aqwa-training-sxd-9

Embed Size (px)

Citation preview

  • 7/24/2019 aqwa-training-sxd-9

    1/167

    2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

    2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

    AQWA Training Course

    Dr Shuangxing Du

    ANSYS Inc.

  • 7/24/2019 aqwa-training-sxd-9

    2/167

    2010 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary

    The topics covered in the training course are as follows:

    description of program capabilities

    theoretical background modelling techniques

    analysis procedure

    data requirements and preparation description of output and interpretation of results

    worked examples

    Topic

  • 7/24/2019 aqwa-training-sxd-9

    3/167

    2010 ANSYS, Inc. All rights reserved. 3 ANSYS, Inc. Proprietary

    AQWA Programs

    Structure and Capabilities of AQWA ProgramsAQWA LINE

    3-D diffraction & radiation analysis program for wave force and

    hydrodynamic property calculations; hydrostatic analysis

    AQWA LIBRIUM

    Structure equilibrium position and force balance calculations; eigen

    mode and dynamic stability analysis

    AQWA FER

    Spectral analysis of structure motion (wave frequency or/and drift

    frequency) and mooring tension in irregular waves

  • 7/24/2019 aqwa-training-sxd-9

    4/167

    2010 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary

    AQWA Programs

    AQWA NAUT Time domain program for wave frequency structure motion and

    mooring tension analyses in large waves

    AQWA DRIFT

    Time domain program for drift frequency and wave frequencystructure motion and mooring tension analysis in irregularwaves

    AQWA Graphical Supervisor (AGS)

    AQWA pre and post processor; on-line analysis

    AQWA WAVE Interface program to transfer wave loads from AQWA LINE to a

    FE model for structural analysis

  • 7/24/2019 aqwa-training-sxd-9

    5/167

    2010 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary

    General Relations between Programs

    LIBRIUM

    WAVE

    ASAS(FE model)

    ANSYSAGS

    FER NAUT DRIFT

    LINE

    EXCEL

  • 7/24/2019 aqwa-training-sxd-9

    6/167

    2010 ANSYS, Inc. All rights reserved. 6 ANSYS, Inc. Proprietary

    Moored Tanker

    Semi Sub

    Typical AQWA Models

  • 7/24/2019 aqwa-training-sxd-9

    7/167 2010 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary

    Transportation

    FPSO

    Spar

    Ship in channel

    Typical AQWA Models

  • 7/24/2019 aqwa-training-sxd-9

    8/167 2010 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary

    JACK-UP

  • 7/24/2019 aqwa-training-sxd-9

    9/167 2010 ANSYS, Inc. All rights reserved. 9 ANSYS, Inc. Proprietary

    FPSO+TLP CONCEPT

  • 7/24/2019 aqwa-training-sxd-9

    10/167 2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

    MANY SHIPS

  • 7/24/2019 aqwa-training-sxd-9

    11/167 2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

    SEMI-SUB

  • 7/24/2019 aqwa-training-sxd-9

    12/167 2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

    LIFTING

  • 7/24/2019 aqwa-training-sxd-9

    13/167 2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

    GREEN OCEAN ENERGY

  • 7/24/2019 aqwa-training-sxd-9

    14/167 2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

    ANSYS-to-AQWA Interface

  • 7/24/2019 aqwa-training-sxd-9

    15/167 2010 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary

    AGS mesh generation

  • 7/24/2019 aqwa-training-sxd-9

    16/167 2010 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary

    Force & Response Curves

    Shear Force & Bending Moment

    AGS Post-processing

  • 7/24/2019 aqwa-training-sxd-9

    17/167 2010 ANSYS, Inc. All rights reserved. 17 ANSYS, Inc. Proprietary

    Pressure contour

    Wave surface contour

    Diffracted wave surface

    AGS Post-processing

  • 7/24/2019 aqwa-training-sxd-9

    18/167 2010 ANSYS, Inc. All rights reserved. 18 ANSYS, Inc. Proprietary

    InstallationAQWA, AGS and AQWA-WAVEAQWA Manuals and examples

    AGS demonstration

    Open - Open/close, and save AQWA modelsEdit - Create and edit AQWA models

    Run - Perform an AQWA analysis on the presently loaded modelGraphs - Display and manipulate AQWA results graphicallyPlots - Display and edit AQWA models visuallyCable Dynamics - Define and analyze problems involving cable dynamics

    Help - Access to the online help system

  • 7/24/2019 aqwa-training-sxd-9

    19/167 2010 ANSYS, Inc. All rights reserved. 19 ANSYS, Inc. Proprietary

    AQWA Global Coordinate System

    AQWA Global Coordinate System is referred to as

    the Fixed Reference Axes (FRA):

    the origin lies in the still water

    plane

    the positive z axis is verticallyupwards

    a right handed system

    it is not related to the directions North, South, East and West

    0

    z

    y

    xW.L.

    Zp

  • 7/24/2019 aqwa-training-sxd-9

    20/167 2010 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary

    Hydrostatic

    Rigid body motions:Surge, Sway, Heave - translational

    Roll, Pitch, Yaw - rotational

    Archimedess principle

    Buoyancy of an immersed body = weight of the fluid displaced

    Hydrostatic pressure

    G: centre of gravity

    B: centre of buoyancy

    Buoyancy is the resultant of all hydrostatic force over wetted surface

    0Zp =

    0Zp =Z0

    G

    B

    BowStern Port side

    Starboard side x

    z

    y

  • 7/24/2019 aqwa-training-sxd-9

    21/167 2010 ANSYS, Inc. All rights reserved. 21 ANSYS, Inc. Proprietary

    Directions in AQWA

    The wave, wind and current directions are defined in AQWA

    as the directions which they are travelling towards.

    The direction is defined as the angle between the wave (orcurrent, wind) and the positive x axis measured anti-clockwise.

    Directions in AQWA are input and output in degrees.

    X axis

    Wave direction (or current, wind)

    positive angle

    Y

  • 7/24/2019 aqwa-training-sxd-9

    22/167 2010 ANSYS, Inc. All rights reserved. 22 ANSYS, Inc. Proprietary

    Phase Angle

    In AQWA, the phase angle ( in degrees) of aparameter defines the time difference (dt) from thetime when the wave crest is at the CoG of thestructure to the time when the parameter reaches its

    peak value. (dt= *T/360, where T is the waveperiod).

    A positive phase angle indicates that the parameter

    lags behind the wave.

  • 7/24/2019 aqwa-training-sxd-9

    23/167

    2010 ANSYS, Inc. All rights reserved. 23 ANSYS, Inc. Proprietary

    Waves in AQWA

    Wave Types:

    1) Airy Waves (linear wave)

    a = A cos (-t + kx)

    (: frequency in radians/sec; k: wave number)

    Used in AQWA LINE, LIBRIUM, FER, DRIFT, NAUT(optional)

    2) Stokes 2nd Order Wavesa = A cos (-t + kx) + 0.5 k A cos2(-t + kx)

    Used in AQWA NAUT by default

  • 7/24/2019 aqwa-training-sxd-9

    24/167

    2010 ANSYS, Inc. All rights reserved. 24 ANSYS, Inc. Proprietary

    Waves in AQWA

    Wave Forms:

    1) Regular Waves

    Used in AQWA LINE, NAUT (by default)

    2) Irregular Waves

    Defined by a wave spectrum and used in AQWALIBRIUM, FER, DRIFT, NAUT

    Imported time history of wave elevation

    used in AQWA DRIFT

  • 7/24/2019 aqwa-training-sxd-9

    25/167

    2010 ANSYS, Inc. All rights reserved. 25 ANSYS, Inc. Proprietary

    Waves in AQWA

    Wave spectrum types accepted in AQWA are:

    a. P-M spectrum

    b. JONSWAP spectrum

    c. User defined spectrumd. Gaussian spectrum for Cross Swell

    Irregular waves can be in the form of:

    a. Long crested waves; ORb. Short crested waves, ie a spread sea (only for AQWALIBRIUM and FER)

  • 7/24/2019 aqwa-training-sxd-9

    26/167

    2010 ANSYS, Inc. All rights reserved. 26 ANSYS, Inc. Proprietary

    Wind and current in AQWA

    Wind types accepted in AQWA are:

    a. Uniform windb. Ochi and Shin wind spectrumc.API wind spectrum

    d. NPD wind spectrume. User-defined wind spectrum

    Current types accepted in AQWA are:

    a. Uniform currentb. Profiled current velocity

  • 7/24/2019 aqwa-training-sxd-9

    27/167

    2010 ANSYS, Inc. All rights reserved. 27 ANSYS, Inc. Proprietary

    Wave Forces on Structures

    For Diffracting Structures (modelled with plate elements)

    - Incident wave force (Froude-Krylov force): from thepressure in the undisturbed waves.

    - Diffraction force: due to stationary structuredisturbing the incident waves.

    - Radiation force: due to structures oscillation which

    generates waves.

    - Drift force (net force due to high order effect)

  • 7/24/2019 aqwa-training-sxd-9

    28/167

    2010 ANSYS, Inc. All rights reserved. 28 ANSYS, Inc. Proprietary

    hydrodynamic forces on structures(1) on Diffraction elements

    Fluid force

    HydrodynamicHydrostatic

    Wave exciting force

    Ambient pressure

    (incident wave or

    Froude-Krylov force)

    Effect of structure

    on waves

    (Diffraction)

    Radiation force due

    to structure motion

    In-phase

    (Added Mass)

    Out-of-phase

    (Radiation

    damping)

    F() K.xMa().x C().x

  • 7/24/2019 aqwa-training-sxd-9

    29/167

    2010 ANSYS, Inc. All rights reserved. 29 ANSYS, Inc. Proprietary

    For Morison Structures (modelled with Morisonelements, eg TUBEs, DISCs)

    - Morison force (including drag) calculated

    using Morison equation.

    hydrodynamic forces on structures(2) on Morison elements

  • 7/24/2019 aqwa-training-sxd-9

    30/167

    2010 ANSYS, Inc. All rights reserved. 30 ANSYS, Inc. Proprietary

    Morison Force

    Equation for Morison force calculation

    For slender cylindrical elements (D/

  • 7/24/2019 aqwa-training-sxd-9

    31/167

    2010 ANSYS, Inc. All rights reserved. 31 ANSYS, Inc. Proprietary

    AQWA LINE - Introduction

    AQWA-LINE is a 3D diffraction and radiation analysis program

    Frequency domain

    Structures are described by a number of panels

    Source distribution approach (boundary integration method)A source is place at the centre of each panel and then the program solves forthe source strengths, subject to the boundary conditions:no flow through the hullno flow through the sea-bed

    a free surface condition

    Surface mesh

  • 7/24/2019 aqwa-training-sxd-9

    32/167

    2010 ANSYS, Inc. All rights reserved. 32 ANSYS, Inc. Proprietary

    AQWA LINE - Features

    Removal of irregular frequencies by auto-generated lid

    Multi-body hydrodynamic interactions (lid to suppress standing waves)

    Forward speed This enables the pressure and velocity to be found at any point

    Second order forces Mean drift forces:

    Far field momentum theory

    Near field pressure-motion integration method

    Full QTF matrix (difference & sum frequency components)

    AQWA-LINE provides hydrodynamic coefficients for use in other programs in theAQWA suite

  • 7/24/2019 aqwa-training-sxd-9

    33/167

    2010 ANSYS, Inc. All rights reserved. 33 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    Assumptions Ideal fluid, irrotational and incompressible small wave elevation

    Governing equation for the velocity potential

    Body boundary condition (Timman-Newman relations)

    )(02 == V

    jje

    j

    Umnin +=

    )(r

    ),,0(/)]([),,(

    ,0/)]([),,(

    ),,(

    ,),,(

    23654

    321

    654

    321

    nnUUxmmm

    UUxmmm

    nnn

    nnn

    s

    s

    =+=

    =+=

    =

    =

    rn

    n

    nr

    n

  • 7/24/2019 aqwa-training-sxd-9

    34/167

    2010 ANSYS, Inc. All rights reserved. 34 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    Linearized free surface condition

    Sea bed boundary condition

    Radiation conditionA physical condition to avoid mathematical ambiguity which couldresult in structure induced waves travelling in the wrong direction

    watershallowforbedseadzatz

    waterdeepforzwhen

    )(0

    0

    ==

    =

    02

    =

    gz

    e

  • 7/24/2019 aqwa-training-sxd-9

    35/167

    2010 ANSYS, Inc. All rights reserved. 35 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    Numerical method

    Linear superposition of 1st order potential components

    I for incident wave, d for diffracted wave,j =1,2,,6 for radiated wave in 6 degrees of freedom,xj: the structure motion for unit wave amplitude

    Forward speed effect: Encounter frequency

    : angle between incident wave and forward speed

    ,][ 6

    1

    tij

    j jdI

    eex

    =++=

    )cos1(

    g

    Ue =

  • 7/24/2019 aqwa-training-sxd-9

    36/167

    2010 ANSYS, Inc. All rights reserved. 36 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    Incident wave potential for finite water depth d

    in which k is the wave numberdefined by:

    Solution for diffracted and radiated wave potentialsusing pulsating source distribution

    )cosh(

    )](cosh[ )sincos(

    kd

    eedzkige

    tiyxikti

    I

    ++ +=

    )tanh(2 kdgk=

    dszyxGzyx

    bs

    = ),,;,,(4

    1),,(

  • 7/24/2019 aqwa-training-sxd-9

    37/167

    2010 ANSYS, Inc. All rights reserved. 37 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    Greens function (finite depth water, frequency domain):

    Database method used for efficient and accurate evaluation

    Minimum input frequency (rad/s): d: water depth

    )()(cosh)(cosh)(

    (2

    )()(cosh)(cosh)cosh()sinh(

    )(

    2

    11

    ),,;,,(

    022

    )22

    00

    '

    krJdkdzkdk

    ki

    drJdzddd

    e

    pv

    RR

    zyxG

    d

    +++

    +

    ++

    +

    +

    +=

    dg/*05.0

  • 7/24/2019 aqwa-training-sxd-9

    38/167

    2010 ANSYS, Inc. All rights reserved. 38 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    The source strength at each panel on the structure surfaceis assumed constant,

    calculated by solving the body boundary condition:

    For the diffraction potential, the induced normal velocity

    at the structure surface should negate that due to incident potential;

    For the radiation potentials, the induced normal velocities (in 6 degrees

    of freedom) should be the same as those due to structure motion.

    ds

    n

    zyxGzyx

    n

    zyx

    bs

    +=

    ),,;,,(

    4

    1),,(

    2

    1),,(

  • 7/24/2019 aqwa-training-sxd-9

    39/167

    2010 ANSYS, Inc. All rights reserved. 39 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    Pressure and 1st order wave force calculationHydrodynamic pressure on each panel can be calculated

    from the linearized Bernoulli equation:

    1st order wave forces are obtained by integratingthe pressure over the mean wetted body surface.

    Froude-Krylov and diffraction force

    Added mass and damping

    Restoring (hydrodynamic stiffness)

    Special cases

    dSx

    UinF dIS ejej b))(()( +

    +=

    dS

    x

    UinCiM jS eieijeeijae b )()()(2

    +=+

    tgwp =)1(

    dSwngK jbS iij =

    mgdSwngKmgdSwngKbSbS

    +== 42245115 ,

  • 7/24/2019 aqwa-training-sxd-9

    40/167

    2010 ANSYS, Inc. All rights reserved. 40 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    Second order forces

    Perturbation approach (: small number related to wave amplitude)

    If the 1st order motion/potential/force in the form of

    then the 2nd order force in

    mean 2nd order force components ( )

    ...)(2

    1 )2(2)1()0( +++=+= pppgZp t

    ...),,( )2(2)1()0( +++== XXXZYXX

    Different freq. components

    Sum freq. components

    )cossin()(1

    )1(tbtatF iiii

    N

    i

    +==

    ]})cos[(])sin[(

    ])cos[(])sin[({)( 1 1

    )2(

    tfte

    tdtctF

    jiijjiij

    jiijjiij

    N

    i

    N

    j

    ++++

    + == =

    ji =

    ii

    N

    i

    dF =

    =1

    )2(

  • 7/24/2019 aqwa-training-sxd-9

    41/167

    2010 ANSYS, Inc. All rights reserved. 41 ANSYS, Inc. Proprietary

    2nd order mean drift force calculation

    Far field solution (momentum conservation method):

    SR: vertical cylindrical boundary surrounding the structurein the flow field with a large radius R,

    : fluid volume surrounded by SR and the structure surface.

    - More accurate- Horizontal force/moment only- Single structure only (or multi-bodies without hydrodynamic interaction)

    SdpdSVVdtV

    SdpdVdt

    dF

    RR

    R

    S

    n

    S

    n

    S

    nstrc

    =

    =

    )2(

    Theory in AQWA LINE

  • 7/24/2019 aqwa-training-sxd-9

    42/167

    2010 ANSYS, Inc. All rights reserved. 42 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    Near field solution(pressure/motion integration method):

    WL: mean water line along the structure surface;Sb : mean structure wetted surface

    - Force/moment in 6 degrees of freedom for each structure- Multi-body hydrodynamic interaction

    ..

    22)2(

    ..).(

    5.05.0

    gs

    bS

    bSWLrstrc

    XRMdSnt

    X

    dSndlngF

    ++

    +=

  • 7/24/2019 aqwa-training-sxd-9

    43/167

    2010 ANSYS, Inc. All rights reserved. 43 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    Full Quadratic Transfer Function (QTF) Components at both difference and sum frequencies Each with in-phase and out-of- phase parts

    2-D plot of QTF(real)

    AGS -> File ->openGraph -> Function/processing

    -> Data processing -> Wave forces-> Full-coupled QTFs -> 2-D plot

    CQTF card in Options on Deck 0

    ( ) ( )[ ] ( ) ( )[ ]{ }

    ( ) ( )[ ] ( ) ( )[ ]{ } ++++++

    +++++=

    = =

    +

    = =

    +

    N

    i

    N

    jjijiijjijiij

    N

    i

    N

    jjijiijjijiij

    tQtQ

    tPtPtF

    1 1

    1 1

    )2(

    sinsin

    coscos)(

    jijiijP /),(

    1 2 j . n

    1

    2

    i

    n

    Diagonal: Mean drift force/unit wave of 2

  • 7/24/2019 aqwa-training-sxd-9

    44/167

    2010 ANSYS, Inc. All rights reserved. 44 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    similar to above

    potentialorder2nd..

    Momentum..

    onAccelerati).(

    Bernoulli.

    integralWaterline)cos(.

    )2(

    ..

    2

    1

    41

    41)(

    +

    +

    +

    +

    =

    bS

    jis

    j

    ibS

    ji

    bS

    WLjijiij

    dSn

    t

    XgRM

    dSntX

    dSn

    dlngP

    )(ijQ

  • 7/24/2019 aqwa-training-sxd-9

    45/167

    2010 ANSYS, Inc. All rights reserved. 45 ANSYS, Inc. Proprietary

    Theory in AQWA LINE

    Equation of motion in AQWA LINE

    The response X (RAO) of a structure in waves is calculatedby solving the equation of motionin the frequency domain for unit wave amplitude:

    where Ms is structure massMa is added mass (frequency dependent)C is damping (frequency dependent)

    K is hydrostatic stiffnessF is wave force (incident and diffracting forces).

    )()(])())(([ 2 FXKCiMM as =++

  • 7/24/2019 aqwa-training-sxd-9

    46/167

    2010 ANSYS, Inc. All rights reserved. 46 ANSYS, Inc. Proprietary

    Fluid forces on structures

    Fluid force

    HydrodynamicHydrostatic

    Wave exciting force

    Ambient pressure

    (incident wave or

    Froude-Krylov force)

    Effect of structure

    on waves

    (Diffraction)

    Radiation force due

    to structure motion

    In-phase

    (Added Mass)

    Out-of-phase

    (Radiation

    damping)

    F() K.xMa().x C().x= + +

  • 7/24/2019 aqwa-training-sxd-9

    47/167

    2010 ANSYS, Inc. All rights reserved. 47 ANSYS, Inc. Proprietary

    using ANSYS

    Install ANSYS-AQWA interface(1) copy anstoaqwa.mac to C:\Program Files\Ansys Inc\v110\ANSYS\APDL(2) open C:\Program Files\Ansys Inc\v110\ANSYS\APDL\start110.ans,

    insert *ABBR, AQWA, ANSTOAQWA

    run ANSYS

    Notes:(1) define geometry of wetand dry surface separately;Z-axis upwards;

    (2) SHELL63 for surface mesh,PIPE59 for tube;

    (3) check normal direction(blue: outside; pink: inside);

    (4) Click AQWA to outputAQWA data file;

    (5) COG and mass need to bemodified.

    Modelling (1)

  • 7/24/2019 aqwa-training-sxd-9

    48/167

    2010 ANSYS, Inc. All rights reserved. 48 ANSYS, Inc. Proprietary

    Using AGS (with AL****.LIN fi le)

    Notes on AL****.LIN fi le (seeAGS-Help for details):

    (1) each station starts from lowest point at centre plane;(2) all x-coordinates should be the same on each station;(3) max. 50 points on each station, condense points at high surface change;(4) input stations (max. 100) from stern to bow,

    only two stations are needed to define a parallel midbody section.

    run AGS(1) double clickAGS icon on screen;(2) Plots Select Lines Plan File (in Lines Plan Mesh Generation window)

    open to find the *.lin file to be opened;(3) Plot Lines (in Lines Plan Mesh Generation window) to show offset curves;(4) input two drafts; COG, mesh size (in Lines Plan Mesh Generation window) ,

    then Generate Mesh;(5) File Save *.DAT (in Lines Plan Mesh Generation window)

    to save the generated file.

    Create model (Approx. Dimensions: 200x40x15, mesh size:6)Notes: PMAS values in Deck 4 may need to be modified (data\lines\altank.lin)

    Modelling (2)

  • 7/24/2019 aqwa-training-sxd-9

    49/167

    2010 ANSYS, Inc. All rights reserved. 49 ANSYS, Inc. Proprietary

    AQWA File Names

    EveryAQWA file name has three parts:

    (1) file prefix (two characters) - a code to identify the programal LINEab LIBRIUMaf FERad DRIFT

    an NAUTaw WAVE

    (2) run identifier(up to six characters) - a name to identify the run

    (3) file extension (three characters)to identify the type of file (eg, .dat)

    Example: altank1.dat (input data), abtank1.lis (output list file)

  • 7/24/2019 aqwa-training-sxd-9

    50/167

    2010 ANSYS, Inc. All rights reserved. 50 ANSYS, Inc. Proprietary

    AQWA Global/User defined Systems

    AQWA Global Coordinate System (FRA): the origin lies in the still water plane

    the positive z axis is vertically upwards

    Right handed

    0

    Z

    XW.L.

    x

    z

    a

    COG

    ZLWL(deck2)

    ZCGE(deck7)

    User Defined SystemRight handed,oxy plane shifts vertically from OXY of FRA

    R St 1 2

  • 7/24/2019 aqwa-training-sxd-9

    51/167

    2010 ANSYS, Inc. All rights reserved. 51 ANSYS, Inc. Proprietary

    Run stages 1 2

    Use the model generated by AGS Be aware of warning messages

    Check al**.lis file (displacement, mass, stiffness) Check geometry throughAGS

    Run Stages 1-2

  • 7/24/2019 aqwa-training-sxd-9

    52/167

    2010 ANSYS, Inc. All rights reserved. 52 ANSYS, Inc. Proprietary

    Check geometry through AGS

    Zooming, Rotating, Shade, Showing diff panels, Numbering;

    Command: omit element -> Plot (to omit all the elements)

    select element 1 to 10 ->Plot (to display el#1-10 only)

  • 7/24/2019 aqwa-training-sxd-9

    53/167

    2010 ANSYS, Inc. All rights reserved. 53 ANSYS, Inc. Proprietary

    AQWA File Types

    Each AQWA run involves several files.

    The names of the files differ only in the file extension.

    ASCII INPUT FILES.dat input data file (LBDNF)

    .lin input file forAGS mesh generator

    .msd input mass distribution for BM/SF (AGS)

    .sfm input mass distribution for splitting forces (AGS)

    .wht a wave height time history with IWHT in Deck 13 (D)

    .wvt a wind velocity time history, no card needed (DN)

    .xft an external force time history acting on a structure

    no card needed (DN)

    .mor mooring description file with FILE in Deck 14 (BDNF)

  • 7/24/2019 aqwa-training-sxd-9

    54/167

    2010 ANSYS, Inc. All rights reserved. 54 ANSYS, Inc. Proprietary

    AQWA File Types

    INPUT/OUTPUT FILES (between stages).res restart file (binary, LBDNF)

    .hyd hydrodynamics file (binary, L)

    .eqp equilibrium position file (binary, B)

    .uss source strength file (binary, with LDOP in Deck 0, L)

    .pot potential file (binary, with LDOP in Deck 0, L)

    OUTPUT FILES.mes output message file (ASCII, LBDNF)

    .lis output listing file (ASCII, LBDNF)

    .pos output position file (binary, DN)

    .plt output graphic file (binary, LBDNF)

    .pac pressures at centroids (binary, L)

    .vac velocities at centroids (binary, L)

    See AQWA-Ref 1.3 for details

    I t D t ( d t) Fil

  • 7/24/2019 aqwa-training-sxd-9

    55/167

    2010 ANSYS, Inc. All rights reserved. 55 ANSYS, Inc. Proprietary

    Input Data (.dat) File

    ASCII text file containing all the input data necessary forthe Stages of Analysis about to be executed.

    in fixed format and must be entered using a text editor.

    an editor that indicates the column & line no. of

    the current cursor position is highly recommended.

    Note: A graphical user interface, which allows interactive data input in a user-friendlyenvironment, is currently under development.

  • 7/24/2019 aqwa-training-sxd-9

    56/167

    2010 ANSYS, Inc. All rights reserved. 56 ANSYS, Inc. Proprietary

    AQWA-LINE Example Data File

    Deck 0: overall

    administration parameters

    Deck 1: Node coordinates

    * 999 for PMAS node

    Deck 2: Element definitions

    Analysis Stages

    JOB MESH LINE

    TITLE MESH FROM LINES PLANS/SCALING

    OPTIONS REST ENDRESTART 1 2

    *Deck 1 Coordinates --------------

    01 COOR

    01 1 45.000 -45.000 0.000

    01 2 22.500 -45.000 0.000

    . . .

    01 511 146.000 0.000 0.000

    . . .

    END01 999 0.000 0.000 -10.620

    *Deck 2 Element Definitions -------------

    02 ELM1

    02SYMX

    02SYMY

    02QPPL DIFF 0 (1)( 1)( 2)( 12)( 11)

    . . . .02QPPL 0 (1)( 1)( 101)( 103)( 3)

    . . . .

    END02PMAS 0 (1)( 999)( 1)( 1)

    02 FINI

    Note: Symmetry card

    (1) Save pre-processing time

    (2) Save CPU time

    (3) Enlarge capability

    (4) But only for QPPL/TPPL

  • 7/24/2019 aqwa-training-sxd-9

    57/167

    2010 ANSYS, Inc. All rights reserved. 57 ANSYS, Inc. Proprietary

    *Deck 3 Material Properties - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

    03 MATEEND03 1 3.32100E8

    * Deck 4 Geometric Properties ---------------------------------------------------

    04 GEOM

    END04PMAS 1 3.6253E11 0.000000 0.000000 3.4199E11 0.000000 3.5991E11

    * Deck 5 Global Data ------------------------------------------------------------

    05 GLOB

    05DPTH 250.0

    05DENS 1025.0END05ACCG 9.806

    * Deck 6 Wave Frequencies and Directions ----------------------------------------

    06 FDR1

    06FREQ 1 6 0.10472 0.15708 0.25133 0.41888 0.52360 0.59840

    END06DIRN 1 3 0.00 45.00 90.00

    * Deck 7 Analysis Position ------------------------------------------------------

    07 WFS1END07ZCGE -10.6200

    *------------------------------------------------------------------------------

    08 NONE

    * 1 2 3 4 5 6

    *234567890123456789012345678901234567890123456789012345678901234567890

    AQWA-LINE Example Data File (cont)

    Deck 5: Defines the UNITSfor the analysis, seeApp. A

    In degrees, ascending order

    Deck 6: Analysis position

  • 7/24/2019 aqwa-training-sxd-9

    58/167

    2010 ANSYS, Inc. All rights reserved. 58 ANSYS, Inc. Proprietary

    Directions in AQWA

    Directions must be input in ascending sequence (41 max.):

    -180 to +180 degrees for a non-symmetric structure;

    0 to 180 degrees for a structure symmetric about x axis (SYMX);

    0 to 90 degrees for a structure symmetric about

    both x and y axes (SYMX and SYMY).

    y

    x

    v

  • 7/24/2019 aqwa-training-sxd-9

    59/167

    2010 ANSYS, Inc. All rights reserved. 59 ANSYS, Inc. Proprietary

    AQWA Data file format

    JOB MESH LINETITLE MESH FROM LINES PLANS/SCALING

    OPTIONS REST END

    RESTART 1 2

    4col 4col5 col5 col 10 cols 10 cols 10 cols

    01 COOR

    01 1 45.000 -45.000 0.000

    END01 999 0.000 0.000 -10.620Column 21

    02 ELM1

    02QPPL DIFF 0(1)( 1)( 2)( 12)( 11)

    06FREQ 1 6 0.10472 0.15708 0.25133 0.41888 0.52360

    Note: Most input data should be typed into the required columns !!!SeeAQWA-Reference Chapter 4 for details

  • 7/24/2019 aqwa-training-sxd-9

    60/167

    2010 ANSYS, Inc. All rights reserved. 60 ANSYS, Inc. Proprietary

    Listing (.lis) File

    ASCII text file containing most output data (in text form)

    from the Stages of Analysis which have just been executed.

    It can be examined using a text editor.

    ( )

  • 7/24/2019 aqwa-training-sxd-9

    61/167

    2010 ANSYS, Inc. All rights reserved. 61 ANSYS, Inc. Proprietary

    Restart (.res) File

    This is a binary file,

    written by all the AQWA programs,

    contains database associated with all the Stages of

    analysis which have so far been executed.

    Examples:

    If Stages 1 to 4 have been executed, it will contain:

    (1) model definition(2) hydrodynamic database

    (3) main analysis parameters

    H d d i ( h d) Fil

  • 7/24/2019 aqwa-training-sxd-9

    62/167

    2010 ANSYS, Inc. All rights reserved. 62 ANSYS, Inc. Proprietary

    Hydrodynamic (.hyd) File

    This is a binary file

    created byAQWA-LINE after the diffraction / radiation analysis (Stage 3).

    contains the hydrodynamic database from theAQWA-LINE run.

    Comparison of AL**.RES and AL**.HYD (afterAQWA-LINE Stage 3)

    restart file(RES) hydrodynamics file(HYD)

    model definition

    hydrodynamic database hydrodynamic database

    further run further run

    Used for AGS manipulate (ALDB in Deck 0,

    regenerate .HYD file (RDDB) FILE in Deck 6 )

    P iti Fil ( d )

  • 7/24/2019 aqwa-training-sxd-9

    63/167

    2010 ANSYS, Inc. All rights reserved. 63 ANSYS, Inc. Proprietary

    Position Files (.pos and .eqp)

    Both are binary files.

    AB***.eqp file: created by AQWA LIBRIUM stores the equilibrium positions of a system of structures.

    can be read in by FDN as start position(with an option RDEP in Deck 0).

    A****.pos file: created during a time domain analysis by DN

    stores the positions, velocities, etc of a system of structuresfor every time step.

    AGS Pl t Fil ( lt)

  • 7/24/2019 aqwa-training-sxd-9

    64/167

    2010 ANSYS, Inc. All rights reserved. 64 ANSYS, Inc. Proprietary

    AGS Plot File (.plt)

    This is a binary file

    created during a calculation stage (Stage 3 or 5)

    contains either:

    time history of forces and motions (DN) positions and forces during iteration

    towards equilibrium (B) forces and responses as a function of

    frequency (LF)

    forAGS use

    AQWA R t t St

  • 7/24/2019 aqwa-training-sxd-9

    65/167

    2010 ANSYS, Inc. All rights reserved. 65 ANSYS, Inc. Proprietary

    AQWA Restart Stages

    Stages: Categorize analysis procedures

    Can be run individually/in combination Data transfer through stages

    Stage 1 Model Definition, Decks 1 to 5

    Stage 2 Hydrodynamic Database, Decks 6 to 8

    Stage 3 Diffraction/Radiation Analysis* (L)

    Stage 4 Main Analysis Parameters Decks 9 to 20 (BDNF)

    Stage 5 Main Analysis* (BFDN)

    * Calculation Stages only

    St 1

  • 7/24/2019 aqwa-training-sxd-9

    66/167

    2010 ANSYS, Inc. All rights reserved. 66 ANSYS, Inc. Proprietary

    Stage 1

    Decks: Categorize input data

    Deck 1 COOR Node Coordinates

    Deck 2 ELM* Element Definitions

    Deck 3 MATE Material Properties

    Deck 4 GEOM Geometric Properties

    Deck 5 GLOB Global Constants

    Deck Header (compulsory)

    Depth, G, (water): UNITS

    Structure Number

    St 2

  • 7/24/2019 aqwa-training-sxd-9

    67/167

    2010 ANSYS, Inc. All rights reserved. 67 ANSYS, Inc. Proprietary

    Stage 2

    Deck 6 FDR* Regular Wave Definitions

    (1) frequencies and directions(2) copy, merge, edit the existing hydrodynamic database.

    Deck 7 WFS* Hydrodynamic Properties (wave freq. range)

    Hydrostatic Properties (stiffness and buoyancy)

    Analysis Position (ZCGE, can be replace by ZLWL in Deck2)

    Deck 8 DRC* Drift Force Coefficients

    * Structure Number

    Note: The hydrodynamic properties input in Stage 2 are used to

    modify or replace those calculated by AQWA-LINE (Stage 3)

  • 7/24/2019 aqwa-training-sxd-9

    68/167

    2010 ANSYS, Inc. All rights reserved. 68 ANSYS, Inc. Proprietary

    Stage 3

    This is the main AQWA-LINE analysis and is a calculationstage only.

    Note: The hydrodynamic properties input in Stage 2

    are used to modify or replace those calculated

    by AQWA-LINE (Stage 3)

    Stage 4

  • 7/24/2019 aqwa-training-sxd-9

    69/167

    2010 ANSYS, Inc. All rights reserved. 69 ANSYS, Inc. Proprietary

    Stage 4

    Deck 9 DRM* Drift Motion Parameters (drift freq.)

    (drag, added mass/damping)

    Deck 10 HLD* Hull Drag Coefficients(1) current/wind drag coefficients(2) external force by user_force.dll (with option FDLL)

    Deck 11 ENVR Environmental Parameters (wind and current)

    Deck 12 CONS Constraints (deactivate/constraint)

    Deck 13 SPEC Spectral Parameters(wave, wind spectrum / time history)

    WAVE Regular Wave Parameters (N)

    Deck 14 MOOR Mooring Line Definitions(mooring, fender, pulley, winch)

    * Structure Number

    Stage 4 (cont)

  • 7/24/2019 aqwa-training-sxd-9

    70/167

    2010 ANSYS, Inc. All rights reserved. 70 ANSYS, Inc. Proprietary

    Stage 4 (cont)

    Deck 15 STRT Starting Conditions (BFDN)

    Deck 16 TINT Time Integration Parameters (D,N)

    LMTS Iteration Parameters (B)

    Deck 17 HYDC Additional Hydrodynamic Parameters for Tubes

    (scaling & slamming factors , N)

    Deck 18 PROP Printing Options (for additional information)

    Deck 19/20 NONE Reserved for future use

    St 5

  • 7/24/2019 aqwa-training-sxd-9

    71/167

    2010 ANSYS, Inc. All rights reserved. 71 ANSYS, Inc. Proprietary

    Stage 5

    This is the main solution stage and is a calculation stage only.

    Deck 21 ENLD Element and nodal loads

    (on TUBEs, Stage 6, DN)

    AQWA Element Types

  • 7/24/2019 aqwa-training-sxd-9

    72/167

    2010 ANSYS, Inc. All rights reserved. 72 ANSYS, Inc. Proprietary

    AQWA Element Types

    Elements are defined in AQWA Deck 2:

    QPPL : Quadrilateral panel (diffracting or non-diffracting)

    TPPL : Triangular panel (diffracting or non-diffracting)

    TUBE : Tube element (circular cross section)

    STUB : Slender tube element (non-circular cross section allowed)PMAS: Point mass and inertia

    PBOY: Point buoyancy

    FPNT : Field point (for wave surface calculation)DISC : Circular disc with no thickness.

    Notes:(1) DIFF is needed for diffracting QPPL and TPPL elements;

    (2) ILID/VLID for defining external diffracting elements;

    Definition of other elements

  • 7/24/2019 aqwa-training-sxd-9

    73/167

    2010 ANSYS, Inc. All rights reserved. 73 ANSYS, Inc. Proprietary

    Define TUBE element

    See APP H

    Define DISC elements

    Program nameOB MESH NAUTTI TLE TUBES AND DI SCSOPTI ONS REST END

    RESTART 1 501 COOR010001 10. 0 0. 000 2. 000010002 10. 0 0. 000 0. 000010003 10. 0 0. 000 - 3. 000

    END01 999 0. 00 0. 000 - 0. 50002 ELM102TUBE ( 2) ( 1, 1) ( 2, 1) ( 1) ( 1)02DI SC ( 1) ( 3) ( 2) ( 3)02DI SC ( 1) ( 1) ( 2) ( 3)

    END02PMAS ( 1) ( 999) ( 2) ( 2)03 MATE03 1 1. 00E- 6

    END03 2 4025. 0004 GEOM

    04TUBE 1 1. 00 0. 05 0. 0004CONT 0. 75 1. 0004DI SC 3 1. 2004CONT 1. 14 1. 00

    END04PMAS 2 6000. 00 0. 00 0. 00 6000. 00 0. 0 4000. 00

    05 GLOB05DPTH 500. 005DENS 1025. 0

    END05ACCG 9. 806. . . . . .20 NONE

    Warnings in AQWA-LINE

  • 7/24/2019 aqwa-training-sxd-9

    74/167

    2010 ANSYS, Inc. All rights reserved. 74 ANSYS, Inc. Proprietary

    g Q

    General warnings

    requirements reason

    No. of elements 8000 diff. solution time

    12000 totalNormals point out modelling convention

    No gaps force balance

    Facets cannot cut surface solution requirement

    Dimensions < KR good practice

    Warnings in AQWA-LINE

  • 7/24/2019 aqwa-training-sxd-9

    75/167

    2010 ANSYS, Inc. All rights reserved. 75 ANSYS, Inc. Proprietary

    g Q

    Stage #1 checks (Geometric properties)

    Area ratio of adjacent elements < 3

    Aspect ratio > ,(c=1, for QPPL; c=2.3, for TPPL)

    Element centres at least onefacet radius apart

    Shape factor (parameter for the regularity of panel)

    < 0.2 warning

    < 0.02 fatal error

    Note: SeeAQWA-Course Appendix 3 for detail

    Csidelongest

    areaAR .

    2

    arearf

    Warnings in AQWA-LINE

  • 7/24/2019 aqwa-training-sxd-9

    76/167

    2010 ANSYS, Inc. All rights reserved. 76 ANSYS, Inc. Proprietary

    g

    Stage #2 checks (hydrodynamic)

    Longest side < 1/7 wavelength

    Fatal error if more than 5% fail

    Distance above sea bed must be > 0.5.rf(use non-diffraction elements otherwise)

    Warning if nodes not connected to anotherelement(for pressure contour, NPPP in Deck 0 overrides warning)

    Minimum wave frequency (rad/s) > dg /*.050

    AQWA-LINE run

  • 7/24/2019 aqwa-training-sxd-9

    77/167

    2010 ANSYS, Inc. All rights reserved. 77 ANSYS, Inc. Proprietary

    Run stages 1 - 3

    use generated model (altank1.dat altank2.dat) add LDOP, GOON option, check mass and inertia moments discuss .dat file discuss .lis file AGS to show results and functions

    Useful Options in AQWA-LINE (1)

  • 7/24/2019 aqwa-training-sxd-9

    78/167

    2010 ANSYS, Inc. All rights reserved. 78 ANSYS, Inc. Proprietary

    p ( )

    Following option cards can be used in Deck 0:

    DATA check input data (equivalent to Stages 1-2, LBDFN)

    GOON ignore non-fatal modelling rule violations (L)

    REST define restart stages (LBDFN)

    LDOP LOad OutPut - outputs .POT and .USS files needed for

    pressure calculations (e.g pressure plots, SF/BM) (L)

    PRCE PRint Card Echo for Decks 1 5 (LBDFN)PPEL Print Properties for each Element (LBDFN)

    Useful Options in AQWA-LINE (2)

  • 7/24/2019 aqwa-training-sxd-9

    79/167

    2010 ANSYS, Inc. All rights reserved. 79 ANSYS, Inc. Proprietary

    p ( )

    NPPP No Pressure Post-Processing - prevents nodalconnectivity warnings (L)

    CRNM Re-calculate RAOs (LF)

    NRNM Calculate nodal RAOs(L)

    NQTF Use near-field solution for drift force coefficients (L)

    CQTF Calculate QTF matrix (L)

    AQWA-LINE Post Processing

  • 7/24/2019 aqwa-training-sxd-9

    80/167

    2010 ANSYS, Inc. All rights reserved. 80 ANSYS, Inc. Proprietary

    AQWA-LINE Post Processing

    Wave surface contour plots

    Note:

    LDOP card in al*.dat file run AGS

    (1) double-clickAGS icon on screen;(2) File Open to input al*.res file;(3) Plots to show the model;(4) Wave Contours to show or calculate wave contour if not existing;(5) choose required waves (dir. freq. in Wave Surface Contours window);(6) tick Cycle to animate;(7) point Cursorto a specified location to show the numerical value at that point.

    AQWA-LINE Post Processing

  • 7/24/2019 aqwa-training-sxd-9

    81/167

    2010 ANSYS, Inc. All rights reserved. 81 ANSYS, Inc. Proprietary

    AQWA-LINE Post Processing

    Air Gap

    Note: LDOP card in al*.dat file run AGS

    (1) double-clickAGS icon on screen;(2) File Open to input al*.res file;(3) Plots to show the model;

    (4) Wave Contours to show or calculate wave contour if not existing;(5) choose required waves (dir. freq. amp. in Wave Surface Contours window);(6) RAO Motion Ref. Height(Z) above SWL Include RAO motion;(7) tick Cycle to animate;(8) point Cursorto a specified location to show the numerical value at that point.

    AQWA-LINE Post Processing

  • 7/24/2019 aqwa-training-sxd-9

    82/167

    2010 ANSYS, Inc. All rights reserved. 82 ANSYS, Inc. Proprietary

    AQWA-LINE Post Processing

    Pressure Contours

    Note:

    run AGS

    (1) double-clickAGS icon on screen;(2) File Open to input al*.res file;

    (3) Plots to show the model;(4) Select (in Model Visualization window) Pressure Contours;

    (5) choose required waves (dir. freq. in Pressure Contours window) Time=t to animate;(6) Select (in Model Visualization window) Sequence

    (7) Start Sequence (in Define Sequence window) Stop Sequence Record Every save sequence files if required

    (8) Hardcopy Output .bmp on playback Rewind BMP FILE DUMP (yes)

    (9) Using a software to convert .BMP file into .gif file which may be replayed by internetexplorer or .avi file which can be insert into Powerpoint

    AQWA-LINE Post Processing

  • 7/24/2019 aqwa-training-sxd-9

    83/167

    2010 ANSYS, Inc. All rights reserved. 83 ANSYS, Inc. Proprietary

    AQWA LINE Post Processing

    Diffracted Wave Surface

    Note:

    LDOP card in al*.dat file run AGS

    (1) double-clickAGS icon on screen;(2) File Open to input al*.res file;(3) Plots to show the model;

    (4) Select (in Model Visualization window) Pressure Contours;(5) choose required waves (dir. freq. in Pressure Contours window) Time=t to animate;(6) View Angle (in Pressure Contours window) Choose view angle (in Contour View Angle window)(7) Option (in Pressure Contours window) Wave Amplitude & Diffracted Wave Surface

    (in Hull Contours / Diffracted Wave Option window);(8) Select (in Model Visualization window) Sequence(9) Start Sequence (in Define Sequence window) Stop Sequence Record Every

    AQWA Database Manipulation

  • 7/24/2019 aqwa-training-sxd-9

    84/167

    2010 ANSYS, Inc. All rights reserved. 84 ANSYS, Inc. Proprietary

    AQWA Database Manipulation

    Structure number inALTANK2

    Reason: without re-running the full AQWA-LINE analysis,

    add in additional nodes, elements, damping etc;

    combine several databases into one.

    Example 1: modify nodes & elements of single structure

    (1) copy existing data file ALTANK2.DAT to ALTANK3.DAT;(2) add new nodes, (non-diffracting) elements

    (3) delete all wave frequency and direction cards in Deck 6,

    change this deck into:06 FDR1

    06FI LE ALTANK2. HYD06CSTR 1

    END06CPDB

    (4) runAQWA-LINE for ALTANK3.DAT (which takes a few seconds).

    AQWA Database Manipulation

  • 7/24/2019 aqwa-training-sxd-9

    85/167

    2010 ANSYS, Inc. All rights reserved. 85 ANSYS, Inc. Proprietary

    (cont.1)

    New card to add damping

    Columns 51-60 for rolldamping

    Structure number in AL1

    Structure number in AL2

    Example 2: modify damping of single structure

    (1) copy existing data file ALTANK3.DAT to ALTANK4.DAT;(2) delete all wave frequency and direction cards in Deck 6,

    change this deck into:

    06 FDR1

    06FI LE ALTANK2. HYD06CSTR 1END06CPDB

    (3) add new damping coefficients(CRNM option needed for RAO recalculation);

    07 WFS1

    07ZCGE 0. 0000END07FI DD 1. 000E09

    (4) runAQWA-LINE for ALTANK4.DAT (which takes a few seconds).

    Compare the RAOs in ALTANK3 and ALTANK4 usingAGS (merging curves)

    AQWA Database Manipulation

    (cont 2)

  • 7/24/2019 aqwa-training-sxd-9

    86/167

    2010 ANSYS, Inc. All rights reserved. 86 ANSYS, Inc. Proprietary

    (cont.2)

    Multiple structure database combination

    (1) merging without hydrodynamic interaction

    run each model (AL**1.dat and AL**2) individually;

    include all structure definitions in the new AL**3.DAT file

    add corresponding file name in DECK 6 FILE card inAL**3.DAT for each structure

    (2) modify nodes etc for hydrodynamic interaction model

    Similar to Example 2, but in Deck 6 only the first structure needs to beinput for each interaction group.

    NOTE: When CQTF is used, manipulation can been done in version 12.0 thereafter

    AQWA LIBRIUM introduction

  • 7/24/2019 aqwa-training-sxd-9

    87/167

    2010 ANSYS, Inc. All rights reserved. 87 ANSYS, Inc. Proprietary

    Equilibrium position, Static and Dynamic stability

    - Complex ship/ offshore structure system;- Various mooring, fender, pulley, winch, constraints

    configuration;- Equilibrium estimation underwave, wind and current

    combination;- Database approach for static catenary mooring line;- Finite element approach for dynamic cable (drag force);- Iteration approach for determining equilibrium position;- Calculate the eigenvalues of linearised stiffness matrix

    to obtain static stability;- Eigenvalues of the impedance matrix to give dynamic

    stability.- Series of wave spectrums and mooring configurations

    Theory in AQWA LIBRIUM

  • 7/24/2019 aqwa-training-sxd-9

    88/167

    2010 ANSYS, Inc. All rights reserved. 88 ANSYS, Inc. Proprietary

    Equation for determining static equilibrium position:

    K is the stiffness matrix of the system,F is the force matrix.

    The program iterates until X=|Xj+1-Xj| is less than a defined tolerance

    Static stability

    Eigenvalue (0, stable)

    Dynamic stability

    Eigenvalue (f0 and g=0, unstable; f>0 and g0, fishtailing)

    ),,0from(

    ,0

    igfeXXXX

    X

    X

    X

    X

    t +===++

    =

    +

    KCM

    0I

    KMCM 11

    0= XX K

    )()(11 jjjj XFXXX + += K

    Analysis Procedure

  • 7/24/2019 aqwa-training-sxd-9

    89/167

    2010 ANSYS, Inc. All rights reserved. 89 ANSYS, Inc. Proprietary

    y

    Input in RESTART cardstarting from Column 21

    A common method of analysis

    (1) run Stages 1 to 3 in AQWA-LINE

    (2) run Stages 4 to 5 in another program, say, AQWA-LIBRIUM.

    Example:

    Step 1: AQWA-LINE run Step 2:AQWA-LIBRIUM run

    (Restart 1 to 3) (Restart 4 to 5)

    Input Files Output Files Input Files Output Files

    altest.dat altest.lis abtest.dat abtest.lis

    altest.res altest.res abtest.resaltest.hyd abtest.eqpaltest.plt

    Analysis Procedure (cont)

  • 7/24/2019 aqwa-training-sxd-9

    90/167

    2010 ANSYS, Inc. All rights reserved. 90 ANSYS, Inc. Proprietary

    Stage 4 in AQWA-LIBRIUM

    model definition restart file

    hydrodynamic database restart file

    main analysis parameters input data file

    Note: Decks 1 to 8 data is read from the restart file

    Decks 9 to 20 are required in the input data file

    (Decks 1 to 8 must be omitted if restart from Stage 4).

    Stage 5 in AQWA-LIBRIUM (Main analysis, no extra input)

    AQWA-LIBRIUM (Example 1)

  • 7/24/2019 aqwa-training-sxd-9

    91/167

    2010 ANSYS, Inc. All rights reserved. 91 ANSYS, Inc. Proprietary

    JOB card

    Read database

    Deck 9: drift motion parameters;Deck 10: wind and current drag; Deck 12: constraints;Deck 11: environment; Deck 13: spectrum

    Deck 14: Mooring systemNB new nodes needed

    Deck 15: Initial position of COG in global frame

    J OB TEST LI BRTI TLE FALTI NSEN BOX - MODEL 1

    OPTI ONS REST ENDRESTART 4 5 ALBOXM09 NONE10 NONE11 NONE12 NONE13 SPEC13SPDN 315. 0

    END13PSMZ 0. 300 2. 000 4. 000 8. 00014 MOOR14LI NE 1 501 0 511 1. 4715E6 100. 014LI NE 1 502 0 512 1. 4715E6 100. 014LI NE 1 503 0 513 1. 4715E6 100. 0

    END14LI NE 1 504 0 514 1. 4715E6 100. 015 STRT

    END15POS1 1 1 0. 0 0. 0 1. 5 0. 0 0. 016 NONE17 NONE18 NONE19 NONE20 NONE

    Drag in AQWA (deck 10)

  • 7/24/2019 aqwa-training-sxd-9

    92/167

    2010 ANSYS, Inc. All rights reserved. 92 ANSYS, Inc. Proprietary

    (1) Current and Wind Force Coefficients

    DIRN Dir1 DirN 1 . N (optional)SYMX (optional)

    CUFX Dir1 DirN C1 . CN

    WIFX Dir1 DirN C1 . CN

    etc

    Dir: direction number directions default to LINE wave directions;

    C1: Drag Force Coefficients

    For relative current velocity V in directionforce in X direction = CUFX.V

    2

    force in Y direction = CUFY.V2

    yaw moment = CURZ.V2

    Direction sequence no.IfDIRN is not present in Deck 10,the directions are those defined

    on the DIRN cards in Deck 6

    Drag in AQWA (deck 10)(cont 1)

  • 7/24/2019 aqwa-training-sxd-9

    93/167

    2010 ANSYS, Inc. All rights reserved. 93 ANSYS, Inc. Proprietary

    (cont 1)

    (2) Morison Drag Coefficients (for ship hul l)

    MDIN Nrow Ncol C1 . C6

    Nrow: Row number in drag matrix

    Ncol: Column number in drag matrix

    C1 C6: Drag Force Coefficients

    =

    .

    .

    .

    .

    .

    .

    .

    666564636261

    565554535251

    464544434241

    363534333231

    262524232221

    161514131211

    zz

    yy

    xx

    CCCCCC

    CCCCCC

    CCCCCC

    CCCCCC

    CCCCCC

    CCCCCC

    DragForce

    Useful options in AQWA LIBRIUM

  • 7/24/2019 aqwa-training-sxd-9

    94/167

    2010 ANSYS, Inc. All rights reserved. 94 ANSYS, Inc. Proprietary

    STAT STATic stability only

    DYNA DYNAmic stability only

    PBIS Print Both Iteration Steps (prints full results at each step)

    PRAF Print all freedoms (in spite of DACF cards on DECK12)

    In JOB card Deck 0

    In OPTIONS card Deck 0

    AQWA-LIBRIUM Example 2 (ABTANK4)

  • 7/24/2019 aqwa-training-sxd-9

    95/167

    2010 ANSYS, Inc. All rights reserved. 95 ANSYS, Inc. Proprietary

    JOB TANK LIBR

    TITLE SINGLE TANKER WITH MOORING

    OPTIONS REST PBIS END

    RESTART 4 5 ALTANK4

    09 NONE

    10 HLD1

    10SYMX

    10DIRN 1 5 0.0 20.00 40.00 60.0 80.00

    10DIRN 6 10 100.00 120.00 140.00 160.0 180.00

    10WIFX 1 5 1.460E3 1.692E3 1.685E3 1.175E3 3.745E2

    10WIFX 6 10 -3.427E2 -9.839E2 -1.520E3 -1.692E3 -1.794E3

    10CUFX 1 5 0.505E5 0.572E5 0.532E5 0.344E5 0.172E5

    . . .

    END10CURZ 6 10 0.808E7 0.220E8 0.191E8 0.103E8 0.00000

    JOB card

    Read database

    Direction sequence no.If DIRN is not present in Deck 10, the directions

    are those defined on the DIRN cards in Deck 6

    AQWA-LIBRIUM Example 2 (ABTANK4)

  • 7/24/2019 aqwa-training-sxd-9

    96/167

    2010 ANSYS, Inc. All rights reserved. 96 ANSYS, Inc. Proprietary

    11 NONE12 NONE13 SPEC13SPDN 315.013CURR 1.00 315.013WIND 25.00 315.0

    END13PSMZ 0.3000 2.0000 4.000 8.000

    Deck 11:envirn.; Deck 12:constraints; Deck13: spectrum

    AQWA-LIBRIUM Example 2 (ABTANK4)

  • 7/24/2019 aqwa-training-sxd-9

    97/167

    2010 ANSYS, Inc. All rights reserved. 97 ANSYS, Inc. Proprietary

    14 MOOR

    14LINE 1 5001 0 6001 1.50E6 142.014LINE 1 5002 0 6002 1.50E6 142.014LINE 1 5003 0 6003 1.50E6 142.014LINE 1 5004 0 6004 1.50E6 142.0

    END1415 STRT15POS1 100.00 0.000 0.000 0.000 0.000 0.000

    END16 LMTS

    END16MXNI 20017 NONE18 NONE19 NONE20 NONE

    Deck 14: Mooring system

    Deck 16: Iterative parameters

    Deck 15: Initial position

    AGS online calculation

  • 7/24/2019 aqwa-training-sxd-9

    98/167

    2010 ANSYS, Inc. All rights reserved. 98 ANSYS, Inc. Proprietary

    Mini-Librium

    Note:

    run AGS

    (1) double-clickAGS icon on screen;(2) File Open to input al*.res file;(3) Plots to show the model;(4) Move Structure (in Model Visualization window) if needed;(5) MINI-LIBRIUM (in Model Visualization window);(6) Iterations (in MINI-LIBRIUM window to choose the iteration step number);(7) Equilibrate (till converged)

    AGS online calculation

  • 7/24/2019 aqwa-training-sxd-9

    99/167

    2010 ANSYS, Inc. All rights reserved. 99 ANSYS, Inc. Proprietary

    Static stability

    Note:run AGS

    (1) Double-clickAGS icon on screen;(2) File Open to input al*.res file;(3) Plots to show the model;(4) Run ->AQWA-LIBRIUM(5) Display (inAQWA-LIBRIUM Run Monitorwindow) -> Static Stability Modes;(6) Click Mode# (in Static Stability Displacement Modes window to animate the mode).

    Mooring Lines in AQWA (deck 14)

  • 7/24/2019 aqwa-training-sxd-9

    100/167

    2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

    Mooring lines can be defined in (BDNF)

    Commonly used mooring types:

    (1) LINE: Linear elastic line (weightless)

    14LINE Ns1 Nd1 Ns2 Nd2 K L

    (Ns1, Ns2: structure numbers; Nd1, Nd2: node numbers;K: stiffness; L: unstretched length)

    (2) POLY: Polynomial elastic line (weightless)

    14POLY K1 K2 K3 K4 K5

    14NLIN Ns1 Nd1 Ns2 Nd2 (Ts) L (Fw) (Fp)

    (K1, .., K5: stiffness;

    Ts: winch tension; Fw: winch winding in friction factor;

    Fp: winch paying out friction factor;Ts, Fw and Fp are only needed when the POLY line is used as a winch)

    Mooring Lines in AQWA (deck 14)

    (cont.1)

  • 7/24/2019 aqwa-training-sxd-9

    101/167

    2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

    (cont.1)

    Start from anchor point

    (3) COMP/ECAT: Composite elastic catenary (with weight)

    14COMP Nz Nx Ne Zmi n Zmax Sl ope

    14ECAT M1 A1 EA1 Tmax1 L1

    14ECAT M2 A2 EA2 Tmax2 L2

    14ECAT M3 A3 EA3 Tmax3 L3

    14NLI N Ns1 Nd1 Ns2 Nd2

    Nz, Nx -- number of database points within z and x ranges.

    Ne -- number of ECAT in this COMP line.

    Zmin, Zmax -- Z range (measured from the anchor) for the attachment node.

    Slope -- sea bed slope (in degrees; positive for slope going up from anchor towardsattachment point).

    M1,M2,M3 -- mass per unit length for ECAT 1,2,3.

    A1,A2,A3 -- equivalent cross section area.EA1,EA2,EA3-- Youngs modulus x area.

    Tmax1-3 -- maximum tension.

    L1,L2,L3 -- length of ECAT 1,2,3.

    Ns,Nd -- structure number and node number (Ns1: fairlead structure).

    Moorings database

  • 7/24/2019 aqwa-training-sxd-9

    102/167

    2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

    ZRMAX

    ZRMIN

    XRMIN XRMAX

    Max. tension point

    Slack point

    AQWA-LIBRIUM Example 3

  • 7/24/2019 aqwa-training-sxd-9

    103/167

    2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

    JOB card

    Stages 1-5, if Deck 1-8 include

    Nodes for anchor points

    J OB MESH LI BRTI TLE MESH FROM LI NES PLANS/ SCALI NG

    OPTI ONS REST PBI S LSTF ENDRESTART 1 5

    01 COOR015001 1700. 0. -300

    015002 200. -1500. -300

    015003 200. 1500. -300

    015004 -1500. 0. -300

    01 1 45. 000 - 45. 000 0. 00001 2 22. 500 - 45. 000 0. 000

    01 3 0. 000 - 45. 000 0. 000. . .01 501 45. 000 0. 000 0. 00001 511 146. 000 0. 000 0. 000. . .

    END01 999 0. 000 0. 000 - 10. 62002 ELM102SYMX02SYMY02QPPL DI FF 0 ( 1) ( 1) ( 2) ( 12) ( 11)02QPPL DI FF 0 ( 1) ( 11) ( 12) ( 22) ( 21)02QPPL DI FF 0 ( 1) ( 21) ( 22) ( 32) ( 31)02QPPL 0 ( 1) ( 1) ( 5) ( 105) ( 101). . . .

    END02PMAS 0 ( 1) ( 999) ( 1) ( 1)02 FI NI

    AQWA-LIBRIUM Example 3 (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    104/167

    2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

    03 MATEEND03 1 3. 32100E8 0. 000000 0. 000000

    04 GEOMEND04PMAS 1 3. 6253E11 0. 000000 0. 000000 3. 4199E11 0. 000000 3. 5991E11

    05 GLOB05DPTH 250. 005DENS 1025. 0

    END05ACCG 9. 80606 FDR1

    06FILE ALBOXM.HYD

    06CSTR 1

    END06CPDB07 WFS107ZCGE - 2. 0000

    END07FI DD 1. 000E0908 NONE09 DRM109FI DD 1. 0373E5 1. 5702E6 1. 0E07 4. 0E09 2. 0E10 5. 000E09

    END0910 HLD1

    10WI FX 1 5 1. 460E3 1. 692E3 1. 685E3 1. 175E3 3. 745E210WI FX 6 9 - 3. 427E2 - 9. 839E2 - 1. 520E3 - 1. 692E310WI FY 1 5 0. 000E0 1. 803E3 3. 623E3 5. 168E3 6. 093E310WI FY 6 9 6. 293E3 5. 618E3 4. 103E3 0. 010WI RZ 1 5 2. 475E2 - 1. 407E5 - 1. 689E5 - 1. 068E5 - 1. 167E410WI RZ 6 9 1. 167E5 1. 842E5 1. 559E5 0. 0

    Read database from AQWA-LINE

    AQWA-LIBRIUM Example 3 (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    105/167

    2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

    Composite catenary(start from anchor section)

    Fairlead first, anchor point second

    10CUFX 1 5 0. 505E5 0. 572E5 0. 532E5 0. 344E5 0. 172E510CUFX 6 9 - 0. 160E5 - 0. 295E5 - 0. 451E5 - 0. 466E5

    10CUFY 1 5 0. 000E0 0. 207E6 0. 394E6 0. 486E6 0. 542E610CUFY 6 9 0. 550E6 0. 478E6 0. 382E6 0. 010CURZ 1 5 0. 000E0 - 0. 118E8 - 0. 213E8 - 0. 239E8 - 0. 118E8

    END10CURZ 6 9 0. 808E7 0. 220E8 0. 191E8 0. 011 NONE12 NONE13 SPEC13SPDN 315. 013CURR 1. 00 315. 0

    13WI ND 10. 00 315. 0END13PSMZ 0. 3000 2. 0000 4. 000 8. 00014 MOOR14COMP 20 30 3 280. 300.

    14ECAT 150.00 0.00 6.0000E8 7.500E6 500.0

    14ECAT 120.00 0.00 9.0000E8 7.500E6 500.0

    14ECAT 170.00 0.00 6.0000E8 7.500E6 700.014NLI N 1 3201 0 500114NLI N 1 3201 0 5002

    14NLI N 1 3201 0 5003END14NLI N 1 3201 0 5004

    15 STRTEND15POS1 213. 000 - 213. 000 - 2. 00 0. 000 0. 000 144. 0

    AQWA-LIBRIUM Example 3 (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    106/167

    2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

    Iteration controls

    16 LMTS

    16MXNI 25016MMVE 1 1.5 1.5 1.5 1.5 1.5 1.5

    END16MERR 1 0.5 0.5 0.5 0.5 0.5 0.5

    17 NONE18 NONE19 NONE20 NONE

    Mooring Lines in AQWA (deck 14)

    (cont.2)

  • 7/24/2019 aqwa-training-sxd-9

    107/167

    2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

    ( )

    Similar to NLIN

    Catenary hydrodynamic coefficient

    AQWA Cable Dynamics (only applicable to COMP/ECAT): (abtank6)

    14 MOOR14COMP 20 30 3 490. 510.14ECAT 150.00 0.010 6.0000E8 7.500E6 400.014ECAH 1.00 0.75 0.1014ECAT 120.00 0.010 9.0000E8 7.500E6 500.0

    14ECAT 170.00 0.010 6.0000E8 7.500E6 700.014ECAH 1.00 1.00 0.1514NLID 1 5001 0 600114NLID 1 5002 0 600214NLID 1 5003 0 6003

    END14NLID 1 5004 0 6004

    Mooring Lines in AQWA (deck 14)

    (cont.3)

  • 7/24/2019 aqwa-training-sxd-9

    108/167

    2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

    ( )

    Fenders

    14POLY K1 K2 K3 K4 K514FEND Si ze Kf Kc14FLIN Type Ns1 Nd1 Nd2 Ns2 Nd3 Nd4

    in which

    K1 K5 -- non-linear stiffness coefficientsSize -- uncompressed size of fender (normal direction)

    Kf -- tangential friction coefficientKc -- normal damping coefficient

    Type -- 1 = fixed fender, 2 = floating fenderNs1 -- Structure to which fender is nominally attached

    Nd1, Nd2 -- Nodes defining attachment point and contact plane on 1st

    structureNs2 -- Structure which fender contactsNd3, Nd4 -- Nodes defining attachment point and contact plane on 2nd structure

    Note: Be aware of valid range of force extension/compression relationship

    55

    44

    33

    221 )()()()( XKXKXKXKXKT ++++=

    Mooring Lines in AQWA (deck 14)(cont.4)

  • 7/24/2019 aqwa-training-sxd-9

    109/167

    2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

    With weight

    (COMP/ECAT,NLIN,NLID)

    Without weight

    (LINE,NLIN, FEND/FLIN)

    Other cards in deck 14 (refer to AQWA Reference Manual for more details)

    BUOY/CLMP A buoy or clump weight

    TELM: Tether element. (for installed or towed stiff tethers)

    WNCH: Constant tension winch line

    FORC: A constant force in a constant direction.

    LINE/PULY: Linear elastic pulley line.

    LE2D: User defined tension/extension data base.

    SWIR: Steel wire with non-linear stiffness.

    DWT0/LNDW A line winding in or out on a winch

    LBRK: Line breaking.

    FILE: Read in mooring definition from an external file *.MOR.

    AQWA Printing Options (deck 18)

  • 7/24/2019 aqwa-training-sxd-9

    110/167

    2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

    by default, part of results output to limit file size

    additional data can be output by Deck 18 commands

    ALLM: Output the velocity, acceleration and position of a user specified nodedefined in the NODE card.

    NODE: Output the motion of a user specified node

    or the relative motion between two user specified nodes.

    PREV: Write into *.LIS file every N time steps to reduce the size

    PRNT: Print a force not in the output by default (See AQWA-ref 4.18.6)

    PTEN: Output mooring tension, anchor uplift, laid length etc for mooring line.

    ZRON: Output the z position of a node relative to the incident wave surface.

    PMST: Output mooring sectional tensions for cable dynamic case

    AQWA FER - introduction

  • 7/24/2019 aqwa-training-sxd-9

    111/167

    2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

    Principally for calculating the significant response

    of amplitues in irregular waves.

    Frequency domain program

    Linearised stiffness matrix / damping to obtain the transfer function

    and response spectrum

    Simple, inexpensive approach to make systematic parameter study

    Series ofwave spectrums and mooring configurations

    Theory in AQWA FER

  • 7/24/2019 aqwa-training-sxd-9

    112/167

    2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

    Response spectrum in irregular waves

    Sxixi(): response spectrum in i-th degree of freedom,Hij () : receptance matrix defined as:

    Fj(): frequency dependent force(in j-th degree of freedom) on the structure

    S(): the wave spectrum

    )())]()(([mod)( 2 SFHS jijj

    ixix =

    12 ])())(([)( ++= KCiMMH asij

    Linearisation in FER

  • 7/24/2019 aqwa-training-sxd-9

    113/167

    2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

    Stiffness: stiffness (hydrostatic, mooring etc.) at the initial position,(= the static equilibrium position with RDEP option)

    Damping:cable drag is linearised using the r.m.s. velocity, when NLID used

    FD = (CD. |Vrms|) .V

    wind drag is linearised,1st order hydrodynamic dampingany other input damping (fender, constraints)

    Forces:

    1st and 2nd order wave forces

    Useful options in AQWA FER

  • 7/24/2019 aqwa-training-sxd-9

    114/167

    2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

    JOB options (JOB card)DRFT DRiFT frequency onlyWFRQ Wave FReQuency only

    ANALYSIS options (OPTIONS card)

    RDEP ReaD Equilibrium PositionFQTF Full diff freq. QTF to be used

    Printing options (OPTIONS card)PRRI Printing RAOS at spectrum integration pointsGLAM Output significant motions in GLOBAL axis

    AQWA-FER Example 1

  • 7/24/2019 aqwa-training-sxd-9

    115/167

    2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

    For AQWA-FER run

    Read equilibrium position

    from ABTANK6 database

    J OB TANK FER

    TI TLE SI NGLE TANKER WI TH CABLE DYNAMI COPTI ONS REST RDEP ENDRESTART 4 5 ABTANK6

    09 DRM1*2345678901234567890123456789012345678901234567890123456789012345678901234567890

    09FI DA 1. 0373E6 1. 5702E7 1. 0E12 1. 0E15 1. 0E15 2. 2564E1109FI DD 1. 80E5 1. 80E6 1. 0E10 1. 0E13 1. 0E13 1. 00E10

    END0910 HLD1

    10WI FX 1 5 1. 460E3 1. 692E3 1. 685E3 1. 175E3 3. 745E2. . .

    10CURZ 1 5 0. 000E0 - 0. 118E8 - 0. 213E8 - 0. 239E8 - 0. 118E8END10CURZ 6 10 0. 808E7 0. 220E8 0. 191E8 0. 103E8 0. 00000

    11 NONE12 NONE13 SPEC13SPDN 315. 013CURR 1. 00 315. 013WI ND 25. 00 315. 0

    END13PSMZ 0. 3000 2. 0000 4. 000 8. 000

    Optional freq. independent

    added mass/damping

    AQWA-FER Example (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    116/167

    2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

    Not needed due to RDEP

    14 MOOR14COMP 20 30 3 490. 510.

    14ECAT 150. 00 0. 010 6. 0000E8 7. 500E6 400. 014ECAH 1. 00 1. 33 0. 1014ECAT 120. 00 0. 010 9. 0000E8 7. 500E6 500. 014ECAT 170. 00 0. 010 6. 0000E8 7. 500E6 700. 014NLI D 1 5001 0 600114NLI D 1 5002 0 600214NLI D 1 5003 0 6003

    END14NLI D 1 5004 0 600415 NONE

    * 15 STRT* 15POS1 100. 00 0. 000 0. 000 0. 000 0. 000 0. 000*END

    16 NONE17 NONE18 NONE19 NONE20 NONE

    AQWA NAUT & DRIFT - introduction

  • 7/24/2019 aqwa-training-sxd-9

    117/167

    2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

    AQWA-NAUT and DRIFT are time-domain simulationprograms

    For a series of time-steps they:

    calculate the total force on the structurecalculate the accelerationfind the new position of the structurerepeat

    A two stage predictor/correctorintegration scheme is used

    Theory in AQWA NAUT and DRIFT

  • 7/24/2019 aqwa-training-sxd-9

    118/167

    2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

    Equation of motion in time domain

    F(t): the total force on the structure, including incident wave force diffraction force

    mooring force drift force drag force constraint force, etc radiation force

    Convolution integration form:

    )()(..

    tFtXMs =

    )()()()()()]([ 10

    tFdXttXtXt

    as = +++ hKMM

    Simulation of Irregular Waves

  • 7/24/2019 aqwa-training-sxd-9

    119/167

    2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

    Wave spectrum treatment:

    split into N sections of equal area define N wavelets with frequency at the centroid of the section

    (max.200). the wavelets are added together with random phase angles

    .

    Wavelet: equal areas

    S()

    iii

    N

    iiiiii Satykxkatyx = ++=

    =)(2),sincoscos(),,(

    1

    Comparison of DRIFT v. NAUT

  • 7/24/2019 aqwa-training-sxd-9

    120/167

    2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

    AQWA-DRIFT AQWA-NAUT

    Irregular waves only Regular or Irregularwaves

    Linearhydrostatic stiffness Non-linearhydrostatics /

    Froude-Krylov force

    2nd orderdrift coefficients 2nd orderincident wave

    Omits drift forces(but some 2nd order effects)

    Mean wetted surface Instantaneous wetted surface

    AQWA-DRIFT Example 1

  • 7/24/2019 aqwa-training-sxd-9

    121/167

    2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

    Job card for DRIFT run

    Drift & wave freq. motions

    Print at both integration

    stages.

    Convolution method

    for radiation force

    J OB TANK DRI F WFRQTI TLE SI NGLE TANKER WI TH CABLE DYNAMI C

    OPTI ONS REST PBI S CONV RDEP ENDRESTART 4 5 ABTANK6

    09 DRM1*2345678901234567890123456789012345678901234567890123456789012345678901234567890

    09FI DA 1. 0373E6 1. 5702E7 1. 0E12 1. 0E15 1. 0E15 2. 2564E1109FI DD 1. 80E5 1. 80E6 1. 0E10 1. 0E13 1. 0E13 1. 00E10

    END0910 HLD110WI FX 1 5 1. 460E3 1. 692E3 1. 685E3 1. 175E3 3. 745E2

    . . .

    END10CURZ 6 10 0. 808E7 0. 220E8 0. 191E8 0. 103E8 0. 0000011 NONE12 NONE13 SPEC13SPDN 315. 013CURR 1. 00 315. 0

    13WI ND 25. 00 315. 0END13PSMZ 0. 3000 2. 0000 4. 000 8. 000

    AQWA-DRIFT Example (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    122/167

    2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

    Define no. and value of time steps

    Define printing options

    14 MOOR

    14COMP 20 30 3 490. 510.14ECAT 150. 00 0. 010 6. 0000E8 7. 500E6 400. 014ECAH 1. 00 1. 33 0. 1014ECAT 120. 00 0. 010 9. 0000E8 7. 500E6 500. 014ECAT 170. 00 0. 010 6. 0000E8 7. 500E6 700. 014NLI D 1 5001 0 600114NLI D 1 5002 0 600214NLI D 1 5003 0 6003

    END14NLI D 1 5004 0 6004

    15 NONE16 TI NT

    END16TI ME 2000 0. 517 NONE18 PROP

    END18PREV 519 NONE20 NONE

    Useful options in AQWA DRIFT

  • 7/24/2019 aqwa-training-sxd-9

    123/167

    2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

    WFRQ Include Wave FReQency (default is Drift frequency only)

    CONV Use CONVolution

    PBIS Print Both Integration Steps

    RDEP ReaD Equilibrium Position

    FQTF Use diff freq. full QTF matrix (CQTF should be in LINE)

    AQWA-NAUT Example 1

  • 7/24/2019 aqwa-training-sxd-9

    124/167

    2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

    Job card for NAUT run

    Default regular waveanalysis

    J OB MESH NAUTTI TLE MESH FROM LI NES PLANS/ SCALI NGOPTI ONS REST PBI S END

    RESTART 1 501 COOR015001 1700. 0. - 30001 101 0. 001 0. 000 0. 000. . . .

    END01 999 88. 025 0. 000 10. 00002 ELM102SYMX02QPPL DI FF 1 ( 1) ( 202) ( 201) ( 101) ( 102). . . .

    END02PMAS 0 ( 1) ( 999) ( 1) ( 1)02 FI NI03 MATE

    END03 1 84062048.04 GEOM

    END04PMAS 1 1. 6812E10 0. 000000 0. 000000 3. 7659E11 0. 000000 3. 7659E1105 GLOB

    05DPTH 1000. 005DENS 1024. 4END05ACCG 9. 807

    AQWA-NAUT Example 1 (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    125/167

    2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

    Copy AQWA-LINE database

    Regular wave parameters

    06 FDR1

    06FI LE AL**** **. HYD06CSTR 1

    END06CPDB

    07 WFS107ZCGE - 2. 0000

    END07FI DD 9. 986E0808 NONE09 DRM109FI DD 1. 0373E5 1. 5702E6 1. 0E07 4. 0E09 2. 0E10 5. 000E09

    END0910 HLD110WI FX 1 5 1. 460E3 1. 692E3 1. 685E3 1. 175E3 3. 745E2. . . .

    END10CURZ 6 9 0. 808E7 0. 220E8 0. 191E8 0. 011 NONE12 NONE13 WAVE13WAMP 12. 0

    13WVDN 135. 0END13PERD 12. 00

    AQWA-NAUT Example 1 (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    126/167

    2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

    14 MOOR14COMP 20 30 3 280. 300.14ECAT 150. 00 0. 00 6. 0000E8 7. 500E6 500. 0

    14ECAT 120. 00 0. 00 9. 0000E8 7. 500E6 500. 014ECAT 170. 00 0. 00 6. 0000E8 7. 500E6 700. 014NLI N 1 3201 0 500114NLI N 1 3201 0 500214NLI N 1 3201 0 5003

    END14NLI N 1 3201 0 500415 STRT

    END15POS1 213. 000 - 213. 000 - 2. 00 0. 000 0. 000 144. 016 TI NT

    END16TI ME 2000 1. 017 NONE18 NONE19 NONE20 NONE

    AQWA-NAUT Example 2

  • 7/24/2019 aqwa-training-sxd-9

    127/167

    2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

    J OB TANK NAUT I RRETI TLE SI NGLE TANKER WI TH CABLE DYNAMI COPTI ONS REST PBI S CONV RDEP ENDRESTART 4 5 ABTANK6

    09 DRM1. . .

    13 SPEC13SPDN 315. 0

    13CURR 1. 00 315. 013WI ND 25. 00 315. 0

    END13PSMZ 0. 3000 2. 0000 4. 000 8. 000. . .

    16 TI NTEND16TI ME 2000 0. 5

    17 NONE18 PROP

    END18PREV 519 NONE20 NONE

    Job card for NAUT run

    Irregular wave analysis

    CONV mandatory

    Useful options in AQWA NAUT

  • 7/24/2019 aqwa-training-sxd-9

    128/167

    2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

    IRRE IRREgular wave analysis (CONV mandatory)

    CONV Use CONVolution

    LSTF Linear STiFness. Uses hydrostatic stiffnessfrom LINE without modification.

    RDEP ReaD Equilibrium Position

    Multiple structures (1)

    without hydrodynamic interaction

  • 7/24/2019 aqwa-training-sxd-9

    129/167

    2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

    Wave,wind,

    current

    directions

    Multiple Structures (1)without hydrodynamic interaction

  • 7/24/2019 aqwa-training-sxd-9

    130/167

    2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

    Node definition:

    One set of nodes can be used.ELM1 and ELM2 use different node numbersto define the elements.

    This can be inconvenient.E.g. if two models are created from .lin files in theAGS,both will have node number starting at 101.

    STRC card in Deck 1

    allows the same node numbers to be used for different models.

    AQWA-LINE (AL2TANK1)

  • 7/24/2019 aqwa-training-sxd-9

    131/167

    2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

    Node definition for structure 1

    JOB MESH LINE

    TITLE TWO TANKER WITHOUT HYDRODYNAMIC INTERACTIONOPTIONS REST LDOP NQTF GOON END

    RESTART 1 3

    01 COOR

    01STRC 1

    01 1 0.000 0.000 5.000

    . . . . .

    01 999 110.552 0.000 15.000

    * ATTACHMENT POINTS ON STRUCURE 1 FOR MOORING LINE BETWEEN ST#1-2015501 0.000 0.000 15.000

    015502 230.000 0.000 27.000

    01STRC 2

    01 1 0.000 0.000 5.000

    . . . .

    . . . .

    01 999 110.552 0.000 15.000

    * ATTACHMENT POINT ON STRUCURE 2 FOR MOORING LINE BETWEEN ST#1-2

    015501 0.000 0.000 15.000

    015502 230.000 0.000 27.000

    END01

    Node definition for structure 2

    AQWA-LINE (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    132/167

    2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

    Element definit ion of ST#1

    Material no. of ST#1

    Geometry no. of ST#1

    Material and geometry

    definition of ST#1

    02 ELM1

    02SYMX

    02QPPL DIFF 1 (1)( 101)( 1)( 6)( 102). . . . .

    END02PMAS 0 (1)( 999)( 1)( 1)

    02 ELM2

    02SYMX

    02QPPL DIFF 1 (1)( 101)( 1)( 6)( 102)

    . . . . . .

    END02PMAS 0 (1)( 999)( 2)( 2)

    02 FINI

    03 MATE

    03 1 1.23009E8 0.000000 0.000000

    END03 2 1.23009E8 0.000000 0.000000

    04 GEOM

    04PMAS 1 957.0E7 0.0 0.0 19050.0E7 0.0 19050.0E7

    END04PMAS 2 957.0E7 0.0 0.0 19050.0E7 0.0 19050.0E7

    AQWA-LINE (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    133/167

    2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

    05 GLOB

    05DPTH 500.005DENS 1024.4

    END05ACCG 9.807

    06 FDR1

    06FILE ALTANK4.HYD

    06CSTR 1

    END06CPDB

    06 FDR2

    06FILE ALTANK4.HYD

    06CSTR 1

    END06CPDB

    07 WFS1

    07ZCGE 0.0000

    END07FIDD 1.000E9

    07 WFS2

    07ZCGE 0.0000

    END07FIDD 1.000E9

    08 NONE

    AQWA-LIBRIUM : Multiple structures(AB2TANK1)

  • 7/24/2019 aqwa-training-sxd-9

    134/167

    2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

    JOB TANK LIBR

    TITLE TWO-TANKER WITHOUT HYDRO. INTER.

    OPTIONS REST PBIS ENDRESTART 4 5 AL2TANK1

    09 DRM1

    09FIDA 1.0373E6 1.5702E7 1.0E12 1.0E15 1.0E15 2.2564E11

    09FIDD 1.80E5 1.80E6 1.0E10 1.0E13 1.0E13 1.00E10

    END09

    09 FINI

    10 HLD1

    10WIFX 1 5 1.460E3 1.692E3 1.685E3 1.175E3 3.745E2

    . . . . .

    END10CURZ 6 10 0.808E7 0.220E8 0.191E8 0.103E8 0.00000

    10 HLD2

    10WIFX 1 5 1.460E3 1.692E3 1.685E3 1.175E3 3.745E2

    . . . . .

    END10CURZ 6 10 0.808E7 0.220E8 0.191E8 0.103E8 0.00000

    FINI if no data for STR 2

    AQWA-LIBRIUM (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    135/167

    2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

    Mooring line between str#1-2

    Initial position of COGs

    Iterative control

    . . . .14 MOOR

    14COMP 20 30 3 490. 510.

    14ECAT 150.00 0.010 6.0000E8 7.500E6 400.014ECAH 1.00 1.33 0.10

    14ECAT 120.00 0.010 9.0000E8 7.500E6 500.0

    14ECAT 170.00 0.010 6.0000E8 7.500E6 700.0

    14NLIN 1 5001 0 6001

    14NLIN 1 5002 0 6002

    14NLIN 1 5003 0 6003

    14NLIN 1 5004 0 6004

    14LINE 1 5501 2 5501 1.50E7 100.0

    END14LINE 1 5502 2 5502 1.50E7 100.015 STRT

    15POS1 100.00 0.000 0.000 0.000 0.000 0.000

    15POS2 -215.00 -000.00 0.000 0.000 0.000 0.00

    END

    16 LMTS

    16MERR 0.05 0.05 0.05 0.1 0.1 0.2

    16MMVE 2.00 2.00 0.5 1.0 1.0 2.0

    END16MXNI 1200

    17 NONE18 NONE

    19 NONE

    20 NONE

    Use of FINI card

  • 7/24/2019 aqwa-training-sxd-9

    136/167

    2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

    Lots of occasions to use FINI card

    Deck 2 (compulsory)

    Multiple structures, not all of them defined in deck 6,7,8,9,10

    End of deck

    Multiple configurations of mooring lines (B/F),

    insert FINI to separate two definitions of mooring systems

    Multiple user defined wave spectrums (B/F),

    insert FINI to separate each set of UDEF cards

    Between two sections

    AQWA-NAUT: Multiple structures(AN2TANK1)

  • 7/24/2019 aqwa-training-sxd-9

    137/167

    2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

    Read equilibrium position

    JOB TANK NAUT IRRE

    TITLE TWO-TANKER WITHOUT HYDRO. INTER.OPTIONS REST CONV RDEP END

    RESTART 4 5 AB2TANK1

    09 DRM1

    09FIDA 1.0373E6 1.5702E7 1.0E12 1.0E15 1.0E15 2.2564E11

    09FIDD 1.80E5 1.80E6 1.0E10 1.0E13 1.0E13 1.00E10

    END09

    09 DRM2

    09FIDA 1.0373E6 1.5702E7 1.0E12 1.0E15 1.0E15 2.2564E11

    09FIDD 1.80E5 1.80E6 1.0E10 1.0E13 1.0E13 1.00E10END09

    10 HLD1

    10WIFX 1 5 1.460E3 1.692E3 1.685E3 1.175E3 3.745E2

    . . . .

    END10CURZ 6 10 0.808E7 0.220E8 0.191E8 0.103E8 0.00000

    10 HLD2

    10WIFX 1 5 1.460E3 1.692E3 1.685E3 1.175E3 3.745E2

    . . . .

    END10CURZ 6 10 0.808E7 0.220E8 0.191E8 0.103E8 0.00000

    AQWA-NAUT (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    138/167

    2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

    Due to RDEP

    Time step control

    . . . .

    13 SPEC13SPDN 315.0

    13CURR 1.00 315.0

    13WIND 25.00 315.0

    END13PSMZ 0.3000 2.0000 4.000 8.000

    14 MOOR

    . . . . .

    END14LINE 1 5501 2 5501 1.50E7 100.0

    * 15 STRT

    * 15POS1 100.00 0.000 0.000 0.000 0.000 0.000

    * END15POS2 -215.00 -000.00 0.000 0.000 0.000 0.00

    15 NONE

    16 TINT

    END16TIME 2000 0.5

    . . . . .

    20 NONE

    Multiple structures (2)

    with hydrodynamic interaction

  • 7/24/2019 aqwa-training-sxd-9

    139/167

    2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

    calculate hydrodynamic coefficients which take

    full account of hydrodynamic interaction.

    up to 20 interacting structures can be included.

    AQWA-LINE (AL2TANK2)

  • 7/24/2019 aqwa-training-sxd-9

    140/167

    2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

    JOB MESH LINE

    TITLE TWO TANKER WITH HYDRODYNAMIC INTERACTIONOPTIONS REST LDOP NQTF GOON END

    RESTART 1 3

    01 COOR

    01STRC 1

    *234567890123456789012345678901234567890123456789012345678901234567890

    01 1 0.000 0.000 5.000

    . . . . .

    01 999 110.552 0.000 15.000* ATTACHMENT POINT ON STRUCURE 1 FOR MOORING LINE BETWEEN ST#1-2

    015501 0.000 0.000 15.000

    015502 230.000 0.000 27.000

    01STRC 2

    01 1 0.000 0.000 5.000

    . . . .

    01 999 110.552 0.000 15.000

    * ATTACHMENT POINT ON STRUCURE 1 FOR MOORING LINE BETWEEN ST#1-2015501 0.000 0.000 15.000

    015502 230.000 0.000 27.000

    END01

    Deck 0-1 similar to AL2TANK1.DAT

    AQWA-LINE (cont.)

    02 ELM1

  • 7/24/2019 aqwa-training-sxd-9

    141/167

    2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

    Remove geometric symmetry

    Elements for attachment points.Needed when MSTR card used.

    Move structure

    Hydrodynamic interaction

    Fictitious material and geometricproperties for attachment points

    02 ELM1

    02SYMX02QPPL DI FF 1 ( 1) ( 101) ( 1) ( 6) ( 102)

    . . . . .02TPPL 45 ( 1) ( 4606) ( 4506) ( 4507)02RMXS02PMAS 0 ( 1) ( 999) ( 2) ( 2)02PMAS 0 ( 1) ( 5001) ( 3) ( 3)02PMAS 0 ( 1) ( 5002) ( 3) ( 3)02PMAS 0 ( 1) ( 5003) ( 3) ( 3)02PMAS 0 ( 1) ( 5004) ( 3) ( 3)02PMAS 0 ( 1) ( 5501) ( 3) ( 3)

    02PMAS 0 ( 1) ( 5502) ( 3) ( 3)END02MSTR (999) (212.3182, -221.0850,5.5864)02 ELM202HYDI 1

    . . . . . . . .

    END02MSTR (999) (247.5926,-314.7867, 5.6123)

    02 FI NI03 MATE03 1 1. 23009E8 0. 000000 0. 000000

    03 2 1. 23009E8 0. 000000 0. 000000END03 3 1.00000E0 0.000000 0.000000

    04 GEOM04PMAS 1 957. 0E7 0. 0 0. 0 19050. 0E7 0. 0 19050. 0E704PMAS 2 957. 0E7 0. 0 0. 0 19050. 0E7 0. 0 19050. 0E7

    END04PMAS 3 1.0E0 0.0 0.0 0.0 0.0 0.0

    AQWA-LINE (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    142/167

    2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

    No symmetry,-180 to +180

    Note: wave frequencies anddirections MUST be samefor hydro. interactingstructures

    . . . .

    06 FDR1

    06FREQ 1 6 0. 10000 0. 20000 0. 30000 0. 40000 0. 50000 0. 6000006FREQ 7 11 0. 70000 0. 80000 0. 90000 1. 00000 1. 1000006DI RN 1 5 - 180. 00 - 160. 00 - 140. 00 - 120. 0 - 100. 0006DI RN 6 10 - 80. 00 - 60. 00 - 40. 00 - 20. 0 0. 0006DI RN 11 15 20. 00 40. 00 60. 00 80. 0 100. 00

    END06DI RN 16 19 120. 00 140. 00 160. 00 180. 006 FDR206FREQ 1 6 0. 10000 0. 20000 0. 30000 0. 40000 0. 50000 0. 6000006FREQ 7 11 0. 70000 0. 80000 0. 90000 1. 00000 1. 10000

    06DI RN 1 5 - 180. 00 - 160. 00 - 140. 00 - 120. 0 - 100. 0006DI RN 6 10 - 80. 00 - 60. 00 - 40. 00 - 20. 0 0. 0006DI RN 11 15 20. 00 40. 00 60. 00 80. 0 100. 00

    END06DI RN 16 19 120. 00 140. 00 160. 00 180. 007 WFS107ZCGE 0. 0000

    END07FI DD 1. 000E907 WFS207ZCGE 0. 0000

    END07FI DD 1. 000E908 NONE

    Multiple structures (2)

    with hydrodynamic interaction

  • 7/24/2019 aqwa-training-sxd-9

    143/167

    2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

    The PFIX method (Deck 2)

    Combine a floating and a fixed model into ONE structure

    Put fixed part into a specified group

    Use the PFIX card in Deck 2 to ground the fixed model

    Symmetry

  • 7/24/2019 aqwa-training-sxd-9

    144/167

    2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

    SYMX means that AQWA can assume that the analysis issymmetric ABOUT THE FRA X-AXIS. This allows time-saving shortcuts to be used in the solution.

    RMXS removes symmetry, creating a full model (even though themodel may still be a symmetric structure). It only applies to

    T/QPPL elements, not to other elements or nodes.

    MSTR moves the structure to a new definition position.

    It only applies to elements and associated nodes, not to allnodes listed under the STRC card.

    It actually moves the nodes and elements in the FRA.It is not the same as the POS card in Deck 15.

    SYMY and RMYS have the same effect relative to the Y-axis

    LIDS

  • 7/24/2019 aqwa-training-sxd-9

    145/167

    2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

    ILID to remove irregular frequencies inside structures

    can be automatically generated VLID to reduce standing waves between structures

    has to be defined by user

    LIDS (cont)

  • 7/24/2019 aqwa-training-sxd-9

    146/167

    2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

    ILID elements can be generated

    automaticallyVLID elements must be defined in .dat

    file

    02 ELM1

    02I LI D AUTO ( LI D_SI ZE=2. 0, START_NODE=5000)

    02VLI D 777 ( DAMP=0. 01, GAP=8. 0)02SYMX02QPPL DI FF 1 ( 1) ( 101) ( 1) ( 6) ( 102). . . . .02PMAS 0 ( 1) ( 999) ( 2) ( 2)02MSTR ( 999) ( 212. 3182, - 221. 0850, 5. 5864)02QPPL DI FF 777 ( 1) ( 4606) ( 4506) ( 4507) ( 4508)02QPPL DI FF 777 ( 1) ( 4607) ( 4508) ( 4509) ( 4510). . . . .

    END02 ELM202HYDI 1

    . . . . . . . .

    END02MSTR (999) (247.5926,-314.7867, 5.6123)

    02 FI NI

    Constraints in AQWA (deck 12)

    1) O i i f M ti i U S ifi d D f F d (D O F)

  • 7/24/2019 aqwa-training-sxd-9

    147/167

    2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

    1) Omission of Motion in User Specified Degrees of Freedom (D.O.F)

    DACF Ns Ndof

    (Ns: structure number; Ndof : D.O.F. number), (PRAF may need)

    2) Mechanical Articulations between Structures

    Relative translational motion is not allowed, but relative rotationalmotion is possible.

    DCON Nt Ns1 Nd1 (Nd3) Ns2 Nd2 (Nd4)

    Nt: number of D.O.F. being locked by this constraint.

    Nt=0: Ball and Socket, rotation in 3 D.O.F.

    Nt=1: Universal joint, rotation in 2 D.O.F.

    Nt=2: Hinge, rotation in 1 D.O.F.

    Nt=3: Rigid connection, no rotation.

    Ns1

    Nd3Nd1, Nd2

    Nd4

    Ns2

    Constraints in AQWA (example)

  • 7/24/2019 aqwa-training-sxd-9

    148/167

    2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

    Stinger model

    1

    constraints

    Constraints in AQWA(example)

    JOB MESH LIBR

  • 7/24/2019 aqwa-training-sxd-9

    149/167

    2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

    JOB MESH LIBR

    TITLE NORWAY SHIP + FLEXIBLE STINGER

    OPTIONS REST GOON NPPP END

    RESTART 1 5

    01 COOR

    STRC 1

    1 115.000 0.000 0.000

    ....

    * Nodes for third part of stringer

    STRC 3

    016001 0.000 -2.000 0.000

    ....

    END016025 12.000 0.000 4.000

    02 ELM1

    02SYMX

    02QPPL DIFF (43)( 1,7)( 2,7)( 9,7)( 8,7)

    ....

    END02TUBE (1)( 6020)( 6017)(2)(2)

    ....

    02 ELM3

    02TUBE (1)( 6001)( 6002)(2)(2)

    ....

    END02TUBE (1)( 6020)( 6017)(2)(2)

    02 FINI

    Constraints in AQWA(cont.)

  • 7/24/2019 aqwa-training-sxd-9

    150/167

    2010 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary

    Constraint type:2 - hinged

    Define a constraint

    from St#1 to St#2

    03 MATE

    03 1 1.242E8

    END03 2 7850.004 GEOM

    04PMAS 1 957.0E7 0.0 0.0 19050.0E7 0.0 19050.0E7

    04TUBE 2 0.500 0.050

    END04TUBE 3 1.000 0.050

    ....

    12 CONS

    12DCON 2 1 6023 6020 2 6021 6004

    END12DCON 2 2 6023 6020 3 6021 600413 NONE

    14 MOOR

    14LINE 1 5201 2 6025 5.0E05 25.0

    END14LINE 2 6024 3 6022 5.0E05 0.0

    ....

    20NONE

    Definition of Tethers

  • 7/24/2019 aqwa-training-sxd-9

    151/167

    2010 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary

    Tethers in a TLP Model

    Two types: Towed and Installed;

    Bending & lateral motion only;

    Material defined in Deck 3 as flexible tube with Youngs modulus;

    Small inline deformation defined by TSPV/TSPA cards.

    Definition of Tethers (cont.)

  • 7/24/2019 aqwa-training-sxd-9

    152/167

    2010 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary

    JOB TETH NAUT

    TITLE TETHERS

    OPTIONS REST END

    RESTART 4 5

    09 NONE

    . . . . . .

    13 WAVE

    13PERD 9.0

    13WVDN 0.0

    END13WAMP 8.0

    14 MOOR

    14TELM 300 301 2 2

    14TELM 301 302 2 2

    14TELM 302 303 2 2

    14TSPV 0.0 5730.0 5730.0

    14TSPA 0.0 5730.0 5730.0

    14TETH 1 1 0 401

    END14TETH 1 2 0 402

    15 STRT

    . . . . . .

    Define tether elements;

    Start from tail/anchor;

    Min.2; max. 14/24

    Material no.; see I.8.1.3

    Geometry no.

    Define tether lines

    Sea bed, Node#401

    Node#300

    Vessel, Node#1

    Node#303

    Definition of Tethers (cont.)

    hi h

  • 7/24/2019 aqwa-training-sxd-9

    153/167

    2010 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary

    I n whi ch:

    TELM 300 301 2 2 -

    def i nes a t et her el ement whi ch consi st sof t