Arch Uni Slides

Embed Size (px)

Citation preview

  • 8/18/2019 Arch Uni Slides

    1/92

    GARCH Models

    Eduardo Rossi

    University of Pavia

  • 8/18/2019 Arch Uni Slides

    2/92

    Empirical regularities

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 2

  • 8/18/2019 Arch Uni Slides

    3/92

    Empirical regularities

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 3

  • 8/18/2019 Arch Uni Slides

    4/92

    Empirical regularities

    GARCH models have been developed to account for empirical

    regularities in financial data. Many financial time series have a

    number of characteristics in common.

    •  Asset prices are generally non stationary. Returns are usually

    stationary. Some financial time series are fractionally integrated.

    •  Return series usually show no or little autocorrelation.

    •  Serial independence between the squared values of the series is

    often rejected pointing towards the existence of non-linear

    relationships between subsequent observations.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 4

  • 8/18/2019 Arch Uni Slides

    5/92

    Empirical regularities

    •  Volatility of the return series appears to be clustered.

    •  Normality has to be rejected in favor of some thick-tailed

    distribution.

    •  Some series exhibit so-called  leverage effect , that is changes in

    stock prices tend to be negatively correlated with changes in

    volatility. A firm with debt and equity outstanding typicallybecomes more highly leveraged when the value of the firm

    falls.This raises equity returns volatility if returns are constant.

    Black, however, argued that the response of stock volatility to the

    direction of returns is too large to be explained by leverage alone.

    •  Volatilities of different securities very often move together.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 5

  • 8/18/2019 Arch Uni Slides

    6/92

    Why do we need ARCH models?

    Wold’s decomposition theorem establishes that any covariance

    stationary  {yt}  may be written as the sum of a linearly deterministic

    component and a linearly stochastic with a square-summable,

    one-sided moving average representation. We can write,

    yt  = dt + ut

    dt   is linearly deterministic and  ut  is a linearly regular covariancestationary stochastic process, given by

    ut  = B (L) εt

    B (L) =∞i=0

    biLi

    ∞i=0

    b2i  

  • 8/18/2019 Arch Uni Slides

    7/92

    Why do we need ARCH models?

    E  [εt] = 0

    E  [εtετ ] =

    σ2ε  

  • 8/18/2019 Arch Uni Slides

    8/92

    Why do we need ARCH models?

    Now suppose that  yt   is a linear covariance stationary process with

    i.i.d. innovations as opposed to merely white noise. The

    unconditional mean and variance are

    E  [yt] = 0

    E y2t  = σ

    i=0

    b2i

    which are both invariant in time. The conditional mean is time

    varying and is given by

    E  [yt |Φt−1 ] =

    ∞i=1

    biεt−i

    where the information set is Φt−1  = {εt−1, εt−2, . . .}.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 8

  • 8/18/2019 Arch Uni Slides

    9/92

    Why do we need ARCH models?

    This model is unable to capture the conditional variance dynamics.In fact, the conditional variance of  yt   is constant at

    E (yt − E  [yt |Φt−1 ])2

    |Φt−1  = σ2ε .

    This restriction manifests itself in the properties of the k-step-ahead

    conditional prediction error variance. The  k -step-ahead conditional

    prediction is

    E  [yt+k |Φt ] =∞i=0

    bk+iεt−i

    and the associated prediction error is

    yt+k − E  [yt+k |Φt ] =k−1i=0

    biεt+k−i

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 9

  • 8/18/2019 Arch Uni Slides

    10/92

    Why do we need ARCH models?

    which has a conditional prediction error variance

    (yt+k − E  [yt+k |Φt ])

    2

    |Φt

     = σ2

    ε

    k−1i=0

    b2

    i

    E (yt+k − E  [yt+k |Φt ])2

    |Φt  = σ2εk−1

    i=0

    b2i   → σ2ε

    i=0

    b2i , as  k → ∞

    For any  k, the conditional prediction error variance depends only on

    k  and not on Φt.

    In conclusion, the simple ”i.i.d. innovations model” isunable to take into account the relevant information which

    is available at time  t.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 10

  • 8/18/2019 Arch Uni Slides

    11/92

    The ARCH(q) Model

    (Bollerslev, Engle and Nelson, 1994) The process  {εt (θ0)}  follows an

    ARCH (AutoRegressive Conditional Heteroskedasticity) model if 

    E t−1 [εt (θ0)] = 0   t = 1, 2, . . .   (1)

    and the conditional variance

    σ2t  (θ0) ≡  V art−1 [εt (θ0)] = E t−1

    ε2t (θ0)

      t = 1, 2, . . .   (2)

    depends non trivially on the  σ-field generated by the past

    observations:   {εt−1 (θ0) , εt−2 (θ0) , . . .} .

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 11

  • 8/18/2019 Arch Uni Slides

    12/92

    The ARCH(q) Model

    Let  {yt (θ

    0)}  denote the stochastic process of interest with

    conditional mean

    µt (θ0) ≡ E t−1 (yt)   t = 1, 2, . . .   (3)

    µt (θ0) and  σ2t  (θ0) are measurable with respect to the time  t − 1information set. Define the  {εt (θ0)}  process by

    εt (θ0) ≡ yt − µt (θ0) .   (4)

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 12

  • 8/18/2019 Arch Uni Slides

    13/92

    The ARCH(q) Model

    It follows from eq.(1) and (2), that the standardized process

    zt (θ0) ≡ εt (θ0) σ2t  (θ0)

    −1/2 t = 1, 2, . . .   (5)

    with

    E t−1 [zt (θ0)] = 0

    V art−1 [zt (θ0)] = 1

    will have conditional mean zero (E t−1 [zt (θ0)] = 0) and a time

    invariant conditional variance of unity.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 13

  • 8/18/2019 Arch Uni Slides

    14/92

    The ARCH(q) Model

    We can think of  εt (θ0) as generated by

    εt (θ0) = zt (θ0) σ2t  (θ0)

    1/2

    where  ε2t (θ0) is unbiased estimator of  σ2t  (θ0).

    Let’s suppose  zt (θ0) ∼ N ID (0, 1) and independent of  σ2t  (θ0)

    E t−1

    ε2t

     = E t−1

    σ2t

    E t−1

    z2t

     = E t−1

    σ2t

     = σ2t

    because z2t   |

    Φt−

    1   ∼ χ2

    (1).

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 14

  • 8/18/2019 Arch Uni Slides

    15/92

    The ARCH(q) Model

    If the conditional distribution of  zt   is time invariant with a finite

    fourth moment, the fourth moment of  εt   is

    ε4t

     = E 

    z4t

    σ4t

     ≥  E 

    z4t

    σ2t2

    = E 

    z4t

    ε2t2

    where the last equality follows from

    E [σ2t ] = E [E t−1(ε2t )] = E [ε

    2t ]

    ε4t

     ≥ E 

    z4t

    ε2t

    2

    by Jensen’s inequality. The equality holds true for a constantconditional variance only.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 15

  • 8/18/2019 Arch Uni Slides

    16/92

    The ARCH(q) Model

    If  zt  ∼ N ID (0, 1), then E 

    z4t

     = 3, the unconditional distribution forεt  is therefore leptokurtic

    E ε4t   ≥   3E ε

    2t

    2

    ε4t

    /E 

    ε2t2 ≥   3

    The kurtosis can be expressed as a function of the variability of the

    conditional variance.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 16

  • 8/18/2019 Arch Uni Slides

    17/92

    The ARCH(q) Model

    In fact, if  εt |Φt−1   ∼ N 

    0, σ2t

    E t−1

    ε4t

      = 3E t−1

    ε2t

    2

    ε4t

      = 3E 

    E t−1

    ε2t2

     ≥ 3

    E t−1

    ε2t2

    = 3

    ε2t2

    ε4t

    − 3

    ε2t

    2

    = 3E 

    E t−1

    ε2t

    2

    − 3

    E t−1

    ε2t

    2

    ε4t

      = 3

    ε2t2

    + 3E 

    E t−1

    ε2t2

    − 3

    E t−1

    ε2t2

    k   =  E 

    ε4t

    [E  (ε2t )]2  = 3 + 3E 

    E t−1

    ε2t2

    E t−1

    ε2t2

    [E  (ε2t )]2

    = 3 + 3V ar

    E t−1

    ε2t

    [E  (ε2t )]2   = 3 + 3

    V ar

    σ2t

    [E  (ε2t )]2   .

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 17

  • 8/18/2019 Arch Uni Slides

    18/92

    The ARCH(q) Model

    Another important property of the  ARCH  process is that the process

    is conditionally serially uncorrelated. Given that

    E t−1 [εt] = 0

    we have that with the Law of Iterated Expectations:

    E t−h [εt] = E t−h [E t−1 (εt)] = E t−h [0] = 0.

    This orthogonality property implies that the  {εt}  process is

    conditionally uncorrelated:

    Covt−h [εt, εt+k] =   E t−h [εtεt+k] − E t−h [εt] E t−h [εt+k] =

    =   E t−h [εtεt+k] = E t−h [E t+k−1 (εtεt+k)] =

    =   E t−h [εtE t+k−1 [εt+k]] = 0

    The ARCH model has showed to be particularly useful in modeling

    the temporal dependencies in asset returns.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 18

  • 8/18/2019 Arch Uni Slides

    19/92

    The ARCH(q) Model

    The  ARCH (q) model introduced by Engle (Engle (1982)) is a linearfunction of past squared disturbances:

    σ2t   = ω +

    q

    i=1

    αiε2t−i   (6)

    In this model to assure a positive conditional variance the parameters

    have to satisfy the following constraints:   ω > 0 e

    α1 ≥ 0, α2 ≥ 0, . . . , αq  ≥ 0. Defining

    σ2t   ≡ ε2t  − vt

    where  E t−1 (vt) = 0 we can write (6) as an  AR(q ) in  ε2t :

    ε2t   = ω + α (L) ε2t  + vt

    where  α (L) = α1L + α2L2 + . . . + αqL

    q.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 19

  • 8/18/2019 Arch Uni Slides

    20/92

    The ARCH(q) Model

    (1 − α(L))ε2t   = ω + vt

    The process is weakly stationary if and only if q

    i=1

    αi  

  • 8/18/2019 Arch Uni Slides

    21/92

    The ARCH(q) Model

    The process is characterised by leptokurtosis in excess with respect

    to the normal distribution. In the case, for example, of  ARCH(1)

    with  εt |Φt−1   ∼ N 

    0, σ2t

    , the kurtosis is equal to:

    ε4t

    /E 

    ε2t

    2

    = 3

    1 − α21

    /

    1 − 3α21

      (8)

    with 3α21  

  • 8/18/2019 Arch Uni Slides

    22/92

    The ARCH(q) Model

    The result is readily obtained:

    ε4t

     = 3E 

    σ4t

    ε4t

     = 3

    ω2 + α21E 

    ε4t−1

    + 2ωα1E 

    ε2t−1

    ε4t

      =   3

    ω2 + 2ωα1E 

    ε2t−1

    (1 − 3α21)

    =  3

    ω2 + 2ωα1σ

    2

    (1 − 3α

    2

    1)

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 22

  • 8/18/2019 Arch Uni Slides

    23/92

    The ARCH(q) Model

    substituting  σ2

    = ω/ (1 − α1):

    ε4t

     =  3

    ω2 (1 − α1) + 2ω2α1

    (1 − 3α21) (1 − α1)

      =  3ω2 (1 + α1)

    (1 − 3α21) (1 − α1)

    finally

    ε4t

    /E 

    ε2t2

    =  3ω2 (1 + α1) (1 − α1)

    2

    (1 − 3α21) (1 − α1) ω2

      =  3

    1 − α21

    1 − 3α21.   (9)

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 23

  • 8/18/2019 Arch Uni Slides

    24/92

    The ARCH Regression Model

    We have an ARCH regression model when the disturbances in a

    linear regression model follow an ARCH process:

    yt  = x′

    tb + εt

    E t−1 (εt) = 0

    εt |Φt−1   ∼ N 

    0, σ2t

    E t−1 ε2t  ≡ σ2t   = ω + α (L) ε2t

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 24

  • 8/18/2019 Arch Uni Slides

    25/92

    The GARCH(p,q) Model

    In order to model in a parsimonious way the conditional

    heteroskedasticity, Bollerslev (1986) proposed the Generalised  ARCH 

    model, i.e  GARCH(p,q):

    σ2t   = ω + α (L) ε2t  + β  (L) σ

    2t .   (10)

    where  α (L) = α1L + . . . + αqLq

    ,  β  (L) = β 1L + . . . + β  pL p

    .The  GARCH(1,1)   is the most popular model in the empirical

    literature:

    σ2t   = ω + α1ε2t−1 + β 1σ2t−1.   (11)

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 25

  • 8/18/2019 Arch Uni Slides

    26/92

    The GARCH(p,q) Model

    To ensure that the conditional variance is well defined in a

    GARCH (p,q ) model all the coefficients in the corresponding linear

    ARCH (∞) should be positive:

    σ2t   =

    1 −

     p

    i=1β iLi

    −1

    ω +

    q

    j=1αjε

    2t−j

    =   ω∗ +∞k=0

    φkε2t−k−1   (12)

    σ

    2

    t   ≥ 0 if  ω

    ≥ 0 and all  φk  ≥ 0.The non-negativity of  ω∗ and  φk  is also a necessary condition for the

    non negativity of  σ2t .

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 26

  • 8/18/2019 Arch Uni Slides

    27/92

    The GARCH(p,q) Model

    In order to make  ω∗ e {φk}∞

    k=0  well defined, assume that :

    i. the roots of the polynomial  β  (x) = 1 lie outside the unit circle,

    and that ω ≥ 0, this is a condition for  ω∗

    to be finite and positive.

    ii.   α (x) e 1 − β  (x) have no common roots.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 27

  • 8/18/2019 Arch Uni Slides

    28/92

    The GARCH(p,q) Model

    These conditions are establishing nor that  σ2t   ≤ ∞  neither thatσ2t∞

    t=−∞is strictly stationary. For the simple  GARCH(1,1)  almost

    sure positivity of  σ2t  requires, with the conditions (i) and (ii), that

    (Nelson and Cao, 1992),

    ω   ≥   0

    β 1   ≥   0

    α1   ≥   0 (13)

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 28

  • 8/18/2019 Arch Uni Slides

    29/92

    The GARCH(p,q) Model

    For the  GARCH(1,q)  and  GARCH(2,q)  models these constraints can

    be relaxed, e.g. in the  GARCH(1,2)  model the necessary and

    sufficient conditions become:

    ω   ≥   0

    0   ≤   β 1  

  • 8/18/2019 Arch Uni Slides

    30/92

    The GARCH(p,q) Model

    For the  GARCH(2,1)  model the conditions are:

    ω   ≥   0

    α1   ≥   0

    β 1   ≥   0

    β 1 + β 2   <   1

    β 21  + 4β 2   ≥   0 (15)

    These constraints are less stringent than those proposed by Bollerslev

    (1986):

    ω   ≥   0

    β i   ≥   0   i = 1, . . . , p

    αj   ≥   0   j  = 1, . . . , q     (16)

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 30

    GA C ( )

  • 8/18/2019 Arch Uni Slides

    31/92

    The GARCH(p,q) Model

    These results cannot be adopted in the multivariate case, where the

    requirement of positivity for σ2t  means the positive definiteness forthe conditional variance-covariance matrix.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 31

    T Y W

  • 8/18/2019 Arch Uni Slides

    32/92

    The Yule-Walker equations for the squared process

    A GARCH(p,q) can be represented as an ARMA process, given thatε2t   = σ

    2t   + υt, where  E t−1 [υt] = 0,  υt  ∈

    −σ2t , ∞

    :

    ε2

    t

      = ω +

    max( p,q)

    j=1

    (αj + β j) ε2

    t−

    j

     + υt − p

    i=1

    β iυt−iε2t   ∼ARMA(m,p) with  m = max( p, q ). We can apply the classical

    results of ARMA model.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 32

    T Y W

  • 8/18/2019 Arch Uni Slides

    33/92

    The Yule-Walker equations for the squared process

    Example: GARCH(1,1)

    σ2t   = ω + α1ε2t−1 + β 1σ

    2t−1

    replacing  σ2t   with  ε2t  − υt, we obtain

    ε2t  − υt  = ω + α1ε

    2t−1 + β 1(ε

    2t−1 − υt−1)

    hence

    ε2t   = ω + (α1 + β 1)ε2t−1 + υt − β 1υt−1

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 33

    The Yule Walker equations for the squared process

  • 8/18/2019 Arch Uni Slides

    34/92

    The Yule-Walker equations for the squared process

    We can study the autocovariance function, that is:

    γ 2 (k) = cov

    ε2t , ε

    2t−k

    γ 2 (k) = cov

    ω + mj=1

    (αj + β j) ε2t−j +

    υt −

     pi=1

    β iυt−i

    , ǫ2t−k

    γ 2 (k) =

    mj=1

    (αj + β j) cov

    ε2t−j, ε2t−k

    +cov

    υt − pi=1

    β iυt−i, ε2t−k

    (17)

    When  k   is big enough, the last term on the right of expression (17) is

    null.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 34

    The Yule Walker equations for the squared process

  • 8/18/2019 Arch Uni Slides

    35/92

    The Yule-Walker equations for the squared process

    The sequence of autocovariances satisfy a linear difference equationof order max ( p, q ), for  k ≥ p + 1

    γ 2 (k) = m

    j=1

    (αj + β j) γ 2 (k − j)

    This system can be used to identify the lag order  m and  p, that is the

     p  and  q  order if  q  ≥ p, the order  p  if  q < p.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 35

    The GARCH Regression Model

  • 8/18/2019 Arch Uni Slides

    36/92

    The GARCH Regression Model

    Let  wt  = 1, ε2t−1, · · · , ε2t−q, σ2t−1, · · · , σ2t− p′

    ,

    γ  = (ω, α1, · · ·  , αq, β 1, · · · , β  p) and  θ ∈ Θ, where  θ = (b′, γ ′) and Θ isa compact subspace of a Euclidean space such that  εt  possesses finite

    second moments. We may write the GARCH regression model as:

    εt  = yt − x′

    tb

    εt |Φt−1   ∼ N 

    0, σ2t

    σ2t   = w′

    tγ 

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 36

    Stationarity

  • 8/18/2019 Arch Uni Slides

    37/92

    Stationarity

    The process {εt}  which follows a GARCH(p,q) model is a martingale

    difference sequence. In order to study second-order stationarity it’s

    sufficient to consider that:

    V ar [εt] = V ar [E t−1 (εt)] + E  [V art−1 (εt)] = E 

    σ2t

    and show that is asymptotically constant in time (it does not depend

    upon time).A process  {εt}  which satisfies a GARCH(p,q) model with positive

    coefficient ω ≥ 0,  αi  ≥ 0  i = 1, . . . , q  ,  β i  ≥ 0  i = 1, . . . , p is covariance

    stationary if and only if:

    α (1) + β (1) 

  • 8/18/2019 Arch Uni Slides

    38/92

    Stationarity

    This is a sufficient but non necessary conditions for strict

    stationarity. Because ARCH processes are thick tailed, the conditionsfor covariance stationarity are often more stringent than the

    conditions for strict stationarity.

    A GARCH(1,1) model can be written as

    σ2t   = ω

    1 +

    ∞k=1

    ki=1

    β 1 + α1z2t−i

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 38

    Stationarity

  • 8/18/2019 Arch Uni Slides

    39/92

    Stationarity

    In fact,

    σ2t   = ω + σ2t−1

    α1z

    2t−1 + β 1

    σ2t−1 = ω + σ2t−2

    α1z2t−2 + β 1

    σ2t−2 = ω + σ

    2t−3

    α1z

    2t−3 + β 1

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 39

    Stationarity

  • 8/18/2019 Arch Uni Slides

    40/92

    Stationarity

    σ2t   =   ω + ω + σ2t−2 α1z2t−2 + β 1 α1z2t−1 + β 1=   ω + ω

    α1z2t−1 + β 1

    + σ2t−2

    α1z2t−2 + β 1

    α1z2t−1 + β 1

    =   ω + ω

    α1z

    2t−1 + β 1

    + ω

    α1z

    2t−1 + β 1

    α1z

    2t−2 + β 1

    +σ2t−3 α1z2t−3 + β 1 α1z2t−2 + β 1 α1z2t−1 + β 1

    finally,

    σ2t   = ω 1 +∞

    k=1

    k

    i=1

    α1z2t−i + β 1

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 40

    Stationarity

  • 8/18/2019 Arch Uni Slides

    41/92

    Nelson shows that when  ω > 0,  σ2t  

  • 8/18/2019 Arch Uni Slides

    42/92

    Forecasting volatility

  • 8/18/2019 Arch Uni Slides

    43/92

    Forecasting with a GARCH(p,q) (Engle and Bollerslev 1986):

    σ2t+k  = ω +

    qi=1

    αiε2t+k−i +

     pi=1

    β iσ2t+k−i

    we can write the process in two parts, before and after time  t:

    σ2t+k  = ω +n

    i=1

    αiε

    2t+k−i + β iσ

    2t+k−i

    +

    mi=k

    αiε

    2t+k−i + β iσ

    2t+k−i

    where  n = min {m, k − 1}  and by definition summation from 1 to 0

    and from  k > m  to  m  both are equal to zero.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 43

    Forecasting volatility

  • 8/18/2019 Arch Uni Slides

    44/92

    Thus

    E t σ2t+k

     = ω+n

    i=1

    (αi + β i) E t σ2t+k

    i+

    m

    i=k

    αiε2t+k

    i

     + β iσ2

    t+k−

    i .

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 44

    Forecasting volatility

  • 8/18/2019 Arch Uni Slides

    45/92

    In particular for a GARCH(1,1) and  k > 2:

    E t

    σ

    2

    t+k

      =

    k−2

    i=0 (α1 + β 1)

    i

    ω + (α1 + β 1)

    k−1

    σ

    2

    t+1

    =   ω

    1 − (α1 + β 1)

    k−1

    [1 − (α1 + β 1)]  + (α1 + β 1)

    k−1 σ2t+1

    =   σ2

    1 − (α1 + β 1)k−1

    + (α1 + β 1)

    k−1σ2t+1

    =   σ2 + (α1 + β 1)k−1

    σ2t+1 − σ

    2

    When the process is covariance stationary, it follows that  E t

    σ2t+k

    converges to  σ2 as  k → ∞.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 45

    The IGARCH(p,q) model

  • 8/18/2019 Arch Uni Slides

    46/92

    The GARCH(p,q) process characterized by the first two conditional

    moments:

    E t−1 [εt] = 0

    σ2t   ≡ E t−1 ε2t

     = ω +

    q

    i=1αiε

    2t−i +

     p

    i=1β iσ

    2t−i

    where  ω ≥ 0,  αi  ≥ 0 and  β i  ≥ 0 for all  i  and the polynomial

    1 − α (x) − β (x) = 0

    has  d > 0 unit root(s) and max { p, q } − d  root(s) outside the unitcircle is said to be:

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 46

    The IGARCH(p,q) model

  • 8/18/2019 Arch Uni Slides

    47/92

    •  Integrated in variance of order  d  if  ω  = 0

    •  Integrated in variance of order  d  with trend if  ω > 0.

    The Integrated GARCH(p,q) models, both with or without trend, are

    therefore part of a wider class of models with a property called”persistent variance” in which the current information remains

    important for the forecasts of the conditional variances for all horizon.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 47

    The IGARCH(p,q) model

  • 8/18/2019 Arch Uni Slides

    48/92

    So we have the Integrated GARCH(p,q) model when (necessarycondition)

    α (1) + β (1) = 1

    To illustrate consider the IGARCH(1,1) which is characterised by

    α1 + β 1  = 1

    σ2t   =   ω + α1ε2t−1 + (1 − α1) σ2t−1

    σ2t   =   ω + σ2t−1 + α1

    ε2t−1 − σ

    2t−1

      0 < α1 ≤ 1

    For this particular model the conditional variance  k  steps in the

    future is:

    E t

    σ2t+k

     = (k − 1) ω + σ2t+1

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 48

    Persistence

  • 8/18/2019 Arch Uni Slides

    49/92

    •  In many studies of the time series behavior of asset volatility the

    question has been how long shocks to conditional variance persist.

    •  If volatility shocks persist indefinitely, they may move the whole

    term structure of risk premia.

    •  There are many notions of convergence in the probability theory(almost sure, in probability, in  L p), so whether a shock is

    transitory or persistent may depend on the definition of 

    convergence.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 49

    Persistence

  • 8/18/2019 Arch Uni Slides

    50/92

    •  In linear models it typically makes no difference which of the

    standard definitions we use, since the definitions usually agree.

    •  In GARCH models the situation is more complicated.In the IGARCH(1,1):

    σ2t   = ω + α1ε2t−1 + β 1σ

    2t−1

    where  α1 + β 1  = 1. Given that  ε2t   = z

    2t σ

    2t , we can rewrite the

    IGARCH(1,1) process as

    σ2

    t  = ω + σ2

    t−

    1(1 − α1) + α1z2

    t−

    1   0 < α1  ≤ 1.

    When  ω = 0,  σ2t   is a martingale.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 50

    Persistence

  • 8/18/2019 Arch Uni Slides

    51/92

    Based on the nature of persistence in linear models, it seems that

    IGARCH(1,1) with  ω > 0 and  ω = 0 are analogous to random walks

    with and without drift, respectively, and are therefore natural modelsof ”persistent” shocks.

    This turns out to be misleading, however:

    •   in IGARCH(1,1) with  ω = 0,  σ2t   collapses to zero almost

    surely

    •   in IGARCH(1,1) with  ω > 0,  σ2t  is strictly stationary and ergodic

    and therefore does not behave like a random walk, since randomwalks diverge almost surely.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 51

    Persistence

  • 8/18/2019 Arch Uni Slides

    52/92

    Two notions of persistence.

    1. Suppose σ2t   is strictly stationary and ergodic. Let  F σ2t  be theunconditional cdf for  σ2t , and  F s

    σ2t

     the conditional cdf for  σ2t ,

    given information at time  s < t. For any  s F 

    σ2t

    − F s

    σ2t

     →  0

    at all continuity points as  t → ∞.  There is no persistence when

    σ

    2

    t

     is stationary and ergodic.2. Persistence is defined in terms of forecast moments. For some

    η > 0, the shocks to  σ2t  fail to persist if and only if for every  s,

    E sσ2η

    t  converges, as  t → ∞, to a finite limit independent of 

    time  s  information set.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 52

    Persistence

  • 8/18/2019 Arch Uni Slides

    53/92

    Whether or not shocks to

    σ2t

     ”persist” depends very much on

    which definition is adopted. The conditional moment may diverge to

    infinity for some  η, but converge to a well-behaved limit independent

    of initial conditions for other η, even when the

    σ2t

     is stationary and

    ergodic.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 53

    Persistence

  • 8/18/2019 Arch Uni Slides

    54/92

    GARCH(1,1):

    σ2t+1 = ω + α1ǫ2t  + β 1σ

    2t   = ω + σ

    2t

    α1z

    2t   + β 1

    σ2t   = ω

    1 +

    ∞k=1

    ki=1

    α1z2t−i + β 1

    σ2t   = ω + σ

    2t−1

    α1z

    2t−1 + β 1

    σ2t−1 = ω + σ

    2t−2

    α1z

    2t−2 + β 1

    σ2t   =   ω +

    ω + σ2t−2

    α1z

    2t−2 + β 1

    α1z

    2t−1 + β 1

    =   ω + ω α1z2t−1 + β 1 + σ2t−2 α1z2t−2 + β 1 α1z2t−1 + β 1=   ω + ω

    α1z

    2t−1 + β 1

    + ω

    α1z

    2t−1 + β 1

    α1z

    2t−2 + β 1

    +σ2t−3

    α1z

    2t−3 + β 1

    α1z

    2t−2 + β 1

    α1z

    2t−1 + β 1

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 54

    Persistence

  • 8/18/2019 Arch Uni Slides

    55/92

    E t−3

    σ2t

      =   ω

    t−(t−3)−1

    k=0

    (α1 + β 1)k

    +σ2t−3 (α1 + β 1) (α1 + β 1) (α1 + β 1)

    E s σ2t  = ω

    t−s−1

    k=0

    (α1 + β 1)k

    + σ2t−s (α1 + β 1)

    t−s

    E s

    σ2t

     converges to the unconditional variance of  ω/ (1 − α1 − β 1)

    as  t → ∞  if and only if  α1 + β 1  0 and  α1 + β 1  = 1

    E s

    σ2t

     → ∞  a.s. as  t → ∞. Nevertheless, IGARCH models are

    strictly stationary and ergodic.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 55

    The EGARCH(p,q) Model

  • 8/18/2019 Arch Uni Slides

    56/92

    •  GARCH models assume that only the magnitude and not the

    positivity or negativity of unanticipated excess returnsdetermines feature  σ2t .

    •  There exists a negative correlation between stock returns and

    changes in returns volatility, i.e. volatility tends to rise inresponse to ”bad news”, (excess returns lower than expected)

    and to fall in response to ”good news” (excess returns higher

    than expected).

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 56

    The EGARCH(p,q) Model

  • 8/18/2019 Arch Uni Slides

    57/92

    If we write  σ2t  as a function of lagged  σ2t   and lagged  z

    2t , where

    ε2t   = z2t σ

    2t

    σ2t   = ω +

    qj=1

    αjz2t−jσ

    2t−j +

     pi=1

    β iσ2t−i

    it is evident that the conditional variance is invariant to changes in

    sign of the  z′

    t

    s. Moreover, the innovations  z2

    t−

    j

    σ2

    t−

    j

     are not  i.i.d .

    •  The nonnegativity constraints on  ω∗ and  φk, which are imposed

    to ensure that  σ2t   remains nonnegative for all  t  with probability

    one. These constraints imply that increasing  z2t   in any period

    increases  σ2t+m   for all  m ≥  1, ruling out random oscillatory

    behavior in the  σ2t   process.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 57

    The EGARCH(p,q) Model

  • 8/18/2019 Arch Uni Slides

    58/92

    •  The GARCH models are not able to explain the observed

    covariance between  ε2t   and  εt−j . This is possible only if the

    conditional variance is expressed as an asymmetric function of εt−j .

    •  In GARCH(1,1) models, shocks may persist in one norm and die

    out in another, so the conditional moments of GARCH(1,1) may

    explode even when the process is strictly stationary and ergodic.

    •  GARCH models essentially specify the behavior of the square of 

    the data. In this case a few large observations can dominate the

    sample.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 58

    The EGARCH(p,q) Model

  • 8/18/2019 Arch Uni Slides

    59/92

    In the  EGARCH(p,q)  model  (Exponential GARCH(p,q))  put forwardby Nelson the  σ2t  depends on both size and the sign of lagged

    residuals. This is the first example of asymmetric model:

    ln

    σ2t

      =   ω +

     pi=1

    β i ln

    σ2t−i

    +

    q

    i=1

    αi [φzt−i + ψ (|zt−i| − E |zt−i|)]

    α1 ≡ 1,  E |zt| = (2/π)1/2given that  zt  ∼ N ID(0, 1), where the

    parameters  ω,  β i,  αi  are not restricted to be nonnegative. Let define

    g (zt) ≡  φzt + ψ [|zt| − E |zt|]

    by construction  {g (zt)}∞

    t=−∞  is a zero-mean, i.i.d. random sequence.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 59

    The EGARCH(p,q) Model

  • 8/18/2019 Arch Uni Slides

    60/92

    •   The components of  g (zt) are  φzt  and  ψ [|zt| − E |zt|], each with

    mean zero.

    •  If the distribution of  zt   is symmetric, the components are

    orthogonal, but not independent.

    •  Over the range 0 < zt  

  • 8/18/2019 Arch Uni Slides

    61/92

    •   If  ψ > 0 and  φ = 0, the innovation in ln

    σ2t+1

     is positive

    (negative) when the magnitude of  zt  is larger (smaller) than its

    expected value.

    •   If  ψ = 0 and  φ  0 and  φ

  • 8/18/2019 Arch Uni Slides

    62/92

    In the EGARCH model ln

    σ2t+1

     is homoskedastic conditional on  σ2t ,

    and the partial correlation between  zt  and ln

    σ2t+1

     is constant

    conditional on  σ2t

    .

    An alternative possible specification of the news impact curve is the

    following (Bollerslev, Engle, Nelson (1994))

    g(zt, σ2t ) = σ−2θ0t θ1zt1 + θ2 |zt|+σ−2γ 0t

      γ 1 |zt|

    ρ

    1 + γ 2 |zt|ρ  − E t

      γ 1 |zt|

    ρ

    1 + γ 2 |zt|ρ

    The parameters  γ 0  and  θ0  parameters allow both the conditional

    variance of ln

    σ2

    t+1

     and its conditional correlation with  zt  to varywith the level of  σ2t .

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 62

    The EGARCH(p,q) Model

  • 8/18/2019 Arch Uni Slides

    63/92

    If  θ1   0, the

    model downweights large  |zt|’s.

    Nelson assumes that  zt  has a GED distribution (exponential power

    family). The density of a GED random variable normalized is:

    f  (z; υ) =  υ exp − 1

    2 |z/λ|υ

    λ2(1+1/υ)Γ (1/υ)   − ∞ < z

  • 8/18/2019 Arch Uni Slides

    64/92

    where Γ (·) is the gamma function, and

    λ ≡

    2(−2/υ)Γ (1/υ) /Γ (3/υ)1/2

    υ   is a tail thickness parameter.

    z’s distribution

    υ = 2 standard normal distribution

    υ  2 thinner tails than the normal

    υ = ∞   uniformly distributed on

    −31/2

    , 31/2

    With this density,  E |zt| =  λ21/υΓ (2/υ)

    Γ (1/υ)  .

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 64

    The EGARCH(p,q) Model

  • 8/18/2019 Arch Uni Slides

    65/92

    The Generalized t  Distribution takes the form:

    εtσ−1

    t   ; η, ζ 

     =

      η

    2σtbζ 1/ηB (1/η,ζ ) [1 + |εt|η / (ζbησηt )]

    ζ +1/η

    where B (1/η,ζ ) ≡ Γ (1/η) Γ (ζ ) Γ ( 1/η + ζ ) denotes the beta function,

    b ≡ [Γ (ζ ) Γ ( 1/η) /Γ (3/η) Γ (ζ  − 2/η)]1/2

    and  ζη > 2,  η > 0 and  ζ > 0.  The factor  b  makes  V ar

    εtσ−1t

     = 1.

    The Generalized t  nests both the Student’s  t  distribution and the

    GED.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 65

    The EGARCH(p,q) Model

  • 8/18/2019 Arch Uni Slides

    66/92

    The Student’s t-distribution sets  η = 2 and  ζ  =   12  times the degree of freedom

    The GED is obtained for  ζ  = ∞. The GED has only one shapeparameter  η, which is apparently insufficient to fit both the central

    part and the tails of the conditional distribution.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 66

    Stationarity of EGARCH(p,q)

  • 8/18/2019 Arch Uni Slides

    67/92

    In order to simply state the stationarity conditions, we write the

    EGARCH(p,q) model as:

    1 −

     pi=1

    β iLi

    ln

    σ2t

     = ω +

    qi=1

    αiLi [φzt + ψ (|zt| − E |zt|)]

    ln

    σ2t

     =

    1 −

     pi=1

    β i

    −1

    ω +

    1 −

     pi=1

    β iLi

    −1  qi=1

    αiLi

    g (zt)

    ln

    σ2t

     = ω∗

    +

    ∞i=1

    ϕig (zt−i)

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 67

    Stationarity of EGARCH(p,q)

  • 8/18/2019 Arch Uni Slides

    68/92

    Given φ = 0 or  ψ = 0, thenln

    σ2t

    − ω∗

     

  • 8/18/2019 Arch Uni Slides

    69/92

    The first two moments of ln

    σ2t

    − ω∗ are  finite and time invariant :

    E ln σ2t − ω∗ = 0 for all  tV ar

    ln

    σ2t

    − ω∗

     = V ar (g (zt))∞i=1

    ϕ2i

    since  V ar (g (zt)) is finite and the distribution of 

    ln

    σ2t

    − ω∗

     isindependent of  t, the first two moments of 

    ln

    σ2t

    − ω∗

     are finite

    and time invariant, so

    ln

    σ2t

    − ω∗

     is covariance stationary if 

    ∞i=1ϕ

    2

    i  

  • 8/18/2019 Arch Uni Slides

    70/92

    Since ln

    σ2t

     is written in ARMA(p,q) form, when

    1 −

     p

    i=1β ix

    i

     and

      qi=1

    αixi

     have no common roots, conditions for strict stationarity of exp(−ω∗) σ2t

     and  {exp(−ω∗/2) εt}  are equivalent to all the roots

    of 1 − p

    i=1

    β ixi  lying outside the unit circle.

    The   strict stationarity  of 

    exp(−ω∗) σ2t

    ,  {exp(−ω∗/2) εt}  need

    not imply  covariance stationarity, since

    exp(−ω∗) σ2t

    ,

    {exp(−ω∗/2) εt}  may fail to have finite unconditional means and

    variances.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 70

    Stationarity of EGARCH(p,q)

  • 8/18/2019 Arch Uni Slides

    71/92

    For some distribution of  {zt}  (e.g., the Student t  with finite degrees

    of freedom),

    exp(−ω∗

    ) σ2

    t

     and  {exp(−ω∗

    /2) εt}  typically have nofinite unconditional moments.

    If the distribution of  zt  is GED and is thinner-tailed than the double

    exponential (ν > 1), and if 

    ∞i=1ϕ

    2

    i  

  • 8/18/2019 Arch Uni Slides

    72/92

    The  Non linear ARCH(p,q)  model (Engle - Bollerslev 1986):

    σγ t   = ω +

    qi=1

    αi |εt−i|γ  +

     pi=1

    β iσγ t−i

    σγ 

    t

      = ω +

    q

    i=1

    αi |εt−i − k|γ 

    +

     p

    i=1

    β iσγ 

    t−

    i

    for  k = 0, the innovations in  σγ t  will depend on the size as well as the

    sign of lagged residuals, thereby allowing for the leverage effect in

    stock return volatility.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 72

    Other Asymmetric Models

  • 8/18/2019 Arch Uni Slides

    73/92

    The Glosten - Jagannathan - Runkle model (1993):

    σ2t   = ω + pi=1

    β iσ2t−i +

    qi=1

    αiε

    2t−1 + γ iS 

    t−iε2t−i

    where

    S −t   =

    1   if εt  

  • 8/18/2019 Arch Uni Slides

    74/92

    The  Asymmetric GARCH(p,q)  model (Engle, 1990):

    σ2t   = ω +

    q

    i=1αi (εt−i + γ )2

    +

     p

    i=1β iσ2t−i

    The  QGARCH  by Sentana (1995):

    σ

    2

    t   = σ

    2

    + Ψ

    xt−

    q + x

    t−qAxt−

    q +

     p

    i=1β iσ

    2

    t−i

    when  xt−q  = (εt−1, . . . , εt−q)′

    . The linear term (Ψ′xt−q) allows for

    asymmetry. The off-diagonal elements of  A  accounts for interaction

    effects of lagged values of  xt  on the conditional variance. The

    QGARCH nests several asymmetric models.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 74

    The GARCH-in-mean   Model

  • 8/18/2019 Arch Uni Slides

    75/92

    The GARCH-in-mean (GARCH-M) proposed by Engle, Lilien and

    Robins (1987) consists of the system:

    yt  = γ 0 + γ 1xt + γ 2g

    σ2t

    + ǫt

    σ2t   = β 0 +

    q

    i=1αiǫ

    2t−1 +

     p

    i=1β iσ

    2t−1

    ǫt  | Φt−1 ∼ N (0, σ2t )

    When  yt  ≡ (rt − rf ), where (rt − rf ) is the risk premium on holding

    the asset, then the GARCH-M represents a simple way to model the

    relation between risk premium and its conditional variance.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 75

    The GARCH-in-mean   Model

  • 8/18/2019 Arch Uni Slides

    76/92

    This model characterizes the evolution of the mean and the variance

    of a time series simultaneously.

    The GARCH-M model therefore allows to analize the possibility of 

    time-varying risk premium.

    It turns out that:

    yt  | Φt−1  ∼ N (γ 0 + γ 1xt + γ 2g

    σ2t

    , σ2t )

    In applications,  g σ2t  =  σ

    2t ,  g σ

    2t  = ln σ

    2t  and  g σ

    2t  = σ

    2t   have

    been used.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 76

    The News Impact Curve

  • 8/18/2019 Arch Uni Slides

    77/92

    •  The news have asymmetric effects on volatility.•  In the asymmetric volatility models good news and bad news

    have different predictability for future volatility.

    •  The news impact curve characterizes the impact of past returnshocks on the return volatility which is implicit in a volatility

    model.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 77

  • 8/18/2019 Arch Uni Slides

    78/92

    The News Impact Curve

  • 8/18/2019 Arch Uni Slides

    79/92

    For the GARCH model the News Impact Curve (NIC) is centered on

    ǫt−1 = 0.

    GARCH(1,1):

    σ2t   = ω + αǫ2t−1 + βσ

    2t−1

    The news impact curve has the following expression:

    σ2t   = A + αǫ2t−1

    A ≡  ω + βσ2

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 79

    The News Impact Curve

    In the case of EGARCH model the curve has its minimum at

  • 8/18/2019 Arch Uni Slides

    80/92

    ǫt−1 = 0 and is exponentially increasing in both directions but withdifferent paramters.

    EGARCH(1,1):

    σ2t   = ω + β  ln

    σ2t−1

    + φzt−1 + ψ (|zt−1| − E |zt−1|)

    where  zt  = ǫt/σt. The news impact curve is

    σ2t   =

    A exp

    φ + ψσ   ǫt−1

      f or ǫt−1 > 0

    A exp

    φ − ψ

    σ  ǫt−1

      f or ǫt−1  0

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 80

    The News Impact Curve

  • 8/18/2019 Arch Uni Slides

    81/92

    •  The EGARCH allows good news and bad news to have differentimpact on volatility, while the standard GARCH does not.

    •  The EGARCH model allows big news to have a greater impact

    on volatility than GARCH model. EGARCH would have higher

    variances in both directions because the exponential curve

    eventually dominates the quadrature.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 81

    The News Impact Curve

  • 8/18/2019 Arch Uni Slides

    82/92

    The Asymmetric GARCH(1,1)  (Engle, 1990)

    σ2t   = ω + α (ǫt−1 + γ )2 + βσ2t−1

    the NIC is

    σ2t   = A + α (ǫt−1 + γ )2

    A ≡  ω + βσ2

    ω > 0, 0 ≤  β  0, 0 ≤ α

  • 8/18/2019 Arch Uni Slides

    83/92

    σ2t   = ω + αǫ2t  + βσ

    2t−1 + γS 

    t−1ǫ2t−1

    S −

    t−1 = 1   if ǫt−1   0

    A + (α + γ ) ǫ2t−1   if ǫt−1  0, 0 ≤  β  0, 0 ≤ α

  • 8/18/2019 Arch Uni Slides

    84/92

    The GARCH-in-mean (GARCH-M) proposed by Engle, Lilien and

    Robins (1987) consists of the system:

    yt  = γ 0 + γ 1xt + γ 2g

    σ2t

    + ǫt

    σ2t   = β 0 +

    q

    i=1αiǫ

    2t−1 +

     p

    i=1β iσ

    2t−1

    ǫt  | Φt−1 ∼ N (0, σ2t )

    When  yt  ≡ (rt − rf ), where (rt − rf ) is the risk premium on holding

    the asset, then the GARCH-M represents a simple way to model the

    relation between risk premium and its conditional variance.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 84

    The GARCH-in-mean   Model

  • 8/18/2019 Arch Uni Slides

    85/92

    This model characterizes the evolution of the mean and the variance

    of a time series simultaneously.

    The GARCH-M model therefore allows to analyze the possibility of 

    time-varying risk premium.

    It turns out that:

    yt  | Φt−1  ∼ N (γ 0 + γ 1xt + γ 2g

    σ2t

    , σ2t )

    In applications,  g σ2t  =  σ

    2t ,  g σ

    2t  = ln σ

    2t  and  g σ

    2t  = σ

    2t   have

    been used.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 85

    The News Impact Curve

  • 8/18/2019 Arch Uni Slides

    86/92

    •  The news have asymmetric effects on volatility.

    •  In the asymmetric volatility models good news and bad news

    have different predictability for future volatility.

    •  The news impact curve characterizes the impact of past returnshocks on the return volatility which is implicit in a volatility

    model.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 86

    The News Impact Curve

  • 8/18/2019 Arch Uni Slides

    87/92

    Holding constant the information dated  t − 2 and earlier, we can

    examine the implied relation between  εt−1  and  σ2t , with  σ2t−i  = σ2

    i = 1, . . . , p .

    This impact curve relates past return shocks (news) to current

    volatility.This curve measures how new information is incorporated into

    volatility estimates.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 87

    The News Impact Curve

  • 8/18/2019 Arch Uni Slides

    88/92

    For the GARCH model the News Impact Curve (NIC) is centered on

    ǫt−1 = 0.

    GARCH(1,1):

    σ2t   = ω + αǫ2t−1 + βσ

    2t−1

    The news impact curve has the following expression:

    σ2t   = A + αǫ2t−1

    A ≡  ω + βσ2

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 88

    The News Impact Curve

    In the case of EGARCH model the curve has its minimum at

    t 1 0 d i ti ll i i i b th di ti b t ith

  • 8/18/2019 Arch Uni Slides

    89/92

    ǫt−1 = 0 and is exponentially increasing in both directions but withdifferent paramters.

    EGARCH(1,1):

    σ2t   = ω + β  ln

    σ2t−1

    + φzt−1 + ψ (|zt−1| − E |zt−1|)

    where  zt  = ǫt/σt. The news impact curve is

    σ2t   =

    A expφ + ψ

    σ   ǫt−1

      f or ǫt−1 > 0

    A exp

    φ − ψ

    σ  ǫt−1

      f or ǫt−1  0

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 89

    The News Impact Curve

  • 8/18/2019 Arch Uni Slides

    90/92

    •  The EGARCH allows good news and bad news to have differentimpact on volatility, while the standard GARCH does not.

    •  The EGARCH model allows big news to have a greater impact

    on volatility than GARCH model. EGARCH would have higher

    variances in both directions because the exponential curve

    eventually dominates the quadrature.

    Eduardo Rossi   c   -   Econometria mercati finanziari (avanzato) 90

    The News Impact Curve

  • 8/18/2019 Arch Uni Slides

    91/92

    The Asymmetric GARCH(1,1)  (Engle, 1990)

    σ2t   = ω + α (ǫt−1 + γ )2 + βσ2t−1

    the NIC is

    σ2t   = A + α (ǫt−1 + γ )2

    A ≡  ω + βσ2

    ω > 0, 0 ≤  β  0, 0 ≤ α

  • 8/18/2019 Arch Uni Slides

    92/92

    σ2t   = ω + αǫ2t  + βσ

    2t−1 + γS 

    t−1ǫ2t−1

    S −

    t−1 = 1   if ǫt−1   0A + (α + γ ) ǫ2t−1   if ǫt−1  0, 0 ≤  β  0, 0 ≤ α