCR

    sCR

    sCR

    sCsU

    :here

    1)(

    1

    )(

    )()(

    )(1)(

    1

    1

    1

    )(

    )1

    (//1

    )1(//1

    )(

    12212

    21

    12212

    21

    22

    2

    22

    11

    22

    1

  • 7/27/2019 Automatic control theory.ppt

    39/53

    Chapter 2 mathematical models of systems

    Example 2.12: For a op-amp circuit

    ur u

    c

    R1

    R2

    R1

    +

    -

    C R2 1/ Cs

    ur u

    c

    R1

    R1

    +

    -

    ......;:here

    .................)1

    1(

    11

    )(

    )()(

    21

    2

    1

    2

    1

    2

    ntime constaIntegral tCR

    R

    Rk

    ller.PI-Contros

    k

    CsR

    CsR

    R

    sCR

    sU

    sUsG

    r

    c

  • 7/27/2019 Automatic control theory.ppt

    40/53

    Chapter 2 mathematical models of systems

    5) For a control system

    Write the differential equations of the control system, and Assume

    zero initial conditions;

    Make Laplace transformation, transform the differential equations

    into the relevant algebraic equations;

    Deduce: G(s)=C(s)/R(s).Example 2.13

    +

    t r i gger

    Uf

    ur -

    M

    M

    +

    -rect i f i er

    DC

    mot or

    t echomet er

    l oad

    ua-

    uk

    R3

    R1

    R1

    R2 R

    3

    w

    the DC-Motor control system in Example 2.5

  • 7/27/2019 Automatic control theory.ppt

    41/53

    Chapter 2 mathematical models of systems

    In Example 2.5, we have written down the differential equations

    as:

    (4)MMTJ

    Tu

    Cdt

    dT

    dt

    dTT

    (3)uku(2)u

    (1)uukuuR

    Ru

    em

    ae

    mme

    kaf

    frfrk

    )......(1

    .......................................

    .........................).........()(

    2

    2

    2

    11

    2

    Make Laplace transformation, we have:

    (4)sMJ

    TsTTsU

    CessTsTT

    (3)sUksU(2)ssU

    (1)sUsUksU

    mmeamme

    kaf

    frk

    )......()(1

    )()1(

    .....).........()(......).........()(

    ...........................................)]........()([)(

    2

    2

    1

  • 7/27/2019 Automatic control theory.ppt

    42/53

    Chapter 2 mathematical models of systems

    (2)(1)(3)(4), we have:

    )()(1

    )()]1

    1([ 21212 sM

    J

    TsTTsU

    Ckks

    CkksTsTT mmer

    eemme

    -......

    -...........:

    constanttimeelectricmechanicalCC

    JRT

    constanttimemagneticelectricR

    L

    There

    me

    am

    a

    ae

    )1

    1(

    1

    )(

    )()(

    212

    21

    emme

    e

    r

    CkksTsTT

    Ckk

    sU

    ssG

  • 7/27/2019 Automatic control theory.ppt

    43/53

    Chapter 2 mathematical models of systems

    2.5 Transfer function of the typical elements of linear systems

    A linear system can be regarded as the composing of several

    typical elements, which are:

    2.5.1 Proportioning element

    Relationship between the input and output variables:)()( tkrtc

    Transfer function: ksR

    sCsG

    )(

    )()(

    Block diagram representation and unit step response:R( s) C( s)

    k

    1k

    t

    r ( t ) C( t )

    t

    Examples:

    amplifier, gear train,

    tachometer

  • 7/27/2019 Automatic control theory.ppt

    44/53

    Chapter 2 mathematical models of systems

    2.5.2 Integrating element

    Relationship between the input and output variables:

    constanttimeintegralTdttrT

    tc I

    t

    I

    :..........)(1

    )(

    0

    Transfer function:sTsR

    sCsGI1

    )()()(

    Block diagram representation and unit step response:

    1

    R( s) C( s)

    1

    t

    r ( t ) C( t )

    t

    sTI

    1

    TI

    Examples:

    Integrating circuit, integrating

    motor, integrating wheel

  • 7/27/2019 Automatic control theory.ppt

    45/53

    Chapter 2 mathematical models of systems

    2.5.3 Differentiating element

    Relationship between the input and output variables:

    dt

    tdrTtc D

    )()(

    Transfer function: sTsRsCsG D )()()(

    Block diagram representation and unit step response:

    Examples:differentiating amplifier, differential

    valve, differential condenser

    R( s) C( s)T

    Ds

    1 TD

    t

    r ( t ) C( t )

    t

  • 7/27/2019 Automatic control theory.ppt

    46/53

    2.5.4 Inertial element

    Chapter 2 mathematical models of systems

    Relationship between the input and output variables:

    )()()(

    tkrtcdt

    tdcT

    Transfer function:1)(

    )()( Tsk

    sRsCsG

    Block diagram representation and unit step response:

    Examples:inertia wheel, inertial load (such as

    temperature system)1

    R( s) C( s)

    k

    t

    r ( t ) C( t )

    t

    T

    1Tsk

  • 7/27/2019 Automatic control theory.ppt

    47/53

    Chapter 2 mathematical models of systems

    2.5.5 Oscillating element

    Relationship between the input and output variables:

    10)()()(

    2)(

    2

    22 tkrtc

    dt

    tdcT

    dt

    tcdT

    Transfer function: 1012)(

    )(

    )( 22

    TssT

    k

    sR

    sC

    sG

    Block diagram representation and unit step response:

    Examples:

    oscillator, oscillating table,

    oscillating circuit

    R( s) C( s)

    12

    1

    22 TssT C( t )

    k

    t

    1

    t

    r ( t )

  • 7/27/2019 Automatic control theory.ppt

    48/53

    2.5.6 Delay element

    Chapter 2 mathematical models of systems

    Relationship between the input and output variables:

    )()( tkrtc

    Transfer function: skesRsCsG )()()(

    Block diagram representation and unit step response:

    Examples:

    gap effect of gear mechanism,

    threshold voltage of transistors

    R( s) C( s)

    1

    t

    r ( t )

    ske

    kC( t )

    t

  • 7/27/2019 Automatic control theory.ppt

    49/53

    2.6 block diagram models (dynamic)

    Portray the control systems by the block diagram models moreintuitively than the transfer function or differential equation models.

    2.6.1 Block diagram representation of the control systems

    Chapter 2 mathematical models of systems

    Examples:

    Si gnal( var i abl e)

    G( s)Component( devi ce)

    Adder ( compari son)E( s) =x

    1( s)+x

    3( s)- x

    2( s)

    X( s)

    X3( s)

    X2( s)

    +

    -

    +X1( s) E( s)

  • 7/27/2019 Automatic control theory.ppt

    50/53

    Example 2.14

    Chapter 2 mathematical models of systems

    For the DC motor in Example 2.4

    In Example 2.4, we have written down the differential equations as:

    )4.....()3.....(....................

    )2.....(....................)1....(

    fdt

    dJMMCE

    iCMuEiRdt

    diL

    ea

    amaaaaa

    a

    Make Laplace transformation, we have:

    (8)sMsMfsJ

    ssfssJsMsM

    (7)sCsE(6)sICsM

    (5)RsL

    sEsUsIsUsEsIRssIL

    ea

    am

    aa

    aaaaaaaaa

    )]......()([1

    )()()()()(

    ..............................................................................).........()(.............................................................................).........()(

    .............)()(

    )()()()()(

  • 7/27/2019 Automatic control theory.ppt

    51/53

    Chapter 2 mathematical models of systems

    Draw block diagram in terms of the equations (5)(8):

    Ua

    ( s )

    aa RsL

    1C

    m

    Ia

    ( s ) M( s)

    Ea( s ) Ce

    )(s

    fsJ

    1

    )(sM

    -

    -

    Consider the Motor as a whole:

    1)(

    1

    2 ffemme

    e

    TsTTTsTT

    C

    1)(

    )(1

    2

    ffemme

    mme

    TsTTTsTT

    TsTTJ

    Ua

    ( s ) )(s

    )(sM

    -

  • 7/27/2019 Automatic control theory.ppt

    52/53

    Chapter 2 mathematical models of systemsExample 2.15 The water level control system in Fig 1.8:

    Desi r ed

    wat er l evel

    ampl i f i er Motor Gear i ng Val veWat er

    cont ai ner

    Fl oat

    Act ual

    wat er l evel

    Feedback si gnal hf

    I nput hi

    Out put h

    -

    e ua Q

    1k 1

    1

    2 sTsTT

    C

    mme

    e

    s

    ek s211

    3

    sTk

    12

    4

    sT

    k

    )(

    1

    )1(

    2sM

    sTsTT

    sTJ

    T

    mme

    em

  • 7/27/2019 Automatic control theory.ppt

    53/53

    Chapter 2 mathematical models of systems

    The block diagram model is: