13
Supporting Information Carbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon- Neutral Fuels Yo Han Choi a‡ , Youn Jeong Jang b‡ , Hunmin Park b , Won Young Kim b , Young Hye Lee b , Sun Hee Choi c , Jae Sung Lee d * a Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea b Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea c Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea 1

ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

Supporting Information

Carbon Dioxide Fischer-Tropsch Synthesis: A

New Path to Carbon-Neutral Fuels

Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young Hye Lee b,

Sun Hee Choi c, Jae Sung Lee d *

a Division of Advanced Nuclear Engineering, Pohang University of Science and Technology

(POSTECH), Pohang 790-784, South Korea

b Department of Chemical Engineering, Pohang University of Science and Technology

(POSTECH), Pohang 790-784, South Korea

c Pohang Accelerator Laboratory, Pohang University of Science and Technology

(POSTECH), Pohang 790-784, South Korea

d School of Energy and Chemical Engineering, Ulsan National Institute of Science and

Technology (UNIST), Ulsan 689-798, South Korea

‡ These authors contributed equally to this work.

1

Page 2: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

Figure S1. (a) X-ray diffraction (XRD) patterns of CuFeO2 synthesized at different synthesis

times. (b) XRD patterns of reduced Fe2O3, CuFeO2-12, and CuFe2O4 in H2 flow at 400 OC for

2 h. The standard patterns of delafossite CuFeO2 and metallic Cu/Fe are shown in the bottom

of (a) and (b) panels, respectively.

2

Page 3: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

Figure S2. (a-c) SEM images of rhomboheral CuFeO2 crystals synthesized at different synthesis times of 6, 12 and 24 h. (d) CuFeO2-12 reduced by H2 treatment at 400 OC for 2 h (scale bar, 2.5μm). TEM images of reduced CuFeO2 -12 (e) and used CuFeO2 -12 (f).

3

Page 4: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

Figure S3. (a) Nitrogen adsorption-desorption isotherm and (b) pore size distribution (BJH)

of Fe2O3, CuFeO2 and CuFe2O4.

Figure S4. (a) Nitrogen adsorption-desorption isotherms and (b) BJH pore size distributions

of H2- CuFe2O4 and H2-CuFeO2.

4

Page 5: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

Figure S5. HAADF-STEM images of reduced CuFe2O4 (a, b), and the elemental mapping

images for iron (c) and copper (d) after the reaction.

5

Page 6: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

Figure S6. Carbon number distribution of liquid products from CO2 hydrogenation on

CuFeO2-derived catalyst obtained using a simulated distillation method. The reaction

conditions were 300 OC, 10 bars and a gas hourly space velocity (GHSV) of 1800 ml/g-h with

a H2/CO2 feed mole ratio of 3.

6

Page 7: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

Figure S7. A long term stability test of CO2 hydrogenation over CuFeO2-12 catalyst. The

reaction conditions were 300 OC, 10 bars and a gas hourly space velocity (GHSV) of 317

ml/g-h with a H2/CO2 feed mole ratio of 3.

7

Page 8: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

Figure S8. XPS spectra of Fe 2p and C 1s for used ex-CuFeO2 (a,c) and ex-CuFe2O4 (b,d)

catalysts after CO2 hydrogenation for 16 h .

8

Page 9: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

Figure S9. Crystal structures of (a) delafossite CuFeO2 made of alternating layers of [FeO6]

octahedral units and Cu(I) (red balls) (1) and (b) spinel CuFe2O4 structure with octahedral

(green) and tetrahedral units (purple) forming a cubic close packed lattice (2). Oxygen atoms

are represented in red.

9

Page 10: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

Figure S10. Cu K-edge XANES spectra of copper-based catalysts: (a) As-prepared state, (b)

reduced state, and (c) state after reaction.

10

Page 11: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

Table S1. BJH total pore volume, pore surface area and mean pore diameter for CuFeO2, H2-

CuFeO2, CuFe2O4 and H2-CuFe2O4.

Table S2. Summary of iron-based catalysts for CO2 hydrogenation

Table S3. Results of CO2 hydrogenation over ex-CuFeO2-12 with different GHSV.11

Page 12: ars.els-cdn.com · Web viewCarbon Dioxide Fischer-Tropsch Synthesis: A New Path to Carbon-Neutral Fuels Yo Han Choi a‡, Youn Jeong Jang b‡, Hunmin Park b, Won Young Kim b, Young

The reaction conditions were 300 OC, 10 bars and with a H2/CO2 feed mole ratio of 3.

Table S4. Hydrogenation of CO2, CO, and a mixed gas (CO2+CO) over ex-CuFeO2-12.

The reaction conditions were 300 OC, 10 bars and a gas hourly space velocity (GHSV) of 1800 ml/g-h with H2/CO2 or H2/CO feed mole ratio of 3.[a] CO2 conversion, CO selectivity, and CO-free hydrocarbon selectivity.[b] CO conversion, CO2 selectivity, and CO2-free hydrocarbon selectivity with a feed of 3CO2/CO/9H2.

References

1. Mugnier E., Barnabé A., Tailhades P., Synthesis and Characterization of CuFeO2+δ

Delafossite Powders. Solid State Ionics 177, 607-612 (2006).

2. Manthiram A., Vadivel Murugan A., Sarkar A., Muraliganth T., Nanostructured Electrode Materials for Electrochemical Energy Storage and Conversion. Energy Environ. Sci. 1, 621-638 (2008).

3. L.M. Chew, P. Kangvansura, H. Ruland, H.J. Schulte, C.Somsen, W. Xia, G.Eggeler, A.Worayingyong, M. Muhler. Appl. Catal. A 482 (2014) 163-170

4. M. Al-Dossary, A.A. Ismail, J.L.G. Fierro, H. Bouzid, Appl. Catal. B 165 (2015) 651-660

5. U. Rodemerck, M. Holena, E.Wagner, Q. Smejkal, A.Barkschat, M. Baerns, ChemCatChem 5 (2013) 1948-1955

6. S. Saeidi, N.A.S. Amin, M.R. Rahimpour, J. CO2. Util. 5 (2014) 66-81

7. S-R. Yan, K-W. Jun, J-S. Hong, M-J. Choi, K-W. Lee, Appl. Catal. A. 194 (2000) 63-70

12