33
Atomic Parity Violation in Ytterbium K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker http://budker.berkeley.edu

Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Atomic Parity Violation in Ytterbium

K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker

http://budker.berkeley.edu

Page 2: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)
Page 3: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Atomic PV: important landmarks

Prof. Ya. B. Zel’dovich

!  1959 Ya. B. Zel’dovich: APV (Neutr. Current) ⇒ Opt. Rotation in atoms

!  1974 M.-A. & C. Bouchiat Z3 enhancement ⇒ APV observable in heavy atoms

!  1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

!  1995 Boulder, Oxford, Seattle, Paris APV measured to 1-2% in Cs, Tl, Bi, Pb

!  1997 Boulder 0.35% measurement, discovery of anapole moment

Page 4: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Parity transformation

⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

zyx

zyx

P !: Parity transformation is a point reflection. det(P )=-1

Classification of classical variables:

Rotational transformation

Scalars Vectors

Variables

Scalars (P=1): Mass, Energy, Time … Pseudoscalars (P=-1): Helicity … Vectors (P=-1): Linear momentum, E-field, Force … Pseudovectors (P=1): Angular momentum, B-field …

Parity transformation

Page 5: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Two frontiers in the search Collider experiments (pp, e+e-, etc) at higher energies (E >> MZ)

High energy physics

Indirect searches at lower energies (E < MZ) but high precision

Particle, nuclear & atomic physics

Page 6: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Sources of parity violation in atoms

Z0

e

Z0-exchange between e and nucleus

⇒ P-violating, T-conserving product of axial and vector currents

h = − G2

C1Neγµγ5e NγµN +C2Neγµe Nγµγ5N"# $%N∑

1nC is by a factor of 10 larger than leading to a dominance of the time-like nuclear spin-independent interaction (Ae,VN)

1 2,p NC C

A contribution to APV due to Z0 exchange between electrons is suppressed by a factor ~1000 for heavy atoms.

Page 7: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Nuclear Spin-Independent (NSI) electron-nucleon interaction

5ˆ ( )

2 2W WGh Q rγ ρ= −

NSI Hamiltonian in non-relativistic limit assuming equal proton and neutron densities ρ(r) in the nucleus:

The nuclear weak charge QW to the lowest order in the electroweak interaction is

QW = −N + Z(1− 4sin2θW ) ≈ −N

The nuclear weak charge is protected from strong-interaction effects by conservation of the nuclear vector current. Thus, APV measurements allows for extracting weak couplings of the quarks and for searching for a new physics beyond SM

•  NSI interaction gives the largest PV effect compared to other mechanisms

•  PV interaction is a pseudo-scalar ⇒ mixes only electron states of same angular momentum

22sin 1 WW

Z

MM

θ⎛ ⎞

= − ⎜ ⎟⎝ ⎠

Page 8: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

NSI interaction and particle physics implications

APV utilizes low-energy system and gives an access to the weak mixing angle, Sin2(θW), at low-momentum transfer.

•  S. G. Porsev, K. Beloy, and A. Derevianko, PRL 2009 •  J.L. Rosner, PRD 1999 •  V.A. Dzuba, V.V. Flambaum, and O.P. Sushkov, PRA

1997 •  J. Erler and P. Langacker, Ph.Lett. B 1999

Page 9: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Isotope ratios and neutron distribution The atomic theory errors can be excluded by taking ratios of APV measurements along an isotopic chain. While the atomic structure cancels in the isotope ratios, there is an enhanced sensitivity to the neutron distribution ρn(r).

2

3 3

( )

( 1) (1 4sin )( 1)

( ) ( )d , ( ) ( )d

nucPV atomic W WnucW n W p

n n p p

A Q Q

Q N q Z q

q r f r r q r f r r

ξ

θ

ρ ρ

= +

= − − + − −

= =∫ ∫

f(r) is the variation of the electron wave functions inside the nucleus normalized to f(0)=1.

[ ]( ') ( ') 1( ) ( )

PV Wn

PV W

n n n

A N Q NR qA N Q N

q q q

≡ ≈ +Δ

ʹ′Δ ≡ −

R is sensitive to the difference in the neutron distributions.

Page 10: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Amplitude interference: the trick for observing weak interaction in atoms hNSI mixes s1/2 and p1/2 states of valence electron ⇒ APV of dipole-forbidden transition. If APC is also induced, the amplitudes interfere.

2 2 22 ( )PC PV PC PC PV PVR A A A A A o A∝ + ≅ + +

Interference

E-field Stark-effect E1 PC-amplitude ∝ E E1-PV interference term is odd in E

Reversing E-field changes transition rate Transition rate ∝ APVAStark

Page 11: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Observing APV in Yb

Pumping rates of the 408-nm transition are detected by measuring the population of the 3P0 state, where 65% of the atoms excited to the 3D1 state decay spontaneously.

The population of 6s6p 3P0 metastable level is probed by pumping the 6s6p 3P0 - 6s7s 3S1 649 nm transition.

Proposed by D. DeMille, PRL 1995

Page 12: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

PV effect: line-shape signature

!E = E x!ε = ε (sinθ y +cosθ z)

R0 = 4ε2 (β 2E2 sin2θ + 2E βς sinθ cosθ )

R±1 = 2ε2 (β 2E2 cos2θ − 2E βς sinθ cosθ )

PV-Stark Interference

174Yb

Page 13: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Experimental setup

Yb density in the beam ~1010 cm-3

E-field up to 15 kV/cm, spatial homogeneity 99% Reversible B-field up to 100 G, homogeneity 99%

Light collection efficiency:

Interaction region: ~0.2% (556 nm)

Detection region: ~25%

Page 14: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Schematic of the optical system

Light powers: Ar+: 12W; Ti:Sapp (816 nm): 1W; Doubler (408 nm): 50 mW

PBC: Asymmetric design Finesse 17000 Power 20 W Locking: Pound-Drever-Hall technique

Page 15: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Fast (70 Hz) E-modulation scheme to avoid low-frequency noise and drift issues

[0] [1] [2]M M M Mcos( ) cos(2 )R R R t R tω ω= + +Transition rates

E→ Edc +E0 cos(ωt)E-field modulation

m = -1

m = +1 m = 0

R0

R-1

R+1

1S0

3D1

[1][1] [1]01 1

[2] [2] [2]1 1 0 0

162 RR RKR R R E

ςβ

− +

− +

= + − =PV-asymmetry:

Page 16: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Fast E-modulation scheme: Profiles

Effective integration time: 10 s p-p

Shot noise limited SNR with respect to PV signal ~

⇒ 0.1% accuracy in 70 hours

•  Lineshape scan: 20 s

•  E-field reversal: 14 ms (70 Hz)

•  B-field reversal: 20 minutes

•  Polarization angle: 10 minutes

•  E-field magnitude

•  B-field magnitude

•  Angle magnitude

DC bias 43 V/cm

174Yb

E0=5 kV/cm Edc=40 V/cm θ=π/4 2 / ( )sτ

Page 17: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

PV Amplitude: Current results

Accuracy is affected by HV amplifier noise, fluctuations of stray fields, and laser drifts → to be improved

ζ/β=39(4)stat.(3)syst. mV/cm ⇒ |ζ|=8.7±1.4×10-10 ea0

68% confidence band

0 2 4 6 8 10 12 14 16 18 20-50

0

50

100

150

Mean value

ζ/β

(mV

/cm

)

Run number

Theoretical prediction

Page 18: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Summary

And then… "  PV in a string of even isotopes; neutron distributions "  PV in odd isotopes: NSD PV, Anapole Moments …

Completed Work !  Lifetime Measurements !  General Spectroscopy (hyperfine shifts, isotope shifts) !  dc Stark Shift Measurements !  Stark-Induced Amplitude (β): 2 independent measurements !  M1 Measurement (Stark-M1 interference) !  ac Stark shifts measured !  Verification of PV enhancement

Page 19: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Statistical noise

Page 20: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Fast E-modulation scheme: Systematics

E- and B-field imperfection:

E= !E+ !E!E=( !E0x+!e y y+!e zz) cos(ωt)

!E =(Edcx+e y y+e zz)

B= !B+ !B!B=(!bxx+!b y y+Bz)

!B =( !bxx+ !b y y+ !bzz)

!ε = ε (ysinθ + z eiφ cosθ )

Normalized-rate modulation amplitudes include additional terms:

Light polarization now includes a small ellipticity:

AM(M1) =Μ1 (−1)M δ

!k× !ε( )-M

Residual M1 transition:

[1](Stark) (PV) (M1) ( )MM M M M[2]

M

R r r r rR

φ= + + +

Page 21: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

M1- and φ-contribution

[1][1] [1]01 1

[2] [2] [2]1 1 0 0

162 RR RKR R R E

ςβ

− +

− +

= + − =

Page 22: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Stark contribution

Page 23: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Stark contribution measurements

ey!ez

2 !E0

+bxB

!

"##

$

%&&+ ez

!ey2 !E0

= −2.6 (1.6)stat (1.5)syst mV/cm

Page 24: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Error budget

stat syst 39 (4) (3) mV/cmςβ=

Page 25: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Problems

•  Photo-induced PBC mirror degradation in vacuum

•  Fields imperfection

•  Laser stability

Page 26: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Power-buildup cavity design and characterization: schematic

Page 27: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Power-buildup cavity design and characterization

2

21

2121

2

2

⎟⎠

⎞⎜⎝

⎛=

+++=

πε

π

FTTPP

LLTTF

in

trans

C. J. Hood, H. J. Kimble, J. Ye. PRA 64, 2001

-10 -5 0 5 100.00

0.05

0.10

0.15

0.20

τ=1.33 µs F=5698

τ=1.74 µs F=7454

PBC

tran

smis

sion

[V]

Time [µs]

τ=2.16 µs F=9253Ringdown

spectroscopy

Page 28: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Power-buildup cavity design and characterization: mirrors

REO set1 λ=408 nm

REO set2 λ=408 nm

ATF λ=408 nm

Boulder expt. λ=540 nm

Transmission 320 ppm 45; 23 ppm 150 ppm 40; 13

S+A losses 120 ppm 213; 83 ppm 30 ppm <1 ppm

Mirror set used during the latest APV measurements:

Finesse of 17000 with ATF mirrors

Photodegradation: a factor of 3 increase of S+A losses in 2 runs (~8 hours of exposure with ~10 W of circulating power)

Page 29: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Yb isotopes and abundances

C.J. Bowers et al, PRA 1999

Seven stable isotopes, two have non-zero spin

Page 30: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Sources of NSD interaction hNSD =

G2κIγ0γI ρ(

!r )

)2/1()1(K

;1

K

2/1

2

+−=

+++

=

−+ II

lI

QA wκκκκ

κA-Anapole moment κ2-Neutral currents κQW-Radiative corrections

Weak neutral current Anapole moment Hyperfine correction to the weak neutral current

α

αα

κ

µκ

22

3/23

1K2/1

;;1015.1

CI

ZNAgAA

+

−=

+=⋅≈ −

Page 31: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Anapole moment In the nonrelativistic approximation PNC interaction of the valence nucleon with the nuclear core has the form:

hA∝G gα2 2

(σp)mp

n(!r )n(r) is core density and gα is dimensionless effective weak coupling constant for valence nucleon.

•  As a result, the spin σ acquires projection on the momentum p and forms spin helix

•  Spin helix leads to the toroidal current. This current is proportional to the magnetic moment of the nucleon and to the cross section of the core.

3 2/31.15 10A A gα ακ µ−≈ ⋅Khriplovich & Flambaum

Anapole moment is bigger for nuclei with unpaired proton

neutron: µn=-1.2; gn=-1 proton: µp=3.8; gp=5

Page 32: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

Nuclear physics implication: weak meson coupling constants

There are 7 independent weak couplings for π-, ρ-, and ω-mesons known as DDH constants. Proton and neutron couplings, gα, can be expressed in terms of 2 combinations of these constants:

4 0

4 0

8.0 10 70f 19.5h

8.0 10 47f 18.9h

p

n

g

g

π

π

⎡ ⎤= × −⎣ ⎦

⎡ ⎤= × − −⎣ ⎦

1 1 1

0 0 0

f f 0.12h 0.18h

h h 0.7hπ π ρ ω

ρ ω

≡ − −

≡ +

At present the values of the coupling constants are far from being reliably established. The projected measurement of the anapole moment in 173Yb should provide an important constraint.

h0

Page 33: Atomic Parity Violation in Ytterbiumcollaborations.fz-juelich.de › ikp › cgswhp › cgswhp14 › ...1978-9 Novosibirsk, Berkeley discovery of APV in OR(Bi) and Stark-interf.(Tl)

PV effect on line shapes: odd isotopes !E = (E,0,0)!ε = (0,sinθ ,cosθ )

R center =βF !F2 E2

6(4sin2θ + cos2θ )+E βF !F !ς sinθ cosθ

R side =βF !F2 E2

2cos2θ −E βF !F !ς sinθ cosθ

!ς = ς +!I ⋅!J ς NSD

ζNSD≈10-12 ea0 for odd Yb isotopes

ζ=10-9 ea0

ζ` must be measured with 0.1% accuracy