13
Pergamon Computers Math. Applic. Vol. 32, No. 8, pp. 65-77, 1996 Copyright(~1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved PII: SO898-1221(96)OO168-X 0898-1221/96 $15.00 + 0.00 Asymptotic Constancy of Solutions of Linear Parabolic Volterra Difference Equations B. SHI Department of Applied Mathematics, Hunan University Changsha, Hunan, 410082, P.R. China and Department of Basic Sciences, Naval Aeronautical Engineering Academy Yantai, Shandong, 264001, P.R. China Z. C. WANG AND J. S. YU Department of Applied Mathematics, Hunan University Changsha, Hunan, 410082, P.R. China (Received and accepted May 1996) Abstract--In this paper, we obtain some sufficientconditions under which every solution of a class of linear parabolic Volterra difference equations of neutral type tends to a constant as n --, oo. We also consider the asymptotic constancy of solutions for a class of linear ordinary Volterra difference equations of neutral type. The results obtained improve and generalize some known results. Keywords--Parabolic Volterra differenceequations, Limitingequations, Asymptoticconstancy, Neutral type. 1. INTRODUCTION AND DEFINITIONS Recently, the oscillation (see, for example, [1-3]), asymptotic behavior (see, for in- stance, [4-8]), and stability (see [9]) of delay partial differential equations have been widely studied. The oscillation (see, e.g., [10,11]) and stability (see [12,13], etc.) for Volterra integro- differential equations have also been extensively approached. Again, many authors have been interested in the asymptotic constancy of solutions for functional differential equations (see, for instance, [14-18] and others). It is well known that the behavior of a differential equation and its discrete analogue can be quite different. For example, every solution of the Logistic equation is monotonic. But, its discrete analogue x,,+l = mxn (1 -- xn) has a chaotic solution when m = 4 (see [19]). In addition, the difference on the oscillation of delay differential equations and their discrete analogues also exists (see [20]). In the last few years, This project is supported by the National Natural ScienceFoundationof China. Typeset by ,AAd~TEX CAHI~ 32-8-D 65

Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

Embed Size (px)

Citation preview

Page 1: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

Pergamon Computers Math. Applic. Vol. 32, No. 8, pp. 65-77, 1996

Copyright(~1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved

PII: SO898-1221(96)OO168-X 0898-1221/96 $15.00 + 0.00

Asympto t i c Constancy of Solutions of Linear Parabolic Volterra Difference Equations

B. S H I Department of Applied Mathematics, Hunan University

Changsha, Hunan, 410082, P.R. China and

Department of Basic Sciences, Naval Aeronautical Engineering Academy Yantai, Shandong, 264001, P.R. China

Z. C. WANG AND J . S. YU Department of Applied Mathematics, Hunan University

Changsha, Hunan, 410082, P.R. China

(Received and accepted May 1996)

Abstract--In this paper, we obtain some sufficient conditions under which every solution of a class of linear parabolic Volterra difference equations of neutral type tends to a constant as n --, oo. We also consider the asymptotic constancy of solutions for a class of linear ordinary Volterra difference equations of neutral type. The results obtained improve and generalize some known results.

Keywords--Parabolic Volterra difference equations, Limiting equations, Asymptotic constancy, Neutral type.

1. I N T R O D U C T I O N A N D D E F I N I T I O N S

Recently, the oscillation (see, for example, [1-3]), asymptotic behavior (see, for in- stance, [4-8]), and stability (see [9]) of delay partial differential equations have been widely studied. The oscillation (see, e.g., [10,11]) and stability (see [12,13], etc.) for Volterra integro- differential equations have also been extensively approached. Again, many authors have been interested in the asymptotic constancy of solutions for functional differential equations (see, for instance, [14-18] and others).

It is well known that the behavior of a differential equation and its discrete analogue can be quite different. For example, every solution of the Logistic equation

is monotonic. But, its discrete analogue

x, ,+l = m x n (1 -- xn )

has a chaotic solution when m = 4 (see [19]). In addition, the difference on the oscillation of delay differential equations and their discrete analogues also exists (see [20]). In the last few years,

This project is supported by the National Natural Science Foundation of China.

Typeset by ,AAd~TEX

CAHI~ 32-8-D

65

Page 2: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

66 B. SHI et al.

many mathematicians have been interested in the difference systems. However, only a few works (see [21-25]) are devoted to the partial difference equations and Volterra difference equations, while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations.

The purpose of this paper is to derive sufficient conditions under which every solution tends to a constant as n --* oo for the linear parabolic Volterra difference equations of neutral type of the form

I OO 1 OO OO k=l i=1 j=l

(I)

for m = 1 , . . . , M and n E Z + (no) := {n0,n0 + 1 , . . . } ,

with the homogeneous von Neumann boundary conditions (NBC)

A1 Uo,n = A1 UM,n -~ O, for n e Z + (no), (2)

and initial conditions (IC)

UmJ = 0n,t, for m = 1 , . . . , M and I 6 Z - (no) := { . . . , n 0 - 1,n0}, (3)

satisfies IlOll := sup {1o~,,I for m = 1 , . . . , M and l E Z - (no)} < oo.

Together with its limiting equation

OO / OO OO

A Xn-- Z r k , n X n _ a ~ + Y]~pi,,Xn-~i -- ~-~qj, ,Xn-~j =O, k=l i=1 j=l

(4)

for n e Z + (no) , (5)

with IC

satisfies

xt = 0t, for I e z - (no), (6)

llOll := sup {10,1 for t ~ z - (no)} < oo, (T)

where A1, A~, and A2 are forward partial difference operators (see, for instance, [19,23]) such that A1 Urn,n ::" Urn+l ,n - Urn,n, A2 Urn,n := A1 (A1 Urn,n) and A2Urn, n :-,~ Urn,n+l --Um,n for rn = 1 , . . . , M , n E Z := { . . . , - 1 , 0 , 1 , . . . } . h is a forward difference operator defined by Axn := Xn+l - Xn (see also [19]).

By a solution of the initial boundary value problem (IBVP) (1)-(3), we mean a sequence {urn,n} which is defined for m -- 1 , . . . , M and n E Z and which satisfies equation (1) for m = 1 , . . . , M and n E Z + (no), satisfies NBC (2) for n e Z + (no), and satisfies IC (3) for m = 1 , . . . , M and n E Z - ( n o ) . Similarly, we can give the definitions of a solution of the initial value problem (IVP) (5) and (6).

By using the method similar to that in [25] or simply by successive calculation, it is easy to show tha t equation (1) has a unique solution for given boundary and initial conditions which satisfies (4) (see [23, Appendix]).

In the sequel, we only consider the solutions of equation (1), (respectively, equation (5)) with IC (3), (respectively, (6)) satisfying (4), (respectively, (7)).

We now give some definitions which will be needed in this paper.

DEFINITION 1.1. A solution {urn,n}, (respectively, {xn}) of I B V P (1)-(3), (respectively, I V P (5) and (6)) is said to be a-summable (Sa), ~n°°=,o u~,n t'or m = 1 . . . . . M, (respectively, y']~n~=,o xn a ) is convergent.

Page 3: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

Volterra Difference Equations 67

DEFINITION 1.2. A solution { um,n }, (respectively, {Xn }) of I B V P (1)-(3), (respectively, IV P (5) and (6)) is said to be weakly a-summable (WS~) , ff there exists a positive double sequence

x-,M x-,co s u ~ (respectively, {s~,n} and a subsequence {ti} of {i} such that ~-]~°=n o Z.,,~=~ 2-,~=1 ~,n+t, re,n, En°°=n ° E ~ ° = l Si,n+tlXn ~) IS convergent, where we assume that {s,,n} is not the tr ivia/case, i.e., there exists an io or an no such that si,n =- 0 for i E Z + (i0) or n ~ Z + (no).

DEFINITION 1.3. Equation (5) is said to be a limiting equation of equation (1), i f A~ Um-l,n+l ---+ 0 a s h ---* CO f o r m = 1, . . . , M or d = O.

2. M A I N R E S U L T S

We assume in the following that rk,n E Z+(1) x Z + (no) --* R, Pi,n E Z+(1) x Z + (no) -* R +, qj,n E Z+(1) x Z --* R +, 3i >_ 7i for i E Z+(1), d E R + and that there exists a constant C >

0 such that hi,n >_ Cqi,n-O~+q~ for i ~ Z+(1) and sufficiently large n, where hi,n = Pi,n--qi,n-~,+7,. For summation, we always assume that ~,n=a * = 0 if a > 3.

THEOREM 2.1. Assume that

l imsup Irk,n+ll + ~ E q3,, = 6 < 1, (8) n---*oo k = l j----1 /~=n+ 1-#3~ + '~

E, : I + limsupn_,co 6 1 "~- E~----1 hi,n+l+B, i=l

+

n + l

E hi,A+3, A=n + l- [31

co X"~n+l hi,A+2/31 ] Ei-~l (qi,n+l+7, + hi,n+l+B,) A-~A=n+2-B, < 2, ~ico=l hi,n+l+a,

) qJ,t~ Um,t~-'r~ -- E hi,A+3~ Um,A i--1 ) ,=n-/~i

O0

+ E hi,n+l+#,um,n+l = d A 2 Um-l,n+l. i=1

and that

l imsup 6 + hi,x+a~ + Irk,n+l+ahl n---* co i=1 A=n÷l-#3i k----1

i----1

Then every solution of I B V P (1)-(3) tends to a constant as n --* Co.

PROOF. Let {Urn,n} be any solution of IBVP (1)-(3). We divide our proof into four steps.

STEP I. {Urn,n} is W S 2 and {AlUm,n+1} $2. It is easy to see that equation (1) can be rewritten as

A2 Um,n -- rk,n lSm,n-ak -- E k--1 j = l p~----n- Jff~ ÷"yj

< 2 n ,

We can select from (8)-(10) an 6 > 0 sufficiently small such that 6 + ~ < 1,

[ ( / limsupn_.co (6 + e) 1 + )" ]~l h~,n+l+~, i=l x=n+l-~,

h ~ x"~n+ 1 ~ = 1 (qi,n+l+~, + ~,n+l+a,) e-,x--n+2-a, h~,x+2a, + E7=1

(9)

(lO)

(11)

(12)

Page 4: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

68 B. Sm et al.

and

lim sup + ~ + n.--.*oo i=1 A-----n+l--/3~

oo

k = l

+ }-'~ ~ (q~,.+~+.~, + h~,.+l+~,) i----1

Also, we select an N E Z + (no) sufficiently large such that

< 2. (13)

o o o o n

EIr","+~' + E E k = l j = l i t = n + 1 - 3 j +~,j

qj,~, <_ 5 + e . (14)

In what follows, for the sake of convenience, when we write a sequential inequality without specifying its domain of validity, we mean that it holds for all large n.

Define a Liapunov sequence as follows:

M I oo ~ n-1 Vn(1) = E 't'l'm'n -- E rk'n 'tl'm'n--otk - E

m-----1 k--1 j = l /~=n-/3j +~'j qj,~Um,~-~

~ h,,~+~, ~,~) ~

Then we have

t W ( 1 ) = E - -Urn . ,n+l E h i , n + l + / ~ ' q- dA21Um-l'n+l r n = l i=1

X Um,n+l Jr ~tm,n -- r k , n + l Um,n+l-ak ~ rk,n Um,n-ak k = l k = l i=1

oo oo n

j = l j = l / ~ = n + l - f j +'yj

oo oo n oo

-E~,o-.,+~J~-.,o-~-~E E ~,~+~,~m,~-Eh,,o~..,o-~, .) j = l i ~ l A=n+l - - f l i i=1

Noticing from (1) that

- - Um,n+l E hi'n+l+[~i

oo co co

j = l j = l i=1

( ) A 2 U m , n rk,nUm,n-a~ d 2 = - _ A 1 u r n - 1 , n + l , k = l

we obtain

X 2Um,n+l - - 2 r k , n + l Um,n-ak - - 2 = j = l D=n+l--~j-b~j

qj,tL ~trn,tt - - ~

Page 5: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

Volterra Difference Equations 69

\ Oo n Oo ) i=l A=n+l-fll i=l

M [ oo co oo

= E [ --2~l'2m,n+lE hi'n+l+~' -lr'2~tm,n+lEhi,n+l+fliErk,rt+lUm,n+l-ak m=l i---1 i=1 k=l

o o OO n

+ 2Um'n+l E h"n+l+~i E E qj,tt um,l~-,~ i=1 j = l / ; = n + 1-/35 +'L~

0(2 OO IZ

+ 2Um'n+l E h~'n+l+/3i E E hi')'+/3i Um,X i = l i=1 pt=n+l--Bi

+ ~m,n+l hi,n+l+~i q- 2 d?~m,n+l A2 Um--l,n+l i=1

oO Oo n

-2dErk'n+lUm'n+l-a~A2Um-l'n+l-2dE E qJ'ttA2Um-1, n+l k = l j = l /~=n+ 1-13j +'L~

o o . )] 2 _ d2 2 - 2 d E E •

i=l )~n+l--/31

By using a summation by parts formula (see [19]) and (2), we have

M M

E Urn,n+1 A21 ~tm-l,n+l = - E ( t l Itm,n+l)2 ' m=l m=l

M M

E U'm'n+l-akA2Urn-l'n+l-'~ -- E (AlUm'n+1-ctkl(A11tm,n+l)' m=l m=l

M M 2 u E Um,la-'yj A1 m-l,n+l -~-- E (Al~rn,tt-'?j) (AlUm,n+1),

m=l m=l M M

rrt~---1 m = l

H e n c e , w e o b t a i n

f M | o o (20 o o

t g ( 1 ) --< E / - 21tin,n+12 E hi,n+l+131 + E hi,n+l+Bi E Ilrk,n+lH (~m,n+12 m=l i=l i=I k=l

oo oo n

u 2

i=1 j= l /.t=n+ 1--~j +'-¢j oo oo ~.~ 9.

i=1 i=1 A = n + l - ~ i

2 hi,n+l+Oi - 2d(A1 m,n+l) + Um,n+l \ i = l

o o

k=l oO n

j = l /~=n+ 1--Bj +'~j

Page 6: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

70 B. SH[ et al.

oo n + E [(,,1,,..,.+1)'

i=1 A=n+l--fll

<-- E E hi,n+l+O, --2"+- Irk,~+ll + m=l i=1 k=l

oo n+l ) E + E hi,)~+~ Urn,n+ 1 +

i=1 A=n+l+/~i m=l

co ~ oo

q3,t; m,t~-'r~ q- E 5=1 tt=n+l-/~i+71

+ (A, ,..,~)2] }

E E j = l /~=n+ 1 - ~ +-y~

i=1

M / oo oo n

+ d E -2+Elrk , -+ l l+E E qs,,. ra=l k= l 5=1 /~=n+ 1-/~j +3,j

) + ~ ~ h,,~+~, (~,,m,.+l) ~+d i=1 A=n+l--/~i m=l k=l

O0 n O0 n 1 "O- E E qs't;( A l u 2

j = l /t=n+l--/~j+Tj i=1 A=n+l--~i

E E <-- hi,n+l+~i -2 + 6 + s + hi,x+a, Urn,n+1 m=l i=1 i=1 A=n+l--/~i

M co [ co oo n

-}- E E hi'n+l+~' (~-{- ~) E 2 Um,n+l-a~ + E E qJ,. uz m,.-7~ m=l i=1 k=l j= l /~=n+1-/~$+7i

i=1 A=n+l-~ffl

+ ~ ~ -: + ~ +~ + ~ ~ h,,~+~, (~1~m,.+1) 2 m=l i=1 A=n+l--~i

+ d ~ Irk,.+ll (tlltm,nT1-a~) 2 q- E E ra=l k=l j=l /~=n+1-/~+7~

+ ~ ~ h,,~+~, (~1~,~)2 .

h~,n+l+~, Irk,n+1[ u 2 m,n+ l--ak i=1 k=l

i ,A+~ Um,A

[r~,.+ll (hi u.,,.+l_.k) 2

qs,l~ (ml Um,/~-Tj) 2

i=1 A----n-I- 1--~i

Now define another Liapunov sequence as follows

V (2) = ~ -I- ~ hk,v+a~,+[3k Um,~ m=l k=l v=n+l-ak

oo n n-]-'Tj cQ ~ n ]

, qJ#' m,u-~,, + E h,,a+2~, E hi,x+~, U2m,X j=l b=n+l-l~j I.L=b+Tj i=l a=n+l-~i ),=a

+ d E Irk,~+ak I (A1 u 2 rn=l k=l v=n+l-ak 5=1 b=n+l-~j i~=b+.rj

Page 7: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

Volterra Difference Equations 71

OO

+E i----1

Then, we obtain

E E hi'A'l-/~i (AI ~trn'A)2 " a=n+l-/3~, A=a

oo n + l c~

"t- E qj,n+l+?~ 2 ~tm, n+l E h3't~+2BJ - E hj,n+X+~9~ j = l /~ffin+2-~ j = l

oo oo 2 (5-l-$) Ehk,n+l+a~*+B~ ~m,n+12 _(~_F$) Ehk,n+l+1~k ~m,n+1_a"

k ~ l k=l

n+"t~

2 E qJ,t~ Ztm,t~-'~

~=n+1-8./+'Y.i

oo n + l c~ n [ "1

q- E h i ,n+l+Bi 2 urn,n+ 1 E hi'x+2a'-E hi'n+l+a' E hi,x+a'u2m,x ] i=1 A----n+2-BI i=1 A=n+l-/31

+ d E Irk,n+l+a' [ (A1 um,n+l)2 _ E Irk,n+x I(A1 Um,n+l-ak ) 2 r n f l Lk= l k=l

(3o co n

"~- E~JqJ'n"FI'b'Y' (AI"IIm,n"F1)2-- E E qJ'" (Al Um'l~-~/')2 3=1 j = l /~ffin+l--/3j +~j

OO (30 n 1

"~- E ~ihi'nq-l'b~' (ml~m'n+X)2 -- E E hi'A-Fill (AlUm'A)2J " i=1 i=1 A----n+l--jffi

Finally, we take the Liapunov sequence as follows:

Vn = V (1) "l- V (2) •

We get f-

M oo | oo n-t-1

m = l i=1 i----1 A = n + l - ~ i

oo ~--~n+ I hj,t~+2B ~ + (6 + e) ~ = 1 hk,.+l+~+a~ + Ej=I qj,.+l+~j ~ z = . + 2 - a ~

E ~ I hi,n+l+a, Ei~=x hi,n+l+a, oo h ~-.~n+ 1 ]

E i = I i,n+l+/$i z-,Affin+2-/~ hi,)~+2#~ 2 + ~°°__ 1 h~,n+l+~, ] u.~,.+l

M f oo n oo

+ d E / - 2 + 6 + ' + E E h',x+a'+Elrk,"+l+'~l m = l i=1 A=n+l-/~i k=l

) + E N qj,n+l+'/# "~ i ~ 1 ~i hi,n+l+B, (A1 Um,n+l) 2 , j = l '=

which, from (9) and (I0), implies that

M oo M

and 2

rn~l i = l m = l

are summable, so are (3O

2 i ,n+ l+#i Urn,n+1

i=1

i.e., {urn,n+1} is WS2 and { A l U m , n + l } $2.

and (AlUm,n+l) 2,

Page 8: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

72 B. Snl et al.

STEP II. {u,n,n+~} is WS~. We will first show that

lim V (~) = O. ~'-~00

In fact,

oo n 2

k----1 v = n + l - o t k

oo n

2 ~ O, a s n 0 0 , ~-- 2 E E hk,v+" Um, v "-"} k = l u-~n+l-a~

oo n n + 3 ' ~

I 2 : = E E hj,b+2.~ E qJ,t~ u2 m,D--Tj j=l b=n+l-~j #=b+Tj

oo ~ n+Tj

< E hj,b+2f~, E U2 j=l b=n+l-/~j ~----n+l-/~j +Tj

1 ~ n+7~

j = l p,=n+ 1-.flj +7j (3o n n

2 I~:=E E h',~+=~'Eh',~+e'um,~ i = l a = n + l - / ~ i A=a

<-- hi,a+2Bi E hi,),+B i urn, A "-+ O, i = l a=n+l--/~i A=n+l- /~i

n

I4 : = d E E Irk, ~+~1 (A1 um,~)2 k = l v = n + l - a k

< d E (AI um,~,) 2 --'* O, as n ----} oo, k = l v = n + l - a k

c~ n n+3,~

E E j = l b = n + l - / ~ /~=b+7./

co n+3'~

< - d E E ~JqJ'"(AlUm'"-'~) 2 j = l ~t=nTl--~j +7~

oo n+7.~

j = l p,=n+ 1 - /~ +7.~

8~$ n -----} oo,

a s n ---~ (x~,

and

I6 : = d E hi,~+~, (Axum,x) 2 <_ d i=l a=n+l--~i X=a i=l oo n

i = l ~=n+l- -Bi

A = n + l - ~ i

~hi,~+~, (A1 Um,:~) 2

It is easy to see that Vn is nonincreasing. Hence, the limit limn-.oo ]In = w exists and is finite, so

Page 9: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

V o l t e r r a Difference Equat ions 73

limn-.co V O) = w, i.e.,

lim k = l j = l ~u=n--/~j +3,~

qJ,t~ Um,/~-.v~

co ~ )2 - ~ ~ h,,~,+~, u~,~ =,,,

i = 1 ,,k= n--~31

(15)

Hence,

oo co n

k = l j = l ~ u = n + l - B j + ? j

qJ,D ~lra,l~--~fj

co n

- E E h',~'+~' u", ~' i = 1 ,X=n--,ffi

is bounded, so is /

M / co OO n

m = l k = l j = l ~u=n+ 1 - ~ j + T j

Let w0 be such that

qj,p, Urn,l~--"/j - E ~ h,,~,+B,~,,,,,~, i = 1 ~=n--~i

k = l j = l / ~ n + l - ~ j + 'y j

o,o n

- E E i = l ,~=n --/~i

_~ WO. (16)

Then, we have from (8) and (16)

r" co M co M | oo

E E Eh,,n+,+,,u~,n+l-< E [um°0-Erk,~oU~,no-~, n=no m = l i = 1 m = l k = l

oo no

j = l / ~ = n o + 1 - ~ j +"r j

i = 1 A = n o - / ~

co M

n=no m = l

M Noticing that ~,m=l A~ Um-l,n+l = 0 by (2), we know that

M oo

~ h,,,,+l+~, u,,,,,,+l m = l i = 1

is summable, i.e., {urn,n+1} is WS1. M STEP III. {urn,n+1} is bounded. We first show that ~rn=l urn,n+1 is bounded. If that is not the

case, then there exists a subsequence {ni} of {n} such that

Urn,hi ----4 c~, as i ---} o o a n d : = sup Um,n • r n = l n E g - ( n l ) m = l

Page 10: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

74 B. SHIet al.

Then we have from (8)

Urn 'n ' - -Erk 'n 'Urn 'n ' -a~- -Z Z qi't'Ura,"-'~ m----1 k = l j = l #=n,-[31+71

~ ~ 1 ~m'n' --k=l~lrk'"" '~m,n , -~ . ' - -~ n,--l~ qj,~,lum,u-'r~l

Therefore,

1 ( L + {e21 + " " + [eM[) lua,.+al ~ ~

We can show t h a t lum,.+al _< L ' in the same way. Hence, {urn,n+t} is bounded.

STEP IV. {um,n+x} tends to a constant as n --* oo for m = 1 , . . . , M. From again A1 ~m,n+l ~ 0 as n ~ co, we know t h a t uma,,+x - Um~,n+l "* 0 as n "* 00, where rot , m2 e { 1 , . . . , M} . I t is clear t h a t if Um~,n+l ~ ~ as n ~ 00, then um~,n+t --* r /as n --* oo, and if limsuPn_..c ¢ ~m~,n+l = ~h, l iminfn- .oo um~,n+l = ?'/2, then l i m s u p , _ . ~ ~m~,n+l = ~1, l iminf , - .oo u,n~,,+l = ~ . There- fore, we must have from (15)

co oo n - - 1

as n --* oo. By Step II, we know

M [ co oo n--1

m = l k = l j - - 1 / a m . - ~.~ "F'I'~

Z E -- hi,A+B, Um,A ~ , i=1 A=n-/~,

qj,# Um,#-?j) ~ Y/-~w, as n --* OO.

M We will now prove t h a t ~-~m=l Urn,n -'~ ~ ' ~ / ( 1 - dS) as n --* oo. In the ma t t e r of fact, we let

M M

l imsup Z Urn,. = a and lim2nf E urn,. =/~. n--*oo m = l r n = l

Choose a subsequence {hi} of {n} such tha t lim~-~a¢ EmM_I Urn,n, = Or. Let e > 0 be sufficiently small such that

U~r~,., Urn,.~ ~k, . Urn,hi--or k E m----1 m----1 k----1 j = l /~ffin,--~j +3'j

+ Z r k ' n U m ' n ' - a ' + Z Z qj,.um,u-'r, m = l k= l 3=1 /~-----,-/~j-t-'Tj

_< v/-ff~ + (a + e)&

qj,D Um,#-'7.i I

- I - Z l r k , n ' l - E Z qj, . ~ o o , as i --* oo, rn= l k= l j = l /~=n,-/~# +3'#

M which is a contradict ion. Let L be the bound for ~-']-ra=l Um,n+l" Next, we prove tha t {u,~,,} is bounded.

We know from Step I t ha t {(A1 urn,n+1) 2} is summable. Hence, A1 urn,n+1 ~ 0 as n ~.oo, (note t h a t it is not t rue in the case of continuous analogue).

In fact, we have Um,.+l -- U l , . + I ~ 0 as n --* ~X) for m = 1 , . . . , M. Let Urn,n+1 = U l , n + I + g i n ,

where em = o(1). then

M

L ~> Z Urn,n+l ---~ lul,.+l + U l , n + I "~" g2 "~- " ' " + U l , n + I q- eMl rn=l

> M [ U l , , + l l - [e21 . . . . . 16MI.

Page 11: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

Volterra Difference Equations 75

and a < ~ + (a + e )£ Letting e -* 0, we obtain a < ~ + Re, i.e., a < x/-M-'w/(1 - 6). Similarly, we can show that /~ > yrM-w/(1 - 6). Hence, a = j3 = vf-M-~/(1 - 6).

By again A1 Um,n+l ~ 0 as n - '* 0 0 , we have Um,n "-'+ ~ / ( 1 - 6) as n -* oo. This completes the proof.

Noting that A1 urn,n+1 ---* 0 as n ---* o¢, we know that A2um_l,n+l ---* 0 as n ---+ oo. Therefore, equation (5) is the limiting equation of equation (1).

THEOREM 2.2. Assume (8) and (9) hold. Then every solution of IV P (5) and (6) tends to a c o l I s t a n t a s n ~ c o .

3. C O R O L L A R I E S A N D R E M A R K S

COROLLARY 3.1. Suppose that (8)-(10), (respectively, (8) and (9)) hold. Then every oscillatory solution (see [25]) of l B V P (1)-(3), (respectively, IVP (5) and (6)) tends to zero as n -~ oo.

COROLLARY 3.2. Suppose that (8)-(10), (respectively, (8) and (9)), together with Y~nco=no Y ~ I h~,, = co, hold. Then every solution of I B V P (I)-(3), (respectively, IV P (5) and (6)) tends to zero as n - , oo.

REMARK 3.1. If i , j , k E { 1 , . . . , K } in equation (1), (respectively, (5)), where K is a finite positive integer, then the solution of IBVP (1)-(3), (respectively, IVP (5) and (6)) is globally asymptotically stable (GAS) (for the definition of GAS, one is referred to [27]).

COROLLARY 3.3. Suppose that (8)-(10), (respectively, (8) and (9)) and A2hi,n = 0 for ( i ,n) E Z+(1) x Z+(no) hold. Then every solution {urn,,}, (respectively, {xn}) of I B V P (1)-(3), (re- spectively, I V P (5) and (6)) is $2 and GAS.

co E i = l = 0 0 . It is easy to see that i f him is independent of n, then Y~,~=,~o co hi,n

REMARK 3.2. In [23], we call $2 square summably stable (SSS). Let rk = rk,n,pi = Pi,n and qj,n - 0. Then (8)-(10) will be reduced to

co 1 co E,co_-

E Irk J + ~ E pi + co < 1. (17) k=l i= l E i = l i ~ i p i

In [23], we have obtained that the sufficient condition for SSS is (in the notation of this paper)

1 co co

irk[ + -~ E Pi + E ~ i P i < 1. (18) k=l i=1 i=1

It is obvious that (17) is better than (18).

REMARK 3.3. Consider the neutral difference equation

A ( x . -- cx._,~) + pn xn-~ ---- O, for n e Z + (no). (19)

Then (8) and (9) are reduced to

limsup ]cJ 1 + Pi+l+a+__.__fl + E P~+2~ n-*co P i+ l+ f l / A = n - 2 ~

< 2, (20)

which (together withY~nco=nopn = no) implies that every solution of equation (19) tends to a constant as n -* oo (is GAS). This result has been derived in [27]. In particular, we consider delay difference equation

Axr, + Pn xn-~ = 0. (21)

Page 12: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

76 B. SHI et al.

Then (8) and (9) are reduced to

n

l imsup Z P~+2~ < 2 , (22) n.-.*oo A-.=n- 213

which (together with ~']~=no Pn = oo) implies that every solution of equation (21) tends to a constant as n --* eo (is GAS). In [28], they have obtained the conditions

n o o

l imsup Z PX+~ < 1 and Z Pn = o¢, (23) n---*OO ~- - - -n - -~ n--~no

which gives GAS of equation (21). Obviously, (22) is weaker than (23).

4 . E X A M P L E S

EXAMPLE 4.1. Consider the neutral difference equation

A ( x n - r n x n - x ) + Pn X n - 1 - qn x n - x = O, (24)

where r n = (2n - 1 ) / ( 4 n + 2), Pn - qn = (2a + 1)(2n Since

and

- 1 ) ~ ( 2 h a - a + 1)(2n + 1)(2n + 3).

1 l imsuprn+x = ~ < 1,

n--d.OO

l imsup l + P n + 3 - q n + 3 + Z ( P x + I - q x + I ) = 1 < 2 . n--*co Pn+2 - qn+2 ] A=n

By Theorem 2.2, we know tha t every solution of equation (24) tends to a constant as n --* cx~. In fact, equation (24) has a solution xn = a + 1/(2n + 1), where a _> 0 or a < - 1 / 2 . In particular, if a 0, then oo = ~-~n=,o (Pn - q n ) = oo. From Corollary 3.2, every solution of equation (24) tends to zero as n --* o0. At this time, xn = 1/(2n + 1), which tends to zero as n --* co, is a solution of

equation (24).

EXAMPLE 4.2. Consider again equation (24). Let

r n = _ _

2 n - 3 2 n - 4 n - 2 1

2 n - 1 + 2 n ( 2 n - 1 ) and P n - q n = ~ .

Then we have

and

l imsuprn+x = 1 )~ 1, n---~OO

[( l imsup 1 + Pn+3 - qn+3 + Z (PX+I - qx+l) = < 2. n--*oo Pn+2 qn+2 ] X=vt

Since equation (24) has a solution x n = 2n + 1 which does not tend to a constant, this explains tha t the condition (8) is necessary.

R E F E R E N C E S

1. B.T. Cui, Oscillation properties for parabolic equations of neutral type, Comment. Math. Univ. Carolinae 33, 581-588, (1992).

2. D.P. Mishev, Necessary and sufficient conditions for oscillation of neutral type parabolic differential equations, Comtes Kendus Acad. Bulg. Sei. 44, 11-15, (1991).

3. N. Yoshida, Oscillation of nonlinear parabolic equations with functional arguments, Hiroshima Math. J. 16, 305-314, (1986).

Page 13: Asymptotic Constancy of Solutions of Linear Parabolic ... · while Huang and Yu [26] have considered the asymptotic constancy of neutral difference equations. The purpose of this

Volterra Difference Equations 77

4. R.H. Martin and H.L. Smith, Reaction-diffusion systems with time delays: Monotonicity, invariance, com- parion and convergence, J. Reine Angew. Math. 413, 1-35, (1991).

5. S. Murakami, Asymptotic behavior in a class of integro-differential equations with diffusion, Methods Appl. Anal. 2 (2), 237-247, (1995).

6. S. Murakami, Stable equilibrium point of some diffusive functional differential equations, Nonl. Anal., TMA 25, 1037-1043, (1995).

7. S. Murakami and Y. Hamaya, Global attractivity in an integro-differential equation with diffusion, Diff. Eqs. Dynam. Syst. (to appear).

8. S. Murakami and J. Yoshizawa, Asymptotic behavior in a system of Volterra integro-differential equations with diffusion, Dynam. Syst. Appl. 3, 175-188, (1994).

9. K. Gopalsamy and P.X. Weng, On the stability of a neutral integro-partial differential equation, Bull. Inst. Math. Acad. Siniea 20, 267-284, (1992).

10. D.D. Balnov, A.D. Myshkis and A.I. Zahariev, On the oscillating properties of the solutions of a class of integro-differential equations of neutral type, Internat. J. Math. ~ Math. Sci. 15, 119-128, (1992).

11. A.W. Nasr, Asymptotic behavior and oscillation of classes of integro-differential equations, Proc. Amer. Math. Soc. 118, 143-148, (1992).

12. T. Hara, T. Yoneyama and T. Itoh, Asymptotic stability criteria for nonlinear Volterra integro-differential equations, Funkcial. Ekvac. 33, 39-57, (1990).

13. Y. Hino and S. Murakami, Stability properties of linear Volterra equations, J. Diff. Eqns. 89, 121-137, (1991). 14. J.R. Haddock, Recent results for FDEs with asymptotically constant solutions: A brief survey, In Research

Notes in Math., Evolution Equations and Their Applications, (Edited by F. Kappal and W. Schappacher), Vol. 68, pp 121-129, Pitman Advanced Publ. Program, Boston, (1982).

15. J.R. Haddock, Functional differential equations for which each constant is a solution: A narrative, In Proc. of the 11 th Internat. Confer. on Nonl. Oscillation, Vol. B, pp. 86-93, Janos Bolyai Math. Soc., (1987).

16. J.H. Shen and J.S. Yu, Asymptotic behavior of solutions of neutral differential equations with positive and negative coefficients, J. Math. Anal. Appl. 195, 517-526, (1995).

17. W.F. Trench and T. Kusano, Systems of functional differential equations with asymptotically constant solu- tion, Proc. Amer. Math. Soe. 104 (4), 1091-1097, (1988).

18. J.H. Wu, On J.R. Haddock's conjecture, Appl. Anal. 33, 127-137, (1989). 19. W.G. Kelley and A.C. Peterson, Difference Equations: An Introduction with Applications, Acad. Press,

(1991). 20. J.S. Yu and Z.C. Wang, Asymptotic behavior and oscillation in delay difference equations, Funkcial. Ekvac.

37, 241-248, (1994). 21. S. Elaydi, Periodicity and stability of linear Volterra difference systems, J. Math. Anal. Appl. 181,483-492,

(1994). 22. S. Elaydi and S. Murakami, Uniform asymptotic stability in linear Volterra difference equations, J. Difference

Eqns. Appl. (to appear). 23. B. Shi, Z.C. Wang and J.S. Yu, Square summable stability in parabolic Volterra difference equations, Methods

Appl. Anal. (to appear). 24. B. Shi, Z.C. Wang and J.S. Yu, Stability of parabolic Volterra integro-partial differential equations and their

discrete analogues, Diff. Eqns. Dynam. Syst. (to appear). 25. B.G. Zhang, S.T. Liu and S.S. Cheng, Oscillation of a class of delay partial difference equations, J. Difference

Eqns. Appl. 1, 215-226, (1995). 26. L.H. Huang and J.S. Yu, Convergence of solutions of neutral difference equations, Diff. Eqns. Dynam. Syst.

(to appear). 27. J.S. Yu and S.S. Cheng, A stability criterion for a neutral difference equation with delays, Appl. Math. Lett.

7 (6), 75-80, (1994). 28. G. Ladas, C.X. Qian, P.N. Vlahos and J.R. Yah, Stability of solutions of linear nonautonomous differential

equations, Appl. Anal. 41, 183-191, (1991).