24
Supporting Information An Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui Yi 2 , Fengxiang Yin 1, 3 *, Biaohua Chen 1 , Guoru Li 1 , Huaqiang Yin 4 1 Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China

ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

Supporting Information

An Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity

for Oxygen Reduction Reaction in Alkaline Electrolyte

Xiaobo He1, 3 ┼, Xuerui Yi2 ┼, Fengxiang Yin1, 3*, Biaohua Chen1, Guoru Li1, Huaqiang

Yin4

1 Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of

Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China

2 College of Chemical Engineering, Beijing University of Chemical Technology,

Beijing 100029, PR China

3 Changzhou Institute of Advanced Materials, Beijing University of Chemical

Technology, Changzhou 213164, PR China

4 Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education,

Tsinghua University, Beijing 100084, PR China

*Corresponding author

Tel.: +86-519-86330253

E-mail: [email protected] (F. Yin)

┼ These authors contributed equally.

Page 2: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

Fig. S1 XRD patterns of the as-prepared ZIF-67 and the simulated one.

S2

Page 3: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

Fig. S2 SEM images of (a, b) I2&ZIF-67(1:1) and (c, d) I2&ZIF-67(4:1).

S3

Page 4: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

Fig. S3 ORR LSV curves at a scan rate of 5 mV s-1 under 1600 rpm in (a) 0.1 M KOH

and (b) 0.5 M H2SO4, respectively, for the resultant catalysts.

S4

Page 5: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

Fig. S4 Images of the electrocatalytic layer deposited on the surface of RRDE.

S5

Page 6: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

S6

Page 7: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

Fig. S5 Koutecky-Levich (K-L) curves of the resulting samples at different potentials

vs RHE.

S7

Page 8: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

Fig. S6 CV curves at different scan rates within a potential window of 0.914-0.964 V

in N2 for the resulting samples.

Table S1 Assignment of the Raman bands of ZIF-67, oop refers to out of plane and ar

refers to aromatic a)

Raman Bands / cm-1 Assignment

684 imidazole ring puckering, H oop bend

735 C=N oop bend, δ N-H

831 C-H oop bend (C4-C5)

948 C-H oop bend (C2-H)

1024 C-H oop bend

1144 ν C5-N

1177 ν C-N + N-H wag

1304 ring expansion

1382 δ CH3

1455 C-H wag

S8

Page 9: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

1505 C2N3 + C4N3 +ν C5N1 + N-H wag

2927 νsym C-H (methyl) + νasym C-H (methyl)

3113 ν C-H (ar)

3135 ν C-H (ar)

a) Usov P M, McDonnell-Worth C, Zhou F, et al. The Electrochemical Transformation

of the Zeolitic Imidazolate Framework ZIF-67 in Aqueous Electrolytes.

Electrochimica Acta, 2015, 153: 433-438.

Table S2 BET SSAs and pore structures of all samples.

Samples SBET / m2 g-1 Vp / cm3 g-1 a) d / nm b)

I2&ZIF-67(4:1) 17 0.117 0.848

I2&ZIF-67(2:1) 47 0.077 0.689

I2&ZIF-67(1:1) 418 0.220 0.521

ZIF-67 1206 0.538 0.552

a) Vp is the total pore volume for pores at P/P0 = 0.95.

b) d is the micropore size distribution by H-K method.

S9

Page 10: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

S10

Page 11: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

Table S3 Comparison of the ORR activity of the recently reported MOFs derived

catalysts.

MOFs Catalyst ElectrolyteEonset vs RHE/V

E1/2 vs RHE/V

Refs.

Co-MOF Co/CoNx/CNT 0.1 M KOH 0.90 0.80 [S1]

Zn/Co-MOF Fe0.3Co0.7/NC 0.1 M KOH N.A. 0.88 [S2]

ZIF-67 Pt-Co/NC 0.1 M KOH N.A. 0.87 [S3]

Co-MOFCo@NC-MOF-2-

9000.1 M KOH 0.92 0.81 [S4]

Co-MOF Co/NPC 0.1 M KOH 0.91 0.74 [S5]

ZIF-67 Co/N-CNTs 0.1 M KOH−0.005(vs

. Ag/AgCl)

0.154 (vs.

Ag/AgCl)

[S6]

MIL-100(Fe) +

ZIF-81MIL/40ZIF-1000 0.1 M KOH 0.91 0.88 [S7]

Bio-MOF-11

Co-N/PC@CNT 0.1 M KOH 0.92 0.79 [S8]

ZIF-67 CNF@Zn/CoNC 0.1 M KOH 0.91 0.82 [S9]

ZIF-8 NLPC 0.1 M KOH 0.92 N.A.[S10

]

ZIF-67 I2&ZIF-67(2:1) 0.1 M KOH 0.91 0.83 This

S11

Page 12: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

work

S12

Page 13: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

Table S4 The atomic percentage (at. %) of the resulting samples determined by XPS.

Samples C/at. % N/at. % Co/at. % I /at. %

I2&ZIF-67(4:1) 75.67 17.38 2.97 3.98

I2&ZIF-67(2:1) 74.32 17.12 5.59 2.96

I2&ZIF-67(1:1) 77.78 14.04 5.33 2.85

ZIF-67 83.19 13.66 3.15 --

S13

(

B

Page 14: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

Table S5 The binding energy and surface concentration of N 1s, Co 2p2/3 and I 3d2/5 determined by XPS.

N 1s Co 2p2/3 I 3d2/5

Samples Pyridinic-N Co-N Pyrrolic-N Graphitic-N Co3+ Co2+ I3- I5

-

Binding energy / eV

I2&ZIF-67(4:1) 398.4 399.2 400.3 401.2 780.5 782.5 620.7 618.6

I2&ZIF-67(2:1) 398.4 399.2 400.3 401.4 780.6 782.6 620.7 618.6

I2&ZIF-67(1:1) 398.4 399.1 400.2 401.2 780.8 782.6 620.8 618.7

ZIF-67 -- 399 -- -- 781.0 782.9 -- --

Surface concentration / at. %

I2&ZIF-67(4:1) 6.9 5.86 4.62 3.03 1.11 1.07 1.44 2.54

I2&ZIF-67(2:1) 7.48 4.11 3.51 2.02 1.94 2.01 2.34 0.62

I2&ZIF-67(1:1) 4.44 6.08 2.43 1.09 1.74 1.9 1.41 1.44

ZIF-67 -- 13.66 -- -- 1.09 0.93 -- --

S14

Page 15: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

Supplementary References

[S1] Y. Hua, X. Li, C. Chen, H. Pang, Cobalt based metal-organic frameworks and

their derivatives for electrochemical energy conversion and storage, Chem.

Eng. J., 370 (2019) 37-59.

[S2] B.Y. Guan, Y. Lu, Y. Wang, M. Wu, X.W. Lou, Porous Iron-Cobalt

Alloy/Nitrogen-Doped Carbon Cages Synthesized via Pyrolysis of Complex

Metal-Organic Framework Hybrids for Oxygen Reduction, Adv. Funct. Mater.,

28 (2018) 1706738.

[S3] L.-L. Ling, W.-J. Liu, S.-Q. Chen, X. Hu, H. Jiang, MOF Templated Nitrogen

Doped Carbon Stabilized Pt-Co Bimetallic Nanoparticles: Low Pt Content and

Robust Activity toward Electrocatalytic Oxygen Reduction Reaction, ACS

Appl. Nano Mater., 1 (2018) 3331-3338.

[S4] S.G. Peera, J. Balamurugan, N.H. Kim, J.H. Lee, Sustainable Synthesis of

Co@NC Core Shell Nanostructures from Metal Organic Frameworks via

Mechanochemical Coordination Self-Assembly: An Efficient Electrocatalyst

for Oxygen Reduction Reaction, Small, 14 (2018) 1800441.

[S5] T. Zhan, S. Lu, H. Rong, W. Hou, H. Teng, Y. Wen, Metal-organic-framework-

derived Co/nitrogen-doped porous carbon composite as an effective oxygen

reduction electrocatalyst, J. Mater. Sci., 53 (2018) 6774-6784.

S15

Page 16: ars.els-cdn.com · Web viewAn Iodine-treated Metal-Organic Framework with Enhanced Catalytic Activity for Oxygen Reduction Reaction in Alkaline Electrolyte Xiaobo He 1, 3 , Xuerui

[S6] H. Zhou, D. He, A.I. Saana, J. Yang, Z. Wang, J. Zhang, Q. Liang, S. Yuan, J.

Zhu, S. Mu, Mesoporous-silica induced doped carbon nanotube growth from

metal-organic frameworks, Nanoscale, 10 (2018) 6147-6154.

[S7] H. Wang, F.X. Yin, N. Liu, R.H. Kou, X.B. He, C.J. Sun, B.H. Chen, D.J. Liu,

H.Q. Yin, Engineering Fe-Fe3C@ Fe-N-C Active Sites and Hybrid Structures

from Dual Metal-Organic Frameworks for Oxygen Reduction Reaction in H2-

O2 Fuel Cell and Li-O2 Battery, Adv. Funct. Mater., 29 (2019) 1901531.

[S8] J. Ban, G. Xu, L. Zhang, G. Xu, L. Yang, Z. Sun, D. Jia, Efficient

Co-N/PC@CNT bifunctional electrocatalytic materials for oxygen reduction

and oxygen evolution reactions based on metal-organic frameworks,

Nanoscale, 10 (2018) 9077-9086.

[S9] Y. Zhao, Q. Lai, J. Zhu, J. Zhong, Z. Tang, Y. Luo, Y. Liang, Controllable

Construction of Core-Shell Polymer@Zeolitic Imidazolate Frameworks Fiber

Derived Heteroatom-Doped Carbon Nanofiber Network for Efficient Oxygen

Electrocatalysis, Small, 14 (2018) 1704207.

[S10] Y. Wang, L. Tao, Z. Xiao, R. Chen, Z. Jiang, S. Wang, 3D Carbon

Electrocatalysts In Situ Constructed by Defect-Rich Nanosheets and

Polyhedrons from NaCl-Sealed Zeolitic Imidazolate Frameworks, Adv. Funct.

Mater., 28 (2018) 1705356.

S16