38
ARTS - GARLIC - KOPRA A Lbl Model Intercomparison Franz Schreier 1 , Sebastián Gimeno García 1 , Mathias Milz 2 , Ajil Kottayil 2 . 1. DLR — Remote Sensing Technology Institute, Oberpfaffenhofen, GERMANY 2. LTU — Lulea University of Technology, Kiruna, SWEDEN ARTS Workshop 2014 Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 1

ARTS - GARLIC - KOPRA - A Lbl Model Intercomparison · 2014. 10. 24. · ARTS - GARLIC - KOPRA A Lbl Model Intercomparison Franz Schreier1, Sebastián GimenoGarcía1, Mathias Milz2,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • ARTS - GARLIC - KOPRAA Lbl Model Intercomparison

    Franz Schreier1, Sebastián Gimeno García1,Mathias Milz2, Ajil Kottayil2

    .1. DLR — Remote Sensing Technology Institute, Oberpfaffenhofen, GERMANY

    2. LTU — Lulea University of Technology, Kiruna, SWEDEN

    ARTS Workshop 2014

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 1

  • Introduction — Motivation

    Verification and validation:one of the most important steps of code developmentQuality of radiative transfer models critical for atmospheric remotesensing productsDozen(s) of RT model intercomparisons, incl. Lbl models, e.g.

    I AMIL2DA: KOPRA vs. GARLIC and some moreI IRTMW01: ARTS vs. GARLIC and some othersI Kristineberg 2009: ARTS vs. KOPRA

    I ARTS – GARLIC – KOPRA ?!?!?

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 2

  • Outline

    1 The codes

    2 Lbl Intercomparisons

    3 Data and Assumptions

    4 Results

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 3

  • ARTS — Atmospheric Radiative Transfer Simulator

    Originally developed for microwave applicationsI Nadir: AMSU-B, MHS, HIRS, . . .I Limb: Odin, SMILES, . . .I Uplooking: MIAWARA, AMSOS, . . .

    Continuum: MT-CKD 2.0

    S. Bühler, P. Eriksson et al., JQSRT 91, 65–93, 2005P. Eriksson, S. Bühler et al., JQSRT 112, 1551-1558, 2011

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 4

  • GARLIC — Generic Atmospheric Radiation Lbl Infrared Code

    Line shapes: Voigt, VanVleck⊗Doppler, LorentzLine data: HITRAN, HITEMP, GEISA, JPL, . . .Continua: CKD 2.0 (H2O, CO2, N2, O2), “dry air” (Liebe)Geometries: Limb, uplooking, downlooking (refraction optional)Instruments: Spectral response: FTS, Heterodyne, Fabry–Perot, . . .

    Field-of-view: Box, Gauss, Trapez, . . .Implementation: FORTRAN 2008, all data read from external filesInversion: Jacobians by automatic differentationExtensions: (multiple) scattering infrared radiative transfer:

    J. Mendrok: SARTRE — approx. spherical geo (GRL 2007)M. Vasquez: cloudy exo-planet atmospheres (A&A 2013a,b)

    F. Schreier et al. JQSRT, 137, 29–50, 2014

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 5

  • KOPRA — Karlsruhe Optimized & Precise Radiative transfer Algorithm

    Originally developed for mid infraredI Fourier transform spectroscopyI Limb: MIPAS-Envisat, MIPAS-balloonI Limb+uplooking: MIPAS-STR, GLORIAI Uplooking, solar absorption: FTIR KirunaI non-LTE and (single) scattering

    Continuum:H2O: CKD 2.4, CO2: ??, N2: Lafferty AO’96, O2: Tibault 97

    G. Stiller, T. von Clarmann, B. Funke, N. Glatthor, F. Hase, M. Höpfner and A. Linden, JQSRT 72, 249–280, 2002

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 6

  • Outline

    1 The codes

    2 Lbl Intercomparisons

    3 Data and Assumptions

    4 Results

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 7

  • AMIL2DA — Advanced MIPAS Level 2 Data Analysis

    Intercomparison ofalgorithms and data analysisstrategies used by fiveEuropean groupsSeries of exercises: fromsimple cell transmission tomore realistic radianceExercise 20:Limb with tangent @ 40 km,apodized FTS line shape,finite field-of-view;H2O, CO2, O3, N2O, CH4;HITRAN 98 andCKD-continuum

    T. von Clarmann et al. JQSRT, 78, 281–407, 20021,215 1,215.5 1,216 1,216.5 1,2170

    50

    100

    Wavenumber ν [cm−1]

    Rad

    ian

    ceI[ n

    W/(c

    m2

    srcm

    −1)]

    KOPRAGARLIC

    1,215.5 1,216 1,216.5

    −0.1

    0

    0.1

    0.2

    0.3

    ∆I

    [ nW/(c

    m2

    srcm

    −1)]

    BexpODtrapez-pathtrapez-Laguerre

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 8

  • IRTMW01

    Intercomparison of 8 µW codesSeries of 5 “cases”, starting withline shape and absorptionFull RT incl. FoV and SRFall geometries

    Case 3 Uplooking RAM-like

    0

    10

    20

    30

    40

    Tem

    per

    atu

    reTB

    [K]

    ARTS 0dgARTS 60dgGARLIC 0dgGARLIC 60dg

    −0.1

    −0.05

    0

    ∆TB

    [K]

    avintBexpODHermitetrapez-pathtrapez-Laguerre

    4.72 4.73 4.74 4.75 4.76

    −0.2

    −0.1

    0

    Wavenumber ν [cm−1]

    ∆TB

    [K]

    avintBexpODHermitetrapez-pathtrapez-Laguerre

    Case 3 Downlooking AMSU-like

    2.90 2.95 3.000.15

    0.2

    0.25

    0.3

    0.35

    ∆T

    B [K

    ]

    268.4

    268.8

    269.2

    269.6

    270

    Equiv

    ale

    nt T

    em

    pera

    ture

    TB [K

    ]

    ARTS 180dg

    ARTS 130dg

    GARLIC TL 180dg

    GARLIC TL130dg

    4.95 5 5.05

    Wavenumber [cm−1

    ]

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    avint

    B exp OD

    Hermite

    path trapez

    trapez−Laguerre

    267.5

    268

    268.5

    269

    269.5

    270

    5.8 6 6.2 6.4

    −2

    0

    2

    4

    6

    235

    240

    245

    250

    255

    260

    265

    0.22

    0.23

    0.24

    0.25

    0.26

    0.27

    ∆T

    B [K

    ]

    0.1

    0.2

    0.3

    0.4

    0.5

    −2

    0

    2

    4

    6

    C. Melsheimer et al. Radio Science, 40, RS1007, 2005

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 9

  • Kristineberg 2009 — M. Milz: ARTS IR Application

    Motivation:Nadir sounding with similargeometry as AMSU-B /MHS since early 80’sConclusion:Good agreementARTS–KOPRA(and LblRTM)Outlook:Update continuum

    Radiances  for  one  channel  

    0 10 20 30 40 500

    2000

    4000

    6000

    8000

    10000

    12000HIRS Channel #07 for all Profiles

    0 10 20 30 40 504000

    6000

    8000

    10000

    12000

    14000HIRS Channel #08 for all Profiles

    0 10 20 30 40 502000

    3000

    4000

    5000

    6000

    7000

    8000HIRS Channel #09 for all Profiles

    0 10 20 30 40 502000

    4000

    6000

    8000

    10000

    12000

    14000

    16000HIRS Channel #10 for all Profiles

    0 10 20 30 40 50500

    1000

    1500

    2000

    2500HIRS Channel #11 for all Profiles

    0 10 20 30 40 50200

    250

    300

    350

    400

    450

    500HIRS Channel #12 for all Profiles

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 10

  • Outline

    1 The codes

    2 Lbl Intercomparisons

    3 Data and Assumptions

    4 Results

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 11

  • GARAND atmospheres

    200 250 300Temperature [K]

    0

    10

    20

    30

    40

    50

    60

    Alti

    tude

    [km

    ]

    100

    101

    102

    103

    104

    H2O [ppm]

    Garand Atmospheres

    0 2 4 6 8 10O3 [ppm]

    L. Garand et al. JGR, 106, 24017, 2001Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 12

  • HIRS — High Resolution Infrared Sounder

    19 infrared channel scanning radiometer used for operational atmosphericsounding by NASA/NOAA and EUMETSAT.CO2 absorption bands for temperature sounding. Also measures water vapour,ozone, N2O and cloud and surface temperatures.

    500 1000 1500 2000 2500wavenumber [cm

    −1]

    0

    0.2

    0.4

    0.6

    0.8

    1

    Tra

    nsm

    issi

    on

    H2OO3COCH4CO2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Tra

    nsm

    issi

    on

    0

    5

    10

    Rad

    ianc

    e [µ

    W /

    (cm

    2 sr

    cm

    −1 )

    ]

    0

    0.1

    0.2

    Res

    pons

    e

    NO

    AA

    17!

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 13

  • Further Assumptions

    HITRAN 2004, “main” molecules onlyContinuum: CKD or MT-CKDVoigt line shape (no prefactor)Geometry: nadir (downlooking 180◦), no FoVSurface temperature Tsurf = Tatm(0 km)

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 14

  • Outline

    1 The codes

    2 Lbl Intercomparisons

    3 Data and Assumptions

    4 Results

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 15

  • Brightness Temperatures

    0 5 10 15 20

    220

    240

    260

    280

    300

    TB [

    K]

    us

    Fri M

    ay 2

    3 1

    3:4

    8:4

    3 2

    014

    220

    240

    260

    280

    300

    TB [

    K]

    tropical

    Fri M

    ay 2

    3 1

    3:4

    8:4

    3 2

    0140 5 10 15 20

    Channel #

    220

    240

    260

    280

    300sas

    Fri M

    ay 2

    3 1

    3:4

    8:4

    3 2

    014

    220

    240

    260

    280

    300mls

    Fri M

    ay 2

    3 1

    3:4

    8:4

    3 2

    0140 5 10 15 20

    220

    240

    260

    280

    300saw

    Fri M

    ay 2

    3 1

    3:4

    8:4

    3 2

    014

    220

    240

    260

    280

    300mlw

    Fri M

    ay 2

    3 1

    3:4

    8:4

    3 2

    014

    arts

    garlic

    kopra

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 16

  • Perfect!

    Thanks for your attention

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 17

  • Perfect! . . . . . . wait a moment

    whats about the other atmospheres?. . . and differences etc. ???

    Remember: IASI etc. have sub-Kelvin sensitivity!

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 17

  • First results IRS 2012

    0 20 40−5

    −3

    −1

    1

    3

    5Ch #15 2235

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4

    ∆T

    [K

    ]

    Ch #10 802

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch # 5 716

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch # 1 670

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    0130 20 40

    −4

    −2

    0

    2

    4Ch #16 2241

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch #11 1366

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch # 6 732

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch # 2 680

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    0130 20 40

    n

    −6−4−2

    0246

    Ch #17 2419

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch #12 1529

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch # 7 749

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch # 3 692

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    0130 20 40

    −4

    −2

    0

    2

    4Ch #18 2521

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch #13 2187

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch # 8 901

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch # 4 703

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    a−g

    g−k

    k−a

    0 20 40−4

    −2

    0

    2

    4Ch #19 2660

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch #14 2213

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    −4

    −2

    0

    2

    4Ch # 9 1030

    Fri F

    eb 2

    2 1

    6:5

    8:3

    0 2

    013

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 18

  • 2013: N2 + O2 lines & continuum added in GARLIC

    0 20 40−3−2−1

    0123

    Ch #15 2235

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    ∆T

    [K

    ]

    Ch #10 802

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch # 5 716

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch # 1 670

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    0130 20 40

    −3−2−1

    0123

    Ch #16 2241

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch #11 1366

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch # 6 732

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch # 2 680

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    0130 20 40

    n

    −3−2−1

    0123

    Ch #17 2419

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch #12 1529

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch # 7 749

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch # 3 692

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    0130 20 40

    −3−2−1

    0123

    Ch #18 2521

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch #13 2187

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch # 8 901

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch # 4 703

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    a−g

    g−k

    k−a

    0 20 40−3−2−1

    0123

    Ch #19 2660

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch #14 2213

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    −3−2−1

    0123

    Ch # 9 1030

    Fri F

    eb 2

    2 1

    6:4

    7:3

    8 2

    013

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 19

  • Channel 1: ARTS ≈ GARLIC

    Channel 1 ⊂ Channel 2Similar absorption:CO2 > H2O > O3 > N2OMostly stratospheric emission

    I Continuum & H2O irrelevant

    Q-branch, convolution, . . . ??

    NOAA15-HIRS for KOPRA !!!

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 20

  • Channel 1: ARTS ≈ GARLIC

    Channel 1 ⊂ Channel 2Similar absorption:CO2 > H2O > O3 > N2OMostly stratospheric emission

    I Continuum & H2O irrelevant

    Q-branch, convolution, . . . ??NOAA15-HIRS for KOPRA !!!

    660 680 700 720 740

    Wavenumber [cm−1

    ]

    0

    0.1

    0.2

    0.3

    Re

    sp

    on

    se

    HIRS Normalized Response Functions

    Fri J

    un 6 1

    4:2

    3:4

    1 2

    014

    noaa15/ch01

    noaa15/ch02

    noaa15/ch03

    noaa15/ch04

    noaa15/ch05

    noaa15/ch06

    noaa17/ch01

    noaa17/ch02

    noaa17/ch03

    noaa17/ch04

    noaa17/ch05

    noaa17/ch06

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 20

  • Channel 5, 6, and 7: GARLIC ≈ KOPRA

    CO2 ≈ H2O > O3 > N2OMostly free troposphere emission(Weighting functions peak at 8 and 4 km for 708 and 745 cm−1)

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 21

  • Channel 18 and 19: ARTS ≈ KOPRA

    Weak absorptiontransparent down totroposphereContinua and/or H2O?¿?

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 22

  • Without continuum? ARTS vs. GARLIC

    Differences mostly < 0.25 KWhat is special with atm # 22Channels: 8, 9, 10, 17, 18, 19(901, 1030, 802, 2419, 2521, 2660 cm−1)

    What is special withchannel # 12 @ 1529 cm−1 ?

    0 10 20 30 40

    Atmosphere #

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    ∆T

    [K

    ]

    ARTS−GARLIC: with Continuum

    Th

    u J

    un

    5

    17

    :35

    :09

    20

    14

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    0 10 20 30 40

    Atmosphere #

    −0.5

    −0.3

    −0.1

    0.1

    0.3

    0.5

    0.7

    ∆T

    [K

    ]

    ARTS−GARLIC: no Continuum

    Th

    u J

    un

    5

    17

    :22

    :29

    20

    14

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 23

  • Without continuum? GARLIC vs. KOPRA

    “Good” agreement (1.9 K) in channel 1KOPRA failed for atm # 4, 14, 25, 25

    0 10 20 30 40

    Atmosphere #

    −60

    −10

    40

    ∆T

    [K

    ]

    GARLIC−KOPRA: no Continuum

    Th

    u J

    un

    5

    17

    :41

    :29

    20

    14

    200 220 240 260 280 300 320

    T[K]

    0

    20

    40

    60

    z[k

    m]

    Garand Atmospheres

    Thu J

    un 5 1

    2:3

    3:4

    4 2

    014

    4

    14

    22

    25

    35

    1e−06 1e−05 1e−04 1e−03 1e−02

    H2O [ppV]

    0

    10

    20

    30

    40

    50

    z [

    km

    ]

    Garand Atmospheres

    Thu J

    un 5 1

    0:5

    8:2

    6 2

    014

    4

    14

    22

    25

    35

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 24

  • What’s common . . . . . . and what’s different?

    ARTS GARLIC KOPRA

    S(T ) conversion “semi-TIPS” Atmos TIPS

    Weak lines ? all rejection?

    Line wings 25 cm−1 ??? 10 cm−1, H2O: 25 cm−1

    Continuum MT-CKD 1.0 CKD 2.0 CKD 2.4, . . .

    Inhomogeneous Path ? quadrature B linear τ layers ?

    ?

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 25

  • Conclusions and Outlook

    No code is “the best” for all channels and/or atmospheresI max ∆Tag = +2.3 K in channel 11 @ 1366 cm−1I max ∆Tgk = +2.5 K in channel 15 @ 2235 cm−1I max ∆Tka = −3.1 K in channel 15 @ 2235 cm−1

    (channel 1 ignored)

    Use another code (e.g. LblRTM) as reference? NO!Include more codes? hmmmm?Use common absorption coefficientsPlot differences vs. (min, max, delta, . . . ) temperature, H2O, . . .Compare monochromatic spectra and/or transmission

    Open questionsI ContinuumI Lines strength T conversionI Line wing cut-off (CO2 at 2400 cm−1)I Weak line suppression

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 26

  • Conclusions and Outlook

    No code is “the best” for all channels and/or atmospheresI max ∆Tag = +2.3 K in channel 11 @ 1366 cm−1I max ∆Tgk = +2.5 K in channel 15 @ 2235 cm−1I max ∆Tka = −3.1 K in channel 15 @ 2235 cm−1

    (channel 1 ignored)

    Use another code (e.g. LblRTM) as reference? NO!Include more codes? hmmmm?Use common absorption coefficientsPlot differences vs. (min, max, delta, . . . ) temperature, H2O, . . .Compare monochromatic spectra and/or transmission

    Open questionsI ContinuumI Lines strength T conversionI Line wing cut-off (CO2 at 2400 cm−1)I Weak line suppression

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 26

  • Outline

    5 AppendixMore T Difference PlotsWeighting and Response FunctionsContinua

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 27

  • Max. Temperature Delta in Layer

    10 15 2025 30 35−4−3−2−1

    01234

    Ch #15 2235

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −0.8−0.6−0.4−0.2

    00.20.4

    ∆T

    [K

    ]

    Ch #10 802

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −2

    −1

    0

    1

    2Ch # 5 716

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −4−3−2−1

    01234

    Ch # 1 670

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    1310 15 2025 30 35

    −2

    −1

    0

    1

    2Ch #16 2241

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −4−3−2−1

    01234

    Ch #11 1366

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −1

    0

    1

    2Ch # 6 732

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −0.4

    −0.2

    0

    0.2

    0.4Ch # 2 680

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    1310 15 2025 30 35

    ∆Tmax

    [K]

    −2

    −1

    0

    1

    2Ch #17 2419

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −2

    −1

    0

    1Ch #12 1529

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −1

    0

    1Ch # 7 749

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −0.4−0.2

    00.20.40.60.8

    Ch # 3 692

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    1310 15 2025 30 35

    −2

    −1

    0

    1

    2Ch #18 2521

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −3

    −2

    −1

    0

    1

    2Ch #13 2187

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −1

    0

    1Ch # 8 901

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −1

    0

    1

    2Ch # 4 703

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    a−g

    g−k

    k−a

    10 15 2025 30 35

    Ch #19 2660

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −2

    −1

    0

    1Ch #14 2213

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    −0.5

    0

    0.5

    1Ch # 9 1030

    Tu

    e F

    eb

    26

    17

    :00

    :56

    20

    13

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 28

  • 195 205 215 225−4

    −2

    0

    2

    4Ch #15 2235

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −0.8−0.6−0.4−0.2

    00.20.4

    ∆T

    [K

    ]

    Ch #10 802

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −2

    −1

    0

    1

    2Ch # 5 716

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −4

    −2

    0

    2

    4Ch # 1 670

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013195 205 215 225

    −2

    −1

    0

    1

    2Ch #16 2241

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −4

    −2

    0

    2

    4Ch #11 1366

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −1

    0

    1

    2Ch # 6 732

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −0.4

    −0.2

    0

    0.2

    0.4

    Brightness Temperature Difference vs Minimum Temperature

    Ch # 2 680

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013195 205 215 225

    Tmin

    [K]

    −2

    −1

    0

    1

    2Ch #17 2419

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −2

    −1

    0

    1Ch #12 1529

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −1

    −0.5

    0

    0.5

    1Ch # 7 749

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −0.4−0.2

    00.20.40.60.8

    Ch # 3 692

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013195 205 215 225

    −2

    −1

    0

    1

    2Ch #18 2521

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −3

    −2

    −1

    0

    1

    2Ch #13 2187

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −1

    −0.5

    0

    0.5

    1Ch # 8 901

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −1

    0

    1

    2Ch # 4 703

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    a−g

    g−k

    k−a

    195 205 215 225−2

    −1

    0

    1

    2Ch #19 2660

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −2

    −1

    0

    1Ch #14 2213

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    −0.5

    0

    0.5

    1Ch # 9 1030

    Mon F

    eb 2

    5 1

    4:5

    0:4

    1 2

    013

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 29

  • 240260280300320−4

    −2

    0

    2

    4Ch #15 2235

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −0.8−0.6−0.4−0.2

    00.20.4

    ∆T

    [K

    ]

    Ch #10 802

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −2

    −1

    0

    1

    2Ch # 5 716

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −4

    −2

    0

    2

    4Ch # 1 670

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013240260280300320

    −2

    −1

    0

    1

    2Ch #16 2241

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −4

    −2

    0

    2

    4Ch #11 1366

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −1

    0

    1

    2Ch # 6 732

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −0.4

    −0.2

    0

    0.2

    0.4

    Brightness Temperature Differences vs. Surface Temperature

    Ch # 2 680

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013240260280300320

    Tsurf

    [K]

    −2

    −1

    0

    1

    2Ch #17 2419

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −2

    −1

    0

    1Ch #12 1529

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −1

    −0.5

    0

    0.5

    1Ch # 7 749

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −0.4−0.2

    00.20.40.60.8

    Ch # 3 692

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013240260280300320

    −2

    −1

    0

    1

    2Ch #18 2521

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −3

    −2

    −1

    0

    1

    2Ch #13 2187

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −1

    −0.5

    0

    0.5

    1Ch # 8 901

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −1

    0

    1

    2Ch # 4 703

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    a−g

    g−k

    k−a

    240260280300320−2

    −1

    0

    1

    2Ch #19 2660

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −2

    −1

    0

    1Ch #14 2213

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    −0.5

    0

    0.5

    1Ch # 9 1030

    Mon F

    eb 2

    5 1

    5:2

    8:3

    3 2

    013

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 30

  • 20 40 60 80100120−4

    −2

    0

    2

    4Ch #15 2235

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −0.8−0.6−0.4−0.2

    00.20.4

    ∆T

    [K

    ]

    Ch #10 802

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −2

    −1

    0

    1

    2Ch # 5 716

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −4

    −2

    0

    2

    4Ch # 1 670

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    01320 40 60 80100120

    −2

    −1

    0

    1

    2Ch #16 2241

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −4

    −2

    0

    2

    4Ch #11 1366

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −1

    0

    1

    2Ch # 6 732

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −0.4

    −0.2

    0

    0.2

    0.4

    Brightness Temperature Differences vs Temperature Range

    Ch # 2 680

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    01320 40 60 80100120

    Tmax

    −Tmin

    [K]

    −2

    −1

    0

    1

    2Ch #17 2419

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −2

    −1

    0

    1Ch #12 1529

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −1

    −0.5

    0

    0.5

    1Ch # 7 749

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −0.4−0.2

    00.20.40.60.8

    Ch # 3 692

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    01320 40 60 80100120

    −2

    −1

    0

    1

    2Ch #18 2521

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −3

    −2

    −1

    0

    1

    2Ch #13 2187

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −1

    −0.5

    0

    0.5

    1Ch # 8 901

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −1

    0

    1

    2Ch # 4 703

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    a−g

    g−k

    k−a

    20 40 60 80100120−2

    −1

    0

    1

    2Ch #19 2660

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −2

    −1

    0

    1Ch #14 2213

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    −0.5

    0

    0.5

    1Ch # 9 1030

    Mon F

    eb 2

    5 1

    5:0

    5:3

    3 2

    013

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 31

  • 0 20 40 60−4

    −2

    0

    2

    4Ch #15 2235

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −0.8−0.6−0.4−0.2

    00.20.4

    ∆T

    [K

    ]

    Ch #10 802

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −2

    −1

    0

    1

    2Ch # 5 716

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −4

    −2

    0

    2

    4Ch # 1 670

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    0130 20 40 60

    −2

    −1

    0

    1

    2Ch #16 2241

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −4

    −2

    0

    2

    4Ch #11 1366

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −1

    0

    1

    2Ch # 6 732

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −0.4

    −0.2

    0

    0.2

    0.4Ch # 2 680

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    0130 20 40 60

    H2O [kg/m

    2]

    −2

    −1

    0

    1

    2Ch #17 2419

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −2

    −1

    0

    1Ch #12 1529

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −1

    −0.5

    0

    0.5

    1Ch # 7 749

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −0.4−0.2

    00.20.40.60.8

    Brightness Temperature Difference vs Water Column

    Ch # 3 692

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    0130 20 40 60

    −2

    −1

    0

    1

    2Ch #18 2521

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −3

    −2

    −1

    0

    1

    2Ch #13 2187

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −1

    −0.5

    0

    0.5

    1Ch # 8 901

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −1

    0

    1

    2Ch # 4 703

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    a−g

    g−k

    k−a

    0 20 40 60−2

    −1

    0

    1

    2Ch #19 2660

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −2

    −1

    0

    1Ch #14 2213

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    −0.5

    0

    0.5

    1Ch # 9 1030

    Mon F

    eb 2

    5 1

    4:3

    1:2

    6 2

    013

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 32

  • Weighting Functions

    I(ν, s) =∫ s

    0B(ν, T )

    ∂T (ν, s′)∂s′

    ds′

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 33

  • Response Functions

    700 800 900 1000 1100

    Wavenumber [cm−1

    ]

    0

    0.02

    0.04

    0.06

    Response

    HIRS Normalized Response Functions

    Fri J

    un 6 1

    4:5

    3:3

    5 2

    014

    noaa15/ch07

    noaa15/ch08

    noaa15/ch09

    noaa15/ch10

    noaa17/ch07

    noaa17/ch08

    noaa17/ch09

    noaa17/ch10

    1300 1400 1500 1600

    Wavenumbers [cm−1

    ]

    0

    0.01

    0.02

    0.03

    Response

    HIRS Normalized Response Functions

    Fri J

    un 6 1

    4:4

    7:4

    4 2

    014

    noaa15/ch11

    noaa15/ch12

    noaa17/ch11

    noaa17/ch12

    2200 2250

    Wavenumber [cm−1

    ]

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    Response

    HIRS Normalized Response Functions

    Fri J

    un 6 1

    4:4

    1:3

    0 2

    014

    noaa15/ch13

    noaa15/ch14

    noaa15/ch15

    noaa15/ch16

    noaa17/ch13

    noaa17/ch14

    noaa17/ch15

    noaa17/ch16

    2350 2550 2750

    Wavenumber [cm−1

    ]

    0

    0.01

    0.02

    0.03

    0.04

    Response

    HIRS Normalized Response Functions

    Fri J

    un 6 1

    4:4

    4:1

    9 2

    014

    noaa15/ch17

    noaa15/ch18

    noaa15/ch19

    noaa17/ch17

    noaa17/ch18

    noaa17/ch19

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 34

  • CO2 Continua

    Remote Sensing Technology Institute ARTS - GARLIC - KOPRA 35

    The codesLbl IntercomparisonsData and AssumptionsResultsAppendixAppendixMore T Difference PlotsWeighting and Response FunctionsContinua