42
August 27, 2008 Treatment of Heavy Metals and Elimination of Sulfur with a Novel Sulfate Reducing Permeable Reactive Barrier Containing ZVI Dr. Jim Field Dept. Chemical and Environmental Engineering University of Arizona

August 27, 2008

  • Upload
    zinnia

  • View
    32

  • Download
    2

Embed Size (px)

DESCRIPTION

August 27, 2008 Treatment of Heavy Metals and Elimination of Sulfur with a Novel Sulfate Reducing Permeable Reactive Barrier Containing ZVI Dr. Jim Field Dept. Chemical and Environmental Engineering University of Arizona. - PowerPoint PPT Presentation

Citation preview

Page 1: August 27, 2008

August 27, 2008

Treatment of Heavy Metals and Elimination of Sulfur with a Novel Sulfate Reducing Permeable Reactive Barrier Containing ZVI

Dr. Jim FieldDept. Chemical and Environmental Engineering

University of Arizona

Page 2: August 27, 2008

2

Dept. Chemical and Environmental Engineering

University of Arizona

Elimination of Heavy Metals and Sulfur with Zero Valent Iron as an Electron

Donor for Sulfate-Reduction

R. Sierra, B. Howard, A. Luna, L. J. Mendoza & J. A. Field

Page 3: August 27, 2008

3

Acid Mine or Acid Rock Drainage

acid

heavy metals

sulfates

iron

H+

Cu2+Fe2+

SO42-

Page 4: August 27, 2008

4

Acid Rock Drainage with Copper

Page 5: August 27, 2008

5

Stratergy: Sulfate Reduction for Acid Drainage

Reactions of Sulfate Reducing Bacteria

Promote Activity of the Sulfate Reducing Bacteria

Increase pH: a strong acid (sulfuric) is transformed into a weak acid (hydrogen sulfide)

Reactivity: sulfide for the precipitation of metals

Provide substrate that degrades slowly for the filling of the reactive barriers

e.g. sawdust, compost, straw

Page 6: August 27, 2008

6

How do Sulfate Reducing Bacteria Precipitate Metals?

Biomineralization

HS- + CO2

HS- H+ + S2-

M2+[aq]

+ S2-

SO42- + organics

biotic

abiotic

dissociation

MS[s]

Ksp = 10-24 to 10-53

Page 7: August 27, 2008

7

Fe0 as an Electron Donor for Sulfate Reduction

Fe0

Fe2+ + H2

SRB

SO42-

H2S

SRB

Fe0

Fe2+SO42-

H2S

indirect

direct

Page 8: August 27, 2008

8

Fe0 as an Electron Donor for Sulfate Reduction

Reaction of Fe0 (Anoxic Corrosion)

8H+ + 4Fe0 4H2 + 4Fe2+ G’ = -20.1 kJ/4 mol Fe0

Reaction of Autotrophic Sulfate Reduction

2H+ + 4H2 + SO42- H2S + 4H2O G’ = -152.2 kJ/mol SO4

2-

indirect

Page 9: August 27, 2008

9

Hypotheses: Benefits of Fe0 for Sulfate Reducing PRB

SO42- reduced and removed, no discharge of sulfides

FeS higher Ksp than heavy metal sulfides (Fe2+ doesn’t outcompete with precipitation of heavy metals)

Long term source of electron donating equivalents

Can treat very acid drainage

Additional metal removal mechanisms with hydroxides

Fe2+ formed attenuates excess sulfides

Oxidation of Fe0 forms high levels of alkalinity

Page 10: August 27, 2008

10

Fe0 + Cu2+ Fe2+ + Cu0abiotic

Hypotheses: Benefits of Fe0 for Sulfate Reducing PRB (continued)

Direct abiotic reduction heavy metals by Fe0

Page 11: August 27, 2008

11

Batch Experiment: Fe0 as E-donor SRB

medium + SO42-

sludge granules

head space

Fe0

N2/CO2

medium + SO42-

sludge granules

head spaceN2/CO2

endogenous control treatment

medium + SO42-

sludge granules

head spaceN2/CO2

uninoculated control

Fe0325 mesh47 g/L

Page 12: August 27, 2008

12

Batch Experiment: Fe0 as E-donor SRB

endogenous

uninoculated

treatment

Page 13: August 27, 2008

13

Continuous Column Experiments

Page 14: August 27, 2008

14

Continuous Column 1st Experiments

Laboratory Scale PRB Columns (0.41 L)

R1 Filling:

R2, R3 Filling:

Inoculum:

Sand = 300 ml (495 g)

Sand = 200 ml (331 g)

Fe0 = 100 ml (281 g)

SR Biofilm = 53 ml (6 g VSS)

Control Reactor (SO42-)

R2: Methanogenic Reactor (no SO42-)

R3: Sulfate Reducing Reactor (SO42-)

Page 15: August 27, 2008

15

Continuous Column 1st Experiments

Column Set Up

Inoculum: Sulfate reducing granular sludge from Twaron Reactor (The Netherlands)

Medium: basal inorganic nutrients

pH: variable 7.2 to 2.5

Sulfate: 1000 mg/L SO42- for R1 & R3; 0 mg/L R2

HRT: 24 h

Page 16: August 27, 2008

16

Continuous Column 1st Experiments

Column Set Up

R1 (SO42-) R2 (no SO4

2-), R3 (SO42-),

*

Page 17: August 27, 2008

17

Continuous Column 1st ExperimentsR1 R2 R3

Periods

I No MetalsII 10 ppm CuIII 25 ppm CuIV 50 ppm Cu

V50 ppm Cu + 7.5 ppm Ni &

Zn

Page 18: August 27, 2008

18

Results R3: Sulfate Data

600

800

1000

1200

0 50 100 150 200 250 300 350 400

Time (Days)

Su

lfat

e C

on

cen

trat

ion

(m

g/L

)

R3: sulfate reducing reactor (sand:ZVI)

influent

effluent

I II III IV V

Page 19: August 27, 2008

19

Results R1: Sulfate Data

R1: control sulfate reducing reactor (sand only)

600

800

1000

1200

0 50 100 150 200 250 300 350 400

Time (Days)

Su

lfat

e C

on

cen

trat

ion

(m

g/L

)

effluent

influent

I

Page 20: August 27, 2008

20

Results R2 & R3: pH

2.0

4.0

6.0

8.0

10.0

12.0

0 50 100 150 200 250 300 350 400

Time (d)

pH

Influent R3

effluent R3

Influent R2

effluent R2

I II III IV V

R3: sulfate reducing reactor; R2 methanogenic (sand:ZVI)

pH lowered

Page 21: August 27, 2008

21

Results R2 & R3: Copper Data

50

60

70

80

90

100

II (10) III (25) IV (50) V (50+ZnNi)

Period (Cu ppm infl)

To

t. C

op

per

Re

mo

val

(%

)

R2R3

Page 22: August 27, 2008

22

Results R2 & R3: Ni & Zn Data

50

60

70

80

90

100

Ni (7.5) Zn (7.5)

Additional Metal in Period V

To

t. N

i or

Zn

Re

mo

val

(%

)

R2R3

Page 23: August 27, 2008

23

Results R1 & R3: S-Balance (day 29-175)

0

20

40

60

80

R1 R3

Reactor

S c

on

vert

ed

(m

g/L

)

SO4-SH2S-S

no sequestering H2S

H2S sequestered

Page 24: August 27, 2008

24

Results R3: SEMS-EDS

Page 25: August 27, 2008

25

Results R2 & R3: MPN SRB

Nail in test tube method

Most Probable Number: Sulfate Reducing Bacteria

R2 methanogenic PRB

R3 sulfate reducing PRB

1.0 102

1.2 104

Reactor cells/ g dwt fill

Page 26: August 27, 2008

26

Continuous Column 2nd Experiments

Laboratory Scale PRB Columns (0.41 L)

R4 Filling:

R5 Filling:

Inoculum:

Compost = 210 ml (135 g)

Sand = 125 ml (191 g)

Limestone = 18 ml ( 26 g)

Compost = 210 ml (135 g)

Sand = 55 ml ( 82 g)

Limestone = 18 ml ( 26 g)

Fe0 = 70 ml (181 g)

SR Biofilm = 53 ml (6 g VSS)

Compost Reactor

Compost-ZVI Reactor

Page 27: August 27, 2008

27

Continuous Column 2nd Experiments

Column Set Up

Inoculum: Sulfidogenic granular sludge from Twaron Reactor (The Netherlands)

Medium: basal inorganic nutrients

pH: variable 7.2 to 3.0

Sulfate: initially 1000 mg/L SO42- (50 days);

remainder operation 250 mg/L SO42-

HRT: 24 h

Cu: Period A = 10, B = 25, C = 50, D = 20 ppm

Page 28: August 27, 2008

28

Influent

effluentBiogas

Com

pos

t o

nly

Influent

EffluentBiogas

Com

pos

t +

Fe0

R4 R5Cu0

Page 29: August 27, 2008

29

Results R4: Sulfate Data

0

100

200

300

400

0 50 100 150 200 250 300 350 400 450

Time (days)

Su

lfat

e C

on

c. (

pp

m)

influent

effluent

10 ppm Cu2+ 25 50 ppm Cu2+ 20 ppm Cu2+

Page 30: August 27, 2008

30

Results R5: Sulfate Data

influent

effluent

0

100

200

300

400

0 50 100 150 200 250 300 350 400 450

Time (days)

Su

lfat

e C

on

c. (

pp

m)

10 ppm Cu2+ 25 50 ppm Cu2+ 20 ppm Cu2+

Page 31: August 27, 2008

31

Results: Sulfide Data

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450

Time (days)

S2-

Pro

du

cti

on

(p

pm

)

R4

R5

10 ppm Cu2+ 25 50 ppm Cu2+ 20 ppm Cu2+

Page 32: August 27, 2008

32

Results: S Balance (days 125-185)

0

10

20

30

40

50

R4 R5

Reactor

SO

4-S

Re

mo

va

l; H

2S

-S F

orm

ati

on

(p

pm

)

SO4-SH2S-S

no sequestering H2S

H2S sequestered

Page 33: August 27, 2008

33

Results: pH

R5 pH Effluent

R5 pH Influent

R4 pH Effluent

R4 pH Influent

2

3

4

5

6

7

8

9

10

11

0 50 100 150 200 250 300 350 400 450

Time (Days)

pH

10 ppm Cu2+ 25 50 ppm Cu2+ 20 ppm Cu2+

pH lowered on purpose

Page 34: August 27, 2008

34

Results: Total Cu Removal (%)

50

60

70

80

90

100

A (10) B (25) C (50) D (20)

Period

To

tal

Co

pp

er

Re

mo

va

l (%

)

R4R5

Page 35: August 27, 2008

35

Continuous Column 3rd Experiments

Laboratory Scale PRB Columns (1.3 L)

R6 Filling:

Inoculum:

Compost = 526 ml ( 78 g)

Sawdust = 272 ml ( 24 g)

Limestone = 45 ml ( 73 g)

Mix Biofilm = 108 ml ( 14 g)

Compost-ZVI Reactor

ZVI = 14 ml ( 36 g)

HRT: 48 h

SO42-: 250 mg/L

Cu: 10, 30, 75, 150, 300, 75 ppm

Page 36: August 27, 2008

36

Continuous Column 3rd Experiments

Limestone Reactor, Pretreatment Column (0.7 L)

LR Filling: Limestone = 623 ml

HRT: 24 h

Page 37: August 27, 2008

37

Results R6: Sulfate Data

I II III IV V VI VII

0

50

100

150

200

250

300

50 150 250 350 450

Time (days)

SO

4 (

mg

/L)

influent

effluent

effluent LR

Page 38: August 27, 2008

38

Results R6: pH DataII III IV V VI VII

2

3

4

5

6

7

8

9

10

50 150 250 350 450

Time (days)

pH

I

effluent

effluent LR

influent

Page 39: August 27, 2008

39

Results R6: Soluble Cu Data

II III IV V VI VII

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 150 250 350 450

Time (days)

Co

pp

er C

on

cen

trat

ion

(m

g/L

) 10 30 75 150 30300

influent

effluent

effluent LR

Page 40: August 27, 2008

40

Summary Chart

Reactor ZVI Comp LS Sand

% dwt

SO42- pH incr. Cu rem.

mg/Lr.d %

R3

R4

R6*

46

0

16

0

38

45†

0

7

6

32

54

53

19

0

33

29£

33

4.3

3.8

5.4*

99.8

99.0£

99.7

99.9*

(89.5)*preceded by limestone reactor

R5 42 31 76 6.8

efficiency post treatment polishing in PRB

†includes sawdust

£decreased when compost biodegradability was exhausted after day 270

Average performance from day 175 to day 240

Page 41: August 27, 2008

41

Conclusions

Fe0 increases the removal of sulfate

Fe0 prevents the discharge of excess sulfur

Fe0 increases the alkalinity

Compost and the mixture of compost/Fe0 are good substrates for sulfate reducing bacteria

Elimination of Total Copper: 99.5%

Drops in R4 to 72% when SO42- reduction ceased

(exhaustion of compost biodegradability)

Prolonged supply of electron equivalents

Page 42: August 27, 2008

42

After viewing the links to additional resources, please complete our online feedback form.

Thank You

Links to Additional ResourcesLinks to Additional Resources

Feedback FormFeedback Form