77
Atomic nucleus, Fundamental Symmetries, and Quantum Chaos Vladimir Zelevinsky NSCL/ Michigan State University FUSTIPEN, Caen June 3, 2014

Atomic nucleus, Fundamental Symmetries, and Quantum Chaos Vladimir Zelevinsky

  • Upload
    evelyn

  • View
    41

  • Download
    0

Embed Size (px)

DESCRIPTION

Atomic nucleus, Fundamental Symmetries, and Quantum Chaos Vladimir Zelevinsky NSCL/ Michigan State University FUSTIPEN, Caen June 3, 2014. THANKS. Naftali Auerbach (Tel Aviv) B. Alex Brown (NSCL, MSU) Mihai Horoi (Central Michigan University) Victor Flambaum (Sydney) - PowerPoint PPT Presentation

Citation preview

Page 1: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Atomic nucleus,

Fundamental Symmetries,

and

Quantum Chaos

Vladimir Zelevinsky NSCL/ Michigan State University

FUSTIPEN, Caen

June 3, 2014

Page 2: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

THANKS• Naftali Auerbach (Tel Aviv)• B. Alex Brown (NSCL, MSU)• Mihai Horoi (Central Michigan University)• Victor Flambaum (Sydney)• Declan Mulhall (Scranton University)• Roman Sen’kov (CMU)• Alexander Volya (Florida State University)

Page 3: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

OUTLINE* Symmetries* Mesoscopic physics* From classical to quantum chaos* Chaos as useful practical tool* Nuclear level density* Chaotic enhancement* Parity violation* Nuclear structure and EDM

Page 4: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

PHYSICS of ATOMIC NUCLEI in XXI CENTURY Limits of stability - drip lines, superheavy… Nucleosynthesis in the Universe; charge asymmetry; dark matter… Structure of exotic nuclei Magic numbers Collective effects – superfluidity, shape transformations, … Mesoscopic physics – chaos, thermalization, level and width statistics, … ^ random matrix ensembles ^ physics of open and marginally stable systems ^ enhancement of weak perturbations ^ quantum signal transmission Neutron matter Applied physics – isotopes, isomers, reactor technology, … Fundamental physics and violation of symmetries: ^ parity ^ electric dipole moment (parity and time reversal) ^ anapole moment (parity) ^ temporal and spatial variation of fundamental constants

Page 5: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

FUNDAMENTAL SYMMETRIES

Uniformity of space = momentum conservation P

Uniformity of time = energy conservation E

Isotropy of space = angular momentum conservation L

Relativistic invariance

Indistinguishability of identical particles

Relation between spin and statistics

Bose – Einstein (integer spin 0,1, …) Fermi – Dirac (half-integer spin 1/2, 3/2, …)

Page 6: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

DISCRETE SYMMETRIES

Coordinate inversion P vectors and pseudovectors, scalars and pseudoscalars

Time reversal T microscopic reversibility, macroscopic irreversibility

Charge conjugation C excess of matter in our Universe

Conserved in strong and electromagnetic interactions

C and P violated in weak interactions

T violated in some special meson decays (Universe?)

C P T - strictly valid

Page 7: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

POSSIBLE NUCLEAR ENHANCEMENT of weak interactions

* Close levels of opposite parity = near the ground state (accidentally) = at high level density – very weak mixing? (statistical = chaotic) enhancement

* Kinematic enhancement

* Coherent mechanisms = deformation = parity doublets = collective modes

* Atomic effects

* Condensed matter effects

Page 8: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

MESOSCOPIC SYSTEMS: MICRO ----- MESO ----- MACRO

• Complex nuclei• Complex atoms• Complex molecules (including biological)• Cold atoms in traps• Micro- and nano- devices of condensed matter• --------• Future quantum computers

Common features: quantum bricks, interaction, complexity; quantum chaos, statistical regularities; at the same time – individual quantum states

Page 9: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Classical regular billiard

Symmetry preserves unfolded momentum

Page 10: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Regular circular billiard

Page 11: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Stadium billiard – no symmetries

A single trajectory fills in phase space

Page 12: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Regular circular billiard

Angular momentum conserved

Cardioid billiard

No symmetries

CLASSICAL CHAOS

Page 13: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

CLASSICAL DETERMINISTIC CHAOS

• Constants of motion destroyed• Trajectories labeled by initial conditions• Close trajectories exponentially diverge• Round-off errors amplified• Unpredictability = chaos

Page 14: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

MANY-BODY QUANTUM CHAOS AS AN INSTRUMENT

SPECTRAL STATISTICS – signature of chaos - missing levels - purity of quantum numbers * - calculation of level density (given spin-parity) * - presence of time-reversal invariance

EXPERIMENTAL TOOL – unresolved fine structure - width distribution - damping of collective modes

NEW PHYSICS - statistical enhancement of weak perturbations (parity violation in neutron scattering and fission) * - mass fluctuations - chaos on the border with continuum

THEORETICAL CHALLENGES - order out of chaos - chaos and thermalization * - development of computational tools * - new approximations in many-body problem

Page 15: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

MANY-BODY QUANTUM CHAOS AS AN INSTRUMENT

SPECTRAL STATISTICS – signature of chaos - missing levels - purity of quantum numbers * - calculation of level density (given spin-parity) * - presence of time-reversal invariance

EXPERIMENTAL TOOL – unresolved fine structure - width distribution - damping of collective modes

NEW PHYSICS - statistical enhancement of weak perturbations (parity violation in neutron scattering and fission) * - mass fluctuations - chaos on the border with continuum

THEORETICAL CHALLENGES - order out of chaos - chaos and thermalization * - development of computational tools * - new approximations in many-body problem

Page 16: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

(a) Neutron resonances in 167Er, I=1/2(b) Proton resonances in 49V, I=1/2(c) I=2,T=0 shell model states in 24Mg(d) Poisson spectrum P(s)=exp(-s)(e) Neutron resonances in 182Ta, I=3 or 4(f) Shell model states in 63Cu, I=1/2,…,19/2

Fragments of sixdifferent spectra50 levels, rescaled

(a), (b), (c) – exact symmetries

(e), (f) – mixed symmetries

Arrows: s < (1/4) D

SPECTRAL STATISTICS

Page 17: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Nearest level spacing distribution

(simplest signature of chaos)

Regular system Disordered spectrum P(s) = exp(-s) = Poisson distributionChaotic system “Aperiodic crystal” = Wigner

P(s)

Wigner distribution

Page 18: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

RANDOM MATRIX ENSEMBLES• universality classes• all states of similar complexity• local spectral properties• uncorrelated independent matrix elements

Gaussian Orthogonal Ensemble (GOE) – real symmetric

Gaussian Unitary Ensemble (GUE) – Hermitian complex

Many other ensembles: GSE, BRM, TBRM, …

Extreme mathematical limit of quantum chaos!

Page 19: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

From turbulent to laminar level dynamics

(shell model of 24Mgas a typical example)

Fraction (%) of realistic strength

LEVEL DYNAMICS

Chaos due to particle interactions at high level density

Page 20: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

(a) Neutron resonances in 167Er, I=1/2(b) Proton resonances in 49V, I=1/2(c) I=2,T=0 shell model states in 24Mg(d) Poisson spectrum P(s)=exp(-s)(e) Neutron resonances in 182Ta, I=3 or 4(f) Shell model states in 63Cu, I=1/2,…,19/2

Fragments of sixdifferent spectra50 levels, rescaled

(a), (b), (c) – exact symmetries

(e), (f) – mixed symmetries

Arrows: s < (1/4) D

Page 21: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Nearest level spacing distributions for the same cases (all available levels)

Page 22: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

NEAREST LEVEL SPACING DISTRIBUTION

at interaction strength 0.2 of the realistic value

WIGNER-DYSON distribution

(the weakest signature of quantum chaos)

Page 23: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

R. Haq et al. 1982

Nuclear Data Ensemble

1407 resonance energies

30 sequences

For 27 nuclei

Neutron resonancesProton resonances(n,gamma) reactions

SPECTRAL RIGIDITY

Regular spectra = L/15 (universal for small L)Chaotic spectra = a log L +b for L>>1

Page 24: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Purity ? Missing levels ?

235U, I=3 or 4,960 lowest levelsf=0.44

Data agree with

f=(7/16)=0.44

and

4% missing levels

0, 4% and 10% missing D. Mulhall, Z. Huard, V.Z., PRC 76, 064611 (2007).

Page 25: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 26: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Structure of eigenstates

Whispering Gallery

Bouncing Ball

Ergodic behavior

With fluctuations

Page 27: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

COMPLEXITY of QUANTUM STATES RELATIVE!Typical eigenstate:

GOE:

Porter-Thomas distribution for weights:

Neutron width of neutron resonances as an analyzer

(1 channel)

Page 28: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Cross sections in the region ofgiant quadrupoleresonance

Resolution:(p,p’) 40 keV(e,e’) 50 keV

Unresolved fine structure

D = (2-3) keV

Page 29: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

INVISIBLE FINE STRUCTURE, orcatching the missing strength with poor resolution

Assumptions : Level spacing distribution (Wigner) Transition strength distribution (Porter-Thomas)

Parameters: s=D/<D>, I=(strength)/<strength>

Two ways of statistical analysis: <D(2+)>= 2.7 (0.9) keV and 3.1 (1.1) keV.

“Fairly sofisticated, time consuming and finally successful analysis”

Page 30: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

TYPICAL COMPUTATIONAL PROBLEM

DIAGONALIZATION OF HUGE MATRICES

(dimensions dramatically grow with the particle number)

Practically we need not more than few dozens – is the rest just useless garbage?

Process of progressive truncation –

* how to order?

* is it convergent?

* how rapidly?

* in what basis?

* which observables?

Page 31: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

GROUND STATE ENERGY OF RANDOM MATRICES

EXPONENTIAL CONVERGENCE

SPECIFIC PROPERTY of RANDOM MATRICES ?

Banded GOE Full GOE

Page 32: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

ENERGY CONVERGENCE in SIMPLE MODELS

Tight binding model Shifted harmonic oscillator

Page 33: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

REALISTIC SHELL 48 CrMODEL

Excited stateJ=2, T=0

EXPONENTIALCONVERGENCE !

E(n) = E + exp(-an) n ~ 4/N

Page 34: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Local density of statesin condensed matter physics

Page 35: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

AVERAGE STRENGTH FUNCTIONBreit-Wigner fit (dashed)Gaussian fit (solid) Exponential tails

Page 36: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

REALISTICSHELLMODEL

EXCITED STATES 51Sc

1/2-, 3/2-

Faster convergence:E(n) = E + exp(-an) a ~ 6/N

Page 37: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 38: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

52 Cr

Ground and excited states

56 Ni

Superdeformed headband

56

Page 39: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

EXPONENTIALCONVERGENCEOF SINGLE-PARTICLEOCCUPANCIES

(first excited state J=0)

52 Cr

Orbitals f5/2 and f7/2

Page 40: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 41: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

CONVERGENCE REGIMES

Fastconvergence

Exponentialconvergence

Power law

Divergence

Page 42: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

M. Horoi, J. Kaiser, and V. Zelevinsky, Phys. Rev. C 67, 054309 (2003).M. Horoi, M. Ghita, and V. Zelevinsky, Phys. Rev. C 69, 041307(R) (2004).M. Horoi, M. Ghita, and V. Zelevinsky, Nucl. Phys. A785, 142c (2005).M. Scott and M. Horoi, EPL 91, 52001 (2010).R.A. Sen’kov and M. Horoi, Phys. Rev. C 82, 024304 (2010).R.A. Sen’kov, M. Horoi, and V. Zelevinsky, Phys. Lett. B702, 413 (2011).R. Sen’kov, M. Horoi, and V. Zelevinsky, Computer Physics Communications 184, 215 (2013).

Shell Model and Nuclear Level Density

Statistical Spectroscopy:

S. S. M. Wong, Nuclear Statistical Spectroscopy (Oxford, University Press, 1986).

V.K.B. Kota and R.U. Haq, eds., Spectral Distributions in Nuclei and Statistical Spectroscopy (World Scientific, Singapore, 2010).

Page 43: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 44: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Partition structure in the shell model

(a) All 3276 states ; (b) energy centroids

28 Si

Diagonalmatrix elementsof the Hamiltonianin the mean-field representation

Page 45: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Energy dispersion for individual states is nearly constant (result of geometric chaoticity!)Also in multiconfigurational method (hybrid of shell model and density functional)

Page 46: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 47: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 48: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 49: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

CLOSED MESOSCOPIC SYSTEM

at high level density

Two languages: individual wave functions thermal excitation

* Mutually exclusive ?* Complementary ?* Equivalent ?

Answer depends on thermometer

Page 50: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Temperature T(E)

T(s.p.) and T(inf) =for individual states !

Page 51: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

J=0 J=2 J=9

Single – particle occupation numbersThermodynamic behavior identical

in all symmetry classes FERMI-LIQUID PICTURE

28 Si

Page 52: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

J=0

Artificially strong interaction (factor of 10) Single-particle thermometer cannot resolve spectral evolution

Page 53: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

EFFECTIVE TEMPERATURE of INDIVIDUAL STATES

From occupation numbers in the shell model solution (dots)From thermodynamic entropy defined by level density (lines)

Gaussian level density

839 states (28 Si)

Page 54: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Is there a pairing phase transition in mesoscopic system?

Invariant entropy

•Invariant entropy is basis independent•Indicates the sensitivity of eigenstate to parameter G in interval [G,G+ G]

Page 55: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

24Mg phase diagram

strength of T=0 pairing

stren

gth o

fT=

1 pair

ing

Normal

T=1 pairing

T=0 pairing

realistic nucleus

Contour plot of invariant correlational entropy showing a phase diagram as a function of T=1 pairing (λT=1) and T=0 pairing (λT=0); three plots indicate phase diagram as a function of non-pairing matrix elements (λnp) . Realistic case is λT=1=λT=0 =λnp=1

Page 56: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

N - scalingN – large number of “simple” components in a typical wave function

Q – “simple” operator

Single – particle matrix element

Between a simple and a chaotic state

Between two fully chaotic states

Page 57: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

STATISTICAL ENHANCEMENT

Parity nonconservation in scattering of slow polarized neutrons

Coherent part of weak interaction Single-particle mixing

Chaotic mixing

up to

10%

Neutron resonances in heavy nuclei

Kinematic enhancement

Page 58: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

235 ULos Alamos dataE=63.5 eV

10.2 eV -0.16(0.08)%11.3 0.67(0.37)63.5 2.63(0.40) *83.7 1.96(0.86)89.2 -0.24(0.11)98.0 -2.8 (1.30)125.0 1.08(0.86)

Transmission coefficients for two helicity states (longitudinally polarized neutrons)

Page 59: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Parity nonconservation in fission

Correlation of neutron spin and momentum of fragmentsTransfer of elementary asymmetry to ALMOST MACROSCOPIC LEVEL – What about 2nd law of thermodynamics?

Statistical enhancement – “hot” stage ~

- mixing of parity doublets

Angular asymmetry – “cold” stage,

- fission channels, memory preserved

Complexity refers to the natural basis (mean field)

Page 60: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Parity violating asymmetry

Parity preserving asymmetry

[Grenoble] A. Alexandrovich et al . 1994

Parity non-conservation in fission by polarized neutrons – on the level up to 0.001

Page 61: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Fission of233 Uby coldpolarized neutrons,(Grenoble)

A. Koetzle et al. 2000

Asymmetry determined at the “hot”chaotic stage

Page 62: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

CREATIVE CHAOS• STATISTICAL MECHANICS• PHASE TRANSITIONS• COMPLEXITY• INFORMATICS• CRYPTOGRAPHY• LARGE FACILITIES• LIVING ORGANISMS• HUMAN BRAIN• ECONOPHYSICS• FUNDAMENTAL SYMMETRIES• PARTICLE PHYSICS• COSMOLOGY

Page 63: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Boris V. CHIRIKOV (1928 – 2008)

Page 64: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

B. V. CHIRIKOV :

… The source of new information is always chaotic. Assuming farther that any creative activity, science including, is supposed to be such a source, we come to an interesting conclusion that any such activity has to be (partly!) chaotic. This is the creative side of chaos.

Page 65: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Dipole moment and violation of

P- and T-symmetriesspin

spin

d dT-reversal

spin

spin

d dP-reversal

Observation of the dipole moment is an indication of parity and time-reversal violation

Limits on EDM for the electron Experiment: < 8.7 x 10-29 e.cmStandard model ~ 10-38 e.cmPhysics beyond SM ~ 10-28 e.cm

Neutron EDM < 2.9 x 10

Observation of the dipole moment is an indication of parity and time-reversal violation

d(199Hg)<3.1x10-29 e.cm

-26

Page 66: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 67: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 68: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

J.F.C. Cocks et al. PRL 78 (1997) 2920.

Half-live

219 Rn 4 s221 Rn 25 m

Page 69: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Half-live223 Rn 24 m223 Ra 11 d

Page 70: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Half-live225 Ra 15 d227 Ra 42 m

Page 71: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 72: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

Parity-doublet

|+ |- Parity conservation:

Small parity violating interaction W

Perturbed ground state

Non-zero Schiff moment

Mixture by weak interaction W

Page 73: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 74: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 75: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky
Page 76: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

C O N C L U S I O N

Nuclear ENHANCEMENTS

* Chaotic (statistical) * Kinematic * Structural *accidental

VERY HARD TIME-CONSUMING EXPERIMENTS…

Page 77: Atomic nucleus, Fundamental  Symmetries, and Quantum Chaos Vladimir   Zelevinsky

S U M M A R Y

1. Many-body quantum chaos as universal phenomenon at high level density

2. Experimental, theoretical and computational tool

3. Role of incoherent interactions not fully understood

4. Chaotic paradigm of statistical thermodynamics

5. Nuclear structure mechanisms for enhancement of tiny effects, chaoric and regular