28
Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 J. Robert Buchanan Area, Volume, and Center of Mass

Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

  • Upload
    dinhthu

  • View
    227

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Area, Volume, and Center of MassMATH 311, Calculus III

J. Robert Buchanan

Department of Mathematics

Fall 2011

J. Robert Buchanan Area, Volume, and Center of Mass

Page 2: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Introduction

Today we will apply the double integral to the problems offinding

the area of regions in the plane,the volume of a bounded region in three dimensions,the center of mass of a region in the plane.

J. Robert Buchanan Area, Volume, and Center of Mass

Page 3: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Area

If R is a region in the xy -plane, the area A of R is

A =

∫∫R

1 dA

provided the value of the double integral is finite.

J. Robert Buchanan Area, Volume, and Center of Mass

Page 4: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (1 of 6)

Find the area of the triangular region with vertices at (0,2),(3,2), and (1,1).

0.0 0.5 1.0 1.5 2.0 2.5 3.0x

0.5

1.0

1.5

2.0

y

J. Robert Buchanan Area, Volume, and Center of Mass

Page 5: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 6)

The region R is bounded by the graphs of the lines x = 2− yand x = 2y − 1 for 1 ≤ y ≤ 2.

A =

∫∫R

1 dA

=

∫ 2

1

∫ 2y−1

2−y1 dx dy

=

∫ 2

1(2y − 1)− (2− y) dy

=

∫ 2

13y − 3 dy

=32

y2 − 3y∣∣∣∣21

= 6− 6−(

32− 3)

=32

J. Robert Buchanan Area, Volume, and Center of Mass

Page 6: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (3 of 6)

Find the area of the bounded region in the xy -plane betweeny =√

x and y = x2.

0.2 0.4 0.6 0.8 1.0x

0.2

0.4

0.6

0.8

1.0

y

J. Robert Buchanan Area, Volume, and Center of Mass

Page 7: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (4 of 6)

A =

∫∫R

1 dA

=

∫ 1

0

∫ √x

x21 dy dx

=

∫ 1

0

√x − x2 dx

=23

x3/2 − 13

x3∣∣∣∣10

=13

J. Robert Buchanan Area, Volume, and Center of Mass

Page 8: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (5 of 6)

Find the area of the bounded region in the xy -plane betweeny = x and x = y2 − y .

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

-1

0

1

2

3

x

y

J. Robert Buchanan Area, Volume, and Center of Mass

Page 9: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (6 of 6)

A =

∫∫R

1 dA

=

∫ 2

0

∫ y

y2−y1 dx dy

=

∫ 2

0y − (y2 − y) dy

=

∫ 2

02y − y2 dy

= y2 − 13

y3∣∣∣∣20

= 4− 83

=43

J. Robert Buchanan Area, Volume, and Center of Mass

Page 10: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Volume of a Solid Region

If f (x , y) ≥ 0 for all (x , y) in a region R, the volume of the solidbelow the surface z = f (x , y) and above the region R in thexy -plane is

V =

∫∫R

f (x , y) dA.

If f (x , y) ≥ g(x , y) for all (x , y) in a region R, the volume of thesolid below the surface z = f (x , y) and above the surfacez = g(x , y) within the the region R in the xy -plane is

V =

∫∫R(f (x , y)− g(x , y)) dA.

J. Robert Buchanan Area, Volume, and Center of Mass

Page 11: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Volume of a Solid Region

If f (x , y) ≥ 0 for all (x , y) in a region R, the volume of the solidbelow the surface z = f (x , y) and above the region R in thexy -plane is

V =

∫∫R

f (x , y) dA.

If f (x , y) ≥ g(x , y) for all (x , y) in a region R, the volume of thesolid below the surface z = f (x , y) and above the surfacez = g(x , y) within the the region R in the xy -plane is

V =

∫∫R(f (x , y)− g(x , y)) dA.

J. Robert Buchanan Area, Volume, and Center of Mass

Page 12: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (1 of 4)

Find the volume of the solid region below the graph of z = ey2

and above the triangle in the xy -plane with vertices at (0,0),(1,1), (0,1).

0.0

0.5

1.0

x0.0

0.5

1.0

y1.0

1.5

2.0

2.5

z

J. Robert Buchanan Area, Volume, and Center of Mass

Page 13: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 4)

V =

∫∫R

f (x , y) dA

=

∫∫R

ey2dA

=

∫ 1

0

∫ y

0ey2

dx dy

=

∫ 1

0xey2

∣∣∣y0

dy

=

∫ 1

0yey2

dy

=12

ey2∣∣∣∣10

=12

e − 12

J. Robert Buchanan Area, Volume, and Center of Mass

Page 14: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (3 of 4)

Find the volume of the solid region above the graph ofz = 2x2 + y2 and below the graph of z = 8− x2 − 2y2 andwithin the rectangle R = {(x , y) |0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

0.0

0.5

1.0

x0.0

0.5

1.0

y0

2

4

6

8

z

J. Robert Buchanan Area, Volume, and Center of Mass

Page 15: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (4 of 4)

V =

∫∫R

f (x , y) dA

=

∫ 1

0

∫ 1

0(8− x2 − 2y2)− (2x2 + y2) dx dy

=

∫ 1

0

∫ 1

0(8− 3x2 − 3y2) dx dy

=

∫ 1

08x − x3 − 3xy2

∣∣∣10

dy

=

∫ 1

0(8− 1− 3y2) dy

=

∫ 1

0(7− 3y2) dy

= 7y − y3∣∣∣10

= 6

J. Robert Buchanan Area, Volume, and Center of Mass

Page 16: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Moments and Center of Mass

lamina: a thin sheet of material in the shape of a regionR ⊂ R2.

ρ(x , y): the density of the lamina at (x , y).m: mass of the lamina

m =

∫∫Rρ(x , y) dA.

Mx : moment with respect to the x-axis

Mx =

∫∫R

yρ(x , y) dA.

My : moment with respect to the y -axis

My =

∫∫R

xρ(x , y) dA.

(x , y) center of mass

(x , y) =

(My

m,Mx

m

)J. Robert Buchanan Area, Volume, and Center of Mass

Page 17: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (1 of 2)

A lamina with density ρ(x , y) = y + 3 is bounded by the curvesx = y2 and x = 4. Find its mass, moments, and center of mass.

0 1 2 3 4

-2

-1

0

1

2

x

y

J. Robert Buchanan Area, Volume, and Center of Mass

Page 18: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 2)

m =

∫ 2

−2

∫ 4

y2(y + 3) dx dy

=

∫ 2

−2(12 + 4y − 3y2 − y3) dy = 32

Mx =

∫ 2

−2

∫ 4

y2y(y + 3) dx dy

=

∫ 2

−2(12y + 4y2 − 3y3 − y4) dy =

12815

My =

∫ 2

−2

∫ 4

y2x(y + 3) dx dy

=

∫ 2

−2

(24 + 8y − 3

2y4 − 1

2y5)

dy =384

5

(x , y) =

(My

m,Mx

m

)=

(125,

415

)

J. Robert Buchanan Area, Volume, and Center of Mass

Page 19: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 2)

m =

∫ 2

−2

∫ 4

y2(y + 3) dx dy =

∫ 2

−2(12 + 4y − 3y2 − y3) dy = 32

Mx =

∫ 2

−2

∫ 4

y2y(y + 3) dx dy

=

∫ 2

−2(12y + 4y2 − 3y3 − y4) dy =

12815

My =

∫ 2

−2

∫ 4

y2x(y + 3) dx dy

=

∫ 2

−2

(24 + 8y − 3

2y4 − 1

2y5)

dy =384

5

(x , y) =

(My

m,Mx

m

)=

(125,

415

)

J. Robert Buchanan Area, Volume, and Center of Mass

Page 20: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 2)

m =

∫ 2

−2

∫ 4

y2(y + 3) dx dy =

∫ 2

−2(12 + 4y − 3y2 − y3) dy = 32

Mx =

∫ 2

−2

∫ 4

y2y(y + 3) dx dy

=

∫ 2

−2(12y + 4y2 − 3y3 − y4) dy =

12815

My =

∫ 2

−2

∫ 4

y2x(y + 3) dx dy

=

∫ 2

−2

(24 + 8y − 3

2y4 − 1

2y5)

dy =384

5

(x , y) =

(My

m,Mx

m

)=

(125,

415

)

J. Robert Buchanan Area, Volume, and Center of Mass

Page 21: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 2)

m =

∫ 2

−2

∫ 4

y2(y + 3) dx dy =

∫ 2

−2(12 + 4y − 3y2 − y3) dy = 32

Mx =

∫ 2

−2

∫ 4

y2y(y + 3) dx dy

=

∫ 2

−2(12y + 4y2 − 3y3 − y4) dy =

12815

My =

∫ 2

−2

∫ 4

y2x(y + 3) dx dy

=

∫ 2

−2

(24 + 8y − 3

2y4 − 1

2y5)

dy =384

5

(x , y) =

(My

m,Mx

m

)=

(125,

415

)

J. Robert Buchanan Area, Volume, and Center of Mass

Page 22: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 2)

m =

∫ 2

−2

∫ 4

y2(y + 3) dx dy =

∫ 2

−2(12 + 4y − 3y2 − y3) dy = 32

Mx =

∫ 2

−2

∫ 4

y2y(y + 3) dx dy

=

∫ 2

−2(12y + 4y2 − 3y3 − y4) dy =

12815

My =

∫ 2

−2

∫ 4

y2x(y + 3) dx dy

=

∫ 2

−2

(24 + 8y − 3

2y4 − 1

2y5)

dy =384

5

(x , y) =

(My

m,Mx

m

)=

(125,

415

)J. Robert Buchanan Area, Volume, and Center of Mass

Page 23: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Moment of Inertia

Inertia: tendency of an object to resist a change in motion.Ix : moment of inertia about the x-axis

Ix =

∫∫R

y2ρ(x , y) dA.

Iy : moment of inertia about the y -axis

Iy =

∫∫R

x2ρ(x , y) dA.

J. Robert Buchanan Area, Volume, and Center of Mass

Page 24: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (1 of 2)

A lamina with density ρ(x , y) = y + 3 is bounded by the curvesx = y2 and x = 4. Find its moments of inertia.

0 1 2 3 4

-2

-1

0

1

2

x

y

J. Robert Buchanan Area, Volume, and Center of Mass

Page 25: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 2)

Ix =

∫ 2

−2

∫ 4

y2y2(y + 3) dx dy

=

∫ 2

−212y2 + 4y3 − 3y4 − y5 dy

= 4y3 + y4 − 35

y5 − 16

y6∣∣∣∣2−2

=1285

Iy =

∫ 2

−2

∫ 4

y2x2(y + 3) dx dy

=

∫ 2

−264 +

643

y − y6 − 13

y7 dy

= 64y +323

y2 − 17

y7 − 124

y8∣∣∣∣2−2

=1536

7

J. Robert Buchanan Area, Volume, and Center of Mass

Page 26: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 2)

Ix =

∫ 2

−2

∫ 4

y2y2(y + 3) dx dy

=

∫ 2

−212y2 + 4y3 − 3y4 − y5 dy

= 4y3 + y4 − 35

y5 − 16

y6∣∣∣∣2−2

=128

5

Iy =

∫ 2

−2

∫ 4

y2x2(y + 3) dx dy

=

∫ 2

−264 +

643

y − y6 − 13

y7 dy

= 64y +323

y2 − 17

y7 − 124

y8∣∣∣∣2−2

=1536

7

J. Robert Buchanan Area, Volume, and Center of Mass

Page 27: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Example (2 of 2)

Ix =

∫ 2

−2

∫ 4

y2y2(y + 3) dx dy

=

∫ 2

−212y2 + 4y3 − 3y4 − y5 dy

= 4y3 + y4 − 35

y5 − 16

y6∣∣∣∣2−2

=128

5

Iy =

∫ 2

−2

∫ 4

y2x2(y + 3) dx dy

=

∫ 2

−264 +

643

y − y6 − 13

y7 dy

= 64y +323

y2 − 17

y7 − 124

y8∣∣∣∣2−2

=1536

7

J. Robert Buchanan Area, Volume, and Center of Mass

Page 28: Area, Volume, and Center of Massbanach.millersville.edu/~bob/math311/Area/main.pdf · Area, Volume, and Center of Mass MATH 311, Calculus III J. Robert Buchanan Department of Mathematics

Homework

Read Section 13.2.Exercises: 1–17 odd, 23–31 odd, 37, 43, 45

J. Robert Buchanan Area, Volume, and Center of Mass