59
Aspects of Quantum Cosmology Sridip Pal IISER Kolkata 09MS002 November 6,2013 Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 1 / 21

Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Aspects of Quantum Cosmology

Sridip PalIISER Kolkata

09MS002

November 6,2013

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 1 / 21

Page 2: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Outline

1 IntroductionWhy Quantum CosmologyThe problems in formulating Quantum Cosmology

2 Hamiltonian Formulation of General RelativityWriting Down the HamiltonianIntroducing DeWitt Metric

3 SuperspaceDefinitionMetrizing the Superspace

4 Homogeneous Closed UniverseQuantizing the Universe

5 Small Quantum SubsystemArriving at Schrodinger EquationProbability for Subsystem and its conservation

6 Ahead of It!!

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 2 / 21

Page 3: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Introduction Why Quantum Cosmology

Amalgamation of Quantum Theory and Cosmology.

The very early universe before the Planck Time scale when the lengthof the universe is order of Planck length.

The thermodynamical arrow of time and its matching withcosmological arrow of time.

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 3 / 21

Page 4: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Introduction Why Quantum Cosmology

Amalgamation of Quantum Theory and Cosmology.

The very early universe before the Planck Time scale when the lengthof the universe is order of Planck length.

The thermodynamical arrow of time and its matching withcosmological arrow of time.

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 3 / 21

Page 5: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Introduction Why Quantum Cosmology

Amalgamation of Quantum Theory and Cosmology.

The very early universe before the Planck Time scale when the lengthof the universe is order of Planck length.

The thermodynamical arrow of time and its matching withcosmological arrow of time.

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 3 / 21

Page 6: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Introduction The problems in formulating Quantum Cosmology

The Problems in Formulation

When we study the evolution of universe time is alreday a coordinate

We need to find a parameter which is timelike against which ouruniverse will evolve.

We need to build up a configuration space for universe where we willdefine Quantum Dynamics.

The definition of Probability is not so well formulated.Someanisotropic models reveal time dependent norm when we defineprobability in standard way

Our aim is to look for a suitable definition of probablity so as toalleviate this time dependence leading to Unitarity of evolutionoperator

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 4 / 21

Page 7: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Introduction The problems in formulating Quantum Cosmology

The Problems in Formulation

When we study the evolution of universe time is alreday a coordinate

We need to find a parameter which is timelike against which ouruniverse will evolve.

We need to build up a configuration space for universe where we willdefine Quantum Dynamics.

The definition of Probability is not so well formulated.Someanisotropic models reveal time dependent norm when we defineprobability in standard way

Our aim is to look for a suitable definition of probablity so as toalleviate this time dependence leading to Unitarity of evolutionoperator

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 4 / 21

Page 8: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Introduction The problems in formulating Quantum Cosmology

The Problems in Formulation

When we study the evolution of universe time is alreday a coordinate

We need to find a parameter which is timelike against which ouruniverse will evolve.

We need to build up a configuration space for universe where we willdefine Quantum Dynamics.

The definition of Probability is not so well formulated.Someanisotropic models reveal time dependent norm when we defineprobability in standard way

Our aim is to look for a suitable definition of probablity so as toalleviate this time dependence leading to Unitarity of evolutionoperator

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 4 / 21

Page 9: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Introduction The problems in formulating Quantum Cosmology

The Problems in Formulation

When we study the evolution of universe time is alreday a coordinate

We need to find a parameter which is timelike against which ouruniverse will evolve.

We need to build up a configuration space for universe where we willdefine Quantum Dynamics.

The definition of Probability is not so well formulated.Someanisotropic models reveal time dependent norm when we defineprobability in standard way

Our aim is to look for a suitable definition of probablity so as toalleviate this time dependence leading to Unitarity of evolutionoperator

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 4 / 21

Page 10: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Introduction The problems in formulating Quantum Cosmology

The Problems in Formulation

When we study the evolution of universe time is alreday a coordinate

We need to find a parameter which is timelike against which ouruniverse will evolve.

We need to build up a configuration space for universe where we willdefine Quantum Dynamics.

The definition of Probability is not so well formulated.Someanisotropic models reveal time dependent norm when we defineprobability in standard way

Our aim is to look for a suitable definition of probablity so as toalleviate this time dependence leading to Unitarity of evolutionoperator

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 4 / 21

Page 11: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Writing Down the Hamiltonian

Hamiltonian Formulation

We foliate 4 dimensional spacetime manifold into spatialhypersurfaces labeled by a global time t.

ds2 = −N2dt2 + hij(dx i + N idt)(dx j + N jdt) (1)

Define extrinsic curvature of the hypersurface to be

Kij = −ni ;j =1

2N

(Ni |j + Nj |i −

∂hij

∂t

)(2)

where ni is normal to the spacelike hypersurface.

S =1

4κ2

[∫M

d4x√−gR(4) + 2

∫∂M

d3x√

hK

]+ Smatter (3)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 5 / 21

Page 12: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Writing Down the Hamiltonian

Hamiltonian Formulation

We foliate 4 dimensional spacetime manifold into spatialhypersurfaces labeled by a global time t.

ds2 = −N2dt2 + hij(dx i + N idt)(dx j + N jdt) (1)

Define extrinsic curvature of the hypersurface to be

Kij = −ni ;j =1

2N

(Ni |j + Nj |i −

∂hij

∂t

)(2)

where ni is normal to the spacelike hypersurface.

S =1

4κ2

[∫M

d4x√−gR(4) + 2

∫∂M

d3x√

hK

]+ Smatter (3)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 5 / 21

Page 13: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Writing Down the Hamiltonian

Hamiltonian Formulation

We foliate 4 dimensional spacetime manifold into spatialhypersurfaces labeled by a global time t.

ds2 = −N2dt2 + hij(dx i + N idt)(dx j + N jdt) (1)

Define extrinsic curvature of the hypersurface to be

Kij = −ni ;j =1

2N

(Ni |j + Nj |i −

∂hij

∂t

)(2)

where ni is normal to the spacelike hypersurface.

S =1

4κ2

[∫M

d4x√−gR(4) + 2

∫∂M

d3x√

hK

]+ Smatter (3)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 5 / 21

Page 14: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Writing Down the Hamiltonian

Hamiltonian Formulation

We foliate 4 dimensional spacetime manifold into spatialhypersurfaces labeled by a global time t.

ds2 = −N2dt2 + hij(dx i + N idt)(dx j + N jdt) (1)

Define extrinsic curvature of the hypersurface to be

Kij = −ni ;j =1

2N

(Ni |j + Nj |i −

∂hij

∂t

)(2)

where ni is normal to the spacelike hypersurface.

S =1

4κ2

[∫M

d4x√−gR(4) + 2

∫∂M

d3x√

hK

]+ Smatter (3)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 5 / 21

Page 15: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Writing Down the Hamiltonian

Hamiltonian formulation

S =

∫dtL =

∫d4xN

√h(K ijKij − K 2 + R(3)

)+ Smatter (4)

πij ≡ ∂L

∂hij

=−√

h

4κ2

(K ij − hijK

)(5)

π0 ≡ ∂L

∂N= 0 (6)

πi ≡ ∂L

∂Ni

= 0 (7)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 6 / 21

Page 16: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Writing Down the Hamiltonian

Hamiltonian formulation

S =

∫dtL =

∫d4xN

√h(K ijKij − K 2 + R(3)

)+ Smatter (4)

πij ≡ ∂L

∂hij

=−√

h

4κ2

(K ij − hijK

)(5)

π0 ≡ ∂L

∂N= 0 (6)

πi ≡ ∂L

∂Ni

= 0 (7)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 6 / 21

Page 17: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Writing Down the Hamiltonian

Hamiltonian formulation

S =

∫dtL =

∫d4xN

√h(K ijKij − K 2 + R(3)

)+ Smatter (4)

πij ≡ ∂L

∂hij

=−√

h

4κ2

(K ij − hijK

)(5)

π0 ≡ ∂L

∂N= 0 (6)

πi ≡ ∂L

∂Ni

= 0 (7)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 6 / 21

Page 18: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Writing Down the Hamiltonian

Writing Down the Hamiltonian

H =

∫d3x

(π0N + πi Ni + NH+ NiHi

)(8)

where

H =

√h

2κ2

(G 0

0 − 2κ2T 00

)(9)

Hi =

√h

2κ2

(G 0i − 2κ2T 0i

)(10)

H = 0 (11)

Hi = 0 (12)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 7 / 21

Page 19: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Writing Down the Hamiltonian

Writing Down the Hamiltonian

H =

∫d3x

(π0N + πi Ni + NH+ NiHi

)(8)

where

H =

√h

2κ2

(G 0

0 − 2κ2T 00

)(9)

Hi =

√h

2κ2

(G 0i − 2κ2T 0i

)(10)

H = 0 (11)

Hi = 0 (12)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 7 / 21

Page 20: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Writing Down the Hamiltonian

Writing Down the Hamiltonian

H =

∫d3x

(π0N + πi Ni + NH+ NiHi

)(8)

where

H =

√h

2κ2

(G 0

0 − 2κ2T 00

)(9)

Hi =

√h

2κ2

(G 0i − 2κ2T 0i

)(10)

H = 0 (11)

Hi = 0 (12)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 7 / 21

Page 21: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Introducing DeWitt Metric

Introducing DeWitt Metric

H = 4κ2Gijklπijπkl −√

h

4κ2R(3) −

√hT 0

0 (13)

Gijkl =1

2√

h(hikhjl + hilhjk − hijhkl) (14)

If we consider a phase space described by hij and πij ; Gijkl will providea metric on that space

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 8 / 21

Page 22: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Introducing DeWitt Metric

Introducing DeWitt Metric

H = 4κ2Gijklπijπkl −√

h

4κ2R(3) −

√hT 0

0 (13)

Gijkl =1

2√

h(hikhjl + hilhjk − hijhkl) (14)

If we consider a phase space described by hij and πij ; Gijkl will providea metric on that space

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 8 / 21

Page 23: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Hamiltonian Formulation of General Relativity Introducing DeWitt Metric

Introducing DeWitt Metric

H = 4κ2Gijklπijπkl −√

h

4κ2R(3) −

√hT 0

0 (13)

Gijkl =1

2√

h(hikhjl + hilhjk − hijhkl) (14)

If we consider a phase space described by hij and πij ; Gijkl will providea metric on that space

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 8 / 21

Page 24: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Superspace Definition

Superspace

Consider the space of all Riemannian 3-metrics and matter configurationon spatial hypersurfaces, Σ,

Riem(Σ) ≡ hij ,Φ(x) : x ∈ Σ (15)

All the geometry and configurations which are related to each otherby mere co ordinate transformation are physically equivalent.

Hence Superspace is defined to be

Superspace(Σ) ≡ Riem(Σ)

Diff (Σ)(16)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 9 / 21

Page 25: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Superspace Definition

Superspace

Consider the space of all Riemannian 3-metrics and matter configurationon spatial hypersurfaces, Σ,

Riem(Σ) ≡ hij ,Φ(x) : x ∈ Σ (15)

All the geometry and configurations which are related to each otherby mere co ordinate transformation are physically equivalent.

Hence Superspace is defined to be

Superspace(Σ) ≡ Riem(Σ)

Diff (Σ)(16)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 9 / 21

Page 26: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Superspace Definition

Superspace

Consider the space of all Riemannian 3-metrics and matter configurationon spatial hypersurfaces, Σ,

Riem(Σ) ≡ hij ,Φ(x) : x ∈ Σ (15)

All the geometry and configurations which are related to each otherby mere co ordinate transformation are physically equivalent.

Hence Superspace is defined to be

Superspace(Σ) ≡ Riem(Σ)

Diff (Σ)(16)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 9 / 21

Page 27: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Superspace Metrizing the Superspace

Metrizing the Superspace

The DeWitt metric provides a metric on Superspace, given by

GAB(x) = G(ij)(kl)(x) (17)

where A,B ∈ hij : i ≤ j , i , j ∈ 1, 2, 3

The inverse metric is given by GAB so that

G(ij)(kl)G(kl)(mn) =1

2

(δimδ

jn + δinδ

jm

)(18)

GAB =

√h

2

(hikhjl + hilhjk − 2hijhkl

)(19)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 10 / 21

Page 28: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Superspace Metrizing the Superspace

Metrizing the Superspace

The DeWitt metric provides a metric on Superspace, given by

GAB(x) = G(ij)(kl)(x) (17)

where A,B ∈ hij : i ≤ j , i , j ∈ 1, 2, 3The inverse metric is given by GAB so that

G(ij)(kl)G(kl)(mn) =1

2

(δimδ

jn + δinδ

jm

)(18)

GAB =

√h

2

(hikhjl + hilhjk − 2hijhkl

)(19)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 10 / 21

Page 29: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Superspace Metrizing the Superspace

Metrizing the Superspace

The DeWitt metric provides a metric on Superspace, given by

GAB(x) = G(ij)(kl)(x) (17)

where A,B ∈ hij : i ≤ j , i , j ∈ 1, 2, 3The inverse metric is given by GAB so that

G(ij)(kl)G(kl)(mn) =1

2

(δimδ

jn + δinδ

jm

)(18)

GAB =

√h

2

(hikhjl + hilhjk − 2hijhkl

)(19)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 10 / 21

Page 30: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Homogeneous Closed Universe

Superspace for Homogeneous Closed Universe

S =

∫dt

[1

2NGAB qAqB − NU(q)

](20)

where U(q) = V (Φ)− R(3)

4κ2

H = N

[1

2GABπAπB + U(q)

](21)

[1

2GABπAπB + U(q)

]= 0 (22)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 11 / 21

Page 31: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Homogeneous Closed Universe

Superspace for Homogeneous Closed Universe

S =

∫dt

[1

2NGAB qAqB − NU(q)

](20)

where U(q) = V (Φ)− R(3)

4κ2

H = N

[1

2GABπAπB + U(q)

](21)

[1

2GABπAπB + U(q)

]= 0 (22)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 11 / 21

Page 32: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Homogeneous Closed Universe Quantizing the Universe

Quantization and WKB approximation

πA 7→ −ı~∂

∂qA(23)

(~2

2∇2 − U

)ψ(q) = 0 (24)

The conserved current is

jα =−ı~

2Gαβ (ψ∗∇βψ − ψ∇βψ∗) (25)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 12 / 21

Page 33: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Homogeneous Closed Universe Quantizing the Universe

Quantization and WKB approximation

πA 7→ −ı~∂

∂qA(23)

(~2

2∇2 − U

)ψ(q) = 0 (24)

The conserved current is

jα =−ı~

2Gαβ (ψ∗∇βψ − ψ∇βψ∗) (25)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 12 / 21

Page 34: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Homogeneous Closed Universe Quantizing the Universe

Quantization and WKB approximation

πA 7→ −ı~∂

∂qA(23)

(~2

2∇2 − U

)ψ(q) = 0 (24)

The conserved current is

jα =−ı~

2Gαβ (ψ∗∇βψ − ψ∇βψ∗) (25)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 12 / 21

Page 35: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Homogeneous Closed Universe Quantizing the Universe

Probability

We take ansatz ψ = A(q)eıS(q)~ to arrive

jα = |A|2∇αS (26)

We can single out one co-ordinate as time and define hypersurfacesby t = constant.

Now we choose hypersurfaces in such a fashion that jαdΣα > 0

Hence probability is defined to be

P =

∫jαdΣα (27)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 13 / 21

Page 36: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Homogeneous Closed Universe Quantizing the Universe

Probability

We take ansatz ψ = A(q)eıS(q)~ to arrive

jα = |A|2∇αS (26)

We can single out one co-ordinate as time and define hypersurfacesby t = constant.

Now we choose hypersurfaces in such a fashion that jαdΣα > 0

Hence probability is defined to be

P =

∫jαdΣα (27)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 13 / 21

Page 37: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Homogeneous Closed Universe Quantizing the Universe

Probability

We take ansatz ψ = A(q)eıS(q)~ to arrive

jα = |A|2∇αS (26)

We can single out one co-ordinate as time and define hypersurfacesby t = constant.

Now we choose hypersurfaces in such a fashion that jαdΣα > 0

Hence probability is defined to be

P =

∫jαdΣα (27)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 13 / 21

Page 38: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Homogeneous Closed Universe Quantizing the Universe

Probability

We take ansatz ψ = A(q)eıS(q)~ to arrive

jα = |A|2∇αS (26)

We can single out one co-ordinate as time and define hypersurfacesby t = constant.

Now we choose hypersurfaces in such a fashion that jαdΣα > 0

Hence probability is defined to be

P =

∫jαdΣα (27)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 13 / 21

Page 39: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem

Small Quantum Subsystem

Consider a small quantum subsystem with Hq′ being the hamiltonian:

ds2 = Gαβqαqβ + Gαmqαq′m + Gmnq′mq′n (28)

Gαβ(q, q′) = G0αβ(q) + O(λ) (29)

The subspace defined by subsystem is orthogonal to the subspacedefined by coordinates of universe in the leading order.

Gαm(q, q′) = O(λ) (30)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 14 / 21

Page 40: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem

Small Quantum Subsystem

Consider a small quantum subsystem with Hq′ being the hamiltonian:

ds2 = Gαβqαqβ + Gαmqαq′m + Gmnq′mq′n (28)

Gαβ(q, q′) = G0αβ(q) + O(λ) (29)

The subspace defined by subsystem is orthogonal to the subspacedefined by coordinates of universe in the leading order.

Gαm(q, q′) = O(λ) (30)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 14 / 21

Page 41: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem

Small Quantum Subsystem

Consider a small quantum subsystem with Hq′ being the hamiltonian:

ds2 = Gαβqαqβ + Gαmqαq′m + Gmnq′mq′n (28)

Gαβ(q, q′) = G0αβ(q) + O(λ) (29)

The subspace defined by subsystem is orthogonal to the subspacedefined by coordinates of universe in the leading order.

Gαm(q, q′) = O(λ) (30)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 14 / 21

Page 42: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem

Small Quantum Subsystem

Consider a small quantum subsystem with Hq′ being the hamiltonian:

ds2 = Gαβqαqβ + Gαmqαq′m + Gmnq′mq′n (28)

Gαβ(q, q′) = G0αβ(q) + O(λ) (29)

The subspace defined by subsystem is orthogonal to the subspacedefined by coordinates of universe in the leading order.

Gαm(q, q′) = O(λ) (30)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 14 / 21

Page 43: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem Arriving at Schrodinger Equation

Arriving the Schrodinger Equation for Subsystem

[~2

2∇2 − U − Hq′

]Ψ = 0 (31)

Take ansatz Ψ(q, q′) = ψ(q)χ(q, q′)

Note[~2

2 ∇2 − U

]ψ(q) = 0

NHq′χ = ı~∂χ

∂t(32)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 15 / 21

Page 44: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem Arriving at Schrodinger Equation

Arriving the Schrodinger Equation for Subsystem

[~2

2∇2 − U − Hq′

]Ψ = 0 (31)

Take ansatz Ψ(q, q′) = ψ(q)χ(q, q′)

Note[~2

2 ∇2 − U

]ψ(q) = 0

NHq′χ = ı~∂χ

∂t(32)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 15 / 21

Page 45: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem Arriving at Schrodinger Equation

Arriving the Schrodinger Equation for Subsystem

[~2

2∇2 − U − Hq′

]Ψ = 0 (31)

Take ansatz Ψ(q, q′) = ψ(q)χ(q, q′)

Note[~2

2 ∇2 − U

]ψ(q) = 0

NHq′χ = ı~∂χ

∂t(32)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 15 / 21

Page 46: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem Arriving at Schrodinger Equation

Arriving the Schrodinger Equation for Subsystem

[~2

2∇2 − U − Hq′

]Ψ = 0 (31)

Take ansatz Ψ(q, q′) = ψ(q)χ(q, q′)

Note[~2

2 ∇2 − U

]ψ(q) = 0

NHq′χ = ı~∂χ

∂t(32)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 15 / 21

Page 47: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem Probability for Subsystem and its conservation

Conserved Currents

For the universe jα = |A|2~∇αS |χ|2 = jα0 |χ|2

For quantum subsystem, jm = −ı~2 |A|

2 (χ∗∇mχ− χ∇mχ∗)

define ρχ = |χ|2 and jmχ = −ı~2 (χ∗∇mχ− χ∇mχ∗)

Normalisation condition yields∫jα0 dΣα

∫ρχdΩq′ = 1 (33)

This sets normalisation conditon on the probability of small quantumsubsytem.

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 16 / 21

Page 48: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem Probability for Subsystem and its conservation

Conserved Currents

For the universe jα = |A|2~∇αS |χ|2 = jα0 |χ|2

For quantum subsystem, jm = −ı~2 |A|

2 (χ∗∇mχ− χ∇mχ∗)

define ρχ = |χ|2 and jmχ = −ı~2 (χ∗∇mχ− χ∇mχ∗)

Normalisation condition yields∫jα0 dΣα

∫ρχdΩq′ = 1 (33)

This sets normalisation conditon on the probability of small quantumsubsytem.

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 16 / 21

Page 49: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem Probability for Subsystem and its conservation

Conserved Currents

For the universe jα = |A|2~∇αS |χ|2 = jα0 |χ|2

For quantum subsystem, jm = −ı~2 |A|

2 (χ∗∇mχ− χ∇mχ∗)

define ρχ = |χ|2 and jmχ = −ı~2 (χ∗∇mχ− χ∇mχ∗)

Normalisation condition yields∫jα0 dΣα

∫ρχdΩq′ = 1 (33)

This sets normalisation conditon on the probability of small quantumsubsytem.

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 16 / 21

Page 50: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem Probability for Subsystem and its conservation

Conserved Currents

For the universe jα = |A|2~∇αS |χ|2 = jα0 |χ|2

For quantum subsystem, jm = −ı~2 |A|

2 (χ∗∇mχ− χ∇mχ∗)

define ρχ = |χ|2 and jmχ = −ı~2 (χ∗∇mχ− χ∇mχ∗)

Normalisation condition yields∫jα0 dΣα

∫ρχdΩq′ = 1 (33)

This sets normalisation conditon on the probability of small quantumsubsytem.

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 16 / 21

Page 51: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem Probability for Subsystem and its conservation

Probability conservation in Subsystem

∇αjα +∇mjm = 0 (34)

Write jα = (|A|2~∇αS)ρχ and use ∇αjα0 = 0

1

N

∂ρχ∂t

+ ∂mjmχ = 0 (35)

Everything falls into place and we get back our standard QM result!!

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 17 / 21

Page 52: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem Probability for Subsystem and its conservation

Probability conservation in Subsystem

∇αjα +∇mjm = 0 (34)

Write jα = (|A|2~∇αS)ρχ and use ∇αjα0 = 0

1

N

∂ρχ∂t

+ ∂mjmχ = 0 (35)

Everything falls into place and we get back our standard QM result!!

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 17 / 21

Page 53: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Small Quantum Subsystem Probability for Subsystem and its conservation

Probability conservation in Subsystem

∇αjα +∇mjm = 0 (34)

Write jα = (|A|2~∇αS)ρχ and use ∇αjα0 = 0

1

N

∂ρχ∂t

+ ∂mjmχ = 0 (35)

Everything falls into place and we get back our standard QM result!!

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 17 / 21

Page 54: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Ahead of It!!

What Lies Ahead

The anisotropic Models, Bianchi-V and Bianchi-IX show nonunitarityupon a particular choice of time parameter.

The DeWitt metric always has a signature of (−,+,+..). So we willtry to take coordinate with opposite signature as time.

In that case the resulting equation may not be first order in timederivative unlike Schrodinger equation.

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 18 / 21

Page 55: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Ahead of It!!

What Lies Ahead

The anisotropic Models, Bianchi-V and Bianchi-IX show nonunitarityupon a particular choice of time parameter.

The DeWitt metric always has a signature of (−,+,+..). So we willtry to take coordinate with opposite signature as time.

In that case the resulting equation may not be first order in timederivative unlike Schrodinger equation.

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 18 / 21

Page 56: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Ahead of It!!

What Lies Ahead

The anisotropic Models, Bianchi-V and Bianchi-IX show nonunitarityupon a particular choice of time parameter.

The DeWitt metric always has a signature of (−,+,+..). So we willtry to take coordinate with opposite signature as time.

In that case the resulting equation may not be first order in timederivative unlike Schrodinger equation.

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 18 / 21

Page 57: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Ahead of It!!

References

An Introduction to Quantum Cosmology, D.L.Wiltshire,[arXiv :0101003v2[gr-qc]]

D. Atkatz, Am. J. Phys, 62, 619 (1994)

A. Vilenkin, Phys. Rev. D 39,1116 (1989) 2491 (1974)

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 19 / 21

Page 58: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Ahead of It!!

Acknowledgement

The speaker acknowdeges a debt of gratitude to

Prof. N. Banerjee, Dept. of Physical Sciences, IISER Kolkata for hisvaluable time and guidance.

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 20 / 21

Page 59: Aspects of Quantum Cosmology - Indian Institute of Science …students.iiserkol.ac.in/~sridippal/Quantum Cosmology.pdf · 2013. 11. 6. · Introduction Why Quantum Cosmology Amalgamation

Ahead of It!!

THANK YOU

Sridip Pal IISER Kolkata 09MS002 () Aspects of Quantum Cosmology November 6,2013 21 / 21