101
© 2011 ANSYS, Inc. June 8, 2012 1 Laz Foley & Simon Pereira Confidence by Design Detroit June 5, 2012 Automated Design Exploration and Optimization + HPC Best Practices

Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

© 2011 ANSYS, Inc. June 8, 20121

Laz Foley & Simon Pereira Confidence by DesignDetroit June 5, 2012

Automated Design Exploration and Optimization + HPC Best Practices 

Page 2: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

• The Path to Robust Design• ANSYS DesignXplorer • Mesh Morphing and Optimizer• RBF Morph• Adjoint Solver• HPC Best Practices

Outline

Page 3: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

The Path to Robust Design

ngle Physics olutionccuracy, robustness, eed…

MultiphysicsSolution•Integration Platform

“What if” Study•Parametric Platform

Design Exploration•DOE, Response Surfaces, Correlation, Sensitivity, Unified reporting, etc.

Optimization•Algorithms•Published API

Robust Design•Six Sigma Analysis•Probabilistic Algorithms•Adjoint solver methods

obust Design is an NSYS Advantage

Page 4: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Deformation  

Single Physics/Multi Physicse physics is the entry point mulation

i‐Physics enables real al prototyping

omagnetic Force Density with Thermal‐Stress and Electromagnetic Force load 

Fluid Pressure Distribution

2 way coupled with a transient structural solution

Stress ?

Page 5: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Parametric CAD Connections

Pervasive Parameters

Persistent Updates

Managed State, Update Mechanisms

Remote Solve Manager (RSM)

Needed for "What If?"

“What If?”

Interactively adjust the parameter values and “Update”

Page 6: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Design Exploration

Page 7: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Optimization

Optimal Candidates

Page 8: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

ANSYS DesignXplorerInitial vs. Optimized Design

Output Initial Design Optimized

Tt Ratio 1.116 1.126

pt Ratio 1.674 1.709

η [%] 71.65 76.25

Power [MW] 1.208 1.268

Engineers can easily appreciate the value of 

understanding.

Engineers can easily appreciate the value of 

understanding.

Page 9: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

ust manifold design

ParametersDiameter of the dess at inletal Temperaturee RPM

All samples reports max deformation below 1.5 mm 

Parametric Geometry

Pressure & Flow Velocity

Thermal

Deformation

Stress

Response ParametersMax Flow TemperatureMax DeformationMax Von‐Mises stress

Uncertainty of input 

mum Displacement should not exceed 1.5 mm

Response Surface showing the effect of engine speed and thickness at outlet on 

Sigma Analysis

Page 10: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Where are you?

may want to consider how far along the “path” your simulation practices are

haps you could improve your use of optimization and greater leverage your investment in Simulation?

Page 11: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

ANSYS DesignXplorerIntegral with Workbench

• Parametric multiphysicsmodeling with  automated updates

• Bi‐directional CAD, RSM, scripting, reporting and more...

Integral with Workbench

• Parametric multiphysicsmodeling with  automated updates

• Bi‐directional CAD, RSM, scripting, reporting and more...

Page 12: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Robust Design Tools at ANSYSNSYS DesignXplorerUnified Workbench solution

NSYS Fluent Built‐in Mesh Morphing and shape Optimization (MMO) toolsBeing hooked up to DX for 14.5

Adjoint solver

Baseline Design

Optimized DesignHigh sensitivity – changes to shape have a big effect on drag

Low sensitivity

High sensitivity – Shape on Downforce

R14R14

Page 13: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Robust Design Tools at ANSYSNSOFT OptimetricsProduce “families of curves”Simultaneous solve with DSO packsAccess to EBU Adjoint

nd more

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00ampturns [A]

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Fm [n

ewto

n]

Ansoft Corporation Maxwell3DDesign1XY Plot 1Curve Info

FmSetup1 : LastAdaptiveGap='0.001in'

FmSetup1 : LastAdaptiveGap='0.002in'

FmSetup1 : LastAdaptiveGap='0.003in'

FmSetup1 : LastAdaptiveGap='0.004in'

FmSetup1 : LastAdaptiveGap='0.005in'

FmSetup1 : LastAdaptiveGap='0.006in'

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00ampturns [A]

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Fm [n

ewto

n]

Ansoft Corporation Maxwell3DDesign1XY Plot 1Curve Info

FmSetup1 : LastAdaptiveGap='0.001in'

FmSetup1 : LastAdaptiveGap='0.002in'

FmSetup1 : LastAdaptiveGap='0.003in'

FmSetup1 : LastAdaptiveGap='0.004in'

FmSetup1 : LastAdaptiveGap='0.005in'

FmSetup1 : LastAdaptiveGap='0.006in'

Page 14: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Optimization PartnersNSYS simulation software has been effectively used in concert with many optimization partnersMATLAB (Mathworks)ModeFrontier (Esteco)OptiSLang (Dynardo)eArtiusOptimus (Noesis)RBF‐MorphSculptor (Optimal)Sigma Technology (IOSO)TOSCA (FE‐DESIGN)iSight (Dassault)Qfin (Qfinsoft)

Page 15: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

ANSYS DesignXplorer

Page 16: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

ANSYS DesignXplorer

DesignXplorer is everything under this Parameter bar…

• Low cost & easy to use!

• It drives Workbench 

• Improves the ROI!

DesignXplorer is everything under this Parameter bar…

• Low cost & easy to use!

• It drives Workbench 

• Improves the ROI!

DX

ANSYS Workbench Solvers

Page 17: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Design of Experiments

With little more effort than for a single run, you can use 

DesignXplorer to create a DOE and run many variations

With little more effort than for a single run, you can use 

DesignXplorer to create a DOE and run many variations

Page 18: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Correlation Matrix

Understand how your parameters are correlated/influenced by other parameters!

Understand how your parameters are correlated/influenced by other parameters!

Page 19: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Sensitivity

Understand which parameters your design is most sensitive to!

Understand which parameters your design is most sensitive to!

Page 20: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Response Surface

Understand the ensitivities of the output arameters (results) wrt the input parameters.

Understand the ensitivities of the output arameters (results) wrt the input parameters.

3D Response

2D Slices Response

Page 21: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Goal‐Driven Optimization

Use an optimization algorithm or screening to understand tradeoffs or discover optimal 

design candidates!

Use an optimization algorithm or screening to understand tradeoffs or discover optimal 

design candidates!

Page 22: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Robustness Evaluation

Input parameters have variation!

ut meters also!

Understand how our performance 

will vary with your 

Understand how our performance 

will vary with your 

Make sure your design is robust!

Six Sigma, TQM

Make sure your design is robust!

Six Sigma, TQM

Predict how many parts 

will likely fail?

Predict how many parts 

will likely fail?

Understand which inputs require the 

Understand which inputs require the 

Page 23: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Industry Testimonials

er   the course of   the design process,  Dyson’s  engineers steadily improved the formance of the fan to the point that the final design has an amplification ratio of 15 ne, a 2.5‐fold improvement over the six‐to‐one ratio of the original concept design. team investigated 200 different design iterations using simulation, which was 10 es the number that would have been possible had physical prototyping been the mary design tool.  Physical testing was used to validate the final design, and the ults correlated well with the simulation analysis.”

R. Mason, Research, Design and Development Manager, DYSON

“This technology makes it possible to quickly evaluate hundreds of designs in batch processes to explore the complete design space so that we know we have the best possible design.”

Stresses Ken Karbon, Staff Engineer, General Motors

“The ease of using simulation tools has helped to transform our organization from a test‐centric culture to an analysis‐centric culture.”

Bob Tickel, Director of Analysis at Cummins

Page 24: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

P3

P2

P1

Need uniform outflowMinimize pressure drop 

BAD

GOOD

Pressure Drop

Goo

d

Bad

Example 1: Slit Die

Page 25: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Example 2: Combustor

− 3 parameters−Minimize pressure loss−Minimize mach number

Inlet

Outlet

Outlet

Outlet

Dump Gap

Diffuser Length

Exit Height

Sensitivity

Page 26: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Mesh Morphing and Optimizer

Page 27: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Fluent Morpher‐Optimization Feature

Allows users to optimize product design based on shape deformation to achieve design objectiveBased on free‐form deformation tool coupled with various optimization methods

Page 28: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Mesh Morphinglies a geometric design change directly to the mesh in the solver

s a Bernstein polynomial‐based morphing schemeeform mesh deformation defined on a matrix of control points leads to a ooth deformationorks on all mesh types (Tet/Prism, CutCell, HexaCore, Polyhedral)

r prescribes the scale and direction of deformations to control points distributed evenly through the rectilinear region.

Page 29: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Process

ORWhat if? OptimizerSetup CaseSetup Case

RunRun

Setup MorphSetup Morph

EvaluateEvaluate

Choose “b t” d i

Choose “b t” d i

RegionsRegions

ParametersParameters

DeformationDeformation

Setup CaseSetup Case

RunRun

Setup OptimizerSetup 

Optimizer

OptimizeOptimize

Optimal Optimal 

MorphMorph

OptimizerOptimizer Auto

Page 30: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Deformation Definition

• Define constraint(s) (if any)

• Select control points and prescribe the relative ranges of motion

• Define constraint(s) (if any)

• Select control points and prescribe the relative ranges of motion

Page 31: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Objective Function

Baseline Design Optimized Design

• Objective Function: Equal flow rate• Objective Function: Equal flow rate

Page 32: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Optimizer Algorithms; Compass, Powell, Rosenbrock, Simplex, TorczonAlgorithms; Compass, Powell, Rosenbrock, Simplex, Torczon

uto

• Optimize!• Optimize!

Page 33: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Example: L‐Shaped Duct

Application: L‐shaped ductObjective Function: Uniform flow at the outlet

Significant Improvement in Flow Uniformity

Page 34: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

RBF Morph

Page 35: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

A system of radial functions is used to fit a solution for the mesh movement/morphing, from a list of source points and their prescribed displacements

Radial Basis Function interpolation is used to derive the displacement at any location in the space

The RBF problem definition is mesh independent.

How Does RBF‐Morph work?

Page 36: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

RBF‐Morph is Integrated with Fluent

Page 37: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Example 1: Internal Flow

Here, a pipe is projected onto a previously defined STL shape

Page 38: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Example 3: External Flow

Page 39: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Recently conducted conceptual study by ANSYS in conjunction with Volvo Cars

50 Million cell hybrid mesh of Volvo XC60

50 Design variants investigated using RBF‐Morph Addon for ANSYS Fluent and Workbench Design Explorer

50 hours total clock time to complete full optimisation on HPC Cluster

Courtesy of Volvo Cars

Example 4: 50:50:50 Optimisation

Page 40: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

olvo XC60 vehicle modelFour shape parametersRBF Morph to define shape parametersANSYS DesignXplorer

• To drive shape parameters• To create DOE• To perform Goal Driven Optimization

External Aerodynamics

eal Aerodynamics ptimization Process– Capacity– Automatic – Fast 

Page 41: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Volume Mesh – TGridCell Count : 50.2 Million Cellsrism Layers : 10 (First Aspect Ratio 10, 

Growth 1.1)rism Count : 24.4 Million Cellskewness < 0.9

Step #1 : Baseline Model

Prism Layers

Cut Plane Y=0

Page 42: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

oundary Conditionsnlet : Velocity Inlet 100 kmphOutlet : Pressure Outlet, 0 Pa (Gage)Side walls : Wall, no‐slipTop wall : Wall, no‐slip

olver SettingsSteady, PBCS, Green Gauss Node Based GradientFluid : Incompressible air, Density = 1.225 kg/m3,

Turbulence : Realizable K‐epsilon, Non‐equilibrium wall treatmentDiscretization : Pressure – Standard Momentum, TKE, TDR – 2nd Order

Step #2 : CFD Setup

• Solution Controls– Courant Number = 200– ERF

Momentum,  Pressure = 0.75– URFs 

Density = 1.0, Body Forces = 1.0TKE TDR = 0 8

Page 43: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Step #3 : RBF‐Morph

Boat Tail Angle (P2) Roof Drop Angle (P3)

Page 44: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

A i b t hi h l t d

Step #3 : RBF‐Morph

Page 45: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Step #3 : RBF‐Morph• Fully integrated within FLUENT and Workbench

• Easy to use

• Parallel => rapidly morph large size models• Mesh independent solution works with all element

types (tetrahedral, hexahedral, polyhedral, etc.)• Superposition of multiple RBF-solutions makes the

FLUENT case truly parametric (only 1 mesh is stored)

• RBF-solution can also be applied on the CAD

• Precision: exact nodal movement and exact feature preservation.

Page 46: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Central Composite Design, Face Centered, Enhanced

Step #4 : Setup DesignXplorer

Page 47: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Step #5 : Running Simulations

768 Cores 384 Cores 288 Cores 240 Cores 144 Cores

Task Time (Seconds) Time (Seconds) Time (Seconds)

Time (Seconds)

Time (Seconds)

Baseline Case (i.e. Design Point 1)

d volume mesh of baseline  into the CFD solver and y solver settings

225 340 365 481 228

Solution 6979 11153 14409 17256 27246

ing CFD data file 681 538 558 600 532

Each Subsequent Design Point

ph vehicle shape 84 59 65 69 100

Solution 1284 1754 2208 2630 4100

ing CFD data file 734 559 572 621 532

al Run Time (Wall Clock) eded for All 50 Design nts  (Hours)

30.80 35.63 42.98 50.28 72.19

Page 48: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Results :

Page 49: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Optimization

Page 50: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Design Points

Boat Tail Angle(P2)

Long Roof Angle(P3)

Green House (P4)

Front Spoiler Angle (P5)

Drag Force (N) (P1)

1 0.000 0.000 0.000 0.000 388.01

9 0.000 1.500 0.000 1.900 393.01

19 1.850 ‐2.300 ‐0.700 0.000 372.30

25 ‐1.850 1.500 ‐0.700 0.000 397.33

low Results Discussion– Design point 1, 9, 19 & 25– Velocity contours– Iso‐surface of total pressure = 0.0

Results :

Page 51: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Design Point #1

Page 52: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Design Point #19

Page 53: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Design Point #25

Page 54: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Adjoint Solver

Page 55: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

An adjoint solver allows specific information about a fluid system to be computed that is very difficult to gather otherwise.

The adjoint solution itself is a set of derivatives.• They are not particularly useful in their raw form and must be post‐processed 

appropriately.• The derivative of an engineering quantity with respect to all of the inputs for the 

system can be computed in a single calculation.– Example: Sensitivity of the drag on an airfoil to its shape.

There are 4 main ways in which these derivatives can be used:

1. Qualitative guidance on what can influence the performance of a system strongly.

2. Quantitative guidance on the anticipated effect of specific design changes.

3. Guidance on important factors in solver numerics.

4. Gradient‐based design optimization.

Adjoint Solution?

Page 56: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

GOAL:  Identify features of a system design that are most influential in the performance of the system.

EXAMPLE:– Sensitivity of the Drag on a NACA 0012 airfoil to changes in the 

shape of the airfoil.– The shape sensitivity field is extracted from the adjoint solution in 

a post‐processing step.

How to Use the Results ‐ Qualitative

High sensitivity – changes to shape have a big effect on drag

Low sensitivity – changes to shape have a small effect on drag

Page 57: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

GOAL:  Identify specific system design changes that benefit the performance and quantify the improvement in performance that is anticipated.

EXAMPLE:– Design modifications to turning vanes in a 90 degree elbow to 

reduce the total pressure drop.– The optimal adjustment that is made to the shape is defined by 

the shape sensitivity field (steepest descent algorithm).– Effect of each change can be computed in advance based on linear 

extrapolation.

How to Use the Results ‐ Quantitative

Original P = ‐232.8 PaExpected change computed using the adjoint and linear extrapolation =  10.0 PaMake the change and recompute the solution.Actual change = 9.0 Pa

BaselineModified

Page 58: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

GOAL:  Identify aspects of the solver numerics and computational mesh that have a strong influence on quantities that are being computed that are of engineering interest.

EXAMPLE:– Use the adjoint solution to identify parts of the mesh where mesh 

adaption will benefit the computed drag by reducing the influence of discretization errors.

How to Use the Results ‐ Solver Numerics

Baseline Mesh Adapted Mesh

Adapted MeshDetail

Page 59: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

GOAL:  Perform a sequence of automated design modifications to improve a specific performance measure for a system

EXAMPLE:– Gradient‐based optimization of the total pressure drop in a pipe.– Flow solution is recomputed and the adjoint recomputed at each 

design iteration.

How to Use the Results ‐ Optimization

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30

p t

ot[Pa]

Initial design

Final design30% reduction in total pressure drop after 30 design iterations

Page 60: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Once a desired change to the geometry of the system has been selected, how is that change to be made?

• Mesh morphing provides a convenient and powerful means of changing the geometry and the computational mesh.– Use Bernstein polynomial‐based morphing scheme discussed earlier

Mesh Morphing

Page 61: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Example: Sensitivity of lift to surface shape

Select portions of the geometry to be modified

Adjoint to deformation operationSurface shape sensitivity becomes control point sensitivity (chain rule for differentiation)

Benefit of this approach is two‐foldSmooths the surface sensitivity fieldProvides a smooth interior and boundary mesh deformation

Mesh Morphing & Adjoint Data

Flow

Page 62: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

The adjoint solution is determined based on the specific flow physics of the problem in hand.

The effect of other practical engineering constraints must be reconciled with the adjoint data to decide on an allowable design change.

Example:– Some walls within the control volume may be constrained not to move.– A minimal adjustment is made to the control‐point sensitivity field so that deformation of the fixed walls is eliminated.

Mesh Morphing, Adjoint Data & Constraints

Fixed wall

Fixed wall

Moveable walls

Page 63: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

e adjoint solver is released with all Fluent 14 packages.

ocumentation is availableTheoryUsageTutorialCase study

aining is available

nctionality is activated by Loading the adjoint solver add‐on module

new menu item is added at the top level

Current Functionality

Page 64: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

ey initial application areas are:Low‐speed external aerodynamics– F1 (increase downforce)– Production automobiles (decrease drag)Low‐speed internal flows– Total pressure drop (reduce losses)

Current FunctionalityApplication Drivers

• Ratios• Products• Variances• Linear combinations• Unary operations

n Fluent 14.5 a mechanism for users to efine a wide range of observables of nterest will be provided.

• Forces• Moments• Pressure drop• Swirl

Page 65: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Current Scope

NSYS‐Fluent flow solver has very broad scope

djoint is configured to compute solutions based on some assumptionsSteady, incompressible, laminar flow.Steady, incompressible, turbulent flow with standard wall functions.First‐order discretization in space.Frozen turbulence.

he primary flow solution does NOT need to be run with these restrictionsStrong evidence that these assumptions do not undermine the utility of the adjoint solution data for engineering purposes.

lly parallelized.

radient algorithm for shape modificationMesh morphing using control points.

djoint‐based solution adaption

Page 66: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Example 1: Automotive Aerodynamics

Surface map of the drag sensitivity to shape changes

Page 67: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

ggressive adjustment results in a 17% reduction in loss in just one design iteration

Example 2: Pressure Drop in a DuctTotal Pressure Drop (Pa)

Geometry Predicted Result

Original ‐‐‐ ‐22.0

Modified ‐14.8 ‐18.3

Page 68: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

HPC Best Practices

Page 69: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

• Know your hardware lifecycle

• Have a goal in mind for what you want to achieve 

• Using Licensing productively

• Using ANSYS provided processes effectively

Guidelines :

Page 70: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

• This section is meant to provide an overview of the different hardware components and how they can effect solution time.  

• Hopefully this will give you some of the tools to understand why some of the benchmark numbers in better detail.  

• ANSYS would always recommend that the best thing to do before buying a system is to look at the latest benchmarks.

• If you are not sure please ask.    

Hardware Considerations

Page 71: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Effect of Clock SpeedImpact of CPU Clock on Application Performance

Processor: Xeon X5600 SeriesHyper Threading: OFF, TURBO: ON

Active cores: 12/node; Memory speed: 1333 MHz(performance measure is improvement relative to CPU Clock 2.66 GHz)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Clock Ratio eddy_417K aircraft_2M turbo_500K sedan_4M truck_14M

ANSYS/FLUENT Model

Impr

ovem

ent d

ue to

Clo

ck

2.66 GHz2.93 GHz3.47 GHz

High

er is

bet

ter

Page 72: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Effect of Memory Speed

We can see here the effect of memory speed.  

This has implications on how you build your hardware.

Some processors types have slower memory speeds by default.  

On other processors non‐optimally filling the memory channels can slow the memory speed.

Impact of DIMM speed on ANSYS/FLUENT Application Performance (Intel Xeon x5670, 2.93 GHz)

Hyper Threading: OFF, TURBO: ONActive threads per node: 12

(performance measure improvement is relative to memory speed of 1066 MHz)

80%

85%

90%

95%

100%

105%

110%

115%

120%

125%

130%

eddy_417K turbo_500K aircraft_2M sedan_4M truck_14M

ANSYS/FLUENT Model

Impa

ct o

f Mem

ory

Spee

d

1066 MHz1333 MHz

Page 73: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Turbo Boost (Intel) / Turbo Core (AMD)

Turbo Boost (Intel)/ Turbo Core(AMD) is a form of over‐clocking that allows you to give more GHz to individual processors when others are idle.

With the Intel’s have seen variable performance with this ranging between      0‐8% improvement depending on the numbers of cores in use.

The graph below for CFX on a Intel X5550.  This only sees a maximum of 2.5% improvement.   

Page 74: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Hyper‐Threading: ANSYS Fluent

Hyper‐Threading Technology makes a single physical processor appear as two logical processors.  

This is not the same as physically having two logical processors and does not give double the speedup.

In our tests we’ve seen as high as a 20% increase in performance although you can see the actual performance can be quite variable from the graph opposite.  

It is worth noting that this has licensing implications as you would need to oversubscribe the physical cores and hence would need double the HPC Licenses.  

Evaluation of Hyperthreading on ANSYS/FLUENT Performance iDataplex M3 (Intel Xeon x5670, 2.93 GHz)

TURBO: ON(measurement is improvement relative ot Hyperthtreading OFF)

0.90

0.95

1.00

1.05

1.10

eddy_417K turbo_500K aircraft_2M sedan_4M truck_14MANSYS/FLUENT Model

Impr

ovem

et d

ue to

Hyp

erth

read

ing

.HT OFF (12 threads on 12 physical cores) HT ON (24 threads on 12 physical cores)

High

er is

bet

ter

Page 75: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

• Traditionally Intel take the “power approach” in general in their 2 socket systems (faster core but less of them per processor/socket). 

• Traditionally AMD take the economies of scale approach (more cores per processor but individually slower clock speeds).    

• Remember that this landscape changes because they are constantly in competition with each other.  

• Please note that whilst we do have some numbers for the new Intel Sandy‐bridge chips we do not have scaling numbers for the equivalent AMD 6200 series at the time of writing this presentation.   

AMD vs. Intel

Page 76: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

2 Socket vs. 4 Socket Systems

Current 4 socket systems come up slower than their 2 socket counterparts (based on Intel Westmere vs. Xeon E7‐8837).• Clock speed slower• Memory speed slower• No additional memory bandwidth.

Performance of ANSYS Fluent on two‐socket and four‐socket based systemsPerformance measure is Fluent Rating (higher values are better) 

2‐socket based SystemsHS22/HS22V Blade, 3550/3650 M3, Dx360 M3

(Xeon 5600 Series)

4‐socket based SystemsIBM HX5 Blade,  X3850(Xeon E7‐8837 series)

odes Sockets Cores FluentRating Nodes Sockets Cores Fluent

Rating1 2 12 88 1 2 16 96

Page 77: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Effect of the Interconnect

ANSYS/FLUENT Performance iDataplex M3 (Intel Xeon x5670, 12C 2.93 GHz)

Network: Gigabit, 10-Gigabit, 4X QDR Infiniband (QLogic, Voltaire)Hyperthreading: OFF, TURBO: ON

Models: truck_14M

0

1000

2000

3000

4000

5000

12 24 48 96 192 384 768Number of Cores used by a single job

FLU

ENT

Rat

ing

QLogic Voltaire 10-Gigabit GigabitHi

gher

is b

ette

r

When going for multiple systems linked together the interconnect becomes an important factor.

The interconnect is the fabric that connects the nodes. 

We can see from the graph opposite with FLUENT how quickly the performance of Gigabit Ethernet drops off.    

Page 78: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

ANSYS Fluent Auto‐Partitioning

to partitioning is now very quick

ss than 10s to process 800M cells!

rial pre‐partitioning step no 

nger required

200M 400M 600M 800MTime 2.914 4.706 6.617 9.86

0

2

4

6

8

10

12

Time in se

cond

s

cavity case, 768 cores

123456789

Time in se

cond

s

truck_111m

Time to Partition 200M Cavity Case over 768 cores

Time to Partition 111M Truck Case

Page 79: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

ANSYS CFX Partitioning

ptimize parallel partitioning in multi‐core clusters (CFX)β

Partitioner determines number of connections between partitions and optimizes part.‐host assignments

‐use previous results to initialize calculations on large problem (CFX) β

Large case interpolation for cases with >~100M nodes

ean up of coupled partitioning option for multi‐domain cases (CFX)

Eliminates ‘isolated’ partition spotsamatically reduced partitioning times for cases th fluid‐solid interfaces and very large numbers of gions

Compute Node 1 Compute Node 2

P1

P5

P3

P6

P2 P7

P4 P8

P1P5

P3

P6P2

P7

P4

P8

Partitioning step finds adjacency amongst partitions; partitions with max adjacency are grouped on same compute nodes

Page 80: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

ANSYS Fluent Parallel Scalability

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600

6.3.0

12.0.0

12.0.0

13.0.0

10000

20000

30000

40000

50000

60000

70000

13.0.0

14.0.0

n X5560  @ 2.80GHz  (Nehalem EP)

Intel Harpertown

Intel Westmere

nsistently improved scalability

oss releases

dan, 4M cells

Page 81: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

ANSYS Fluent Parallel Scalability

ICE 8400EX, Intel 6‐core

Intel Harpertown

Intel Westmere hex‐core 2.93 GHz

nsistently improved scalability

oss releases

ck, 111M cells 0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200

6.3.0

12.0.0

12.0.0

13.0.0

500

1000

1500

2000

2500

13.0.0

14.0.0

Page 82: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Leading Performance for fluid flow simulation

The memory bandwidth of the Intel® Xeon® processor E5-2600 product family allows excellent scalability and per core performance.

Support for higher speed memory DIMMs, added on-core capacity for memory loads, as well as a larger cache size are key to extending performance and scalability.

Higher memory bandwidth has a pronounced impact with fully coupled solver applications, which are the most memory intensive. Sedan_4m is shown as an example of fully coupled solver performance. Truck_14m is representative of segregated solver performance. The horizontal line at 1.63 represents the geomean speedup over 6 standard benchmarks.

SYS Fluent 14tive Performanceer is better

1

1.86

6 core Xeon X5675 8 core Xeon E5‐2680

Sedan_4m

Geomean

1

1.53

6 core Xeon X5675 8 core Xeon E5‐2680

Truck_14mGeomean

ANSYS Fluent Parallel Scalability on Intel

Page 83: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

• Good scalability and more operations per clock make obtaining results on Intel® Xeon® E5 1.68x faster than on Intel Xeon 5600 platforms

• For end user it is about faster turnaround or solving larger tasks with the same resources along with lower TCO

Airlif

tRea

ctor

Big

Pipe

Com

bBVM

Com

bED

MCyl

inde

rIn

dyCar

Inte

rnal

LeM

ansC

arLE

S_0

01Pu

mp

Rad

City

Rad

Furn

ace

Sta

geCom

pres

sor

tatic

Mix

er10

0MM

Sta

ticM

ixer

100

Sta

ticM

ixer

200

Sta

ticM

ixer

400

kTu

rbin

eW

igle

y100

Intel Xeon 5650

Intel Xeon E5-2680

ANSYS CFX Parallel Scalability on Intel

Source: Published/submitted/approved results as of March 6, 2012. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may

Page 84: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Including Monitors

alability with MonitorsScalability to higher core countsSimulations with monitors including plotting and printing

Hex‐core mesh, F1 car, 130 million cellsmonitor‐enabled 

200 400 600 800 1000

Example data for scaling with R14 monitors

3072 cores

Monitor support optimizations 

maintain scalability expectations

Page 85: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Fluids I/OUENT, CFX and AUTODYN use a “singular” e structure.  This means there is one global set of files and every process writes to them.

is methodology falls down at a large mber of cores where the file I/O becomes bottleneck.CFX deals with this by using inline compression cdat)FLUENT has both inline compression (cdat) and at v12.x introduced support for a Parallel File pdat).    

rallel file system support in ANSYS UENT– ~10x ‐ 20x speedup for data write– Eliminates scaling bottleneck for data i t i i l ti l l t (

Serial I/O Parallel I/O

ANSYS FLUENT

Page 86: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

To Demonstrate 50:50:50 Method– Volvo XC60 vehicle model– Four shape parameters– RBF Morph (Integrated within FLUENT) to define shape parameters

– Grid morphing in parallel

ANSYS WorkBench (Frame Work to Automate Process)– To drive shape parameters– To create DOE– To perform Goal Driven Optimization

HPC Fluids Demonstration Case

The 50:50:50 Method

50 50 design points in the design space EXTENT

5050 million cells used in CFD simulation of each design 

pointACCURACY

50 50 hours total elapsed time to simulate all the design points SPEED

“One – Click” – Entire design space is simulated and post‐processed completely automatically after the initial baseline 

case setup

Page 87: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

HPC Fluids Demonstration CasePrepare Meshed Model for Baseline Vehicle Shape

CFD Solver Setup, Define Shape Parameters

Generate DOE using Input Shape Parameters

Collate Data,

Morph Vehicle Shape

Run CFD Simulation

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

Mesh Morpher Integrated within FLUENTSolver (FLUENT), Optimizer (DX) & Post Processor (CFD Post) Integrated within 

ANSYS WorkBench

Page 88: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

HPC Fluids Demonstration Case

768 Cores 384 Cores 288 Cores 240 Cores 144 Cores

Task Time (Seconds) Time (Seconds) Time (Seconds)

Time (Seconds)

Time (Seconds)

Baseline Case (i.e. Design Point 1)

d volume mesh of baseline  into the CFD solver and y solver settings

225 340 365 481 228

Solution 6979 11153 14409 17256 27246

ing CFD data file 681 538 558 600 532

Each Subsequent Design Point

ph vehicle shape 84 59 65 69 100

Solution 1284 1754 2208 2630 4100

ing CFD data file 734 559 572 621 532

al Run Time (Wall Clock) eded for All 50 Design nts  (Hours)

30.80 35.63 42.98 50.28 72.19

Page 89: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

HPC Fluids Demonstration Case

Compute Cluster Details1. Intel’s Endeavor Cluster

2. Intel Xeon X5670 (dual socket)

3. Clock speed 2.93 GHz

4. Six cores per socket                         (12 cores per node)

5. 24 GB RAM @ 1333 MHz, SMT ON, Turbo ON

6. QDR Infiniband

7. RHEL Server Release 6.1

Page 90: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

 capability for “specialty physics” view factors, ray tracing, reaction rates, etc. 

GPU Acceleration for CFD

Radiation View Factor calculation (ANSYS FLUENT 14 ‐beta)

Page 91: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Getting the right setup is a balancing act..

Page 92: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

• HPC Licensing Cost

• Cost of Hardware   

• Complexity of Deployment and Maintenance

Factors to Consider

Page 93: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

• ANSYS HPC is licensed in either the HPC Workgroup/Enterprise (or individually) or HPC Packs.

• Given that it is licensed per partition (which in most cases translated to a core) – the best value for money is in getting the best scalability per core as possible.  

• When running multiple cores make sure you are using them as effectively as the memory bandwidth allows.

HPC Licensing Cost

Page 94: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

• ANSYS will, in general, recommend the best hardware for performance that gets you the best out of your licensing investment.  However you may need to make trade‐off's for your budget.  

• 2 socket systems provide the best performance but more inherently more complexity (and hence cost) because of the need for high speed interconnects when in a cluster.  

• Current 4 socket systems have less performance than their 2 socket counterparts but are also cheaper because of their lack of requirement for the high speed interconnects to get to higher numbers of nodes at the low end.

Cost of Hardware

Page 95: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

• A large cluster can have  significant overheads in ease of deployment & on‐going maintenance costs.

• A 4 socket system, whilst having less performance, may provide an easier deployment and maintenance route at the lower end and will be a better fit to what the average IT department is used to.  

• Often users get too caught up on per core performance at the detriment of not getting any extra speedup at all.   

• It is important to purchase something you feel you can internally support.  

• Purchase 3rd party support for high performance clusters if you do not feel you have the skills to support it internally.  

Complexity of Deployment and Maintenance

Page 96: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

If you opt for unsupported infrastructure– This does not mean that it will not work but you use them at your own risk.

– We may ask you to replicate it on a system that is supported before providing further support if you run into problems!

We recommend:– Buying Supported Operating systems and Hardware– Using ANSYS Supported Practices– Talking to us before buying!  It is in all our interests that you get this right!

Remember the Following ...

Page 97: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

NSYS Partner Solutions– http://www.ansys.com/corporate/partners/partners‐hpc.asp

• Reference configurations• Performance data• White papers• Sales contact points

erformance Data– http://www.ansys.com/benchmarks

Information Available

Page 98: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Information Available

NSYS Platform Supporthttp://www.ansys.com/services/ss‐platform‐support.asp– Platform Support Policies– Supported Platforms– Supported Hardware– Tested systems

NSYS Virtual Demo Roomhttp://www.ansys.com/demoroom/– Click on HPC!

Page 99: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Information Available

e ManualSections on best practices and parallel processing for various solversnstallation walkthroughs for installing the products, parallel processing, licensing and RSM remote solve manager)

NSYS AdvantageOnline Magazine

Page 100: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Information Available

stomer Portalhttp://www1.ansys.com/customer/– Knowledge Resources– Installation and Systems FAQ’s

stomer Supporthttp://www1.ansys.com/customer/Portal, Email or Phone

Page 101: Automated Design Exploration and Optimization + HPC Best ... · Automated Design Exploration and Optimization + HPC Best Practices ... er the course of the design process, Dyson’s

Automated Design Exploration and Optimization + HPC Best Practices