34
"ARCHIVES FISIOERIES AND MARINE SERVICE Translation Series No. 4040 Chromatographic fractionation of unsaponifiable matter by F. Mordret Original title: Fractionnement chromatographique de l'insaponifiable From: Rev. Fr. Corps Gras 16(10): 639-652, 1969 Translated by the Translation Section Department of the Environment Department of the Environment Fisheries and Marine Service Halifae Laboratory Halifax, N.S. 1977 33 pages typescript ... .....

ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

"ARCHIVES

FISIŒRIES AND MARINE SERVICE

Translation Series No. 4040

Chromatographic fractionation of unsaponifiable matter

by F. Mordret

Original title: Fractionnement chromatographique de l'insaponifiable

From: Rev. Fr. Corps Gras 16(10): 639-652, 1969

Translated by the Translation Section Department of the Environment

Department of the Environment Fisheries and Marine Service

Halifae Laboratory Halifax, N.S.

1977

33 pages typescript

... .....

Page 2: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

ORIGINAL: FRENCH r t- Li 4,

108880 A ,

*

STUDIES & RESEARCH - 4

CHROMATOGRAPHIC FRACTIONATION OF UNSAPONIFIABLE MATTER

F Mordret

Chief, laboratory work Ecole Supérieure d'Applications des Corps Gras *

Paris RFCG-69-39

ABSTRACT

The unsaponifiables in colza, soy and sunflower oil were fractionated by column and thin-layer chrom-atography. The author emphasizes the influence of certain experimental factors (adsorbent characteristics, choice of solvent systems, development techniques) on the quality of the results. Identification of the principal groups of components was begun and, in addition to those already known, some compounds (terpene ketones, ubiquinones) were detected which have hitherto been little studied. After conditions for recovery on preparative plates and for charring on thin-layer plates had been examined, gravimetry and densitometry were used to determine sterols, alcohols and hydrocarbons.

The unsaponifiables in natural lipids are highly complex mixtures (1). A method of analysis that would permit separation of most components may be attractive, but it would seem more prudent to reduce problems of inter-pretation and risks of error through preliminary fractionations. While simplifying the analyst's task, this will also have the advantage of revealing families of compounds with similar polarity or functional homology.

Specific colour reactions and infrared spectrophotometry will help to reveal the nature of the functional groupsMand a separation technique with a sufficiently high resolving power will permit isolation of each component. The value and potential of fractional crystallisation should not be underestimated; this technique was long used successfully) for example in preparing completeD]sterols. But it is chromatography in all its forms which gives the best results, combining simplicity of method with high resolving power and a high recovery level. These remarkable properties explain why it has been generally adopted for lipid analysis.

school for the practical study of lipids

Page 3: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

639a

In our study of the unsaponifiables in colza, soy and sunflower oils,we compared column and thin-layer chromatography as methods of fractionation.In each case, we tried to work out simple, rapid methods and to specify

limits to their application. The problem of identifying the fractions was

tackled only in part, since each fraction was later to be studied in

Page 4: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

A ti

640

detail. Finally, nonspecific methods such as gravimetry and densitometry

were used for quantitative studies.

A. COLUMN CHROMATOGRAPHY

One of the first attempts to isolate one of the constituents of

unsaponifiable ma.tter by column chromatography is described by Trappe (2).

He separated the cholesterol in a lipid extract of plasma using alumina

as the stationary phase. In order to reveal the whole range of non-glyceride constituents of lipids, many authors have since tried to perfect

separations by a judicious choice of adsorbents, solvent systems and

experimental conditions. The most commonly used adsorbents are silica,

alumina and fluorisil; for each of these we shall mention the studiesupon which our own is based. Besides the properties of the adsorbent

itself, such factors as column dimensions and retention time should be

specified; in certain instances where bibliographical information was

fragmentary, we referred to Lederer's work (3) in order to establish

our experimental procedure.

Adsorbents and their properties

The type of adsorbent and its properties (particle size, activity)

have a determining effect on the degree of separation attainable.

1. Adsorbents

Silicic acid has been used to fractionate concentrates containing

nonglycerides (4,5). Capella et al (6) proposed a method suitable for

unsaponifiables: 100 mg of the sample is passed through a column of 3 g of

Mallinckrodt 100-mesh silicic acid; the constituents are eluted with

solvent mixtures of increasing polarity; as a control, the fractions are

analysed separately. Hoffman et al (7) analysed the unsaponifiable matter

in soy oil by passing it through a silica column impregnated with a

liquid stationary phase (16 % methanolic benzene)--an instance of partition

chromatography.* In both these cases, the operation was relatively long,

because of the difficulties of passing liquids through a gel. But despite

the limited capacity and the slowness of elution, silicas yield better

separations.

Alumina. Cruz Aunon (8) chromatographed the unsaponifiable matter in

soy oil with an alumina column and characterized the fractions he obtained

by the direction of optical activity (1-squalene, 1-hydroxyl) or by

the optical rotation (sterols). Brieskorn (9) and later Knapp (10) used

alumina for 'preparative purposes.

Fluorisil. Eisner and Fi'restone (11) fractionated several unsaponifiables,

including that of soy oil, with a column containing fluorisil (a synthetic

magnesium silicate). The eluant was evaporated and analysis was co^tinued

by means of gas chromatography. Fluorisil offers a selectivity comparableto that of silica and is not as inconvenient to use--which explains the

Page 5: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

640a

preference for it despite its rather high production cost. Nevertheless, recent studies by Naudet et al (12) on the analysis of nonvolatile residues from deodorization show that it is difficult to obtain pure fractions, as we ourselves have observed.

2. Adsorbent characteristics

These must be determined with as much precision as possible if operating conditions are to be reproducible. Even for fairly well-identified commercial products, it is best to check characteristics which may vary from one lot to another or with storage time. The most important of these are:

Particle size. The size of the particles is directly related to the specific surface of the adsorbent, which should be as large as possible in order to provide sufficient adsorptive capacity and increase the number of exchanges. However, a lower limit is imposed by the necessity of maintaining a sufficient flow of liquid. Granulation should probably never be finer than 100 mesh.

Activity. This is a measure of the adsorbent's capacity to bind and hold the molecules of the solute. It depends on the moisture in the adsorbent, since water blocks the active regionsW. Depending on the polarities of the constituents of the mixture to be chromatographed, an activity level is selected which will eliminate irreversible adsorptions of the most polar constituents and also adequately separate compounds with little or no polarity. It is therefore important to identify and measure the activity of an adsorbent and to be able to modify it. The level of activity could be expressed on Brockmann's scale, which classifies adsorbents (I to V) according to their ability to separate a colourant

but Hoffman's article reads: "Fifty grams of A.R. 100-mesh silicic acid was used as a support; the mobile phase was 2% by volume methanolic benzene and the immobile phase, 167 methanol (by weight of Si02)."--Tr

Page 6: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

641

mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure the quantity of azobenzene bound to the adsorbent, is a better indicator of adsorptive power, and it was this method we used to check the lots of alumina. The level of activity is adjusted by modifying the moisture level in the adsorbent--a simple operation, but delicate in practice if the moisture level is to be homogeneous; direct addition of water must be avoided. There is a relation between moisture level and the different measures of activity:

Quantity of water Brockmann's Azobenzene to be added index index

%

0 I 26

3 Il 21

6 III 18

10 IV 13

15 V 0

3. The eluants

These are either individual solvents or solvent mixtures forming a gradient elution series of continuously increasing polarity. They gradually elute the various constituents of the unsaponifiable matter, starting with such substances as paraffins and ending with such highly polar compounds as the hydroxy pigments. The following solvent systems have been recommended: hexane-benzene followed by ether (6) and benzene-ether (14). We decided on mixtures of hexane and ethyl ether.

We used column chromatography as a preparative phase, since it alone enabled us to work on fairly large quantities and to quickly obtain an initial separation, which we could refine by thin-layer chromatography. Alumina appeared to be the most suitable adsorbent for this purpose.

EXPERIMENTAL PROCEDURE

1. Isolation of unsaponifiables

Because of the low unsaponifiable content in the material we had to work with, we first concentrated the nonglycerides by low-temperature crystallization in an acetone solution (15). The concentrate was saponified and the soaps extracted under standard conditions, using ethyl ether as a solvent (16).

2. Preparation of the alumina

We used Prolabo activated alumina, which has an AYNOR fineness of 18/23, a very high degree of adsorbent activity, with a moisture level near zero when the bottle is first opened. We had to hydrate it to varying degrees to obtain different degrees of activity. Three techniques were used for this:

Page 7: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

641a

Hydration by moist-air aeration. The adsorbent is placed in a BUchner funnel with a large-diameter sintered glass filter plate. The funnel rests on a one-litre filter flask containing 250 ml of water at 60° . Compressed air enters the water through a nylon tube which passes through the side tube of the flask. A watch glass covers the funnel to prevent any of the product from escaping. A slight agitation of the water will impregnate the air with moisture and disturb the layer of alumina sufficiently to permit uniform and homogeneous hydration. The weight increase is checked once every hour.

Hydration in a vessel saturated with water. A crystallizer with a diameter of 190 mm and containing 50 g of alumina is placed in a desiccator lined with filter paper and containing water in the bottom part. The crystallizer is weighed at 12-hour intervals until a suitable weight increase has been attained.

Hydration in a solvent. To adjust the activity of large quantities of alumina, we used a technique recently tested by Guillaumin and Pertuisot (17), which involves washing the adsorbent in acetone impregnated with water, then heating it in a drying oven until a suitable hydration level is reached.

When we prepared the adsorbent in this way, we always left it for 48 hours in a hermetically sealed flask before using it.

3. Measurement of activity

Water content, determined by checking the weight increase for an initially anhydrous product or the moisture loss in the oven for an already hydrated adsorbent, is related to the adsorbent's activity, but is not a direct measure of it. We used Hesse's (13) method, which measures the quantity of a colourant which an adsorbent can bind, to check the activity of the adsorbent, and we shall now describe the procedure as adapted to our own working conditions:

In a small hemolysis tube, quickly weigh 0.5 g of the adsorbent and immediately cover with 3 cc of a 0.1 M solution of pure azobenzene in cyclohexane. Shake several times. When an hour has elapsed, centrifuge for 15 minutes, then remove 1 cc of the supernatant solution and dilute 50 times in a calibrated flask. Place in a 10 mm deep tray with pure cyclohexane as a reference solution. Measurements are taken at 445 nm.

Page 8: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

642

The loss of azobenzene is given by the formula

X = (C1 - C 2)

where

X is the azobenzene index, which, multipliedryj by a factor of 105 gives

the quantity of the colourant bound Der cram of alumina,

a is the volume of coloured solution in cc,

m is the mass of the adsorbent in grams,

C1 is the initial concentration of the colourant in the solution, in moles/cc, and

C2

is the final concentration.

We plotted a calibration curve, on which we graphed the final concentrations (C

2) corresponding to the indices 26, 21, 18, 13 and 0. This method has the

advantage of being simple and faster than oven-drying. To select an adsorbent of suitable activity, we prepared serial hydrations of alumina: 0, 4, 5.5, 10, 14 and 18 per cent, and measured the azobenzene index for each. In each case, we carried out a test separation of a 1:1 cholesterol-oleic acid mixture. The sample was 200 mg, applied to a column 350 mm long and 15 mm in diameter and containing 10 g of adsorbent. The eluant was a 75:25 hexane-ethyl ether mixture. Fractions of 10 ml were collected in graduated tubes. The total volume of solvent used was 400 ml. An overly active adsorbent will retain most of the solutes, while a deactivated adsorbent will not separate them: the constituents are eluted almost simultaneously. A moisture content of 10 per cent (corresponding to an azobenzene index of about 13) gave us fairly good results, and we maintained this level throughout.

4. Chromatography of a synthetic mixture and of natural unsaponifiables

Before chromatographing the unsaponifiables themselves, we first worked out the elution procedure with a synthetic mixture.

Components Loaded Recovered % Eluants

tetracosane 60 mg 58.5 97.5 150 ml hexane squalene 100 mg 96 96 carotene 2 mg * 150 ml hexane 4 % EE tocopherols 45 mg 36 80 600 ml hexane 10 % EE oleic alcohol 308 mg 290 88 250 ml hexane 25 % EE cholesterol 503 mg 487 94 450 ml pure EE

The procedure was as follows:

The column is a tube 450 mm long and 25 mm in diameter, the end of which is connected to a fraction collector. The volume of liquid delivered is 10 ml for each tube. 100 g of alumina are placed in the column after malaxation with distilled hexane. The top layer is 2 cm thick and consists of anhydrous sodium sulphate, which will retain any remaining traces of solvent moisture and prevent deterioration from the top of the column. The sample (about 1 g) is dissolved in a minimum of hexane and loaded through a long-stemmed funnel. The flow rate is fixed at 4 ml/minute. The eluants are used in the order indicated in the table.

* Scattered through several fractions. EE = ethyl ether.

Page 9: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

642a

With the mixture prepared from pure products we always obtained a

satisfactory recovery rate and the results were reproducible to a high

degree. The unsaponifiables in an oil are more complex and this is

reflected in the large number of peaks in the chromatogram (fig 1). Whenwe analysed each fraction on a thin-layer plate, we found that most were

mixtures, so that the quantitative results which can be expected from this

separation technique are imprecise. However, given the quantities involved,

impure fractions can be refractionated by preparative thin-layer chromatography,

so that column chromatography serves as the preliminary stage in isolating

appreciable quantities of minor constituents.

Separating unsaponifiable constituents by alumina column chromatography of

methyl esters

The methyl esters of an oil contain nonglycerides which can be concentratedby molecular distillation, or bound to an adsorbent which will retain the

most polar substances. Sterols, for example, are prepared in this way in

large quantities. We transesterified 500 g of colza and sunflower oils using

methanol in the presence of N methanolic potash. After the esters areextracted, they are dried and placed in a 25 % solution in hexane. Themiscella is applied on a column containing 1 kg of alumina hydrated to 15 ^.After the solution has passed down, the column is washed with pure ether, and

500 cc fractions are collected. In both cases, when the fourth fraction is

Page 10: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

643

evaporated, it leaves 2.27 g of a white solid, which is recrystallized in methanol. The purity of the product is determined by thin-layer chroma-tography.

B. THIN-LAYER CHROMATOGRAPHY

Thin-layer chromatography of unsaponifiables, to isolate the sterol fraction for example, is a standard technique in the chemical analysis of lipids and, since the first experiments by Mangold and Malins (18), several variations of this technique have been introduced to improve separations. Modifications have in particular been made in the choice of eluant mixtures, developers and adsorbents.

We made a systematic study of several development techniques in order to maximize the likelihood of obtaining pure fractions.

The spots or bands were in most cases identifiable by parallel or simultaneous migration of reference substances, by formation of characteristic coloured derivatives or by infrared spectrophotometry.

The heaviest constituents were quantitatively analysed by two methods: by densitometry on the plate itself, and by scraping of the bands followed by extraction of the constituents by gravimetry.

Figure 1

Fractionation of unsaponifiables with an alumina column

Legend:

1 SYNTHETIC MIXTURE OF UNSAPONIFIABLES

2 Hexane - -4% EE Hexane--10% EE Hexane--25% EE EE

3 COLZA UNSAPONIFIABLES

[See following page for figurej

QUALITATIVE ANALYSIS

A. The adsorbent. A 250» layer of silica gel G is a generally applicable adsorbent, and Capella et al (19) use it to fractionate minor constituents of lipid unsaponifiables. Karleskind (20) has experimented

Page 11: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

,

1 NSAPO. SYNTH.

I 1 so

lin.25:4 or

go 'pub«

E .

IO Tul3 101

fteteg — 16. Année — N. 10 — Octobre 1969 643

is

•;— ;

)t

‘:r

en recueillant par fraction de 500 cc. La quatrième fraction après évaporation abandonne dans les deux . cas 2,27 g d'un solide blanc qui est recristallisé dans le méthanol. On vérifie la pureté du produit par chromatographie sur plaque.

t'Ag,

Io

mg. (2) ii«tazeor 1..foXos ' . * 4

(T.\ I NSAPO. COLZA

100

• L'identification des taches ou des bandes dans la plupart des cas a pu être réalisée par migra-tion parallèle ou simultanée de substances-étalon, par formation de dérivés colorés caractéristiques, par spectrophotométrie infra-rouge.

Figure 1

fractionnement d'insaponifiables tur colonne. d'alumine

CHROMATOGRAPHIE SUR PLAQUE

ei chromatographie de l'insaponifiable sur cou- .. • mince réalisée par exemple dans -le but d'isoler

çraction stérolique est une opération classique *; Fa chimie analytique des corps gras et, depuis ;

premiers travaux . de MANGOLD et MALINS i'• .;;:), U a été introduit dans le mode opératoire ini- •

pitusieurs variantes destinées à améliorer les sé- Ce sont surtout des modifications Concer-

tes mélanges élùants, les révélateurs, le choix ' radsorbant. .

• • ...ie:?ùs• • avons systématiquement étudié quelques P:(:I'mtques de développement pour nous placer dans

conditions les plus favorables à l'obtention de i-reons pures. •

L'analyse quantitative a été entreprise pour les constituants pondéralement les plus importants se-lon deux procédés : sur la plaque elle-même par densitométrie et après grattage des bandes, extrac-tion des constituants qu'elles renferment 'par gra-vimétrie.

ANALYSE QUALITATIVE

A. - L'adsorbant. La silice G déposée en couche de 250 t d'épaisseur est un adsorbant d'une appli-cation universelle et, en ce qui concerne les cons-tituants mineurs des corps gras, CAPELLA et coll. (19) en font usage pour fractionner les insaponi-fiables. KARLE$K1ND (20) expérimente et compare

....:CTIONNEMENT DE L'INSAPONIFIABLE, p. 639 à 652

Page 12: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

644

with a number of adsorbents and eluant mixtures in order to obtain a suitable

separation of alcohols and sterols. We have demonstrated the advantages of

normal or alkaline silica gel G (21), and it will be the preferred adsorbent

in this study.

The plates are prepared in the normal fashion (22), and are dried and

activated in a drying oven at 110°C. We varied the activation time (from30 minutes to 4 hours) without observing any appreciable difference in Rf,

since it was in the course of desorption that the adsorbent became activated.

Later, all plates were activated for one hour.

B. Development. The sample, in a 10 % solution in chloroform, is

deposited on the plate with a microsyringe in contiguous spots as small as

possible, in order to obtain a narrow uniform band.

Influence of saturation. The plate is placed in a tank containing the

solvent mixture. The three glass walls are lined with filter paper in order

to saturate the atmosphere in the tank. However, the role of solvent

vapour in thin-layer chromatography is quite complex and, as de Zeeuv (23)has shown, saturation is not always desirable. In the case of a highlyvolatile solvent such as ether, the dry part of the plate may become impregnated

with vapour, and the adsorbed quantities will modify the separation. Wefound in fact that the Rf changes especially with bands representingconstituents of low polarity, which then become better separated. Migration

time is slightly longer than usual.

Frontal development. The plate is left to develop for twice as long

as normal. This has negative results: the observed Rf is similar, but the

bands are much more diffuse. We devised a variant on this procedure which

would facilitate migration. The plate is extended by means of a 20 x 20

piece of filter paper, one edge of which is applied to the adsorbent by a

glass rod held in place at the side[?]by two clamps. In the tank, thefilter paper is bent downward, but should not come in contact with either thesolvent or the walls. The'R^ values obtained using this system approach the

values obtained using a 40 x 20 thin-layer plate (fig 2).

Double development. After the first migration, the plate is removed,

dried and replaced in the tank. The solvent is either the same or replacedby a new solvent system. This technique has the advantage of giving betterband separations and it is used in preparative chromatography. Schmid (24)

uses it to concentrate minor lipid constituents.

Two-dimensional development. Whittle and Pennock (25) use this technique

to separate out different tocopherols, especially the a and S varieties.Kuzdzal-Savoie (26) uses it for qualitative study of the unsaponifiables of

butter and some other lipids. On a 20 x 20 plate, about 2 cm from the edge,

we deposit a 50 ug spot of sunflower unsaponifiables in solution with 25 pl

of cyclohexane. The solvent system consists of chloroform for the firstdimension and an isopropyl ether-petroleum ether (20:80) mixture at 40-600for the second. The separations are.better, but identification is difficult.

Page 13: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

644a

Chromatography on a 40 x 20 plate

Horizontal migration. Increasing the migration distance enhances the resolution between neighbouring Rf bands. It is in this way that Jurriens (27) analyses glyceride mixtures and Karleskind (28) separates aliphatic and triterpene alcohols and sterols under favourable conditions. These writers use a horizontal apparatus not available commercially for this plate size. However, it is quite easy to construct one's own (fig 3).

Vertical migration. In the absence of such an apparatus, vertical development can be carried out with a large tank (such as is used in paper chromatography, for example). Avignan et al (29) analyse sterol acetates in

Figure 2

Frontal development

(plate extended with filter paper)

T = sunflower (French tournesol) C = colza

Page 14: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

,

• .• • .1544 16e Année — N. 10 — Octobre 1969

plusieurs adsorbants et mélanges éluants afin de séparer convenablement alcools et stérols. Nous avons mis en évidence les avantages de la silice G normale ou alcaline (21) et nous lui donnerons la préférence dans ce travail.

• Les plaques sont confectionnées selon la techni-que habituelle (22), elles sont séchées et activées dans une étuve à 110C. Nous avons fait varier les temps d'activation (de 30 minutes à 4 heures) sans constater de différences appréciables de Rf, l'acti-vité de l'adsorbant intervenant plutôt lors de la dé-sorption. Toutes les plaques par la suite ont été•activées 1 heure.

B. - Le développement. L'échantillon mis en solution à 100/0 dans le chloroforme est déposé sur' la plaque à l'aide d'une microseringue en spots join-tifs aussi fins que possible, de façon à obtenir une bande étroite et régulière.

influence de la saturation. La plaque est placée dans une cuve contenant le mélange solvant. Les trois parois de verre sont tapissées de papier filtre pour saturer l'atmosphère de la cuve. Cependant, le rôle de la vapeur de solvant en chromatographie sur couche mince est assez complexe et, comme le montre DE ZEEUV (23), la saturation n'est pas toujours 'souhaitable. Lorsqu'il s'agit d'un solvant très volatil comme l'éther, la partie sèche de la pla-que peut se charger de vapeur et les quantités ad-sorbées modifient la séparation. Nous avons effec-tivement constaté que les Rf changent surtout pour les bandes représentatives des constituants peu po-laires qui sont alors beaucoup mieux séparées. La durée de migration est un peu supérieure à la nor-male.

.Le développement à front perdu. La plaque est abandonnée pendant une durée double du temps de développement normal. Ce n'est pas une opération avantageuse car, outre la similitude de Rf observée, les bandes apparaissent comme étant beaucoup plus diffuses. Nous avons imaginé une variante destinée à faciliter la migration. La plaque est prolongée par une feuille de papier filtre de 20x20 dont l'un des bords est appliqué sur l'adsorbant grâce à un bar-reau de verre maintenu latéralement par deux pin-ces. Dans la cuve, le papier filtre est recourbé vers le bas, mais ne doit pas être en contact ni avec le solvant ni avec les parois. Les Rf obtenus avec un tel système se rapprochent des valeurs enregistrées sur plaque de 40x20 (Fig. 2).

.Le double développement consiste, après une pre-mière migration, à retirer la plaque, à la sécher puis à la replonger dans la cuve. Le solvant sera iden-tique ou constitué par un nouveau système. Cette technique a l'avantage de donner des bandes mieux

Figure 2

Développement à front perdu (plaque prolongée par filtre)

séparées et elle est utilisée en chromatographie pré-parative. SCHMID (24) concentre ainsi des consti-tuants lipidiques mineurs.

.Développement à deux dimensions. Par cette tech-nique, WHITTLE et PENNOCK (25) séparent entre eux les différents tocophérols et particulièrement les variétés 13 et se. KUZDZAL SAVOIE (26) étu-die qualitativement de cette façon les insaponifiables de beurre et de quelques autres corps gras. Sur une plaque de 20x20, nous avons déposé, à environ 2 cm du bord, un spot contenant 50 j tg d'insaponifiable de tournesol en solution dans 25 pl de cyclohexane. Le système de solvant est constitué par du chlo-roforme pour la première dimension et un mélange éther isopropylique - éther de pétrole 40-60°C (20:80) pour la deuxième. Les séparations sont meilleures mais l'interprétation reste délicate. Chromatographie sur plaque de 40x20

Migration horizontale. L'augmentation de la lon-gueur de migration favorise la résolution entre ban-des de Rf voisins. C'est ainsi que JURRIENS (27) analyse des mélanges glycéridiques et KARLESKIND (28) sépare dans de bonnes conditions les alcools aliphatiques, triterpéniques et les stérols. Ces au-teurs utilisent des dispositifs horizontaux, non com-mercialisés pour la taille des plaques. Il -est néan-moins assez facile d'en réaliser soi-même la cons- - truction (Fig. 3)

Migration verticale. A défaut d'un tel appareillage, • si l'on dispose d'une grande cuve (par exemple pour

• chromatographie sur papier), il est possible d'effec- „ •

MORDRET

'

.4

Page 15: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

4 645

this way, and Freeman et al (30) achieve separations between the various

classes of lipids on large plates. We ourselves used this method tofractionate the unsaponifiables of the three oils we are studying. A

Shandon 50 x 20 x 57 tank was lined with filter paper to ensure saturation.It contained 1000 cc of a 50:50 hexane - ethyl ether mixture. The migrationlength was 370 mm and migration time was 135 minutes (fig 4).

The results from all these experiments are given in table I.

Detection and identification of bands

Once developed, the plate is removed from the tank and dried. Exceptfor the carotenoids, the components of the unsaponifiable matter are nearlycolourless. Some of them are fluorescent under ultraviolet light andcan be detected in this way. The others are detected with the aid of a

reagent sprayed onto the thin-layer plate. The result of the reaction (bonding

of iodine on the double bonds) may be visible without heating or the plate

may have to be heated, in which case a coloured derivative will form, butthe molecule will be rearranged or even degraded (carbonized) and becomeirrecoverable for further analysis. The reagents used will be eithernonspecific (sulphuric acid, phosphomolybdic acid, iodine) or specificfor a class of constituents (the pink compound Fe44- - a, a'- dipyridyl for

Figure 3

Our own apparatus for horizontal development of a 40 x 20 plate

a. tank containing the eluantb. 40 x 20 platec. separator between the thin-layer plate and the cover plated. clamps holding the cover platee. water inlet

Figure 4

Chromatography of colza unsaponifiables on a 40 x 20 plate (vertical development)

right margin: lengthsleft margin: band identification numbers

Page 16: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

é-

:h-

. re :nt lu-

es

ne

Dle

lo-ge 30) - es

Dn-

3n-

27) \JD OIS

3U-

M-

an- ns-

ge. DUr

ec-

• ET

Figure 4

Chromatographie de l'insoponifiable de colza

sur plaque de 40 X 20 (développement vertical)

marge droite : distances marge gauche : identificotions

en d'un réactif que l'on pulvérise sur la couche min-ce. Le résultat de la réaction pourra déjà être visi-ble à froid (fixation d'iode sur les doubles liaisons), ou nécessitera le chauffage de la plaque ce qui conduira à la formation d'un dérivé coloré avec, en contrepartie, transformation et même dégrada-tion (carbonisation) de la molécule irrécupérable pour une analyse ultérieure. Les réactifs utilisés se-ront non spécifiques (acides sulfurique, phospho-molybdique, iode) ou spécifiques pour une classe de constituants (complexe rose Fe. - na' dipyridyle

Ceeredeed 1u. Année — N. 10 — Octobre 1969 645

Figure 3

Cispositif de notre fabrication pour développement

,horizontal de plaque de 40 X 20

o) cuvette contenant l'éluont b) plaque de 40 X 20 c) intercalaire isolant la plaque du couvercle d) fixations de la plaque couvercle e) circulation d'eau

tuer un développement vertical. AVIGNAN et coll. (29) analysent des acétates de stérols tandis que FREEMAN et coll. (30) effectuent des séparations entre les diverses classes de lipides sur grandes plaques. Nous-mêmes avons fractionné ainsi les trois insaponifiables que nous étudions. La cuve (SHAN-DON 50x20x57 était tapissée de papier filtre pour en assurer la saturation ; elle contenait 1.000 cc de mélange hexane- oxyde d'éthyle 50:50. La migration (370 mm) dure 135 minutes. (Fig. 4)

Tous les résultats de ces expériences figurent dans le tableau I.

Révélation et identification des bandes

La plaque une fois développée est retirée de la cuve puis séchée. A part les caroténoïdes, les autres constituants de l'insaponifiable sont peu colorés. Certains présentent une fluorescence à l'irradiation par la lumière ultraviolette et pourront de cette fa-çon être détectés. Les autres seront révélés au moy-

FRACTIONNEMENT DE L'INSAPONIFIABLE, p. 639 à 652

e...Yfonr. ›rre:iiklenZ9FigeUgef,"Seq'e-ee'elleere,'4WeVennerneet.. : . ...1 ' t - '

Page 17: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

646

reducing agents and in particular the tocopherols). In the latter case,

the compounds will not only be separated, but we will obtain an initial

indication of their nature, to be confirmed by subsequent tests:

- on the plate itself. We compared the migrations of reference substances

with those of the constituents of the unsaponifiable matter in the three

oils. The Rf is measured using different adsorbents and different solvent

mixtures. Our reference substances were: oleic acid, S-sitosterol, stearyl

alcohol, a-amyrin, a-tocopherol, purified sunflower wax, S-carotene, squalene

and tetracosane. We used plates with silica gel G and alumina G, and the

following development system: hexane - ethyl ether (50:50), heptane - ethylacetate (75:25) and pentane - ethyl ether (80:20). Similarities of Rf obtained

with different chromatographic systems helped confirm identification.

- off the plate after scraping and elution. The substances on thepreparative plate are made visible with a nondestructive reagent (dichlorofluor-

escein, rhodamine 6G), then [the band is scraped off and ?] eluted in a

microcolumn with ether, which is subsequently driven off. The resulting

substance is dissolved in a solvent suitable for spectrophotometry or gas

chromatography.

Results are given in table II (see also figure 5), but we shall discuss

one case in greater detail.

TABLE I

Le end

A 1 Bands2 Unsaturated tank

3 Double development

4 Frontal development with filter paper

5 40 x 20 plate

B 2 hydroxy pigments

3 sterols

4 aliphatic alcohols

5 terpene alcohols

8 tocopherols

9 terpene ketones

10 carotene

12 polyenic hydrocarbons

13 paraffin hydrocarbons

C 1 Observations: colza unsaponifiables

2 narrower bands with better separation; appearance of band 4'

3 1. 2/3 f?l hexane - ethyl ether (50:50)

2. hexane - ethyl ether (90:10)4 appearance of band 2'; 1. hex-EE (50;50) 2. hex-EE (50:50)

5 migration on the plate: 175 mm; front on filter paper: 340 mm

6 vertical migration(commas to be read as decimal points)

Page 18: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

646 16* Année - N0 10 - Octobre 1969 C6fgerdea

_TABLEAU 1

Bandes Normal Cuve non eaturéJbouble développement 'ront perdu aven filtre Plaque de 40 1 2

1 0,01 0,02 0,01 0.04 0,02 0.02

2 pigmente 0,04 0,04 0,02 0,03 0,04 0,04 hydroxyle.

3 stérols 0,28 0,32 0,20 0,40 0,22 0,23

4 alcools 0,38 0,44 0,29 0 ,52 0,29 0,32 aliphatiques

3 alcool. 0,45 0,51 0,34 0,60 004 0,57 t.rp4.1qu».

6 0,52 0 .5 6 0,47 0,66 0,39 0,43

7 0,60 0 ,63 0,53 0,74 0,45 0,50

8 tocophérols 0,65 0,69 0,58 0,77 0,37

9 cétones 0,73 0,78 0,64 0,80 0,62 torpéniqu..

10 carotène. 0,87 0,83 0,82 0,87 0.75

11 0,90 0,91 0,86 0,90 0 ,78

12 hydrocarbure. 0 ,97 0,93 0,93 0,93 0,82 polyéniq...

13 hydrocarbures 0,97 0,97 0,96 ; 0,97 -_,- 0,91 .araffini.ue.

l .and.. plue 1.hox.0E apparition migration eur plaque; migration G étroites mieux (3)(50150) bande 2. 173 mm verticale

Obeervatione eéperées '-',,,, 2/3 1.hex.OE front our filtre

insaponifiable de colsa apparition de 2.hex.OE (50130) 340 mm 4 , (90,10) 2. •

(f2: Exe de

Li tion révd

•e?

•-eî

pour les réducteurs et particulièrement les tocophé-rols). Dans ce dernier cas, outre la localisation des composés, on recueillera déjà une première indica-tion sur leur nature qui devra être confirmée par d'autres tests :

Il

9 9

.sur la plaque elle-même. Nous avons comparé la migration d'étalons avec celle des constituants des trois insaponifiables. On mesure les Rf avec différents adsorbants et avec divers mélanges sol-vants. Notre gamme d'étalonnage comprenait : acide oléique, l sitostérol, alcool stéarylique, a amyrine, a tocophérol, cire de tournesol purifiée, 3 carotè-ne, squalène, tétracosane. Nous disposions de pla-ques de silice G, d'alumine G et, comme système de développement, hexane-oxyde d'éthyle (50:50), heptane-acétate d'éthyle (75:25), pentane-oxyde d'é-thyle (80:20). Des similitudes de Rf avec des sys-tèmes chromatographiques différents apportent une 3 confirmation dans l'identification.

.hors de la plaque après grattage et élution. La plaque préparative est révélée par un réactif non destructeur (dichlorofluorescéine, rhodamine 6 G), puis éluée dans une micro-colonne avec de l'éther que l'on chasse ensuite. On reprend par un solvant convenable pour la spectrophotométrie ou la chro-matographie en phase gazeuse.

Les résultats de nos identifications sont consi-gnés dans le tableau II, (voir aussi figure 5) mais nous reprenons avec plus de détails l'un des cas.

IF

et '

Figure 5

Chromatographie des insoponifiobles de colza (C) toits (5), tournesol (Ti

Adsorbant : silice G Développement : hexone-éther éthylique (1 : 1)

/1.

(jatj gris te), 1

• Ii tif.

et co ou; tord ole Ma le . tifi1

mil

F. MORDRET FR

Page 19: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

646a

Figure 5

Chromatography of the unsaponifiables in colza (C), soy (S) and sunflower (T)

Adsorbent: silica gel G

Developer: hexane - ethyl ether (1:1)

Page 20: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

647

Example of identification procedure: band 9 of the colza unsaponifiables.

The constituents of this band give coloured reactions when the plate is sprayed with an indicator such as 50 % sulphuric acid (yellow, orange), antimony pentachloride (gray-bluè), phosphomolybdic acid (immediate reaction) or anisaldehyde (yellow). The dinitrophenyl hydrazine test is immediately positive. The experiments by Huneck (31) and Murakami et al (32) on the separation and identification of tetra- and pentacyclic triterpenes on thin-layer plates suggest that these are terpene ketones. One of them, friedelin (friedooleanan-3-one C30 500), has already been encountered by MacLean et al (33) in the unsaponifiables of horsechestnut-seed oil. In order to proceed with identification, we had to isolate and purify a few milligrams of the substance.

Following alumina column chromatography, as already described, of 650 mg of colza unsaponifiables, tubes 40 to 48 are collected, the solvent evaporated and the residue placed in a 10 % solution in chloroform. The mixture is applied as a preparative band to a thin-layer plate with silica gel G. The plate is developed using the hexane - ethyl ether (90:10) mixture and the band, once isolated, is recovered by scraping. The adsorbent is extracted in 10 cc of ether in a microcolumn, and 3.7 mg of a slightly yellow crystalline substance is collected. Infrared spectrophotometry of a 20 % solution of the substance in carbon tetrachloride shows strong absorption bands between 5.80 and 6.24 p (figure 6), confirming the presence of ketone groups.

Gas chromatography on a 2 metre column of Gas Chrom Q 80-100 Mesh coated with 3 % SE 30 and heated to 2600 shows that this substance is a

TABLE II

Legend

COLZA

Band

13 gray-black with H2SO4 12 12 bonding; violet with H2SO4 at 110°C 11 positive reaction E ENGEL 10 naturally orange-yellow 9 orange with H2SO4 at 110°C; positive reaction with DNPH 8 green with 11 9SO4 at 110°C; positive reaction with DNPH and E ENGEL 7 chestnut broWn With H2S0 A at 110°C 5 brown with

H2SO4 at 110° 4 chestnut brown with H 9S0 at 110°C 3 violet with H2SO4 at 'lleC 2 doublet; naturally yellow; blue with

H2SO4 at 110 °C

1 red or pink with H2SO4 at 110°C

Page 21: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

647a

SOY

Band

11 gray-black with H SO10 1 2 bonding; violei with H2SO4 at 110°C

9 orange-yellow

7 green with H2SO4; positive reaction E ENGEL2 blue with H SO at 110°C

24 1 naturally yellow; blue with H2SO4 at 110C

SUNFLOWER

B and

11 gray-black with H2SO4

9 vivid yellow8 I bonding; blue with anisaldehyde1 biue with H2SO4 at 110°C

IDENTIFICATION

a. paraffin hydrocarbons b. polyenic hydrocarbons (squalene)c. plastoquinone or ubiquinone (see 25 [sicj) d. carotenoids, hydrocarbonse. terpene ketones f. a-tocopherol g. y tocopherolh. terpene alcohols i. aliphatic alcohols j. sterolsk. polar coloured Csic] pigments

(commas to be read as decimal points)

Page 22: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

• f‘

16e Ann6e - Nu 10 - Octobre 1969 647

Exemple d'identification : bande 9 de l'insaponifiable de colza.

Les constituants de cette bande donnent des réac-tions colorées après pulvérisation sur la plaque de révélateurs tels que l'acide sulfurique 1/2 concentré

Après chromatographie sur colonne d'alumine de , 650 mg d'insaponifiable de colza, suivant le mode opératoire décrit, les tubes 40 à 48 sont collectés, le solvant évaporé et le résidu mis en solution chlo-roformique à 10 0/ dépose en bande prépara-tive sur couche mince de silice G. On développe

TABLEAU II COLZA SOYA TOU NESOL

Bande Rr Dando Rr Bande Rr Identitloation.

13 0,97 gris noir aveo 71 0,97 gris noir aveo 11 0,97 gris noir avec hydrocarbure, e 112804 112504 112SO4 paraffiniques

12 0.94 fixation I2 10 0,93 fixation 12 10 0,93 hydrooarbures polyéniques violet avec, violet avec

(lp

112804 110.0 112504 110.0 (scalène)

11 0.90 r .

éaotion plaetoquinone ou positive ubiquinone.(voir 25) S. ENGEL .

10 0,87 naturellement 9 0,87 jaune orangé 9 0,89 jaune vif caroténoides Jaune orangé hydrocarbures

(a)

s 0,84 fixation 12 bleu avec 7

• aldéhyde anisique

9 0,72 oranGd avoo cétones • 112SO4 110.0 terpéniqueS

réaction (I)

positive DPNÉ

8 0,65 vert avec 8 0,65 7 0,68 id.(colra) .,.( tocophérol H2SO4 110.0 réaction positive DPNH (I)

. " E.ENGEL

7 0,60 marronaroo 7 0,59 vert avec 6 0,60 (3 +litocophérol 112804 110°C 112s04

ré aotion poeitive (D D. ENGEL

6 0,52 6 0,55 5 0.53 7

5 0,45 brun avec alcools e 1125044 110°C 5 0,45 id. 0,45 id. terpéniques

• '

4 0,38 marron avec 4 0,38 id. 3 0,30 id. 'alcools H2SO4 110°C aliphatiques Cl)

3 0,28 violet avec 3 0,28 id. 02304 110 , 0

. 2 0,28 id, etérols

(à)

2 0,24 bleu avec 1 0,24 bleu aveo ,. 7

112804 110.0 i12SO4 110.0

2 o,o4 doublet • 1 0,03 naturellement pigmente colorés naturellement jeune • polaires jaune . bleu aveo •È) bleu avec ' 112SO4 110.0 112504 110°C

1 0..11 rouge ou rose 7 avec U2SO4 110.0

(jaune, orangé), le pentachlorure d'antimoine (bleu gris), l'acide phosphomolybdique (réaction immédia-te), l'aldéhyde anisique (jaune). D'autre part, le test à la dinitrophenylhydrazine est instantanément posi-tif. Les travaux de HUNECK (31), ceux de MURAKAMI et coll. (32) sur la séparation et l'identification sur couche mince des triterpènes tetra et pentacycli-ques permettent de penser qu'il s'agit de cétones terpéniques. L'une d'entre elles, la friedeline (friedo-oleanan-3-one Cluilno0) a déjà été rencontrée par Mac LEAN et coll. (33) dans l'insaponifiable de l'hui-le de graine de marron d'inde. Pour poursuivre l'iden-tification, nous avons dû isoler et purifier quelques milligrammes de substance.

par le mélange hexane-oxyde d'éthyle (90:10) et la bande une fois localisée, on la récupère par grat-tage. L'adsorbant est extrait dans 10 cc d'éther dans une microcolonne et l'on recueille 3,7 mg d'une subs-tance cristalline légèrement jaune. La spectropho-tométrie infrarouge de la solution à 20°/o dans le tétrachlorure de carbone confirme la présence de groupements cétoniques par de fortes bandes d'ab-sorption entre 5,80 et 6,24 p. (Figure 6).

La chromatographie en phase gazeuse sur colon-ne de 2 mètres de Gas Chrom Q 80-100 Mesh im-prégnée à 30/0 de SE 30 et chauffée à 260° C montre que cette substance est un mélange avec un cons-

DRET ; .FRACTIONNEMENT DE L'INSAPONIFIABLE, p. 639 à 652

Page 23: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

648

mixture with a principal constituent (93 %) which when eluted has a retention similar to that of the phytosterols, and with three minor constituents which emerge shortly after the solvent peak and could be ketones of low molecular weight (diterpenes) (figure 7).

Note that this is an aromatic mixture. Thin-layer chromatography with aluena G using a-amyrin as a reference substance gave an R

f of 2.6 for the amyrin, a value close to that obtained under similar conditions with cycloartenone (34). We will soon be trying to confirm this identification using other methods (mass spectrometry).

QUANTITATIVE ANALYSIS

There have been numerous studies in the area of the quantitative analysis of lipids by thin-layer chromatography, for example those of Privett et al (35), Kuksis (36) and Skipski (37). If there is a sharp separation between two spots on the thin-layer plate, a quantitative analysis can be carried out. Two approaches are possible. The band or spot in question is removed from the plate and the substance it contains is extracted with a solvent and quantified by an appropriate technique off the plate; for precise results, larger samples are required, and preparative chromatography is used. Alternatively, analysis is done on the plate itself, with or without prior transformation of the substance but always with comparison to reference substances. We experimented with both approaches, using first gravimetry and then densitometry for quantification.

1. Gravimetry

The advantage of gravimetric analysis is that it gives the exact

Figure 6

Infrared spectrum of the constituents of fraction 9.

Figure 7

Gas chromatogram of Fraction 9

Legend

0.1 pl 10 % solution [rest illegibq

Page 24: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

648 16o Année No 10 '—' Octobre 1969 Caque

• 6 7 8 • • • 9 ' 10 11 . 12 • 13 14 • • e • y • • •• ut • • • • ' . ! . : :. . ! .̀....... ......4... . . ! ; .. .; ! . . ■•......: ,

. . . .A . . . .. . ..... •

kf

• a .•

! i il • , • - . s .. 1 ,. 111111 11111 ..- 1

• 1

' • ,

. IL ": - • - . .

'1 il . i.J -' 1 - -:-. 111111111V11111111111MINCIIIIIIMMIZZ : I .1.7 -31drin i... nunsimariputtaniunuarimunta .:

IIN 1110111. Kinve 1311 UMM innumui zuraminalesimummanumontakimmisentannummugiumnims midameintusimmattieramm...wzmunnumosionvinutzunent.:: . 1................ammummentuommuniumummummunummummulanummommsem. luilosennummuumminnullan2.affazonffinemmigoalumeenza,ee 'mi..

• ............ ...... IMIIIIMIfflitEffITEMIIRIFIRMERIIRMAIlifilM#11111181119iWilFeElMedif qitink1111e8111809.13:1».9. ,-•:' m• —•:.”— -',---•

Figure 6

?Spectre infra-rouge des constituants de la fraction 9

tituant principal (93 Vo) élué avec une rétention sem-blable à celle des phytostérols et trois constituants mineurs sortant peu après le pic du solvant et qui pourraient être des cétones de poids moléculaires inférieurs (diterpéniques) (Figure 7).

Figure 7

Chromatographie en phase gazeuse de la fraction 9

Notons que ce mélange est odorant. La chroma-tographie sur couche mince d'alumine G, avec

•comme terme de comparaison l'a-amyrine donne un • Rf amyrine = 2,6, valeur voisine de celle obtenue dans les mêmes conditions avec la cycloarténone

• (34). Prochainement, nous tenterons •de confirmer • cette identification par d'autres moyens (spectromé-

trie de masse).

ANALYSE QUANTITATIVE

De très nombreuses études concernent l'analyse quantitative des lipides sur couche mince. Nous ci-terons seulement les travaux de PRIVETT et coll. (35), KUKSIS (36) et SKIPSKI (37). Si sur la chroma-toplaque la résolution entre deux taches est complè-

•te il est alors possible d'entreprendre une analyse quantitative. On peut l'aborder en appliquant deux types de méthodes. D'une part, la bande ou la tache concernée est détachée de la plaque, on extrait la substance qu'elle contient en désorbant à l'aide d'un solvant et le dosage est effectué par une technique appropriée, hors de la plaque. L'obtention de résul-tats précis nécessitera des dépôts plus importants et la chromatographie deviendra préparative. D'autre part, on effectue la mesure in situ avec ou sans transformation préalable de la substance mais en ayant toujours recours à un étalonnage. Nous avons expérimenté ces deux possibilités, choisissant com-me méthode de dosage, dans le premier cas, la gravimétrie et, dans le second, la densitométrie.

1. Gravimétrie.

La gravimétrie présente l'avantage de rendre exac-tement compte des masses de substances réelle-

lisé ban par, 100 lopi soh, d'Ô! (35) tanc Usai Le> don bou Une balt L'ex

F.

2

— • ?.

: a ...a.... t . :

. • • • • • e ft-1 . • st?

11

SI

rE

c ■

fc li

.0 cc l'É

• d'

qL

Page 25: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

649

masses of the substances actually present. Despite the simplicity of this technique, however, several precautions must be taken if accurate results are to be obtained. First, bands must be properly delimited, which is possible only with detection reagents which are both sensitive and nondestructive. We used dichlorofluoroscein in a 0.2 % solution in alcohol and rhodamine 6G dissolved in water (38), the advantage of this colourant being that it is insoluble in ethyl ether. The plate is examined under ultraviolet light. Plates with a 250 p layer of silica gel G will not allow much more than 25 mg of sample in a continuous streak--an insufficient quantity for determining the content of minor (by weight) constituents such as hydrocarbons. We used plates with 0.5 mm of silica PF 254, an adsorbent specially designed for preparative separations, on which we applied up to 100 mg of unsaponifiables. Once again we developed the plates by double migration[il of the solvent system, with a prior washing with ether to remove organic impurities from the adsorbent (35). To completely desorb the substances, we next carried out a number of experiments with a microextractor and a microcolumn (39). The extractor is a hemolysis tube the bottom of which is partially open. A piece of defatted absorbent cotton is placed in the tube, followed by the powder to be extracted. An extension holds the tube betweenfq a condenser and a 100 ml Florence flask containing 20 ml of ether. Hot extraction is carried out for one hour, the solvent is evaporated, and the flask weighed until the weight is constant. The adsorbent removed from the plate is placed in a column with a diameter of 6 mm and a length of 200 mm. The column can be connected to a water aspirator by a tube, with the eluates being recovered in a small graduated tube. The total volume of ether travelling through the column is 10 ml. A partial vacuum is applied to speed up the flow toward the end of the evaporation process. The tube is evaporated, dried and weighed. Because of its speed and reproducibility, we adopted this technique to determine sterols, complete alcohols and hydro-carbons contained in the unsaponifiables of the oils we were studying (see table III).

2. Densitometry

A number of stains are detected on the chromatographic plate when suitable reagents are used. The colour of each stain indicates the substance, while the shape and intensity indicate the quantity, which can be determined by comparison with reference substances. Densitometry, which measures photometrically the adsorption or transmission of light through the translucent film and the spots, makes such a comparison possible.

Although this method is rapid and sensitive, several precautions must

TABLE III

Legend

1 CALIBRATION 2 SOY 3 SUNFLOWER 4 Desorption 5 Deposited 6 Recovered 7 GRAVIMETRY 0.5 mm plates with silica PF254

Page 26: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

.

649a

8 colza sterols

9 synthetic unsaponifiables: tetracosane, squalene, amyrin, oleic alcohol,sterols

10 micro-Soxhlet 1 hr11 microcolumn

12 unsaponifiables deposited13 desorption: micrQcolumn

14 sterols

15 terpene aliphatic alcohols16 hydrocarbons17 Deposited

18 Peak area19 DENSITOMETRY 0.25 mm plates with silica gel G20 colza sterols21 a-amyrin

22 oleic alcohol

23 unsaponifiables deposited

24 sterols

25 aliphatic alcohols26 terpene alcohols27 * not calculable

(commas to be read as decimal points)

Page 27: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

TABLEAU Ill

1.

?.

2. Densitornétrie

La plaque chromatographique révélée à l'aide de , réactifs appropriés montre un ensemble de taches,

chacune d'entre elles donnant par sa couleur une • indication qualitative sur la substance qu'elle repré-

sente. Par contre, la forme et l'intensité des taches sont en relation avec les quantités de substances déposées que l'on pourra évaluer par comparaison avec une gamme d'étalons. La densitométrie, en me-surant photométriquement l'adsorption ou la Vans-

• .mission de lumière à travers la couche translucide et les taches, permet d'établir cette comparaison.

• Malgré la rapidité d'exécution et la sensibilité de la méthode, pratiquement plusieurs précautions dol.-

£efi n'eau% le Année - N. 10 - Octobre 1969 649

ment présentes et, malgré la simplicité de sa mise en oeuvre, elle implique, pour être rigoureuse, plu-sieurs précautions. Il faut, en premier lieu, délimiter correctement les bandes de constituants et ceci n'est réalisable qu'avec des réactifs de détection à la fois sensibles et non destructifs. Nous avons utilisé la dichlorofluorescéine en solution alcoolique à 0,2 Vo et la rhodamine 6G en solution aqueuse (38), colorant ayant l'avantage d'être insoluble dans l'éther éthylique. La plaque est examinée sous lu-mière ultraviolette. Les plaques de silice G de 250 p. d'épaisseur n'admettent guère plus de 25 mg de dépôt en bande continue, quantité insuffisante lors-qu'il s'agit d'évaluer la teneur en constituants pon-. déralement mineurs (hydrocarbures). Nous avons uti-

évaporé, le ballon pesé à poids constant L'adsor-bant détaché de la plaque est placé dans une colon-ne de 6 mm de diamètre et 200 mm de longueur. On peut l'adapter sur un tube relié à une trompe à eau, les éluats étant recueillis dans un petit tube taré. Le volume total d'éther qui traverse la colonne est de 10 ml. on accélère l'écoulement en fin d'éva-poration en appliquant un léger vide. Le tube est évaporé, séché, pesé. Par sa rapidité et la répétabi-lité de ses résultats, nous avons adopté ce dispo-sitif.

Nous avons dosé de cette manière les stérols, les alcools totaux et les hydrocarbures contenus dans les insaponifiables que nous étudions (voir ta-bleau Ill)

• .0 . ri

5-; •

r

(I) ETALONNAGE 0 (0 COLZA SOYA TOURNESOL

a. Substance (leorption Déposé Récupéré

mg mg mg mg % mg %

• f.:•, atérols colza e • . (:)

niorosoxblet 10 ' 9,8 insaponifiable déposé 106

1 h 575 52

4,7 qpdésorption 8 2 3.8 miorocolonne id id 1 micr000lonne 10 9 ' 7 ei` stérols 54.1 51 . 3715 53.6 29 55,9

el g (0 2,5 2,2 AZelcoole aliphatiques

0,8 v...'"" terp 1 énique' 9,6 9 12, 16,5 14,7 28,2 e)

d:3 *t 1

eigne. @hydrocarbures 9,4 8,7 9 12 3,8 7,3

tétr000mene' n'i°r°e°1°"° 2,5 2,3 g squalèno 7 6,7 1 amyrine 8,1 26,1 P al000luléiquo 21

stérols 65 62,8.

Substanoe Dépood& Surreco pic e.9 liff

he Hun2 e . Ceols cOlZa 5 115 • inoanonifiable déposé 30 28 35

10 170 41 ee,

252 • stérols 14,5 48,5 13,8 49.3 18 51,5

15 e:) Q.-.1 m 20 338 es alcools aliphatique» * 2 7,1 6,8 19,3

ti, E ae 5 84 alcool., terpéniques 3,3 11 3,-2511,5 4,2 12

cc 10

15 174

' 273 g

20 360

. non calculable '

n alcoçiRléique 5 37 o 10 72 H 15 108 a

20 164

lisé des plaques de 0',5 mm de silice PF 254, adsor-bant spécialement élaboré pour les séparations pré-paratrves sur lesquelles nous avons déposé jusqu'à 100 mg d'insaponifiable. Nous avons toujours déve-loppé les plaques par double migration du système solvant avec au préalable un lavage à l'éther afin d'éliminer les impuretés organiques de l'adsorbant

*.(35). Ensuite, pour désorber complètement les subs-tances, nous avons réalisé plusieurs expériences uti-lisant un microextracteur ou une microcolonne (39). L'extracteur est constitué par un tube à hémolyse dont le fond est en partie ouvert ; on y place une bourre de coton dégraissé, puis la poudre à extraire. Une allonge le maintient entre un réfrigérant et un ballon de 100 ml, ce dernier contenant 20 ml d'éther. L'extraction à chaud dure 1 heure, le solvant est

FRACTIONNEMENT DE L'IN. SAPONIFIABLE, p. 639 à 652

(j)

er-1.,:s".7.,-;temme:.77,6.1vca.iltmWeItzemte,?, ■Nteteze.e41Ntelereer;1;itleritateAteAtemi -i.

Page 28: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

650

be taken in order to obtain correct results and achieve good reproducibility.Peifer (40) was the first to use densitometry to determine the cholesterol

present in lipid extracts. Blanck et al (41) describe the potential of this

method for quantitative analysis of lipids. 'Fédeli et al (42) recently usedit to determine some of the compounds present in unsaponifiable matter.

Charring, the conversion of organic matter to elementary carbon, should

be as complete as possible. It is carried out at a high temperature in the

presence of an oxidizing agent. The reaction yield will depend on the

properties of the substance being oxidized as well as on the reagents used

and the operating conditions.

Privett et al (43) point out that spot intensity varies with theunsaturation of the compounds, and that a charring temperature should be

chosen which will in each case ensure sufficient oxidation while limitingevaporation. A temperature of no more than 200°C would be suitable. Theoxidant should not be too strong, for, as Gent (44) points out, the

reaction will continue, producing carbon dioxide. The following reagents in

spray form have been proposed: 50 % phosphoric acid (45), 50 % sulphuric

acid and sulphuric acid - potassium permanganate (46), but the mostreproducible results have been obtained with the chromatosulphuric cleaningsolution, adopted with modifications by Blanck et al (41), Kaufmann et al(47) and Naudet et al (48). The latter points out that densitometry isparticularly suitable for bands located halfway between the origin and thesolvent front. We therefore used it for bands of alcohols and sterols,which are located in the middle portion of the plate.

Plate thickness must be uniform and the spray homogeneous. Values for

these factors and for spraying time, oven temperature and temperature

regulation and heating time must all be set and controlled. Because of the

difficulties which we encountered in spraying correctly and identically eachtime, we adopted the solution proposed by Jones et al (49), which consistsin immersing the plate in a tank saturated with sulphuryl chloride, then

exposing it to water vapour before placing it in the oven. In this waywe obtained satisfactory results.

Densitometric analysis. The spots, once charred, absorb light. If the

plate is scanned at constant speed with a narrow beam of light, variations

in absorption can be recorded as the light travels across the plate. Fora uniform spot, the variations show up as a peak, the area of which isproportional to the quantity of the substance deposited. The photodensitometershould at all times measure only the light which passes through the spot, so

that, as Rondelet (50) suggested, deposits should be in the form of bands

whose length is less than that of the optical slit. The slit should be asnarrow as possible, since the optical density should be no greater than0.7 for the most intense spot. The differences in response for each

constituent require comparison with reference substances in each case. This

would appear to be the safest solution, though Downing (51) recently attempted

to obtain a complete analysis of a mixture using a single recording with asingle plate.

Page 29: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

Method

Plates (20 x 20) with a 250 p layer of silica gel G are first washed with ethyl ether to remove impurities. The reference substances (complete colza sterols, oleic alcohol, u-amyrin) are placed in a chloroform solution at a concentration of 1 mg/ml; the same procedure is used for the unsapon-ifiables of the three oils. The unsaponifiables--5, 10, 15 then 20 p--are then applied in succession in the form of bands 15 mm in length. A separate plate is prepared for each constituent to be determined (figures 8 and 9).

Figure 8

Plate for densitometric analysis of sterols

650a

T = sunflower (tournesol) S = soy C = colza

Page 30: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

nan (1:1

FR,

-

figure 8

'Plaque pour densitométrie des stérols

F. MORDRET

20

650 16^ Année — No 10 — Octobre 1969

vent être prises pour obtenir des résultats corrects et parvenir à une bonne répétabilité. PEIFER (40)

•est le premier à faire usage de la densitométrie pour évaluer le cholestérol présent dans des extraits lipidiques. BLANK et coll. (41) en décrivent les pos-sibilités pour l'analyse quantitative des lipides. Ré-cemment, FEDELI et coll (42) dosent ainsi quelques composés de l'insaponifiable.

La minéralisation, c'est-à-dire la transformation de la matière organique en carbone élémentaire, doit être aussi complète que possible. On opère à chaud en présence d'un réactif oxydant et le rendement de la réaction dépend à la fois des propriétés de la substance que l'on oxyde, des réactifs utilisés, des conditions opératoires.

PRIVETT et coll. (43) font remarquer que l'inten-sité des taches varie selon l'insaturation des com-posés et que, d'autre part, la température de carbo-nisation doit être choisie de façon à assurer dans chaque cas une oxydation suffisante pour une éva-poration réduite. Une température ne dépassant pas 200° C serait convenable et il paraît souhaitable de ne pas utiliser un oxydant trop puissant car, comme le précise V. GENT (44), la réaction se poursuit jus-qu'à la formation de gaz carbonique. Des formules de réactifs de pulvérisation ont été proposées : acide phosphorique à 50 Vo (45), acide sulfurique à 50 Vo, acide sulfurique-permanganate de potassium (46), mais les résultats les plus reproductibles sont obte-nus par le mélange sulfochromique adopté avec des variantes de concentration par BLANCK et coll. (41), KAUFMANN et coll. (47), NAUDET et coll. (48). Cet auteur signale du reste que la densitométrie est surtout applicable aux bandes situées à mi-distance entre le point de départ et le front du solvant.

Nous l'avons utilisée pour les bandes de cons-tituants situées dans la partie médiane de la plaque (alcools, stérols). Certains facteurs comme la régu-larité d'épaisseur des plaques, l'homogénéité de l'aé-rosol, la durée de pulvérisation du réactif, la tempé-rature de l'étuve, sa régulation thermique et le temps pendant lequel la plaque y séjourne, devront être définis et contrôlés. Les difficultés que nous avons rencontrées pour pulvériser correctement et d'une façon toujours identique font que nous avons adopté la solution proposée par D. JONES et coll. (49), qui consiste à plonger la plaque dans une cuve saturée de chlorure de sulfuryle, puis à l'exposer à la vapeur d'eau avant de la placer dans l'étuve. Nous avons ainsi obtenu des résultats satisfaisants.

La mesure densitométrique. Les taches une fois minéralisées absorbent la lumière et si la plaque est explorée à vitesse constante par un mince pin-ceau lumineux, il est possible d'enregistrer les va-riations d'absorption lors du déplacement. Celles-ci

se traduisent pour une tache régulière par un pic ' dont la surface est proportionnelle à la quantité de substance déposée. Le photodensitomètre à chaque instant ne doit mesurer que la lumière qui passe à travers la tache, d'où l'intérêt, comme le préconise RONDELET (50), de faire des dépôts sous forme de bandes dont la longueur devra être inférieure 'à cel-le de la fente lumineuse. La largeur de fente sera la plus faible possible compte tenu du fait que la densité optique ne doit pas être supérieure à 0,7 pour la tache la plus intense. La réponse différente de chaque constituant oblige à réaliser dans chaque cas une échelle d'étalonnage, ce qui semble la solu-tion la plus sûre malgré' une récente tentative de DOWNING (51) pour obtenir une analyse complète d'un mélange avec un seul enregistrement et sur une seule plaque.

Mode opératoire

Les plaques de silice G (20x20) de 250 p. d'épais-seur sont préalablement débarassées des impuretés par lavage à l'éther éthylique. Les étalons (stérols totaux de colza, alcool oléique, a amyrine) sont mis en solution dans le chloroforme à raison de 1 mg/ml. Il en est de même pour les trois insaponifiables. On dépose successivement en bandes de 15 mm de longueur 5, 10, 15, 20 pl d'insaponifiables. On con-fectionné une plaque pour chaque constituant à do-ser (Figures 8 et 9).

tenereM

Pt

Page 31: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

651

The plate is developed in a tank containing 100 ml of a hexane - ethyl ether mixture (1:1), then dried before being immersed in a tank containing 30 ml of sulphuryl chloride in three crystallizers, where it is left exactly 5 minutes. It is then exposed for one minute to water vapour on a steam bath. Finally, it is placed in a 1800 oven for 30 minutes. The plate is read with a Vernon recording photometer. For each reference substance we plotted a calibration curve S = f (q) (fig 10).

With the help of this graph, we were able to determine the quantities of triterpene aliphatic alcohols and sterols contained in the unsaponifiable matter in each of the three oils.

CONCLUSION

Fractionation is an indispensable first stage in the identification and quantification of the various constituents of a complex mixture. Whichever chromatographic technique is used (column or 20 x 20 plate), it is difficult to obtain pure fractions because of the slight differences in polarity between related groups and, within a given "family" of constituents, the continuous

Figure 9

Densitometric record

Legend

1 VERNON INTEGRATING RECORDING PHOTOMETER 2 COLZA STEROLS 3 STEROL BANDS 4 Quantities of unsaponifiable matter applied 5 Colza Soy Sunflower

Figure 10

Calibration curves for densitometric analysis

Legend

1 a-amyrin 2 Colza sterols 3 Oleic alcohol

r

Page 32: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

eakede 16. Année — No 10 — Octobre 1969 651

01 IMI ...... 1.11,1 VIRNON

ce.tra

eNOTOMIttal INTLORATIUll afelre

ieweta.

Amyrine

Stérols Colza.

8

300

200

Alcool CD oléi9uft

d00

5 do Figure 10

Courbes d'étalonnage pour analyse par densitoMétrie

15 20 pc

Figure 9

.Enregistrement densitométrique

dans une cuve contenant 30 ml de chlorure de sul-furyle répartit en 3 cristallisoirs. Elle y séjourne exac-tement 5 minutes. Elle est ensuite exposée 1 minute à la vapeur d'un bain-marie bouillant. On la place 30 minutes dans une étuve à 180°. La lecture de la plaque est faite à l'aide d'un photomètre enregis-treur VERNON. Pour chaque référence, nous avons construit une courbe d'étalonnage S = f (q) (fig. 10)

Nous avons po, grâce à ce graphique, déterminer les quantités d'eools aliphatiques triterpéniques et stérols contenue dei:1S 'chaque insaponifiable.

CONCLUSION

Le fractionnement est une première étape indis-pensable dari g un travail analytique qui se propose d'identifier ef de doser les différents constituants d'un mélange complexe. Quelle que soit la techni-que chromatographique utilisée (colonne ou plaque de 20), l'obtention de fractions ,pures se heurte à

La plaque est développée dans une cuve conte-nant 100 mi d'un mélange hexane-oxyde d'éthyle (1:1). Ensuite on la sèche avant de la replonger

des difficultés de séparation provenant à la fois des faibles différences de polarité entre groupes voisins et, au sein d'une mème « famille » de constituants,

FRACTIONNEMENT DE L'INSAPONIFIABLE, p. 639 à 652 •

Page 33: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

652

variation of physicochemical properties with chain length and saturation.

Quite often, purification is necessary, and there will be an advantage inchromatography on a large plate. Given the diversity in the nature and

proportion of the constituents of the unsaponifiable matter, a completequantitative analysis will involve not only general methods but also

specific determination methods based on a particular reaction or a

characteristic property of the constituent.

BIBLIOGRAPHY

(Manuscript received by the editors on 4/7/1969)

Page 34: ARCHIVES - Fisheries and Oceans Canadadfo-mpo.gc.ca/Library/114837.pdf · 641 mixture under standard conditions. Hesse's (13) method, which uses differential colorimetry to measure

nr

f.,

652 16^ Année -. N° 10 - Oct,,hre 1969

à la variation. continue des propriétés physicochi-miques avec l'augmentation de longueur de chaînéet l'insaturation. Bien souvent, une purification de-vient nécessaire et la chromatographie sur plaquede grande dimension sera mise en œuvre avec pro-fit. Etant donné la diversité de nature et de teneurdes constituants de l'insaponifiable, une analysequantitative complète fera non seulement appel àdes méthodes générales mais aussi •à des dosagesspécifiques s'appuyant sur une réaction particulièreou une propriété caractéristique du -constituant.

'BIBLIOGRAPHIE

(1) M. Walbecq, J.P. Wolff, Les constituants de l'insa-ponifiable, Journée d'Etude ITERG, 1965.

(2) W. Trappe, Z. Plrysiol. Chetn. 273 (1942) 177.(3) E. Lederer, Chromatographie en chimie organique et

biologique, Masson, Paris 1959. •(4) L. Fillerup, F. Mead, Pi-oc. Soc, Exp. Biol. Med.

(1953), 574-77.(5) A. Kuksis, J.M.R. Beveridge, J. Lipid. Res. 1

(1960), 311-20.

(6) P. Capella, G. de Zotti, Riv. ltal. Sost. Grasse (1961),198-202.

^(7) R.L. Hoffmann, H.A. Moser, C.D. Evan, J.C. Cowan,J. Amer. Oil Chein. Soc. 39 (1962), 323^7.

(8) F. Cruz Aunon, Bol. Inst. Na Invest. Agro. (Madrid),15 (1955), 187.

(9) C.H. Brieskorn, Archiv. Pharm. 299 (1966), 663-70.'(10) F. Knapp, R. Aexel, J. of Science Food 33 (1968),

159-162.

(.11)^ J. Eisner, D. Firestone, J. Ass. Off. Agr. Chein. 45(1962), 337-42.

(12) M. Naudet, F. Morot-Sir, G. Coste, Rev. fse Corpsgras 16 (1969), 259-268.

(13) G. Hesse, Attgeiv. Chein. 64 (1952), 105.(14) H.P. Kaufmann, A.K. Sen Gupta, Fette Seifen

Atrstr. 66 (1964), 461-66.

(15) F. Mordret, Rev. fse Corps gras 15 (1968), 389-97.(16) Norme Française NF T 60 205.(17) R. Guillaumin, J.F. Pertuisot, Rev. fse Corps gras 15

(1968), 85-91.

Mangold, D.C. Malins, J. Amer. Oil Chein.Soc. 37 (1960), 383-85.

(19) P. Capella, E. Fedeli, M. Cirimèle, A. Lanzani,G. Jacini, Riv. Ital. Sost. Grasse 40 (1963), 645-48.

(20) A. Karleskind, Chimie Anal. 49 (1967), 86-89.(21) F. Mordret, Rev. fse Corps gras 14 (1966).

C

(22) E. Stahl, Dunnschicht Chromatographic - SpringerVerlag 1967.

(23)• R.A. de Zeeuv, J. of Cirrotnatoy. 32 (1968), 43-52.

(24P H.O. Schmid, L.L. Jones, H.K. Mangold, J. LipidRes. 8 ( 1967), 692-3.

(25),K.J. Whittle, J.F. Pennock, Atrtrlyst 92 (1967), 423-30.

115-i50.(27) G. Jurriens, Chem. Weekblad 61 (1965), 257-64.'(28).A. Karleskind, Chimie 'Anal. 50. (1968), 223-5.(29) J. Avignan, Goodman, Steinberg, J. Lipid. Res. 4

(1963), 100.

(30) C.P. Freeman, D. West, J. Lipid. Res. 7 (1967),324-7.

1(31) S. Huneck, J. of Clironrat. 7 (1962), 564-7.(32) T. Murakami, H. Itokawa, F. Uzuki, N. Savada,

Chem. Pharm. Bull. (Tokyo), 13 (1965), 1346.

(33) J. 'Mac Lean, J.B. Thomson, Archiv. Phartii. 295(1962), 865-8.

(34) R. Ikan, J. Chronrat. 14 (1964), 275.(35) O.S. Privett, M.L. Blank, D.W. Godding, E.C. Nickel],

1. Amer. Oil Chein. Soc. 42 (1965), 382-93.(^3a) A. Kuksis, Chronmtog. Rev. 8 (1966), 172-207.(37) V.P. Skipski, J.H. Good, M. Barclay, R.B. Reggio,

Biochem. Biophys. Acta 152 (1968), 10-19.

08)'G. Rouser, J. Amer. Oil Chem. Soc. 38 (1961), 565. .

(39)' M.L. Cuzner, A.N. Davison, J. Chromatog. 27 (1967),388-97.

(40) J.J. I?eifer, Mikloc/ritn. Acta 529 (1962).(41)^ M:L. Blanck, J.A. Schmit, O.S. Privett, J. Amer. Oil

Chem. Soc. 41 (1964), 371-76.(42) E. Fedeli, F. Camurati, Riv. *Ital. Sos. Grasse 45

(1969), 97-101.

(03) O.S. Privett, M.L. Blanck, J. Amer. Oil Chein. Soc.39 (1962), 520.

(44) C.M. Van Gent, Congrès International des Méthodesde Séparation, Heidelberg 1967, 344-50.

(45) C.B. Barret, Clrem. Ind. (1962), 1050.

(46)` D.C. Leegwater, Con. J. Physiol. 40 ( 1962), 847.

(47).H.P. Kaufmann, K.O. 1blukherige, Fette Self enAttstrich. 67 (1965), 183-7.

(48) M. Naudet, J. Pasero, S. Biasini, Rev. Ise Corps gras12 (1965), 523-34.

(49), D. Jones, D.E. Bowyer, G.A. Gresham, A.N. Howard,J. of Clrron:at. 24 (1966), 226-7.

. (50) Rondelet, Clu•om. Symp. III, Bruxelles (1964), 211..D.T. Downing, J. of Chromat. 38 (1968), 91-99.

(Manuscrit reçu à la Rédaction le 4-7-1969).

(26) S. Kuzdzal-Savoie, Ann. Technol. Agric. 17 (1968),