36
Arctic Tundra in a Changing Climate The Terrestrial Research Group Laura Gough, Coordinator University of Texas Arlington Arctic LTER Project Arctic LTER MidTerm Review 18 June 2013

Arctic Tundra in a Changing Climate Arctic LTER Project ......Arctic Tundra in a Changing Climate The Terrestrial Research Group Laura Gough, Coordinator Arctic LTER Project University

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Arctic Tundra in a Changing Climate

    The Terrestrial Research GroupLaura Gough, Coordinator

    University of Texas Arlington

    Arc

    tic L

    TER

    Pro

    ject

    Arctic LTER Mid‐Term Review18 June 2013

  • Arctic LTER Terrestrial PIs

    • Natalie Boelman, Columbia• Donie Bret‐Harte, UAF• Eugenie Euskirchen, UAF• Ned Fetcher, Wilkes• Kevin Griffin, Columbia• Erik Hobbie, New Hampshire• Feng Sheng Hu, Illinois 

    Urbana‐Champaign• Michelle Mack, Florida• Jim McGraw, West Virginia

    • John Moore, Colorado State• Ed Rastetter, MBL• Adrian Rocha, Notre Dame• Josh Schimel, UCSB• Gus Shaver, MBL• Heidi Steltzer, Ft. Lewis College• Paddy Sullivan, Alaska 

    Anchorage• Matt Wallenstein, Colorado 

    State• Mike Weintraub, Toledo• John Wingfield, UC Davis

    Senior RA: Jim Laundre, MBL

  • Mapping ArcLTER Objectives to Terrestrial Research

    Terrestrial Research (This talk)

    • “Shrubbification”– Landscape‐level response to warming– Long‐term fertilization experiments– Long‐term warming experiments– Identifying the pathways of change

    • Disturbance– Vegetation resilience to fire– Successional response to thermal erosion

    • Consumers– Mammalian herbivores alter response to increased nutrients

    – Arthropod  consumers in shrub and open tundra

    ArcLTER Shared Objectives

    1. How does climate control ecosystem states, processes, and linkages?

    2. How do disturbances change ecosystem states, processes, and linkages?

    3. How do climate and disturbance interact to control biogeochemical cycles and biodiversity at catchment and landscape scales?

  • Characteristics of Arctic Tundra• soils frozen, snow‐covered most of the year

    • clonal, long‐lived perennial plants dominate

    • species diversity, NPP low

    Giblin et al. 1991

  • ARC LTER Themes

    • How does climate control ecosystem states, processes, and linkages? 

    • How do disturbances change ecosystem states, processes, and linkages?

    • How do climate and disturbance interact to control biogeochemical cycles and biodiversity at catchment and landscape scales?

  • “Shrubbification”

    Graminoid dominated Deciduous shrub dominated

    1. repeat aerial photos2. satellite imagery3. plot‐based measurements

  • Long‐term Nutrient AdditionMoist Acidic Tussock Tundra (MAT)

    Control Annual N and P addition

  • Why does Betula nana (dwarf birch) respond positively to added nutrients?

    • developmental plasticity – Bret‐Harte et al. 2001 Ecology

    • mycorrhizae– Deslippe et al. 2011 Global Change Biology

    • leaf‐level physiology– Kornfeld et al. 2012 New Phytologist– Heskel et al. 2013 Ecology and Evolution

  • Long‐Term Nutrient Addition

    Net ecosystem loss of ~ 2,000 g C m‐2 over 20 years

    Mack et al. 2004 Nature

  • Long‐Term Nutrient Addition

    Control Fertilized

    Organic

    Mineral

    Koyama and Wallenstein

  • MineralOrganicPhylum

    Increased 

    No change 

    Decreased

    Acidobacteria

    Actinobacteria

    Proteobacteria

    Gemmatimonadetes

    AD3 Chloroflexi

    Verrucomicrobia

    Planctomycetes

    Bacteroidetes

    WPS‐2

    OrganicMineral

    Koyama and Wallenstein

  • Long‐Term Greenhouse Warming

  • Long‐Term Greenhouse Warming

    Sistla et al. 2013 Nature

  • Long‐Term Greenhouse Warming

    Sistla et al. 2013 Nature

  • Long‐Term Greenhouse Warming

    Sistla et al. 2013 Nature

  • Sistla et al. 2013 Nature

    Long‐Term Greenhouse Warming

  • Long‐Term Greenhouse Warming

    • no difference in soil C or N stocks despite differences in temperatures, thaw depth, soil communities, and plant community

    • greatest biogeochemical differences at depth

    • over two decades, MAT soil C and N resistant to warming

  • Myers‐Smith et al. 2011

  • ARC LTER Themes

    • How does climate control ecosystem states, processes, and linkages? 

    • How do disturbances change ecosystem states, processes, and linkages?

    • How do climate and disturbance interact to control biogeochemical cycles and biodiversity at catchment and landscape scales?

  • 1,000 km2 burned

    Anaktuvuk River Fire 2007

  • Fire

    Rocha et al. 2012 Environmental Research Letters

  • Bret‐Harte et al. in press Proc. Royal Academy London B

  • Hypothesis: increasing rates of thermo‐erosionaldisturbance will accelerate rates of vegetation change

  • Response of plant functional group abundance to thermokarst disturbance

    D. dec. shrubs T. dec. shrubs

    Plant functional type

    Michelle Mack, unpublished

  • Disturbance

    • tracking soil and vegetation change following pulse disturbances

    • tundra may be resilient, but may also undergo several alternate successional pathways– implications for ecosystem function

  • ARC LTER Themes

    • How does climate control ecosystem states, processes, and linkages? 

    • How do disturbances change ecosystem states, processes, and linkages?

    • How do climate and disturbance interact to control biogeochemical cycles and biodiversity at catchment and landscape scales?

  • Incorporating Trophic Interactions

    Leaves and Stems

    Roots andRhizomes

    Live Vegetation

    Leaves and Stems

    Roots andRhizomes

    Litter

    InvertebrateHerbivores

    BacteriaFungi

    Soil Invertebrates

    VertebrateHerbivores

    Predators

    Soil Nutrients

    Root Exudates

    Changing context:warmingfirethermal erosion

  • Terrestrial Consumers

    Caribou Voles and Lemmings

    Wolf Spiders Songbirds 

  • Terrestrial Consumers

    Caribou Voles and Lemmings

    Wolf Spiders Songbirds 

  • Testing the Exploitation Ecosystem Hypothesis (EEH) Above‐ and Belowground

    Oksanen and Oksanen 2000

  • 0

    100

    200

    300

    400

    500

    600

    700

    0 100 200 300 400 500 600

    Abo

    vegr

    ound

    Pla

    nt B

    iom

    ass

    (g/m

    2 )

    Productivity (g/m2/yr)

    A)

    CT

    +NP

    -H

    +NP-H

    Open: MATClosed: DH

    Gough et al. 2012 Ecology

    Testing the Exploitation Ecosystem Hypothesis (EEH) Aboveground

  • Incorporating Trophic Interactions

    Leaves and Stems

    Roots andRhizomes

    Live Vegetation

    Leaves and Stems

    Roots andRhizomes

    Litter

    InvertebrateHerbivores

    BacteriaFungi

    Soil Invertebrates

    VertebrateHerbivores

    Predators

    Soil Nutrients

    Root Exudates

    Changing context:warmingfirethermal erosion

  • The Next Three Years

    • monitoring, simulating, and modeling responses to climate change

    • investigating disturbance effects– changes in consumers– fire– thermal erosion

    • role of individual species and community structure in ecosystem processes

  • Mapping ArcLTER Objectives to Terrestrial Research

    Terrestrial Research (This talk)

    • “Shrubbification”– Landscape‐level response to warming– Long‐term fertilization experiments– Long‐term warming experiments– Identifying the pathways of change

    • Disturbance– Vegetation resilience to fire– Successional response to thermal erosion

    • Consumers– Mammalian herbivores alter response to increased nutrients

    – Arthropod  consumers in shrub and open tundra

    ArcLTER Shared Objectives

    1. How does climate control ecosystem states, processes, and linkages?

    2. How do disturbances change ecosystem states, processes, and linkages?

    3. How do climate and disturbance interact to control biogeochemical cycles and biodiversity at catchment and landscape scales?

  • Questions?