34
Appendix B — ATtiny25/V Specification at +125°C This document contains information specific to devices operating at temperatures up to 125°C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. 8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash ATtiny25 ATtiny25V Appendix B Rev. 2586N-Appendix B–AVR–08/11

ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

8-bit Microcontroller with 2/4/8K Bytes In-SystemProgrammable Flash

ATtiny25ATtiny25V

Appendix B

Rev. 2586N-Appendix B–AVR–08/11

Appendix B — ATtiny25/V Specification at +125°CThis document contains information specific to devices operating at temperatures upto 125°C. Only deviations are covered in this appendix, all other information can befound in the complete datasheet. The complete datasheet can be found atwww.atmel.com.

Page 2: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

1. Memories

1.1 EEPROM Data MemoryThe EEPROM has an endurance of at least 50,000 write/erase cycles.

22586N-Appendix B–AVR–08/11

ATtiny25

Page 3: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

2. Electrical Characteristics

2.1 DC Characteristics

Notes: 1. Typical values at 25°C.

2. “Min” means the lowest value where the pin is guaranteed to be read as high.

3. “Max” means the highest value where the pin is guaranteed to be read as low.

Table 2-1. DC Characteristics. TA = -40°C to +125°C

Symbol Parameter Condition Min. Typ.(1) Max. Units

VILInput Low-voltage, exceptXTAL1 and RESET pin

VCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

-0.5-0.5

0.2VCC(3)

0.3VCC(3)

VV

VIHInput High-voltage, exceptXTAL1 and RESET pin

VCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

0.7VCC(2)

0.6VCC(2)

VCC +0.5VCC +0.5

VV

VIL1Input Low-voltage, XTAL1 pin, External Clock Selected

VCC = 1.8V - 5.5V -0.5 0.1VCC(3) V

VIH1Input High-voltage, XTAL1 pin, External Clock Selected

VCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

0.8VCC(2)

0.7VCC(2)

VCC +0.5VCC +0.5

VV

VIL2Input Low-voltage,RESET pin

VCC = 1.8V - 5.5V -0.5 0.2VCC(3) V

V

VIH2Input High-voltage,RESET pin

VCC = 1.8V - 5.5V 0.9VCC(2) VCC +0.5 V

VIL3Input Low-voltage,RESET pin as I/O

VCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

-0.5-0.5

0.2VCC(3)

0.3VCC(3)

VV

VIH3Input High-voltage,RESET pin as I/O

VCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

0.7VCC(2)

0.6VCC(2)

VCC +0.5VCC +0.5

VV

VOLOutput Low-voltage,(4)

Port B (except RESET) (6)IOL = 10 mA, VCC = 5VIOL = 5 mA, VCC = 3V

0.60.5

VV

VOHOutput High-voltage, (5)

Port B (except RESET) (6)IOH = -10 mA, VCC = 5VIOH = -5 mA, VCC = 3V

4.32.5

VV

IILInput LeakageCurrent I/O Pin

VCC = 5.5V, pin low(absolute value)

< 0.05 1 µA

IIHInput LeakageCurrent I/O Pin

VCC = 5.5V, pin high(absolute value)

< 0.05 1 µA

RRST Reset Pull-up Resistor VCC = 5.5V, input low 30 60 kΩ

Rpu I/O Pin Pull-up Resistor VCC = 5.5V, input low 20 50 kΩ

ICC

Power Supply Current (7)

Active 1 MHz, VCC = 2V 0.3 0.55 mA

Active 4 MHz, VCC = 3V 1.5 2.5 mA

Active 8 MHz, VCC = 5V 5 8 mA

Idle 1 MHz, VCC = 2V 0.1 0.2 mA

Idle 4 MHz, VCC = 3V 0.35 0.6 mA

Idle 8 MHz, VCC = 5V 1.2 2 mA

Power-down mode (8)WDT enabled, VCC = 3V 4 20 µA

WDT disabled, VCC = 3V 0.2 14 µA

32586N-Appendix B–AVR–08/11

Page 4: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

4. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOL, for all ports, should not exceed 60 mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

5. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOH, for all ports, should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. See Figure 3-19, Figure 3-20, Figure 3-21, and Figure 3-22 (starting on page 18).

7. Values are with external clock using methods described in “Minimizing Power Consumption” on page 37. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive.

8. Brown-Out Detection (BOD) disabled.

2.2 Clock Characteristics

2.2.1 Calibrated Internal RC Oscillator AccuracyIt is possible to manually calibrate the internal oscillator to be more accurate than default factorycalibration. Please note that the oscillator frequency depends on temperature and voltage. Volt-age and temperature characteristics can be found in Figure 3-36 on page 27 and Figure 3-37 onpage 27.

Notes: 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).

2. 6.4 MHz in ATtiny15 Compatibility Mode.

3. Voltage range for ATtiny25V.

4. Voltage range for ATtiny25.

2.3 System and Reset Characteristics

2.3.1 Power-On Reset

Note: 1. Values are guidelines, only

2. Threshold where device is released from reset when voltage is rising

3. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

Table 2-2. Calibration Accuracy of Internal RC Oscillator

CalibrationMethod Target Frequency VCC Temperature

Accuracy at given Voltage & Temperature (1)

Factory Calibration 8.0 MHz (2) 3V 25°C ±10%

UserCalibration

Fixed frequency within:6 – 8 MHz

Fixed voltage within:1.8V - 5.5V (3)

2.7V - 5.5V (4)

Fixed temperature within:

-40°C to +125°C±1%

Table 2-3. Characteristics of Power-On Reset. TA = -40°C to +125°C

Symbol Parameter Min(1) Typ(1) Max(1) Units

VPOR Release threshold of power-on reset (2) 1.1 1.4 1.7 V

VPOA Activation threshold of power-on reset (3) 0.6 1.3 1.7 V

SRON Power-On Slope Rate 0.01 V/ms

42586N-Appendix B–AVR–08/11

ATtiny25

Page 5: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

2.4 Brown-Out Detection

Note: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is tested down to VCC = VBOT during the production test. This guar-antees that a Brown-out Reset will occur before VCC drops to a voltage where correct operation of the microcontroller is no longer guaranteed.

2.5 Serial Programming Characteristics

Note: 1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz

Table 2-4. BODLEVEL Fuse Coding. TA = -40°C to +125°C

BODLEVEL[2:0] Fuses Min(1) Typ(1) Max(1) Units

111 BOD Disabled

110 1.7 1.8 2.0

V101 2.5 2.7 2.9

100 4.1 4.3 4.5

0XX Reserved

Table 2-5. Serial Programming Characteristics, TA = -40°C to +125°C, VCC = 1.8 - 5.5V (Unless Otherwise Noted)

Symbol Parameter Min Typ Max Units

1/tCLCL Oscillator Frequency (VCC = 1.8 - 5.5V) 0 4 MHz

tCLCL Oscillator Period (VCC = 1.8 - 5.5V) 250 ns

1/tCLCL Oscillator Frequency (VCC = 2.7 - 5.5V) 0 10 MHz

tCLCL Oscillator Period (VCC = 2.7 - 5.5V) 100 ns

1/tCLCL Oscillator Frequency (VCC = 4.5V - 5.5V) 0 20 MHz

tCLCL Oscillator Period (VCC = 4.5V - 5.5V) 50 ns

tSHSL SCK Pulse Width High 2 tCLCL* ns

tSLSH SCK Pulse Width Low 2 tCLCL* ns

tOVSH MOSI Setup to SCK High tCLCL ns

tSHOX MOSI Hold after SCK High 2 tCLCL ns

tSLIV SCK Low to MISO Valid 100 ns

52586N-Appendix B–AVR–08/11

Page 6: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

2.6 ADC Characteristics

Note: 1. Values are guidelines only.

Table 2-6. ADC Characteristics, Single Ended Channels. TA = -40°C to +125°C

Symbol Parameter Condition Min Typ Max Units

Resolution 10 Bits

Absolute accuracy(Including INL, DNL, andQuantization, Gain andOffset errors)

VREF = 4V, VCC = 4V,ADC clock = 200 kHz

2 LSB

VREF = 4V, VCC = 4V,ADC clock = 1 MHz

3 LSB

VREF = 4V, VCC = 4V,ADC clock = 200 kHzNoise Reduction Mode

1.5 LSB

VREF = 4V, VCC = 4V,ADC clock = 1 MHzNoise Reduction Mode

2.5 LSB

Integral Non-linearity (INL)(Accuracy after offset and gain calibration)

VREF = 4V, VCC = 4V,ADC clock = 200 kHz

1 LSB

Differential Non-linearity (DNL)VREF = 4V, VCC = 4V,ADC clock = 200 kHz

0.5 LSB

Gain ErrorVREF = 4V, VCC = 4V,ADC clock = 200 kHz

2.5 LSB

Offset ErrorVREF = 4V, VCC = 4V,ADC clock = 200 kHz

1.5 LSB

Conversion Time Free Running Conversion 14 280 µs

Clock Frequency 50 1000 kHz

VIN Input Voltage GND VREF V

Input Bandwidth 38.4 kHz

AREF External Reference Voltage 2.0 VCC V

VINT

Internal Voltage Reference 1.0 1.1 1.2 V

Internal 2.56V Reference (1) VCC > 3.0V 2.3 2.56 2.8 V

RREF 32 kΩ

RAIN Analog Input Resistance 100 MΩ

ADC Output 0 1023 LSB

62586N-Appendix B–AVR–08/11

ATtiny25

Page 7: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

Note: 1. Values are guidelines only.

Table 2-7. ADC Characteristics, Differential Channels (Unipolar Mode). TA = -40°C to +125°C

Symbol Parameter Condition Min Typ Max Units

ResolutionGain = 1x 10 Bits

Gain = 20x 10 Bits

Absolute accuracy(Including INL, DNL, and Quantization, Gain and Offset Errors)

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

10.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

20.0 LSB

Integral Non-Linearity (INL)(Accuracy after Offset and Gain Calibration)

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

4.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

10.0 LSB

Gain ErrorGain = 1x 10.0 LSB

Gain = 20x 15.0 LSB

Offset Error

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

3.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

4.0 LSB

Conversion Time Free Running Conversion 70 280 µs

Clock Frequency 50 200 kHz

VIN Input Voltage GND VCC V

VDIFF Input Differential Voltage VREF/Gain V

Input Bandwidth 4 kHz

AREF External Reference Voltage 2.0 VCC - 1.0 V

VINT

Internal Voltage Reference 1.0 1.1 1.2 V

Internal 2.56V Reference (1) VCC > 3.0V 2.3 2.56 2.8 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

ADC Conversion Output 0 1023 LSB

72586N-Appendix B–AVR–08/11

Page 8: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Note: 1. Values are guidelines only.

Table 2-8. ADC Characteristics, Differential Channels (Bipolar Mode). TA = -40°C to +125°C

Symbol Parameter Condition Min Typ Max Units

ResolutionGain = 1x 10 Bits

Gain = 20x 10 Bits

Absolute accuracy(Including INL, DNL, and Quantization, Gain and Offset Errors)

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

8.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

8.0 LSB

Integral Non-Linearity (INL)(Accuracy after Offset and Gain Calibration)

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

4.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

5.0 LSB

Gain ErrorGain = 1x 4.0 LSB

Gain = 20x 5.0 LSB

Offset Error

Gain = 1xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

3.0 LSB

Gain = 20xVREF = 4V, VCC = 5VADC clock = 50 - 200 kHz

4.0 LSB

Conversion Time Free Running Conversion 70 280 µs

Clock Frequency 50 200 kHz

VIN Input Voltage GND VCC V

VDIFF Input Differential Voltage VREF/Gain V

Input Bandwidth 4 kHz

AREF External Reference Voltage 2.0 VCC - 1.0 V

VINT

Internal Voltage Reference 1.0 1.1 1.2 V

Internal 2.56V Reference (1) VCC > 3.0V 2.3 2.56 2.8 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ

ADC Conversion Output -512 511 LSB

82586N-Appendix B–AVR–08/11

ATtiny25

Page 9: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

3. Typical CharacteristicsThe data contained in this section is largely based on simulations and characterization of similardevices in the same process and design methods. Thus, the data should be treated as indica-tions of how the part will behave.

The following charts show typical behavior. These figures are not tested during manufacturing.All current consumption measurements are performed with all I/O pins configured as inputs andwith internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clocksource.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operatingfrequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*fwhere CL = load capacitance, VCC = operating voltage and f = average switching frequency ofI/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed tofunction properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timerenabled and Power-down mode with Watchdog Timer disabled represents the differential cur-rent drawn by the Watchdog Timer.

3.1 Active Supply Current

Figure 3-1. Active Supply Current vs. VCC (Internal RC oscillator, 8 MHz)

125 °C25 °C

-40 °C

0

1

2

3

4

5

6

7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

mA

)

92586N-Appendix B–AVR–08/11

Page 10: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Figure 3-2. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)

Figure 3-3. Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

125 °C25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

mA

)

125 °C25 °C

-40 °C

0

0.05

0.1

0.15

0.2

0.25

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

mA

)

102586N-Appendix B–AVR–08/11

ATtiny25

Page 11: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

3.2 Idle Supply Current

Figure 3-4. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)I

Figure 3-5. Idle Supply Current vs. VCC (Internal RC Oscilllator, 1 MHz)

125 °C85 °C25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

mA

)

125 °C

85 °C25 °C

-40 °C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

mA

)

112586N-Appendix B–AVR–08/11

Page 12: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Figure 3-6. Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)

3.3 Power-down Supply Current

Figure 3-7. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)

125 °C85 °C

25 °C-40 °C

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

mA

)

125 °C

85 °C

25 °C-40 °C

0

1

2

3

4

5

6

7

8

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

uA)

122586N-Appendix B–AVR–08/11

ATtiny25

Page 13: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

Figure 3-8. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)

3.4 Pin Pull-up

Figure 3-9. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)

125 °C

85 °C25 °C

-40 °C

0

2

4

6

8

10

12

14

16

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

uA)

125 °C85 °C

25 °C-40 °C

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOP (V)

I OP (

uA)

132586N-Appendix B–AVR–08/11

Page 14: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Figure 3-10. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)

Figure 3-11. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

125 °C

85 °C25 °C

-40 °C0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3

VOP (V)

I OP (

uA)

125 °C

85 °C25 °C

-40 °C0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

VOP (V)

I OP (

uA)

142586N-Appendix B–AVR–08/11

ATtiny25

Page 15: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

Figure 3-12. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)

Figure 3-13. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

125 °C85 °C

25 °C-40 °C

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VRESET (V)

I RE

SE

T (

uA)

125 °C85 °C

25 °C-40 °C

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I RE

SE

T (

uA)

152586N-Appendix B–AVR–08/11

Page 16: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Figure 3-14. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

3.5 Pin Driver Strength

Figure 3-15. I/O Pin Output Voltage vs. Sink Current (VCC = 3V)

125 °C85 °C

25 °C-40 °C

0

20

40

60

80

100

120

0 1 2 3 4 5 6

VRESET (V)

I RE

SE

T (

uA)

125

85

25

-40

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20

IOL (mA)

VO

L (V

)

162586N-Appendix B–AVR–08/11

ATtiny25

Page 17: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

Figure 3-16. I/O Pin Output Voltage vs. Sink Current (VCC = 5V)

Figure 3-17. I/O Pin Output Voltage vs. Source Current (VCC = 3V)

125

85

25

-40

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16 18 20

IOL (mA)

VO

L (V

)

1258525

-40

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16 18 20

IOH (mA)

VO

H (

V)

172586N-Appendix B–AVR–08/11

Page 18: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Figure 3-18. I/O Pin Output Voltage vs. Source Current (VCC = 5V)

Figure 3-19. Reset Pin Output Voltage vs. Sink Current (VCC = 3V)

12585

25-40

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

0 2 4 6 8 10 12 14 16 18 20

IOH (mA)

VO

H (

V)

-45 °C

0 °C

85 °C

125 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3

IOL (mA)

VO

L (V

)

182586N-Appendix B–AVR–08/11

ATtiny25

Page 19: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

Figure 3-20. Reset Pin Output Voltage vs. Sink Current (VCC = 5V)

Figure 3-21. Reset Pin Output Voltage vs. Source Current (VCC = 3V)

-45 °C

0 °C

85 °C

125 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3

IOL (mA)

VO

L (V

)

-45 °C

25 °C

85 °C125 °C

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2IOH (mA)

VO

H (V

)

192586N-Appendix B–AVR–08/11

Page 20: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Figure 3-22. Reset Pin Output Voltage vs. Source Current (VCC = 5V)

3.6 Pin Threshold and Hysteresis

Figure 3-23. I/O Pin Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’)

-45 °C

25 °C

85 °C125 °C

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2

IOH (mA)

VO

H (

V)

125 °C85 °C25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

Thr

esho

ld (

V)

202586N-Appendix B–AVR–08/11

ATtiny25

Page 21: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

Figure 3-24. I/O Pin Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’)

Figure 3-25. I/O Pin Input Hysteresis vs. VCC

125 °C85 °C25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

Thr

esho

ld (

V)

125 °C85 °C25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

Inpu

t Hys

tere

sis

(mV

)

212586N-Appendix B–AVR–08/11

Page 22: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Figure 3-26. Reset Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’)

Figure 3-27. Reset Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’)

125 °C

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

Thr

esho

ld (

V)

125 °C

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

Thr

esho

ld (

V)

222586N-Appendix B–AVR–08/11

ATtiny25

Page 23: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

Figure 3-28. Reset Pin Input Hysteresis vs. VCC

3.7 BOD Threshold

Figure 3-29. BOD Threshold vs. Temperature (BOD Level is 4.3V)

125 °C

85 °C

25 °C

-40 °C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

Inpu

t Hys

tere

sis

(mV

)

Rising VCC

Falling VCC

4.26

4.28

4.3

4.32

4.34

4.36

4.38

4.4

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Temperature (C)

Thr

esho

ld (

V)

232586N-Appendix B–AVR–08/11

Page 24: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Figure 3-30. BOD Threshold vs. Temperature (BOD Level is 2.7V)

Figure 3-31. BOD Threshold vs. Temperature (BOD Level is 1.8V)

Rising VCC

Falling VCC

2.68

2.7

2.72

2.74

2.76

2.78

2.8

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Temperature (C)

Thr

esho

ld (

V)

Rising VCC

Falling VCC

1.795

1.8

1.805

1.81

1.815

1.82

1.825

1.83

1.835

1.84

1.845

1.85

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Temperature (C)

Thr

esho

ld (

V)

242586N-Appendix B–AVR–08/11

ATtiny25

Page 25: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

Figure 3-32. Bandgap Voltage vs. Supply Voltage

Figure 3-33. Bandgap Voltage vs. Temperature

125 °C

85 °C

25 °C

-40 °C

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

Vcc (V)

Ban

dgap

Vol

tage

(V

)

5

3

1.8

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

-40 -20 0 20 40 60 80 100 120 140

Temperature

Ban

dgap

Vol

tage

(V

)

252586N-Appendix B–AVR–08/11

Page 26: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

3.8 Internal Oscillator Speed

Figure 3-34. Watchdog Oscillator Frequency vs. VCC

Figure 3-35. Watchdog Oscillator Frequency vs. Temperature

125 °C

105 °C

85 °C

25 °C

-40 °C

0.106

0.108

0.11

0.112

0.114

0.116

0.118

0.12

0.122

0.124

0.126

0.128

2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

Fre

quen

cy (

MH

z)

5.5 V4.0 V3.3 V2.7 V

1.8 V

0.106

0.108

0.11

0.112

0.114

0.116

0.118

0.12

0.122

0.124

0.126

0.128

-40 -20 0 20 40 60 80 100 120 140

Temperature

Fre

quen

cy (

MH

z)

262586N-Appendix B–AVR–08/11

ATtiny25

Page 27: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

Figure 3-36. Calibrated 8 MHz RC Oscillator Frequency vs. VCC

Figure 3-37. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

125 °C105 °C

85 °C

25 °C

-40 °C

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

Fre

quen

cy (

MH

z)

5.0 V3.0 V

7.7

7.8

7.9

8

8.1

8.2

8.3

-60 -40 -20 0 20 40 60 80 100 120 140

Temperature

Fre

quen

cy (

MH

z)

272586N-Appendix B–AVR–08/11

Page 28: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Figure 3-38. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value

3.9 Current Consumption of Peripheral Units

Figure 3-39. Brownout Detector Current vs. VCC

125 °C

85 °C25 °C

-40 °C

0

2

4

6

8

10

12

14

16

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

OSCCAL

Fre

quen

cy (

MH

z)

125 °C85 °C

25 °C-40 °C

0

5

10

15

20

25

30

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

uA)

282586N-Appendix B–AVR–08/11

ATtiny25

Page 29: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

Figure 3-40. ADC Current vs. VCC (AREF = AVCC)

Figure 3-41. Analog Comparator Current vs. VCC

125 °C85 °C25 °C

-40 °C

0

50

100

150

200

250

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

uA)

125 °C

85 °C

25 °C-40 °C

0

5

10

15

20

25

30

35

40

45

50

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

uA)

292586N-Appendix B–AVR–08/11

Page 30: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Figure 3-42. Programming Current vs. VCC

3.10 Current Consumption in Reset and Reset Pulsewidth

Figure 3-43. Reset Supply Current vs. VCC (0.1 - 1.0 MHz, Excluding Current Through The Reset Pull-up)

125 °C

85 °C

25 °C

-40 °C

0

2

4

6

8

10

12

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I CC (

mA

)

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I CC (

mA

)

302586N-Appendix B–AVR–08/11

ATtiny25

Page 31: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

Figure 3-44. Reset Supply Current vs. VCC (1 - 20 MHz, Excluding Current Through The Reset Pull-up)

Figure 3-45. Minimum Reset Pulse Width vs. VCC

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I CC (

mA

)

125 °C85 °C25 °C

-40 °C0

500

1000

1500

2000

2500

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

Pul

sew

idth

(ns

)

312586N-Appendix B–AVR–08/11

Page 32: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

4. Ordering Information

Notes: 1. All packages are Pb-free, halide-free and fully green, and they comply with the European directive for Restriction of Hazard-ous Substances (RoHS).

2. Code indicator:

– R: tape & reel

4.1 ATtiny25Speed (MHz) Supply Voltage (V) Temperature Range Package (1) Ordering Code (2)

10 1.8 – 5.5Extended

(-40°C to +125°C)20M1

ATTINY25V-10MF

ATTINY25V-10MFR

20 2.7 – 5.5Extended

(-40°C to +125°C)20M1

ATTINY25-20MF

ATTINY25-20MFR

Package Types

20M1 20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

322586N-Appendix B–AVR–08/11

ATtiny25

Page 33: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

ATtiny25

332586N-Appendix B–AVR–08/11

Page 34: ATtiny25/V Appendix B - Microchip Technology · 2017. 1. 4. · 4 2586N-Appendix B–AVR–08/11 ATtiny25 4. Although each I/O port can sink more than the test conditions (10 mA at

Headquarters International

Atmel Corporation2325 Orchard ParkwaySan Jose, CA 95131USATel: (+1)(408) 441-0311Fax: (+1)(408) 487-2600

Atmel Asia LimitedUnit 01-5 & 16, 19FBEA Tower, Millennium City 5418 Kwun Tong RoadKwun Tong, KowloonHONG KONGTel: (+852) 2245-6100Fax: (+852) 2722-1369

Atmel Munich GmbHBusiness CampusParkring 4D-85748 Garching b. MunichGERMANYTel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan9F, Tonetsu Shinkawa Bldg.1-24-8 ShinkawaChuo-ku, Tokyo 104-0033JAPANTel: (+81)(3) 3523-3551Fax: (+81)(3) 3523-7581

Product Contact

Web Sitewww.atmel.com

Technical [email protected]

Sales Contactwww.atmel.com/contacts

Literature Requestswww.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to anyintellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OFTHE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes norepresentations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specificationsand product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedotherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for useas components in applications intended to support or sustain life.

© 2011 Atmel Corporation. All rights reserved.

Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other termsand product names may be trademarks of others.

2586N-Appendix B–AVR–08/11