64
Atomic Resolution Structures of Amyloid Fibrils ------- Sedimented Protein DNP Dynamic Nuclear Polarization and Dipolar Recoupling Winter School Stowe, VT January 11, 2013 MAS MAS+CryoEM

Atomic Resolution Structures of Amyloid Fibrils ... · Atomic Resolution Structures of Amyloid Fibrils-----Sedimented Protein DNP Dynamic Nuclear Polarization and Dipolar Recoupling

  • Upload
    vantu

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

Atomic Resolution Structures of Amyloid Fibrils-------

Sedimented Protein DNPDynamic Nuclear Polarization and Dipolar Recoupling

Winter SchoolStowe, VT

January 11, 2013

MAS MAS+CryoEM

CollaboratorsCyro-EM

Anthony FitzpatrickHelen Saibil

Transthyretin105-115Galia Delbouchina

Marvin BayroChris Jaroniec

Vik BajajMarc Caporini

Patrick van der WelAlexander Barnes

Cait MacPheeMichele Vendruscuolo

Chris Dobson

β-2-MicroglobulinGalia Delbouchina

Geoffrey PlattMarvin Bayro

Sheena Radford

PI3-SH3Marvin BayroNeil BirkettMatt Eddy

Cait MacPheeChris Dobson

National Institute of Biomedical Imaging and Bioengineering

Sedimented Protein DNPEnrico Ravera

Bjoern CorziliusVladimir MichaelisClaudio Luchinat

Ivano Bertini

EB00315, EB002804, EB002026

Amyloid  fibrils

Sup35  fibril  strains  in  S.  cerevisiae  lead  to  different  phenotypes.

Tessier  &  Lindquist,  NSMB,  2009

Func%onal  amyloid

β2-­‐microglobulin  amyloid  deposits  

(dialysis-­‐related  amyloidosis)

Floege & Ehlerding Nephron,1996

Pathogenic  amyloid

Non-­‐crystalline  and  insolubleDipolar  recoupling  &  DNP

TTR 105-11 Amyloid Fibrils

• Binds the dye congo red --> green birefringence

• “Cross-β” powder X-ray diffraction pattern

• Twisted fibrillar structures shown above

• Insoluble and do not diffract to high resolution MAS NMR

TTR L111M: YTIAALMSPYSTTR 105-115: YTIAALLSPYS

Amyloid  protofilament  structure  -­‐  MAS

4.7 Å

~10 Å

characterisGc  cross-­‐β  structure fib

ril  axis

secondary  structure

intra-­‐sheetorganizaGon

protofilamentinter-­‐sheetorganizaGon

protofilamentinteracGons

Levels  of  structural  organiza%on

Techniques for Polymorphic Fibril Structures

• MAS NMR atomic detail data -- 1-10 Å (±0.1 Å)• CryoEM --10-1000 Å (±10 Å) A. Fitzpatrick, et al., 2012

13C-15N and 13C-13C Distance Measurements

Rotational Resonance (R2) Width3D experiment yielding multiple

13C-13C dipolar couplings

Raleigh, Levitt and Griffin(1988) Chem. Phys. Lett. 146, 71-76

Ramachandran, Ladizhansky, Bajaj, Griffin(2003) JACS 125:15623-9

Ramachandran, van der Wel, Lewandowski, Griffin(2006) J. Chem. Phys. 124, 214107

EvolutionMixing/2 Mixing/2

3D ZF-TEDORObtaining multiple 15N-13C

couplings per 3DJaroniec, Filip, Griffin

(2002) JACS 124, 10728-10742

Hing, Vega, Schaefer(1992) JMR 96, 205-209

13C-15N and 13C-13C Distance Measurements

Rotational Resonance (R2) Width3D experiment yielding multiple

13C-13C dipolar couplings

Raleigh, Levitt and Griffin(1988) Chem. Phys. Lett. 146, 71-76

Ramachandran, Ladizhansky, Bajaj, Griffin(2003) JACS 125:15623-9

Ramachandran, van der Wel, Lewandowski, Griffin(2006) J. Chem. Phys. 124, 214107

EvolutionMixing/2 Mixing/2

3D ZF-TEDORObtaining multiple 15N-13C

couplings per 3DJaroniec, Filip, Griffin

(2002) JACS 124, 10728-10742

Hing, Vega, Schaefer(1992) JMR 96, 205-209

Summary of SSNMR Restraints

• About 70 structural restraints in the form of backbone torsion angles, 13C-15N and 13C-13C distances

• Precision of restraints: torsion angles ~ ±20o, distances ~ ±0.2-0.5 Å

• Low density of restraints for Tyr side-chains and C-terminus

TTR(105-115) Monomer Structure

• Ensemble of 20 lowest energy structures calculated by simulated annealing MD (CNS)• Backbone RMSD 0.39 Å, heavy atom 0.63 Å• Initial high resolution structure of an amyloid fibril !• Structure not available from diffraction or solution NMR !

Jaroniec, et. al. PNAS (2004)

Structural  models  by  MAS  NMRAβ(1-­‐40)

Alzheimer’s  disease

Wasmer  et  al.,  Science,  2008

HET-­‐s(218-­‐289)P.  anserina

β-­‐helix

Paravastu  et  al.  PNAS,  2008Petkova,  Biochemistry,  2006

parallel,  in-­‐register

Amyloid  fibril  structure  with  DNP

DNP  enhancements  of  amyloid  fibrilsGNNQQNY TTR(105-­‐115)

β2-­‐Microglobulin PI3-­‐SH3

ε  =  35 ε  =  11

ε  =  20 ε  =  27

Signal  enhancements  of  10  –  35  can  lead  to  102  –  352  savings  in  acquisiGon  Gme.  

Distance  constraints  with  DNP

TTR(105-­‐115)  fibrils

DQ-­‐DRAWS  experiment  to  measure  a  4.3  Å  13C-­‐13C  distance.

avec  DNP45  min

sans  DNP3.5  days

PI3-­‐SH3  fibrils

TEDOR  experiment  used  to  obtain  inter-­‐molecular  constraints.

Bayro  MJ,  Debelouchina  GT  et  al.,  JACS,  2011,  13967Debelouchina  GT,  Bayro  MJ,  Fitzpatrick  A  et  al.,  in  prepara,on

sans  DNP16  days

avec  DNP1.5    days

15N  Chemical  shid  (ppm)

The  atomic  resoluGon  structure  of  TTR(105-­‐115)  fibrils

Fibril  Structure

secondary  structure

intra-­‐sheetorganizaGon

inter-­‐sheetorganizaGon

protofilamentinteracGons

MAS  NMR  (and  DNP)

Cryo-­‐EMand  AFM

+

Structure  of  the  TTR(105-­‐115)  monomer

•  One  of  the  first  structures  obtained  by  biomolecular  MAS  NMR.

•  70  structural  restraints  including  backbone  torsion  angles,  13C-­‐15N    and  13C-­‐13C  distances.

Jaroniec  CP,  MacPhee  CE,  Bajaj  VS,  McMahon  MT,  Dobson  CM,  Griffin  RG,  PNAS,  2004

13C=O-13C=O Distance MeasurementsParallel β-strands

• DQF DRAWS is more sensitive to distance than dephasing experimentsInfinite linear chain of spins

M. Caporini , V. Bajaj (2010)

13C=O-13C=O Distance MeasurementsDQ-DRAWS

• Multispin model used to extract

internuclear distances (> 4 spins)

• Parallel, in register arrangement of

the peptide strands in a sheet

RC-C ~ 4.50±0.05 Å

M. Caporini , V. Bajaj (2010)

Intermolecular Distance Measurements

TTR

• Label a single 13C=O site; use DQ DRAWS experiment

Typical fit-curveFor Ser-112

• All 7 distances consistent with a parallel in register β-sheet ! Botto (DRAWS dephasing); Tycko (RFDR) (2001)

Intra-­‐sheet  arrangement

Caporini  et  al.,  J.  Phys.  Chem.  B,  2010Debelouchina,  Bayro  et  al,  in  prepara,on

DNP

S115  CO4.26  ±  0.03  Å

45  min

fibril  axis

DQ-­‐DRAWS  experiment

•  Prepare  8  different  samples.•  Each  has  a  different  CO  labeled.•  Measure  inter-­‐molecular  CO-­‐CO  distances.

parallel,  in-­‐register  β-­‐strands

Fibril  Structure

secondary  structure

intra-­‐sheetorganizaGon

inter-­‐sheetorganizaGon

protofilamentinteracGons

MAS  NMR  (and  DNP)

Cryo-­‐EMand  AFM

+

TTR 105-115 YTIAallSPYs13C-15N TEDOR Spectra

• ODD-EVEN x-peaks -- i.e., P113-A108

• U-[13C/15N]-YTIA/SPY TTR fibrils

• 10.24 ms TEDOR, 750 MHz, ωr/2π=12.5 kHz

TTR 105-115 YTIAallSPYs13C-13C PDSD Spectra

• U-[13C/15N]-YTIA/SPY TTR fibrils

• 200 ms PDSD, 900 MHz, ωr/2π=11 kHz

•ODD-EVEN x-peaks ....I107-S112A108-P113

Inter-­‐sheet  arrangement

10  ms  TEDOR

-­‐  23  quanQtaQve  and  qualitaQve  constraints-­‐  anQparallel    β-­‐sheets-­‐  even-­‐odd-­‐even-­‐odd  interface-­‐  defines  protofilament

fibril  axis

Protofilament  arrangement

head-­‐to-­‐tail head-­‐to-­‐head

3  -­‐  4  Å >  7  Å  

[15N-­‐Y]TIAALLSPY[13C1-­‐S]

15N  -­‐13C  experiment  performed

Head-­‐to-­‐tail  protofilament  arrangement.

3.5  ±  0.2  Å

DNP

Protofilament  arrangement

Different  chemical  environments

Data  is  consistent  with  four  different  chemical  environments  for  the  termini.

Atomic resolution structure of TTR(105-115) amyloid fibrils

fibril  axis

fibril  axis

protofilament

-­‐  10  constraints/residue-­‐  several  constraints  obtained  with  DNP-­‐  protofilament-­‐to-­‐protofilament  contacts  observed  for  the  first  Qme

Protofibrils  to  FibrilsCryoEM  +  MAS

TTR 105-11 Amyloid Fibrils

• Binds the dye congo red --> green birefringence

• “Cross-β” powder X-ray diffraction pattern

• Twisted fibrillar structures shown above

• Insoluble and do not diffract to high resolution MAS NMR

TTR L111M: YTIAALMSPYSTTR 105-115: YTIAALLSPYS

• Based on the high resolution structure of the monomer ~70 constraints (±0.3-0.5 Å)

• Intermolecular distances and packing constraints ~ 40 constraints (±0.05 Å)

• Cryo-EM and STEM data to refine supramolecular structure

• “Wet” interface and “ steric zipper”

A. Fitzpatrick, Helen Saibil, et al.

Structure of the TTR amyloid fibrilSTEM Mass/Length

8 sheets

16 sheets

12 sheets

Cryo-­‐EM  of  TTR105-­‐115

Anthony  Fitzpatrick,  Helen  Saibil

Three  classes  of  fibrils  idenQfied  by  cryo-­‐EM.

quartet sextet octet

84  Å 121  Å 154  Å

Quartet  cross-­‐secGon

solvent solvent

A  solvent  cavity  is  accommodated  in  the  fibril  interior.

10  Å

Polymorphic  Fibril  Cross  Sec,ons

35

84  ÅQuartet

121  ÅSextet

154  ÅOctet

•  3  different  polymorphs  -­‐-­‐  quartet,  sextet  and  octet

Sextet -- MAS NMR and cryoEM

data  from  NMR  only

NMR+

cryoEMelectrondensity

• Use MAS and cryoEM to determine atomic level structure of fibrils !

Polymorphic TTR105-115 Fibrils

77  ÅQuartet

116  ÅSextet

149  ÅOctet

•Three  different  periods

•Three  different  widths

•Note  H2O  layer

Amyloid  fibrils  formed  by  full-­‐length  proteins

~600

Å

42 Å

PI3-SH3 Cryo-EM Architecture

Four ProtofibrilsJimenez et al. EMBO J. 18 (1999) 815

14Å

2 β−sheets

Phosphatidylinositol 3-kinaseP85α subunit SH3 domain

64 x 38 ÅH2O ?

pH=2

PI3-SH3 protein fibrils-- EM and NMR

PI3-SH3

Cryo-EM: Jiménez et al. (1999) EMBO J. 18: 815

PI3-SH3 fibrils

• Dimensions -- consistent with cryoEM from Jiminez, et. al.(1999)

• Parallel, in-register alignment, contacts between strands

•Additional constraints to refine structure calculation....Bayro et. al. Biochemistry (2010)

PI3-SH3 protein fibrils- assignments

PI3-SH3

Sequential assignments RFDR, 750 MHz, ωr/2π= 20.161 kHz 0.8 ms

mixing, no 1H decoupling

• Excellent resolution -- 0.5 ppm linewidths

• 75/86 residues sequentially assigned

• 87% assigned !

Bayro, et al. Biochemistry (2010)

Intra-­‐sheet  arrangement

Mixed  sample

50%  15N50%  13C  (2-­‐glycerol)

fibril  axis

Target  intermolecular  N-­‐Ca  correlaQons.Distances  ~  4.5  Å.

Intra-­‐sheet  constraints  with  DNP:  PI3-­‐SH3

b2m

MHC-­‐I 300  K750  MHz16  days

100  Kwith  DNP400  MHz1.5  days

Many  more  intermolecular  constraints  are  obtained  with  low-­‐temperature  DNP  spectra.

Bayro  MJ,  Debelouchina  GT  et  al.,  JACS,  2011,  13967

23  constraints

52  constraints

Protofilament Structural Constraints

• Needed: Intersheet constraints• Contacts between protofilaments also possible

Model of the fibrilcross-section

15N-13C Intersheet ContactsZF-TEDOR

• Backbone 15N – sidechain 13C contacts• Also sidechain 15N – sidechain 13C• Distance estimates from build-up curve

45

15 ms mixing period12.5 kHz MAS1,3-PI3-SH3

13C-13C Intersheet ConstraintsAromatic-aliphatic Interactions

• Aromatic sidechains are long (up to 7 Å from backbone)• Also generally hydrophobic, typically buried• Great probes of local structure --L26 and L28 to W57

46

Current structural constraints/model

• Data agrees with the proposed model• Also defines positions of sidechains• Ongoing work

Preliminary Structure -- PI3-SH324-61

• Contacts agree with our proposed model• Defines positions of sidechains• Additional constraints in the 1-26 and 61-86

W57L26

L28L39

W57

L26L28

Q48

I31 ?

I55 ?

N35 ?

E53 ?

RMSDBackbone: 1.66 ÅHeavy-atom: 2.41 Å

~600

Å

42 Å

PI3-SH3 Cryo-EM Architecture

Four ProtofibrilsJimenez et al. EMBO J. 18 (1999) 815

14Å

2 β−sheets

Phosphatidylinositol 3-kinaseP85α subunit SH3 domain

64 x 38 ÅH2O ?

pH=2

Sedimented  Protein  NMR  and  DNP

Ivano BertiniDecember 1940 - July 2012

Motivation – NMR of large biolecules

liquid-state solid-state

intermediatetumbling

deuterationTROSY

micro-crystallization

immobilization by sedimentationDNP

Protein sedimentation & cryoprotection?

• Glycerol prevents sedimentation (density and viscosity)

supernatantwater

proteinsediment

glycerol

removesupernatant seal

removesuper-natant

addglycerol

mix &seal

~700 mg/mL

~280 mg/mL

SedNMR In situ sedimentation during MAS

homogeneous solution of protein60 mg/mL

sedimented protein at rotor walls(thin, but high local concentration)

≤700 mg/mL

distance from rotor axis (mm)

12 kHz7 kHz4 kHz

2 kHz

1 kHz

static

1.36 1.38 1.481.461.441.421.40 1.50

1.5

1.0

0.5lo

cal p

rote

in c

onc.

(mM

)magic angle spinning

Enrico Ravera, Claudio Luchniat & Ivano Bertini

Bertini et al, PNAS (2011)

apoferritinmonomer: 20 kDa24-mer: 480 kDa

SedNMR 13C–13C CPMAS DARR

• Apoferritin – 480 kD 24 merBertini et al, PNAS (2011)

microcrystalline sedimented

E. Ravera

Sedimented DnaB helicase (12 × 57 kDa)se

dim

ente

dm

icro

crys

talli

ne

Gardiennet et al., ACIEE 2012

SedDNP -- can sedimented proteins be polarized ?

homogeneous solution of protein(low concentration)

magic angle spinning

sedimented protein at rotor walls(thin but high concentration)

frozen solution of proteincrystalline!

frozen protein sediment at rotor wallsamorphous/glassy?

80 K

80 K

DNP ?

µw

µw

In situ SedDNP – apoferritin

• Sedimented solution -- 1H and direct 13C DNP via cross effect• Frozen solution -- no significant DNP, phase separation

Sedimented solution

Frozen solution

2D: 24 × 20 kDa protein @ 212 MHz

• 13C–13C correlation spectra (PDSD) can be obtained within few hours• 6 times larger sensititvity of sedimented solution• Resolution difficult to assess due to low field (5 T)

Sedimented solution 60/40 glycerol/water solution

Ex situ sedimentation – n.a. BSA

µw

homogeneous solution of BSA(200 mg/mL in D2O/H2O 90/10)

+ 5mM TOTAPOL

ultracentrifugation sedimented protein(high concentration)

frozen sedimented protein(amorphous)

80 K

BSA – sensitivity

• Sediments yield superior sensitivity – up to 4.5-fold larger than glycerol solution

Conclusions

Amyloid Protein Structure

• PI3-SH3 assignments • Non-native, parallel in-register

Polymorphic TTR Fibril Structure

• Monomer structure, and strand and sheet alignment

• CyroEM and STEM

Conclusions

Sedimented Protein DNP (SedDNP)

• functionally -- “microcrystalline glass”

CollaboratorsCyro-EM

Anthony FitzpatrickHelen Saibil

Transthyretin105-115Galia Delbouchina

Marvin BayroChris Jaroniec

Vik BajajMarc Caporini

Patrick van der WelAlexander Barnes

Cait MacPheeMichele Vendruscuolo

Chris Dobson

β-2-MicroglobulinGalia Delbouchina

Geoffrey PlattMarvin Bayro

Sheena Radford

PI3-SH3Marvin BayroNeil BirkettMatt Eddy

Cait MacPheeChris Dobson

National Institute of Biomedical Imaging and Bioengineering

Sedimented Protein DNPEnrico Ravera

Bjoern CorziliusVladimir MichaelisClaudio Luchinat

Ivano Bertini

Thank you for

your attention!