71
ATOM och KÄRNFYSIK 1

ATOM och KÄRNFYSIK

Embed Size (px)

DESCRIPTION

ATOM och KÄRNFYSIK. Bohrs atommodell. Chadwicks atommodell. Modern atommodell. I modellen av Bohr cirkulerar elektronerna i exakta banor. Schrödingers ekvation visar att elektroner inte har exakta banor. Det finns bara en sannolikhet att en elektron befinner sig på en specifik position . - PowerPoint PPT Presentation

Citation preview

Page 1: ATOM och  KÄRNFYSIK

ATOM och

KÄRNFYSIK

1

Page 2: ATOM och  KÄRNFYSIK

Bohrs atommodell

2

Page 3: ATOM och  KÄRNFYSIK

Chadwicks atommodell

3

Page 4: ATOM och  KÄRNFYSIK

Modern atommodell

4

Page 5: ATOM och  KÄRNFYSIK

I modellen av Bohr cirkulerar elektronerna i exakta banor.Schrödingers ekvation visar att elektroner inte har exakta banor.Det finns bara en sannolikhet att en elektronbefinner sig på en specifik position .Vi använder ordet elektronmoln för att beskriva fördelningen av sannolikhetstäthet.

5

Page 6: ATOM och  KÄRNFYSIK

Kvantmekanisk beskrivning av väteatomenElektronens sannolikhetsfördelning

Den kvantmekaniska beskrivningen ger förutom energinivåer också sannolikheten att hitta elektroneni ett givet läge.

Dessa sannolikhetsfördelningar varierar fråntillstånd till tillstånd.

Elektronernas rörelser beskrivs av Schrödingers ekvation.

6

Page 7: ATOM och  KÄRNFYSIK

Sammanfattning atommodeller

400 f. Kr Demokritos Tomrum + odelbara atomer330 f. Kr Aristoteles 4 elementen, kontinuerlig materia1810 Dalton Hård sfär1888 Rydberg Systematiserade experimentella spektra

1900 Thomson "Russinkaka", negativa elektroner inbäddade i positiv laddning 

1910 Rutherford Klassiskt omöjlig planetmodell, liten tung kärna1913 Bohr Postulerade stabil planetmodell, introducerar kvantisering1924 De Broglie Våg-partikel dualism1924 Schrödinger,  Icke-relativistisk kvantmekanik.

Heisenberg Sannolikhetstolkning, vågfunktioner1930 Dirac Relativistisk kvantmekanik. Förklarar spinn och antipartiklar1950 Feynman Kvantelektrodynamik (QED). Kvantiserat EM fält som finns även i vakuum. Spontan emission1970 Weinberg/Salam Elektrosvag växelverkan. QED + svag växelverkan1990 "Standardmodellen";  QED + svag vv + stark vv

7

Page 8: ATOM och  KÄRNFYSIK

Atomen består av en atomkärna i centrum med ett antal elektroner roterande runt kärnan. Mellan kärnan och elektronerna är det tomrum.

Atomens massa utgörs huvudsakligen av protonens och neutronens massa (elektronens massa är så förtvivlat liten i förhållande till de andra två att man kan bortse från den när man beräknar atomens massa).

Atomen

8

Page 9: ATOM och  KÄRNFYSIK

Atomkärnan består av protoner och neutroner.Protoner är positivt laddade.Neutroner är neutrala, dvs. oladdade.

Elektronerna är negativt laddade.

Atomen som helhet är oladdad. Kärnans positiva laddning motsvaras av en lika stor negativ laddning.

En atom har lika många protoner i kärnan

9

Antalet elektroner i varje skal2n²n = skalets nummerSkalen K,L,M,N osv.

Page 10: ATOM och  KÄRNFYSIK

Masstalet = antalet protoner + antalet neutroner

Atomnummer =antal protoner

Antalet neutroner kan beräknas genom att dra bort (subtrahera) atomnumret från masstalet.

10

Page 11: ATOM och  KÄRNFYSIK

Vanligt väte Tungt väte(Deuterium) Tritium

En proton En proton och en neutron

En proton och två neutroner

Atomnummer = 1 Atomnummer = 1 Atomnummer = 1

Masstal = 1 Masstal = 2 Masstal = 3

ISOTOPER

11

Page 12: ATOM och  KÄRNFYSIK

12

Page 13: ATOM och  KÄRNFYSIK

13

Page 14: ATOM och  KÄRNFYSIK

Elektronbanor

14

Page 15: ATOM och  KÄRNFYSIK

En atom är uppbyggd av bl.a elektroner som kretsar runt atomens kärna i bestämda banor. När ett ämne värms upp tillförs varje atom i ämnet energi, detta göra att elektronen/elektronerna rubbas från sin bestämda bana runt kärnan, sitt grundtillstånd (normala banan), till en bana längre ut från kärnan. Ju längre ut från kärnan elektronen kretsar desto större är atomens energi. När sedan elektronen "strävar" efter att ta sig tillbaka till sin ursprungliga bana. Detta gör den genom att "hoppa" direkt till den normala banan eller att "mellanlanda" i en av de andra banorna. När elektronen "hoppar" in avger atomen energi i form av en ljusblixt med en bestämd färg, en s k foton. Fotonens energi är ljusets färg.   

Elektronbanor

15

Page 16: ATOM och  KÄRNFYSIK

Bohrs väteatom - beskrivning av modellenBohr utgick från Rutherfords bild av atomen,dvs en positivt laddad kärna omgiven av elektroner, men gjorde två nya antaganden.

• Elektronerna kan bara befinna sig i vissa diskreta energinivåer.

• Elektronerna utsänder inte e-m vågori dessa banor.

Dessa tillstånd/banor kallas därför för stationära tillstånd.

När en elektron byter tillstånd så utsänds en foton

+

-

-

Ei

Ef

+

-

n =1

n =2

n =3

16

Page 17: ATOM och  KÄRNFYSIK

När elektronen faller till bana 2 avges synligt ljus.

Rött ljus Blått

ljus

Blått ljus har högreenergi än rött ljus.

Fotonens energi beror på mellan vilka banor elektronerna faller.

17

Page 18: ATOM och  KÄRNFYSIK

Vilket ljus det blir växlar beroende på till vilken bana elektronen faller in på. Den faller inte alltid tillbaka till ursprungsbanan med det samma utan "mellanlandar" på en bana på vägen till den ursprungliga. Det är dock endast då elektronen faller in på bana två som det avges synligt ljus. En det blir blått ljus har elektronen fallit från en bana längre ut än en som ger rött ljus. Alltså en atom som avger blått ljus har större energi en som avger rött ljus. Ultravioletta strålar bildas då elektronen faller in till bana 1 och infrarött ljus då elektronen faller in till bana 3.Endast när elektronen faller in till bana 2, ger den synligt ljus. 18

Page 19: ATOM och  KÄRNFYSIK

Hoppande elektroner skapar ljus

19

Page 20: ATOM och  KÄRNFYSIK

Stålverk

När järnet smälts tillförsenergi.

Elektronen hoppar till ettyttre skal, men så snart som möjligt hoppar dentillbaka igen.

Energin som frigörs sändsut som strålning t.ex.gulrött ljus, en foton med en bestämd färg.

20

Page 21: ATOM och  KÄRNFYSIK

Hertz verifierade den elektromagnetiska strålningen 1887

Heinrich Hertz var en tysk fysiker som intresserade sig för de av Maxwell förutsedda elektromagnetiska vågorna. Ingen hade innan dess kunnat påvisa dem. 1887 publicerade han en avhandling där han redogjorde för sina experiment.

21

Page 22: ATOM och  KÄRNFYSIK

22

Page 23: ATOM och  KÄRNFYSIK

Hertz använde en gnistinduktor för att skapa gnistor. Han satte en antenn vid gnistgapet, för han räknade med att om det hände något där, så skulle detta stråla ut. För att kunna se om något hände, så tog han en spole, där han förenade ändarna med ett gnistgap. Han kunde då se att det blev gnistor, som skapades från de gnistor, som han genererade i gnistinduktorn, som ju stod en bit därifrån utan elektrisk koppling till spolen. Energin hade alltså gått genom luften. Hertz påvisade att den elektromagnetiska strålningen hade samma egenskaper som ljuset.

23

Page 24: ATOM och  KÄRNFYSIK

Hertz visade även att deras utbredningshastighet var densamma som för ljuset men att de hade en mycket större våglängd. Dessa vågor kom att kallas hertzska vågor men kallas numera kort och gott radiovågor. Experimenten var den slutliga bekräftelsen av Maxwells förutsägelser om existensen av elektromagnetiska vågor både som långvågiga radiovågor och kortvågigt ljus.

Till Hertz ära har enheten för frekvens uppkallats efter honom.

24

Page 25: ATOM och  KÄRNFYSIK

Elektromagnetiska vågor

En elektromagnetisk våg kan genereras frånladdningar i rörelse, t ex i en antenn.

En elektromagnetisk våg är en transversell våg, (utslaget är vinkelrätt mot vågens rörelseriktning) en fortskridande våg, t.ex. vågorna på vatten, ljudvågor och radiovågor.Utbredningshastigheten i vakuum är lika med ljushastigheten 3,00·108 m/s

25

Page 26: ATOM och  KÄRNFYSIK

Elektromagnetiska strålningens viktigaste egenskap är dess våglängd. I olika våglängdsområden kallar vi den elektromagnetiska strålningen för olika saker:

Radiovågor MikrovågorInfraröd strålningSynligt ljus Ultraviolett strålningRöntgenstrålningGammastrålning

26

Page 27: ATOM och  KÄRNFYSIK

Ofta anges våglängden i nano-meter ( 1 nm= 10-9 m) 27

Page 28: ATOM och  KÄRNFYSIK

ROGGBIV

RÖD ORANGE GUL GRÖN BLÅ INDIGO VIOLETT

SYNLIGT LJUS

28

Page 29: ATOM och  KÄRNFYSIK

RadiovågorRadiovågor har de längsta våglängderna i det elektromagnetiska spektrat. Därmed har de också det lägsta energiinnehållet och därför helt ofarliga för oss människor. Radiovågorna används för att sända radio- och TV-signaler runt hela jordklotet. Radiovågor går rakt fram och släcks snabbt ut mot mark eller berg. Vid kortare våglängder kan jonosfären användas som reflekterande skikt så att vågorna når längre.

MikrovågorMycket kortare vågor, mikrovågor, kan tränga in genom föda och får vattenmolekyler i maten att vibrera, vilken då uppvärms.

29

Page 30: ATOM och  KÄRNFYSIK

Infraröd strålning (IR)IR har våglängder som ligger i intervallet 1 mm till 1 cm. Strålningen kommer från molekyler och molekyler som roterar och vibrerar. Egentligen utsänder alla föremål IR-strålning.IR-strålning är osynlig, men kan vid hög värme bli synlig eftersom IR-våglängder gränsar till våglängder för synligt ljus. Med hjälp av värmekänslig film kan IR-strålning registreras och göras ’synligt’. Vår hud har även värmekänsliga receptorer för IR-strålning. En spisplatta som glöder utsöndrar rött ljus samt även infraröd strålning. Strålningen har längre våglängd än rött ljus och våra ögon kan inte se den. Men vi känner den i form av värme. Därför kallas strålningen även för värmestrålning.

30

Page 31: ATOM och  KÄRNFYSIK

Synligt ljus

Synligt ljus uppkommer ursprungligen från glödande ämnen, t.ex. i vår sol. Självlysande ljuskällor kallas primära.

Andra ljuskällor kallas sekundära eftersom de endast reflekterar strålning från primära ljuskällor.

Ljus (vitt) är egentligen sammansatt av 7 huvudfärger: rött, orange, gult, grönt, blått, indigo och violett som har olika våglängd (700 nm till 400 nm).

Svarta föremål sänder ej ut någon egen sekundär strålning.

31

Page 32: ATOM och  KÄRNFYSIK

Ultraviolett strålning (UV)

•UV-strålning skapas i atomernas elektronskal.

•Solen sänder ut stora mängder av UV-ljus. Sådant ljus kan också skapas i s.k. solarier och ljusrör.

•UV-ljus är osynligt för oss människor.

•UV-ljus är i stor mängd skadligt för huden och kan ge brännskador och tom en form av hudcancer (malignt melanom).

32

Page 33: ATOM och  KÄRNFYSIK

Röntgenstrålning

Röntgenstrålning uppkommer från elektronskalen.

Strålningen uppstår på liknande sätt som ljus. När en elektron i ett av de innersta skalen slås ut ur sitt skal, ersätts tomrummet av en elektron från ett av de yttersta skalen. Då avger atomen röntgenstrålning.

Denna strålformer kan tränga djupt in i många material.

Röntgenstrålningens förmåga att tränga igenom kroppens olika organ gör att vi har stor användning av den inom sjukvården t.ex. för att studera inre organ i kroppen. 33

Page 34: ATOM och  KÄRNFYSIK

Gammastrålning

•bildas t.ex. när radioaktivt material sönderfaller.

•har den kortaste våglängden och är den mest energirika strålningen.

•kan tränga djupt in i många material.

•är farlig för oss människor.

34

Page 35: ATOM och  KÄRNFYSIK

Ett spektrum uppstår då t ex vitt ljus passerar genom en prisma och i prisman delar upp ljuset i olika färger, ett s k spektrum. Ljuset från en glödtråd ger kontinuerligt spektrum (alla färger).I ett spektrum ingår färgerna röd, orange, gul, grön, blå, indigo och violett. ROGGBIV

Kontinuerligt spektrum

35

Page 36: ATOM och  KÄRNFYSIK

Ljuset från upphettad lysande gas ger ett s k linjespektrum. Det är när enbart en eller några färger syns från det kontinuerliga spektrumet.

Linjespektrum

36

Page 37: ATOM och  KÄRNFYSIK

Om man skulle "blanda" vitt ljus med ljuset från kall vätgas skulle man inte se linjerna från vätgasen utan det skulle vara ett kontinuerligt spektrum med svarta streck där vätgasens linjespektrum skulle vara. Man säger att vätgasen absorberar sitt eget spektrum. Alltså vätgasen suger upp sitt spektrum så att det inte syns. Detta kallas för absorptionsspektrum.

Absorptionsspektrum

37

Page 38: ATOM och  KÄRNFYSIK

Alla ämnen har sitt eget speciella spektrum.Det är på detta sätt som man kan se vilka grundämnen som finns i en ljuskälla.T.ex. för att veta vilka grundämnen som solen och andra stjärnor består av. Det gör man med hjälp av ett instrument som heter spektrometer, spektrometern visar ljuskällans spektrum.

Spektrum

38

Page 39: ATOM och  KÄRNFYSIK

SPEKTRUM

39

Page 40: ATOM och  KÄRNFYSIK

Symbol för radioaktivitet

40

Page 41: ATOM och  KÄRNFYSIK

Strålningens pionjärer

År 1895 upptäckte Wilhelm Conrad Röntgen den strålning som, på många språk, har fått hans namn (själv kallade han den för X-strålar). Den började tidigt användas inom läkarvetenskapen för att bland annat avbilda ben och diagnosticera benbrott. 1901 fick Röntgen det första nobelpriset i fysik för sin upptäckt.

41

Page 42: ATOM och  KÄRNFYSIK

Strålning i industrinRöntgenstrålning och strålning från radioaktiva ämnen används på många håll inom industrin. Konstruktioner med höga kvalitetskrav kontrolleras med röntgenstrålning både vid tillverkning och vid underhållsarbete. Det gäller allt från broar till kretskort i datorer.Inom stora delar av industrin används strålning för nivåmätning av vätskor och för tjocklekskontroller, av till exempel papper. Vid behov av absolut dammfria ytor, till exempel vid billackering, används strålning för att eliminera statisk elektricitet. Strålning används också för att sterilisera medicinska engångsartiklar.Även inom forskningen används joniserande strålning i stor omfattning. 42

Page 43: ATOM och  KÄRNFYSIK

Henri BequerelÅr 1896 fann Henri Becquerel att en liten mineralklump hade lämnat skuggor på en fotografisk plåt (den tidens fotofilm) som den råkat ligga på. Eftersom plåten inte varit utsatt för synligt ljus, insåg Becquerel att det var fråga om någon annan typ av strålning, som måste komma från den lilla stenen. Stenen innehöll uran och Henri Becquerel hade därmed upptäckt fenomenet radioaktivitet.

43

Page 44: ATOM och  KÄRNFYSIK

Pierre och Marie Curie

Fann radium och polonium, två radioaktiva ämnen. Radium ("det strålande").

Bequerel och makarna Curie fick dela nobelpriset i fysik 1903.

Marie använde sig av röntgenbilder under första världskriget och hjälpte många sårade.

Marie Curie dog av leukemi 1934, offer för sin egen upptäckt.

44

Page 45: ATOM och  KÄRNFYSIK

Radioaktiva ämnen är instabila, har ett högt energiinnehåll och strävar efter stabilitet,en lägre energinivå.

Ämnet sänder ut sin överskottsenergi och sönderfaller då till andra ämnen, som ibland också kan vara radioaktiva och skicka ifrån sig energi i form av strålning.

Så håller det på till dess att det inte finns någon överskottsenergi och ämnet antingenär stabilt, har övergått till ett nytt annat grundämne eller en ny isotop har bildats.

45

Page 46: ATOM och  KÄRNFYSIK

RADIOAKTIVA ÄMNENGER UPPHOV TILLJONISERANDE STRÅLNING

alfa-strålningbeta-strålninggamma-strålning

46

Page 47: ATOM och  KÄRNFYSIK

Alfastrålning består av relativt stora och tunga partiklar (heliumkärnor bestående av två neutroner och två protoner). De sänds oftast ut av instabila tunga radioaktiva ämnensom uran, radium, radon och plutonium.Alfastrålningens räckvidd är ett par cm i luft och den hejdas lätt när den stöter emot någonting. Den stoppas av ett tunt papper och kan inte tränga igenom huden.Därför är alfastrålning bara farlig för människan om detalfastrålande ämnet kommer in i kroppen, till exempel genom inandningsluften till lungorna eller genom födan.

47

Page 48: ATOM och  KÄRNFYSIK

Betastrålning består av elektroner som utsänds när vissa radioaktiva ämnen sönderfaller. Betastrålning har längre räckvidd än alfastrålning; upp till tio meter i luft. Tjocka kläder eller glasögon stoppar strålningen och precis som vid alfastrålning, utgör betastrålning en risk för människan bara om partiklarna kommer in i kroppen.

48

Page 49: ATOM och  KÄRNFYSIK

Gammastrålningen bildas när radioaktiva atomkärnor sönderfaller.Gammastrålning har mycket lång räckvidd, och större genomträngningsförmåga än alfa- och betastrålning. Det krävs ett blyskikt på flera centimeter, decimetertjock betong eller ett par meter vatten för att dämpa gammastrålning till en acceptabel nivå.

49

Page 50: ATOM och  KÄRNFYSIK

50

Page 51: ATOM och  KÄRNFYSIK

Radioaktivitet

Enheter

Aktiviteten från ett radioaktivt ämne mäts i becquerel (Bq).

1 Bq = 1 sönderfall/sekund.

51

Page 52: ATOM och  KÄRNFYSIK

Vanligt väte Tungt väte(Deuterium) Tritium

En proton En proton och en neutron

En proton och två neutroner

Atomnummer = 1 Atomnummer = 1 Atomnummer = 1

Masstal = 1 Masstal = 2 Masstal = 3

Vätets tre isotoper.

ISOTOPER

52

Page 53: ATOM och  KÄRNFYSIK

AtomkärnanKärnor med samma antal protoner, men olika antalneutroner kallas för isotoperisotoper, t ex:

Mg2612Mg25

12Mg2412

+

+

+ +++

+

+

+

+++

53

Page 54: ATOM och  KÄRNFYSIK

54

Page 55: ATOM och  KÄRNFYSIK

sönderfall

Exempel på sönderfall

U23892 Th234

90 He42+

Moderkärna Dotterkärna partikel

55

Page 56: ATOM och  KÄRNFYSIK

sönderfall

Exempel på sönderfall

Pa23491Th234

90 e01+

Moderkärna Dotterkärna - partikel

56

Page 57: ATOM och  KÄRNFYSIK

Halveringstid•Radioaktiva ämnen sönderfaller.

•Den tid det tar för hälften av ett visst radioaktivt ämne att sönderfalla kallas halveringstid.

•Tiden varierar beroende på vilket radioaktivt ämne det gäller. •Halveringstiden för olika radioaktiva ämnen kan variera från bråkdelen av en sekund till miljarder år.

•Efter en halveringstid återstår hälften av ämnet.•Efter ytterligare en halveringstid återstår en fjärdedel.•Efter den därpå följande halveringen återstår en åttondel. 57

Page 58: ATOM och  KÄRNFYSIK

Radioaktivt sönderfall och halveringstid•Antalet radioaktiva kärnor som finns vid en given tid avtar

• Tiden då halva mängden sönderfallit, kallas för halveringstid.

Radioaktivt sönderfall

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30Tid

An

tal

rad

ioa

ktiv

a k

ärn

or

T1/2 2T1/2

58

Page 59: ATOM och  KÄRNFYSIK

Sönderfallskedjor• När en radioaktiv kärna

sönderfaller så är ofta den nya kärnan ocksåradioaktiv.

• Därför finns det sönderfallskedjor,dessa slutar på en stabil kärna.

•Halveringstiden för238U är 4,5 miljarder år210Po är 140 dygn

59

Page 60: ATOM och  KÄRNFYSIK

Kol 14 metoden

Radioaktiva ämnen kan användas för att bestämma ålder på olika material.För åldersbestämning av organiska material kan man använda 14C isotopen.Ett organiskt material är ett material som innehåller kol.Då ett träd växer blir halten 14C konstant i själva trädmaterialet.Då trädet dör börjar 14C sönderfalla.Ju mindre 14C det finns kvar i det gamla trämaterialet, desto äldre är träbiten.

Halveringstiden för 14C är cirka 5600år.

60

Page 61: ATOM och  KÄRNFYSIK

Vår strålmiljö

Stråldos mSv = millisievert 61

Page 62: ATOM och  KÄRNFYSIK

FilmdosimeterRöntgen och gammastrålning svärtar fotografisk film, ju mer strålning desto svartare film.En dosimeter som bygger på film består av en hållare med en film som förpackats ljustätt.Efter framkallning av filmen kan dosen bestämmas genom graden av svärtad film.

Personer på kärnkraftverk och på röntgenavdelningar bär filmdosimeter.

62

Page 63: ATOM och  KÄRNFYSIK

FISSION!

En neutron träffar atomkärnan, atomkärnan kommer i svängning.Atomkärnan klyvs. Samtidigt som en kärna klyvs, frigörs det nya neutroner.Dessa neutroner kan klyva andra atomkärnor.En kedjereaktion sker.Vid varje kärnklyvning frigörs energi i form av värme.

Fission innebär att en kärna klyvs.

63

Page 64: ATOM och  KÄRNFYSIK

1 neutron + 235U → 94Kr + 139Ba + 3 neutroner + energi

FISSION!

64

Page 65: ATOM och  KÄRNFYSIK

Denna kedjereaktion utnyttjas i kärnkraftverk där man låter denna reaktion fortgå, men kontrollerar neutronmängden med styrstavar. Blir det för många fria neutroner skickas styrstavarna ner och absorberar neutroner och på det sättet kan man ha reaktionen under kontroll.

65

Page 66: ATOM och  KÄRNFYSIK

Utan styrstavarna skenar reaktionen iväg och det är på den principen atombomben bygger.

66

Page 67: ATOM och  KÄRNFYSIK

FUSION!Det går även att utvinna energi genom att slå samman lätta kärnor.Fusion innebär att två atomkärnor slås samman så att en tyngre kärna bildas.

67

Page 68: ATOM och  KÄRNFYSIK

FUSION!

Atomkärnan hos deuterium består av en proton och en neutron.

Tritiumkärnan består av en proton och två neutroner.

Vid fusionen slår sig en deuteriumkärna samman med en tritiumkärna.

Vid reaktionen bildas en heliumatom, en fri neutron och energi frigörs.

68

Page 69: ATOM och  KÄRNFYSIK

Är fusion framtidens energikälla?

Nackdelar• För att fusionen ska kunna ske måste

temperaturen vara så hög som 50 miljoner grader Celsius.

• Problemet ligger i att starta en fusionsprocess.

69

Page 70: ATOM och  KÄRNFYSIK

Fusionens fördelar mot fissionen• Vätet tar aldrig slut, nästan obegränsad

tillgång på bränsle i havsvattnet.• Det skapas inte lika mycket radioaktivt avfall

vid fusion som i dagens kärnkraftverk.• Avfallet vid en fusionsreaktor är ofarligt efter

ca. 100 år.• Avfallet vid en fissionsreaktor ofarligt efter

ca. 10 000 år.

70