36
Optimisation of pump- and cooling water systems A report made by Grontmij Carl Bro, APV and DESMI 2008

APV DESMI CARL BRO optimisation of pump- and cooling water systems.pdf

  • Upload
    amin

  • View
    232

  • Download
    2

Embed Size (px)

Citation preview

  • Optimisation of pump- and cooling

    water systems

    A report made by Grontmij Carl Bro, APV and DESMI

    2008

  • Page 1

    TABLE OF CONTENT:

    INTRODUCTION:..........................................................................................................2

    CASE STUDIES............................................................................................................4

    SPECIFICATION OF SW COMPONENTS:...........................................................................................4

    SPECIFICATION OF OPERATING CONDITIONS:...............................................................................4

    SPECIFICATION OF CALCULATION TOOL:.......................................................................................5

    CASE STUDY NO. 1:....................................................................................................6

    SPECIFICATION OF SW COMPONENTS:...........................................................................................6

    CONCLUSION: CASE STUDY NO. 1: ..................................................................................................7

    CASE STUDY NO. 2:....................................................................................................8

    SPECIFICATION OF SW COMPONENTS:...........................................................................................8

    CONCLUSION: CASE STUDY NO. 2: ..................................................................................................8

    CASE STUDY NO. 3:....................................................................................................9

    SPECIFICATION OF SW COMPONENTS:...........................................................................................9

    CONCLUSION: CASE STUDY NO. 3: ..................................................................................................9

    CASE STUDY NO. 4:..................................................................................................10

    SPECIFICATION OF SW COMPONENTS:......................................................................................... 10

    CONCLUSION: CASE STUDY NO. 4 ................................................................................................. 11

    OVERALL CONCLUSION: .........................................................................................12

    FUTURE INVESTIGATION POSSIBILITIES ..............................................................14

    APPENDIX 1 CALCULATION DOCUMENTS

  • Page 2

    INTRODUCTION:

    The co-operation between DESMI, APV and Grontmij Carl Bro was established more than a year ago due to the increased demands for reduction of the CO2 emission to the environment.

    The co-operation between the pump supplier, the heat exchange supplier, and the system designer was initiated with a view to trying to optimise auxiliary service systems on board ships by combining the designers knowledge and the practical experience of the two suppliers. The optimisations were centred on reducing the needed power for the pump and in that way reducing the CO2 emission to the environment.

    The cooperation partners first focused on the seawater (SW) cooling system, being one of the parts in an ordinary central cooling water system. The chosen vessel type is a bulk carrier, which is very familiar to almost all, and in that way the conclusion of the studies in this report can easily be adopted to optimising projects at existing vessels and of course to optimising all new-building projects.

  • Page 3

    DESCRIPTION OF THE SYSTEM USED IN ALL CALCULATION CASES

    The pipe system showed on the simplified drawing 611-01 is a typical seawater (SW) cooling system for a handy size bulk carrier.

    The two of the three SW pumps (two pumps rated at 50% of the specified flow one pump rated at 50% as standby pump) draw SW from a common manifold pipe, which is connected to a low sea chest and a high sea chest. The SW is discharged from the SW pumps through the two parallel-connected coolers and overboard to the sea again.

    The system with three 50% pumps has been used because this is the most common way to design the system and because it ensures a flexible and reliable operation of the system.

    System drawing: 611-01

  • Page 4

    CASE STUDIES

    SPECIFICATION OF SW COMPONENTS:

    The case studies have been divided in different steps to illustrate the progress in the project. These steps have been named as follows:

    CASE STUDY NO. 1: Calculation of the existing final design including the existing pumps and coolers.

    CASE STUDY NO. 2: Same as case study No. 1 but with a new optimised pump.

    CASE STUDY NO. 3: Calculation with a new cooler based on 2x50% instead of 2x65% cooling capacity, please see explanation later. New optimised pump, corresponding to the new coolers, has been used.

    CASE STUDY NO. 4: Calculations with optimised coolers in respect of low-pressure drop. New optimised pumps, corresponding to the new coolers, have been used.

    SPECIFICATION OF OPERATING CONDITIONS:

    All of the evaluated case studies have been based on the same operating conditions e.g. same SW temperatures, same pipe diameters, same location of equipment etc.

    Filter: Inline SW filter at suction side. High sea chest is closed.

    Running time for pumps:

    365 days per year

    Pipes: Normal steel pipe. DIN sizes

    Calculation: Operating conditions used in the FluidFlow calculation:

    Ambient SW temperature: 32 deg.C FW temperature out: 36 deg.C Inlet location: 2.5 m above base line Outlet location: 6.0 m above base line Location of pumps: 3.5 m above base line Location of coolers: 9.5 m above base line Vessel draft aft: 7.0 m

  • Page 5

    SPECIFICATION OF CALCULATION TOOL:

    The case studies have been calculated and evaluated in a fluid calculation program named FluidFlow, which is a powerful design and simulation tool for pipe systems. The FluidFlow designing tool facilitates quick and effective evaluations such as:

    Pressure loss calculations for fluid, gas and slurry systems Selection of optimal pumps / ventilators Cavitation control of pumps Calculation of air pipes connected to tanks for pressurized system

    FluidFlow screen dump of present SW cooling system. Each case study has been calculated in FluidFlow. See Appendix 1 page 5-14

  • Page 6

    CASE STUDY NO. 1:

    The SW cooling water system was originally designed with a pump capacity / pressure from a preliminary specification stated in the building specification for the vessel, with no specific knowledge of flow resistance for coolers, filters and elevation location of each equipment.

    The system was not optimised in the detailed production design by the yard when the other system-related equipment and the hydrostatic pressure heights were known. Furthermore the pump was bought as a standard stock pump in a low efficiency design.

    The practice of using the first, qualified guess as the final specification for purchasing the pump has unfortunately been seen especially at the yards in the young shipbuilding nations, where the yards have less technical experience.

    The coolers were selected with a cooling water heat transfer capacity each of 2x65% of the total heat transfer requirement, calculated according to a cooling water balance where the different cooling consumers, mainly the main engine and the auxiliary engines, were added and multiplied by an estimated load factor.

    SPECIFICATION OF SW COMPONENTS:

    Pumps: 3 x 230 m3/h at 3.0 barg.

    Pump data appear from the component appendix.

    Coolers: 2 X 4251 kW heat exchangers (cooling capacity based on cooling consumer load balance, Tropical see Appendix 1 page 3)

    SW flow based on the preliminarily chosen pump capacity. Flow resistance for cooler is stated as 0,87 bar at 230 m3/h

    Cooler data appear from the component appendix.

  • Page 7

    CONCLUSION: CASE STUDY NO. 1:

    We have focused on two scenarios when the 2 pumps are in operation. The first one is specified in case 1-1 and the second one is specified in case 1-2

    1-1 The operator tries to keep each of the pumps at the 230 m3/h operation point. To ensure this it is necessary to throttle the discharge valves or insert an orifice due to the fact that the system pressure is lower than the specified operation point at 3.0 barg.

    In this scenario the mechanical power in the duty point of each of the running pumps is 25.85 kW which corresponds to the below per year / pump:

    Fuel consumption (ts/year/pump): 51.30 CO2 emission (ts/year): 159.6 Running cost (USD/year): 32,807.0 ref. calculation in appendix 1 page 2

    1-2 The operator lets each of the pumps run at the system pressure. The pump is very close to run out of its curve and delivers approx. 321 m3/h SW at 2,4bar.

    In this scenario the pumps mechanical power in the duty point is 29.09 kW which corresponds to the below per year / pump:

    Fuel consumption (ts/year/pump): 57.70 CO2 emission (ts/year): 179,6 Running cost (USD/year): 36,919.0 ref. calculation in appendix 1 page 2

    We have used 1-2 as reference condition.

  • Page 8

    CASE STUDY NO. 2:

    In this scenario we have kept the cooler as specified in order to evaluate the reduction of the power consumption when changing the pump head and optimising the pump efficiency to the system pressure.

    SPECIFICATION OF SW COMPONENTS:

    Pumps: 3 x 230 m3/h at 1.2 barg.

    Pump data appear from the component appendix.

    Coolers: 2 x 4251 kW heat exchangers (cooling capacity based on cooling consumer load balance, Tropical see Appendix 1 page 3)

    SW flow based on the preliminary pump capacity chosen. Flow resistance for cooler is stated as 0.87 bar at 230 m3/h

    Cooler data appear from the component appendix.

    CONCLUSION: CASE STUDY NO. 2:

    The pump is now running at the specified system pressure, and it is not necessary to throttle valves or insert an orifice to keep the pump at the specified operation point.

    The necessary mechanical power for running each pump is 9.89 kW which corresponds to the below per year / pump:

    Fuel consumption (ts/year/pump): 19.60 CO2 emission (ts/year): 61.0 Running cost (USD/year): 12,545.0 ref. calculation in appendix 1 page 2 The savings compared with:

    Case study No. 1-2: 66%

  • Page 9

    CASE STUDY NO. 3:

    The total cooling capacity has now been reduced from a total duty of 2 x 65% into 2 x 50%. After reducing the total duty to 2 x 50% each cooler still has a built in Heat Transfer Coefficient (HTC) margin of 15%. We wish to emphasize that the 15% reduction of the HTC margin equals a 15% reduction of the K-value.

    Unfortunately the way that designers, shipyards and ship owners specify coolers has resulted in a double safety factor for the cooler. This study tries to describe the consequence of this common mistake.

    SPECIFICATION OF SW COMPONENTS:

    Pumps: 3 x 205 m3/h at 0.9 barg.

    Pump data appear from the component appendix.

    Coolers: 2 X 3270 kW heat exchangers (cooling capacity based on cooling consumer load balance, Tropical see Appendix 1 page 4)

    Flow resistance and SW flow for cooler is stated as 0.69 bar at 205 m3/h

    Cooler data appear from the component appendix.

    CONCLUSION: CASE STUDY NO. 3:

    By using the built in safety HTC margin in the cooler, allows the cooler to operate at a lower flow / lower pressure drop which dramatically affects the fuel consumption / CO2 emission.

    The necessary mechanical power for running each pump is 6.80 kW which corresponds to the below per year / pump:

    Fuel consumption (ts/year/pump): 13.48 CO2 emission (ts/year): 42.0 Running cost (USD/year): 8,630.0 ref. calculation in appendix 1 page 2

    The savings compared with:

    Case study No. 1-2: 77% Case study No. 2: 31%

  • Page 10

    CASE STUDY NO. 4:

    As a result of the big savings in case study 2 and 3 compared to case study 1, the task was to optimise the coolers due to the pressure drop and compare the yearly costs / CO2 emission to the environment with the purchasing costs of the entire system. The purpose of this case study 4 was to determine the optimum between initial installation costs and operational costs.

    SPECIFICATION OF SW COMPONENTS:

    The study required that the following 6 scenarios/steps were considered: The pump and cooler data is mentioned in the component appendix.

    Case 4-1: Pumps: 3 x 180 m3/h at 0.4 barg. Coolers: 2 X 3270 kW heat exchangers

    SW flow 180 m3/h Pressure drop 0.2 bar

    Case 4-2 Pumps: 3 x 180 m3/h at 0.5 barg. Coolers: 2 X 3270 kW heat exchangers

    SW flow 180 m3/h Pressure drop 0.3 bar

    Case 4-3 Pumps: 3 x 180 m3/h at 0.6 barg. Coolers: 2 X 3270 kW heat exchangers

    SW flow 180 m3/h Pressure drop 0.4 bar

    Case 4-4 Pumps: 3 x 180 m3/h at 0.7 barg. Coolers: 2 X 3270 kW heat exchangers

    SW flow 180 m3/h Pressure drop 0.5 bar

    Case 4-5 Pumps: 3 x 180 m3/h at 0.8 barg. Coolers: 2 X 3270 kW heat exchangers

    SW flow 180 m3/h Pressure drop 0.6 bar

    Case 4-6 Pumps: 3 x 180 m3/h at 0.9 barg. Coolers: 2 X 3270 kW heat exchangers

    SW flow 180 m3/h Pressure drop 0.7 bar

  • Page 11

    CONCLUSION: CASE STUDY NO. 4

    It is very clear that a cooler with at pressure drop of 0.2 bar (Case study 4-1) is the most optimised SW cooling water system with regard to low yearly running costs and a very low CO2 emission to the environment. The necessary mechanical power for running each pump in each case study is: 4-1: 2.69 kW 4-2: 3.46 kW 4-3: 4.11 kW 4-4: 4.66 kW 4-5: 5.21 kW 4-6: 5.84 kW

    The necessary power for case study 4-1 corresponds to the below per year / pump: Fuel consumption (ts/year/pump): 5.33 CO2 emission (ts/year): 16.1 Running cost (USD/year): 3,414 ref. calculation in appendix 1 page 2

    The savings case study 4-1 compared with: Case study No. 1-2: 91% Case study No. 2: 73% Case study No. 3: 60%

    It has to be mentioned that a cooler with a very low pressure drop is a larger cooler and of course in that way a more expensive cooler. The increased initial installation costs will afterwards be compared to the operational costs.

    Case Study No. 4Accumulated Running Cost + Installation Cost

    -

    100.000

    200.000

    300.000

    400.000

    500.000

    600.000

    700.000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30Year

    USD

    Case 4-1 Case 4-2 Case 4-3 Case 4-4 Case 4-5 Case 4-6

  • Page 12

    OVERALL CONCLUSION:

    The pressure drop of the cooler is essential. The cooler is the component in the sea water system causing the highest resistance, and consequently it has a significant impact on the overall system pressure and in that way facilitates the installation of smaller pumps. Therefore the chosen cooler pressure drop should be specified very clearly, when purchasing departments are purchasing the coolers.

    Figures for one pump:

    Fuel cons./ CO2 emission Case Study 1-2 (ts/year): 57.70 / 179.6 Fuel cons./ CO2 emission Case Study 3 (ts/year): 13.48 / 42.0 Fuel cons./ CO2 emission Case Study 4-1(ts/year): 5.33 / 16.6

    Accumulated CO2 emission for two pumps running

    ACCUMULATED CO2 EMISSION

    -

    2.000,00

    4.000,00

    6.000,00

    8.000,00

    10.000,00

    12.000,00

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30Year

    TONS

    Case 1-2

    Case 3

    Case 4-1

  • Page 13

    The overall costs, purchasing + running costs, indicate that the installation of coolers with a very low pressure drop is a good investment both for low overall costs, but also for the environment. Installation of 3 pumps + 2 coolers (only 2 pumps running).

    Accumulated Cost

    An additional benefit of a very low pressure drop on the SW cooler side is that the Fresh Water (FW) side also decreases dramatically and in that way also generates smaller FW pumps. These pumps have not been included in this report but will result in shorter investment payback time.

    It is important that the pumps chosen are high efficiency pumps.

    Let the pump specification be open until the pipe system has been designed in detail, so that all components are well known, e.g. location of equipment, pipe length, quantity of bends etc. In that way the pump can be optimised to exactly fit the system pressure.

    Low pressure gives the benefit of less stress on all components.

    Accumulated Running Cost + Installation Cost

    -

    500.000

    1.000.000

    1.500.000

    2.000.000

    2.500.000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30Year

    USD

    Case 1-2

    Case 3

    Case 4-1

  • Page 14

    FUTURE INVESTIGATION POSSIBILITIES

    Fixed back flushing arrangement shall be installed together with a cleaning in place (CIP) arrangement to keep the pressure drop across the coolers as low as possible and the efficiency of the coolers as high as possible. Smaller cooler pressure drop more sensitive coolers.

    SW pumps as 2x100% or 3x50% or another division of pump sizes.

    Using a harbour cooling pump as a supplement to above.

    2-speed pump, in order to adjust the pump capacity based on actual need.

    Frequency controlled SW pumps regulated by temperature transmitter on the discharge side of the coolers. The result will be even better than the above speed regulation and the capacity of the pump can be adjusted very close to the actual need.

    LT cooling water system optimisation bringing down the pump sizes, which results in further overall power reduction.

    More Partners e.g. dialog with manufactures of FW cooling consumers, and dialog with ship owner regarding operation facts.

    KQE / Grontmij | Carl Bro A/S / 2008-09-11

  • Page 15

    For further information, please contact:

    Granskoven 8 DK-2600 Glostrup Denmark

    Karsten Elland Project Manager Industry, Marine & Environment

    Phone: +45 4348 6060 E-mail: [email protected]

    Heat Transfer Platinvej 8 DK-6000 Kolding Denmark

    Kim Koldskov Sales Manager Global Marine Division

    Phone: +45 7027 8444 E-mail: [email protected]

    Tagholm 1 DK-9400 Nrresundby Denmark

    Henrik Mrkholt Sales Director

    Phone: +45 9632 8128 E-mail: [email protected]

  • Appendix 1Calculation Documents

    1. Consumption & CO2 calculation............................................................

    2. Cooling water balance 2 x 65% (Case 1 + 2).......................................

    3. Cooling water balance 2 x 50% (Case 3 + 4).......................................

    4. Fluid Flow calculations for each case story...................................

    Page 2

    Page 3

    Page 4

    Page 5 - 14

  • CA

    SE

    S

    TUD

    Y 1

    -1C

    AS

    E

    STU

    DY

    1-2

    CA

    SE

    S

    TUD

    Y 2

    CA

    SE

    S

    TUD

    Y 3

    CA

    SE

    S

    TUD

    Y 4

    -1C

    AS

    E

    STU

    DY

    4-2

    CA

    SE

    S

    TUD

    Y 4

    -3C

    AS

    E

    STU

    DY

    4-4

    CA

    SE

    S

    TUD

    Y 4

    -5C

    AS

    E

    STU

    DY

    4-6

    BA

    SE

    PU

    MP

    BA

    SE

    PU

    MP

    NE

    W P

    UM

    PN

    EW

    PU

    MP

    NE

    W P

    UM

    PN

    EW

    PU

    MP

    NE

    W P

    UM

    PN

    EW

    PU

    MP

    NE

    W P

    UM

    PN

    EW

    PU

    MP

    2x65

    % C

    OO

    LER

    2x65

    %

    CO

    OLE

    R2x

    65%

    CO

    OLE

    R2x

    50%

    CO

    OLE

    R2x

    50%

    CO

    OLE

    R0.

    2 dP

    2x50

    % C

    OO

    LER

    0.3

    dP2x

    50%

    CO

    OLE

    R0.

    4 dP

    2x50

    % C

    OO

    LER

    0.5

    dP2x

    50%

    CO

    OLE

    R0.

    6 dP

    2x50

    % C

    OO

    LER

    0.7

    dP

    Ave

    rage

    requ

    ired

    pum

    p po

    wer

    [kW

    ]25

    ,85

    29,0

    9

    9,89

    6,

    80

    2,69

    3,

    46

    4,11

    4,

    66

    5,21

    5,

    84

    Yea

    rly c

    onsu

    mpt

    ion

    [ts/y

    ear/p

    ump]

    51,2

    6

    57

    ,69

    19

    ,60

    13,4

    8

    5,

    33

    6,86

    8,

    15

    9,24

    10

    ,33

    11,5

    7

    Y

    early

    CO

    2 em

    issi

    on [t

    s/ye

    ar]

    159,

    63

    179,

    63

    61

    ,04

    41,9

    9

    16

    ,61

    21,3

    7

    25

    ,38

    28,7

    8

    32

    ,17

    36,0

    3

    Fu

    el c

    onsu

    mpt

    ion

    [US

    D/p

    ump]

    32.8

    07

    36.9

    19

    12.5

    45

    8.63

    0

    3.41

    4

    4.

    391

    5.21

    6

    5.91

    4

    6.61

    2

    7.40

    5

    C

    O2 e

    mis

    sion

    for H

    FO [k

    g/kg

    fuel

    ]3,

    114

    Effi

    cien

    cy fa

    ctor

    ele

    ctric

    al m

    otor

    93%

    Effi

    cien

    cy fa

    ctor

    aux

    . die

    sel /

    gen

    erat

    or95

    %R

    unni

    ng d

    ays

    / yea

    r [da

    ys]

    365

    Aux

    die

    sel s

    peci

    fic c

    onsu

    mpt

    ion

    [g/k

    Wh]

    200

    Bun

    ker p

    rice

    [US

    D/ts

    ]64

    0

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 2

  • CO

    ND

    ITIO

    N: A

    T SE

    A -

    100%

    (SM

    CR

    ) MA

    IN E

    NG

    INE

    LOA

    D -

    TRO

    PIC

    AL

    CO

    ND

    ITIO

    N

    ITEM

    NO

    . :D

    ESC

    RIP

    TIO

    N:

    LOA

    DH

    EAT

    DIS

    S.H

    EAT

    DIS

    S. A

    T LO

    AD

    TOL.

    SPEC

    . C

    OO

    L.

    CO

    OL.

    WA

    TER

    FL

    OW

    INLE

    T TE

    MP.

    OU

    TLET

    TE

    MP.

    A

    T M

    AX.

    LO

    AD

    CO

    OLI

    NG

    W

    ATE

    R

    FLO

    W

    Del

    ta P

    REM

    AR

    K

    [%]

    [kW

    ][k

    W]

    [+%

    ][m

    ^3/H

    ][m

    ^3/H

    ][d

    eg. C

    ][d

    eg. C

    ][m

    ^3/H

    ][k

    Pa]

    563.

    01M

    /E L

    O C

    OO

    LER

    +

    100%

    700

    700,

    010

    %95

    104,

    536

    ,042

    ,410

    4,50

    20,0

    056

    2.03

    JAC

    KE

    T W

    ATE

    R C

    OO

    LER

    100%

    1240

    1240

    ,010

    %95

    104,

    542

    ,453

    ,720

    ,00

    411.

    01M

    /E S

    CA

    VE

    NG

    ER

    AIR

    CO

    OLE

    R10

    0%30

    0030

    00,0

    0%13

    713

    736

    ,055

    ,013

    7,00

    50,0

    043

    1.01

    A/E

    1 T

    OTA

    L (L

    O, J

    AC

    K. W

    . AN

    D S

    CA

    V. A

    IR C

    OO

    LER

    )90

    %42

    037

    8,0

    0%28

    ,728

    ,736

    ,047

    ,428

    ,70

    39,2

    043

    1.02

    A/E

    2 T

    OTA

    L (L

    O, J

    AC

    K. W

    . AN

    D S

    CA

    V. A

    IR C

    OO

    LER

    )90

    %42

    037

    8,0

    0%28

    ,728

    ,736

    ,047

    ,428

    ,70

    39,2

    043

    1.03

    A/E

    3 T

    OTA

    L (L

    O, J

    AC

    K. W

    . AN

    D S

    CA

    V. A

    IR C

    OO

    LER

    )0%

    420

    0,0

    0%28

    ,728

    ,736

    ,036

    ,00,

    0039

    ,20

    312.

    01R

    EFR

    . CO

    MP

    RE

    SS

    OR

    UN

    IT F

    OR

    A/C

    PLA

    NT

    75%

    196

    147,

    00%

    4040

    36,0

    39,2

    40,0

    039

    ,20

    312.

    02R

    EFR

    . CO

    MP

    RE

    SS

    OR

    UN

    IT F

    OR

    A/C

    PLA

    NT

    75%

    196

    147,

    00%

    4040

    36,0

    39,2

    40,0

    039

    ,20

    355.

    01P

    RO

    VIS

    ON

    CO

    OLI

    NG

    CO

    MP

    RE

    SS

    OR

    75%

    9,5

    7,1

    0%4,

    24,

    236

    ,037

    ,54,

    2015

    ,70

    355.

    02P

    RO

    VIS

    ON

    CO

    OLI

    NG

    CO

    MP

    RE

    SS

    OR

    75%

    9,5

    7,1

    0%4,

    24,

    236

    ,037

    ,54,

    2015

    ,70

    314.

    03R

    EFR

    . CO

    MP

    . FO

    R A

    /S U

    NIT

    GA

    LLE

    Y75

    %17

    ,813

    ,40%

    5,22

    5,22

    36,0

    38,2

    5,22

    50,0

    031

    4.02

    RE

    FR. C

    OM

    P. F

    OR

    A/S

    UN

    IT E

    NG

    . CO

    NTR

    . RO

    OM

    75%

    17,2

    12,9

    0%5,

    225,

    2236

    ,038

    ,15,

    2250

    ,00

    682.

    01S

    TEA

    M D

    UM

    P C

    OO

    LER

    50%

    998

    499,

    00%

    3636

    36,0

    48,0

    36,0

    056

    2.07

    SA

    MP

    LE C

    OO

    LER

    0%2

    0,0

    0%2

    236

    ,036

    ,00,

    0042

    3.03

    SH

    AFT

    BE

    AR

    ING

    100%

    1,7

    1,7

    0%0,

    150,

    1536

    ,045

    ,80,

    1546

    1.01

    STA

    RTI

    NG

    AIR

    CO

    MP

    RE

    SS

    OR

    50%

    16,7

    8,4

    0%3,

    243,

    2436

    ,038

    ,23,

    2446

    1.02

    STA

    RTI

    NG

    AIR

    CO

    MP

    RE

    SS

    OR

    0%16

    ,70,

    00%

    3,24

    3,24

    36,0

    36,0

    0,00

    TOTA

    L R

    EQU

    IREM

    ENT:

    6540

    [kW

    ]TO

    TAL

    LT F

    LOW

    :43

    7[m

    ^3/h

    ]TO

    TAL

    SW F

    LOW

    :46

    0[m

    ^3/h

    ]FW

    TEM

    P O

    UTL

    ET O

    F C

    OO

    LER

    S:36

    ,0[d

    eg. C

    ]FW

    TEM

    P IN

    LET

    TO C

    OO

    LER

    S:49

    ,0[d

    eg. C

    ]SW

    TEM

    P IN

    LET

    TO C

    OO

    LER

    S:32

    ,0[d

    eg. C

    ]SW

    TEM

    P O

    UTL

    ET O

    F C

    OO

    LER

    S:48

    ,0[d

    eg. C

    ]TA

    RG

    ET

    CO

    OL.

    REQ

    . FO

    R E

    AC

    H C

    OO

    LER

    :65

    %42

    51[k

    W]

    LT F

    LOW

    FO

    R E

    AC

    H C

    OO

    LER

    :43

    7[m

    ^3/h

    ]SW

    FLO

    W F

    OR

    EA

    CH

    CO

    OLE

    R:

    460

    [m^3

    /h]

    To b

    e pr

    ovid

    ed b

    y 2

    x 50

    % S

    W p

    umps

    runn

    ing

    in p

    aral

    lel o

    pera

    tion

    Dat

    e: 1

    4-09

    -200

    8P

    age:

    1 /

    1

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 3

    KQETypewritten Text615-00-1

  • CO

    ND

    ITIO

    N: A

    T SE

    A -

    100%

    (SM

    CR

    ) MA

    IN E

    NG

    INE

    LOA

    D -

    TRO

    PIC

    AL

    CO

    ND

    ITIO

    N

    ITEM

    NO

    . :D

    ESC

    RIP

    TIO

    N:

    LOA

    DH

    EAT

    DIS

    S.H

    EAT

    DIS

    S. A

    T LO

    AD

    TOL.

    SPEC

    . C

    OO

    L.

    CO

    OL.

    WA

    TER

    FL

    OW

    INLE

    T TE

    MP.

    OU

    TLET

    TE

    MP.

    A

    T M

    AX.

    LO

    AD

    CO

    OLI

    NG

    W

    ATE

    R

    FLO

    W

    Del

    ta P

    REM

    AR

    K

    [%]

    [kW

    ][k

    W]

    [+%

    ][m

    ^3/H

    ][m

    ^3/H

    ][d

    eg. C

    ][d

    eg. C

    ][m

    ^3/H

    ][k

    Pa]

    563.

    01M

    /E L

    O C

    OO

    LER

    +

    100%

    700

    700,

    010

    %95

    104,

    536

    ,042

    ,410

    4,50

    20,0

    056

    2.03

    JAC

    KE

    T W

    ATE

    R C

    OO

    LER

    100%

    1240

    1240

    ,010

    %95

    104,

    542

    ,453

    ,720

    ,00

    411.

    01M

    /E S

    CA

    VE

    NG

    ER

    AIR

    CO

    OLE

    R10

    0%30

    0030

    00,0

    0%13

    713

    736

    ,055

    ,013

    7,00

    50,0

    043

    1.01

    A/E

    1 T

    OTA

    L (L

    O, J

    AC

    K. W

    . AN

    D S

    CA

    V. A

    IR C

    OO

    LER

    )90

    %42

    037

    8,0

    0%28

    ,728

    ,736

    ,047

    ,428

    ,70

    39,2

    043

    1.02

    A/E

    2 T

    OTA

    L (L

    O, J

    AC

    K. W

    . AN

    D S

    CA

    V. A

    IR C

    OO

    LER

    )90

    %42

    037

    8,0

    0%28

    ,728

    ,736

    ,047

    ,428

    ,70

    39,2

    043

    1.03

    A/E

    3 T

    OTA

    L (L

    O, J

    AC

    K. W

    . AN

    D S

    CA

    V. A

    IR C

    OO

    LER

    )0%

    420

    0,0

    0%28

    ,728

    ,736

    ,036

    ,00,

    0039

    ,20

    312.

    01R

    EFR

    . CO

    MP

    RE

    SS

    OR

    UN

    IT F

    OR

    A/C

    PLA

    NT

    75%

    196

    147,

    00%

    4040

    36,0

    39,2

    40,0

    039

    ,20

    312.

    02R

    EFR

    . CO

    MP

    RE

    SS

    OR

    UN

    IT F

    OR

    A/C

    PLA

    NT

    75%

    196

    147,

    00%

    4040

    36,0

    39,2

    40,0

    039

    ,20

    355.

    01P

    RO

    VIS

    ON

    CO

    OLI

    NG

    CO

    MP

    RE

    SS

    OR

    75%

    9,5

    7,1

    0%4,

    24,

    236

    ,037

    ,54,

    2015

    ,70

    355.

    02P

    RO

    VIS

    ON

    CO

    OLI

    NG

    CO

    MP

    RE

    SS

    OR

    75%

    9,5

    7,1

    0%4,

    24,

    236

    ,037

    ,54,

    2015

    ,70

    314.

    03R

    EFR

    . CO

    MP

    . FO

    R A

    /S U

    NIT

    GA

    LLE

    Y75

    %17

    ,813

    ,40%

    5,22

    5,22

    36,0

    38,2

    5,22

    50,0

    031

    4.02

    RE

    FR. C

    OM

    P. F

    OR

    A/S

    UN

    IT E

    NG

    . CO

    NTR

    . RO

    OM

    75%

    17,2

    12,9

    0%5,

    225,

    2236

    ,038

    ,15,

    2250

    ,00

    682.

    01S

    TEA

    M D

    UM

    P C

    OO

    LER

    50%

    998

    499,

    00%

    3636

    36,0

    48,0

    36,0

    056

    2.07

    SA

    MP

    LE C

    OO

    LER

    0%2

    0,0

    0%2

    236

    ,036

    ,00,

    0042

    3.03

    SH

    AFT

    BE

    AR

    ING

    100%

    1,7

    1,7

    0%0,

    150,

    1536

    ,045

    ,80,

    1546

    1.01

    STA

    RTI

    NG

    AIR

    CO

    MP

    RE

    SS

    OR

    50%

    16,7

    8,4

    0%3,

    243,

    2436

    ,038

    ,23,

    2446

    1.02

    STA

    RTI

    NG

    AIR

    CO

    MP

    RE

    SS

    OR

    0%16

    ,70,

    00%

    3,24

    3,24

    36,0

    36,0

    0,00

    TOTA

    L R

    EQU

    IREM

    ENT:

    6540

    [kW

    ]TO

    TAL

    LT F

    LOW

    :43

    7[m

    ^3/h

    ]TO

    TAL

    SW F

    LOW

    :46

    0[m

    ^3/h

    ]FW

    TEM

    P O

    UTL

    ET O

    F C

    OO

    LER

    S:36

    ,0[d

    eg. C

    ]FW

    TEM

    P IN

    LET

    TO C

    OO

    LER

    S:49

    ,0[d

    eg. C

    ]SW

    TEM

    P IN

    LET

    TO C

    OO

    LER

    S:32

    ,0[d

    eg. C

    ]SW

    TEM

    P O

    UTL

    ET O

    F C

    OO

    LER

    S:48

    ,0[d

    eg. C

    ]TA

    RG

    ET

    CO

    OL.

    REQ

    . FO

    R E

    AC

    H C

    OO

    LER

    :50

    %32

    70[k

    W]

    LT F

    LOW

    FO

    R E

    AC

    H C

    OO

    LER

    :43

    7[m

    ^3/h

    ]SW

    FLO

    W F

    OR

    EA

    CH

    CO

    OLE

    R:

    460

    [m^3

    /h]

    To b

    e pr

    ovid

    ed b

    y 2

    x 50

    % S

    W p

    umps

    runn

    ing

    in p

    aral

    lel o

    pera

    tion

    Dat

    e: 1

    4-09

    -200

    8P

    age:

    1 /

    1

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 4

    KQETypewritten Text615-00-2

  • Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Low

    sea c

    hest

    Flo

    w =

    463,3

    51 m

    3/h

    Tem

    pera

    ture

    = 3

    2,0

    C

    Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Hig

    h s

    ea c

    hest

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    3Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 0

    ,00 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    0,0

    0D

    uty

    Pre

    ssure

    Ris

    e =

    0,0

    00 b

    ar

    Duty

    Flo

    w =

    0,0

    00 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    2Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 2

    6,0

    5 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    74,9

    1D

    uty

    Pre

    ssure

    Ris

    e =

    2,9

    48 b

    ar

    Duty

    Flo

    w =

    238,3

    13 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    1Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 2

    5,6

    2 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    73,5

    8D

    uty

    Pre

    ssure

    Ris

    e =

    3,0

    16 b

    ar

    Duty

    Flo

    w =

    225,0

    37 m

    3/h

    Orifice

    Siz

    e =

    116 m

    mTota

    l Pre

    ssure

    Loss

    = 1

    ,726 b

    ar

    Flo

    w =

    465,7

    26 m

    3/h

    Pre

    ssure

    = 1

    m F

    luid

    gEle

    vation =

    6 m

    Uniq

    ue N

    am

    e =

    Overb

    oard

    Flo

    w =

    465,7

    23 m

    3/h

    Tem

    pera

    ture

    = 4

    8,6

    C

    Out

    Tem

    pera

    ture

    = 4

    8,5

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    4251,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,900 b

    ar

    Flo

    w =

    233,3

    63 m

    3/h

    Out

    Tem

    pera

    ture

    = 4

    8,8

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    4251,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,875 b

    ar

    Flo

    w =

    229,9

    87 m

    3/h

    Uniq

    ue N

    am

    e =

    In lin

    e F

    ilter

    Tota

    l Pre

    ssure

    Loss

    = 0

    ,045 b

    ar

    Cas

    e 1

    -1:

    SW

    coo

    ling

    sys

    tem

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 5

    KQETypewritten TextORIFICE INSERTED

    KQETypewritten TextAverage Duty Power = 25,85 kWAverage Duty Efficiency (%) = 74,3

  • Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Low

    sea c

    hest

    Flo

    w =

    648,6

    43 m

    3/h

    Tem

    pera

    ture

    = 3

    2,0

    C

    Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Hig

    h s

    ea c

    hest

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    3Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 0

    ,00 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    0,0

    0D

    uty

    Pre

    ssure

    Ris

    e =

    0,0

    00 b

    ar

    Duty

    Flo

    w =

    0,0

    00 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    2Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 2

    9,5

    2 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    75,4

    2D

    uty

    Pre

    ssure

    Ris

    e =

    2,3

    93 b

    ar

    Duty

    Flo

    w =

    334,9

    53 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    1Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 2

    8,6

    6 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    76,6

    7D

    uty

    Pre

    ssure

    Ris

    e =

    2,5

    22 b

    ar

    Duty

    Flo

    w =

    313,6

    90 m

    3/h

    Orifice

    Siz

    e =

    320 m

    mTota

    l Pre

    ssure

    Loss

    = 0

    ,000 b

    ar

    Flo

    w =

    650,9

    38 m

    3/h

    Pre

    ssure

    = 1

    m F

    luid

    gEle

    vation =

    6 m

    Uniq

    ue N

    am

    e =

    Overb

    oard

    Flo

    w =

    650,9

    38 m

    3/h

    Tem

    pera

    ture

    = 4

    3,9

    C

    Out

    Tem

    pera

    ture

    = 4

    3,8

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    4251,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 1

    ,758 b

    ar

    Flo

    w =

    326,6

    75 m

    3/h

    Out

    Tem

    pera

    ture

    = 4

    4,0

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    4251,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 1

    ,708 b

    ar

    Flo

    w =

    321,9

    68 m

    3/h

    Uniq

    ue N

    am

    e =

    In lin

    e F

    ilter

    Tota

    l Pre

    ssure

    Loss

    = 0

    ,089 b

    ar

    Cas

    e 1

    -2:

    SW

    coo

    ling

    sys

    tem

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 6

    KQETypewritten TextAverage Duty Power = 29,09 kWAverage Duty Efficiency (%) = 76,0

  • Pres

    sure

    = 4

    ,5 m

    Flu

    id g

    Elev

    atio

    n =

    2,5

    mU

    niqu

    e N

    ame

    = L

    ow s

    ea c

    hest

    Flow

    = 4

    57,3

    85 m

    3/h

    Tem

    pera

    ture

    = 3

    2,0

    C

    Pres

    sure

    = 4

    ,5 m

    Flu

    id g

    Elev

    atio

    n =

    2,5

    mU

    niqu

    e N

    ame

    = H

    igh

    sea

    ches

    t

    Uni

    que

    Nam

    e =

    SW

    Coo

    l. p

    ump

    #3

    Elev

    atio

    n =

    3,5

    mD

    uty

    NPS

    H A

    vaila

    ble

    = -

    0,01

    2 ba

    r g

    Dut

    y N

    PSH

    Req

    uire

    d =

    0,1

    47 b

    arD

    uty

    Pow

    er =

    0,0

    0 kW

    Dut

    y Ef

    ficie

    ncy

    (%)

    = 0

    ,00

    Dut

    y Pr

    essu

    re R

    ise

    = 0

    ,000

    bar

    Dut

    y Fl

    ow =

    0,0

    00 m

    3/h

    Uni

    que

    Nam

    e =

    SW

    Coo

    l. p

    ump

    #2

    Elev

    atio

    n =

    3,5

    mD

    uty

    NPS

    H A

    vaila

    ble

    = 0

    ,217

    bar

    gD

    uty

    NPS

    H R

    equi

    red

    = 0

    ,244

    bar

    Dut

    y Po

    wer

    = 9

    ,97

    kWD

    uty

    Effic

    ienc

    y (%

    ) =

    78,

    06D

    uty

    Pres

    sure

    Ris

    e =

    1,1

    91 b

    arD

    uty

    Flow

    = 2

    35,2

    59 m

    3/h

    Uni

    que

    Nam

    e =

    SW

    Coo

    l. p

    ump

    #1

    Elev

    atio

    n =

    3,5

    mD

    uty

    NPS

    H A

    vaila

    ble

    = 0

    ,223

    bar

    gD

    uty

    NPS

    H R

    equi

    red

    = 0

    ,232

    bar

    Dut

    y Po

    wer

    = 9

    ,80

    kWD

    uty

    Effic

    ienc

    y (%

    ) =

    79,

    16D

    uty

    Pres

    sure

    Ris

    e =

    1,2

    57 b

    arD

    uty

    Flow

    = 2

    22,1

    26 m

    3/h

    Ori

    fice

    Siz

    e =

    320

    mm

    Tota

    l Pre

    ssur

    e Lo

    ss =

    0,0

    00 b

    arFl

    ow =

    459

    ,766

    m3/

    hPr

    essu

    re =

    1 m

    Flu

    id g

    Elev

    atio

    n =

    6 m

    Uni

    que

    Nam

    e =

    Ove

    rboa

    rdFl

    ow =

    459

    ,766

    m3/

    hTe

    mpe

    ratu

    re =

    48,

    9 C

    Out

    Tem

    pera

    ture

    = 4

    8,7

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tran

    sfer

    red

    = 4

    251,

    00 k

    WTo

    tal P

    ress

    ure

    Loss

    = 0

    ,878

    bar

    Flow

    = 2

    30,3

    59 m

    3/h

    Out

    Tem

    pera

    ture

    = 4

    9,0

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tran

    sfer

    red

    = 4

    251,

    00 k

    WTo

    tal P

    ress

    ure

    Loss

    = 0

    ,853

    bar

    Flow

    = 2

    27,0

    26 m

    3/h

    Uni

    que

    Nam

    e =

    In

    line

    Filt

    erTo

    tal P

    ress

    ure

    Loss

    = 0

    ,044

    bar

    Cas

    e 2:

    SW c

    oolin

    g sy

    stem

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 7

    KQETypewritten TextDuty Power = 9,87 kWDuty Efficiency (%) = 78,88

  • Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Low

    sea c

    hest

    Flo

    w =

    405,5

    59 m

    3/h

    Tem

    pera

    ture

    = 3

    2,0

    C

    Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Hig

    h s

    ea c

    hest

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    3Ele

    vation =

    3,5

    mD

    uty

    NPSH

    Availa

    ble

    = -

    0,0

    12 b

    ar

    gD

    uty

    NPSH

    Required =

    0,1

    47 b

    ar

    Duty

    Pow

    er

    = 0

    ,00 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    0,0

    0D

    uty

    Pre

    ssure

    Ris

    e =

    0,0

    00 b

    ar

    Duty

    Flo

    w =

    0,0

    00 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    2Ele

    vation =

    3,5

    mD

    uty

    NPSH

    Availa

    ble

    = 0

    ,235 b

    ar

    gD

    uty

    NPSH

    Required =

    0,2

    55 b

    ar

    Duty

    Pow

    er

    = 6

    ,88 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    79,6

    4D

    uty

    Pre

    ssure

    Ris

    e =

    0,9

    36 b

    ar

    Duty

    Flo

    w =

    210,5

    66 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    1Ele

    vation =

    3,5

    mD

    uty

    NPSH

    Availa

    ble

    = 0

    ,241 b

    ar

    gD

    uty

    NPSH

    Required =

    0,2

    40 b

    ar

    Duty

    Pow

    er

    = 6

    ,72 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    79,2

    8D

    uty

    Pre

    ssure

    Ris

    e =

    0,9

    84 b

    ar

    Duty

    Flo

    w =

    194,9

    93 m

    3/h

    Orifice

    Siz

    e =

    320 m

    mTota

    l Pre

    ssure

    Loss

    = 0

    ,000 b

    ar

    Flo

    w =

    407,3

    62 m

    3/h

    Pre

    ssure

    = 1

    m F

    luid

    gEle

    vation =

    6 m

    Uniq

    ue N

    am

    e =

    Overb

    oard

    Flo

    w =

    407,3

    62 m

    3/h

    Tem

    pera

    ture

    = 4

    6,6

    C

    Out

    Tem

    pera

    ture

    = 4

    6,5

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,689 b

    ar

    Flo

    w =

    204,2

    60 m

    3/h

    Out

    Tem

    pera

    ture

    = 4

    6,7

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,670 b

    ar

    Flo

    w =

    201,2

    99 m

    3/h

    Uniq

    ue N

    am

    e =

    In lin

    e F

    ilter

    Tota

    l Pre

    ssure

    Loss

    = 0

    ,035 b

    ar

    Cas

    e 3

    :S

    W c

    oolin

    g s

    yste

    m

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 8

    KQETypewritten TextAverage Duty Power = 6,80 kWAverage Duty Efficiency (%) = 79,5

  • Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Low

    sea c

    hest

    Flo

    w =

    358,1

    15 m

    3/h

    Tem

    pera

    ture

    = 3

    2,0

    C

    Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Hig

    h s

    ea c

    hest

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    3Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 0

    ,00 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    0,0

    0D

    uty

    Pre

    ssure

    Ris

    e =

    0,0

    00 b

    ar

    Duty

    Flo

    w =

    0,0

    00 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    2Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 2

    ,70 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    76,5

    1D

    uty

    Pre

    ssure

    Ris

    e =

    0,4

    02 b

    ar

    Duty

    Flo

    w =

    185,2

    79 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    1Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 2

    ,67 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    79,0

    0D

    uty

    Pre

    ssure

    Ris

    e =

    0,4

    40 b

    ar

    Duty

    Flo

    w =

    172,8

    36 m

    3/h

    Orifice

    Siz

    e =

    320 m

    mTota

    l Pre

    ssure

    Loss

    = 0

    ,000 b

    ar

    Flo

    w =

    359,9

    43 m

    3/h

    Pre

    ssure

    = 1

    m F

    luid

    gEle

    vation =

    6 m

    Uniq

    ue N

    am

    e =

    Overb

    oard

    Flo

    w =

    359,9

    45 m

    3/h

    Tem

    pera

    ture

    = 4

    8,6

    C

    Out

    Tem

    pera

    ture

    = 4

    8,3

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,210 b

    ar

    Flo

    w =

    182,2

    18 m

    3/h

    Out

    Tem

    pera

    ture

    = 4

    8,9

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,196 b

    ar

    Flo

    w =

    175,8

    97 m

    3/h

    Uniq

    ue N

    am

    e =

    In lin

    e F

    ilter

    Tota

    l Pre

    ssure

    Loss

    = 0

    ,027 b

    ar

    Cas

    e 4

    -1:

    SW

    coo

    ling

    sys

    tem

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 9

    KQETypewritten TextAverage Duty Power = 2,69 kWAverage Duty Efficiency (%) = 77,8

  • Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Low

    sea c

    hest

    Flo

    w =

    362,1

    16 m

    3/h

    Tem

    pera

    ture

    = 3

    2,0

    C

    Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Hig

    h s

    ea c

    hest

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    3Pum

    p M

    odel =

    CASE4-2

    NSL2

    00-2

    65

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 0

    ,00 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    0,0

    0D

    uty

    Pre

    ssure

    Ris

    e =

    0,0

    00 b

    ar

    Duty

    Flo

    w =

    0,0

    00 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    2Pum

    p M

    odel =

    CASE4-2

    NSL2

    00-2

    65

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 3

    ,51 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    76,0

    1D

    uty

    Pre

    ssure

    Ris

    e =

    0,5

    12 b

    ar

    Duty

    Flo

    w =

    187,7

    65 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    1Pum

    p M

    odel =

    CASE4-2

    NSL2

    00-2

    65

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 3

    ,43 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    77,7

    1D

    uty

    Pre

    ssure

    Ris

    e =

    0,5

    50 b

    ar

    Duty

    Flo

    w =

    174,3

    50 m

    3/h

    Orifice

    Siz

    e =

    320 m

    mTota

    l Pre

    ssure

    Loss

    = 0

    ,000 b

    ar

    Flo

    w =

    363,9

    43 m

    3/h

    Pre

    ssure

    = 1

    m F

    luid

    gEle

    vation =

    6 m

    Uniq

    ue N

    am

    e =

    Overb

    oard

    Flo

    w =

    363,9

    43 m

    3/h

    Tem

    pera

    ture

    = 4

    8,4

    C

    Out

    Tem

    pera

    ture

    = 4

    8,2

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,316 b

    ar

    Flo

    w =

    183,2

    99 m

    3/h

    Out

    Tem

    pera

    ture

    = 4

    8,6

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,301 b

    ar

    Flo

    w =

    178,8

    17 m

    3/h

    Uniq

    ue N

    am

    e =

    In lin

    e F

    ilter

    Tota

    l Pre

    ssure

    Loss

    = 0

    ,028 b

    ar

    Cas

    e 4

    -2:

    SW

    coo

    ling

    sys

    tem

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 1

    0

    KQETypewritten TextAverage Duty Power = 3,46 kWAverage Duty Efficiency (%) = 76,9

  • Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Low

    sea c

    hest

    Flo

    w =

    361,3

    75 m

    3/h

    Tem

    pera

    ture

    = 3

    2,0

    C

    Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Hig

    h s

    ea c

    hest

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    3Pum

    p M

    odel =

    CASE4-3

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 0

    ,00 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    0,0

    0D

    uty

    Pre

    ssure

    Ris

    e =

    0,0

    00 b

    ar

    Duty

    Flo

    w =

    0,0

    00 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    2Pum

    p M

    odel =

    CASE4-3

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 4

    ,14 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    76,0

    3D

    uty

    Pre

    ssure

    Ris

    e =

    0,6

    10 b

    ar

    Duty

    Flo

    w =

    185,7

    17 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    1Pum

    p M

    odel =

    CASE4-3

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 4

    ,08 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    77,9

    2D

    uty

    Pre

    ssure

    Ris

    e =

    0,6

    52 b

    ar

    Duty

    Flo

    w =

    175,6

    58 m

    3/h

    Orifice

    Siz

    e =

    320 m

    mTota

    l Pre

    ssure

    Loss

    = 0

    ,000 b

    ar

    Flo

    w =

    363,2

    02 m

    3/h

    Pre

    ssure

    = 1

    m F

    luid

    gEle

    vation =

    6 m

    Uniq

    ue N

    am

    e =

    Overb

    oard

    Flo

    w =

    363,2

    03 m

    3/h

    Tem

    pera

    ture

    = 4

    8,4

    C

    Out

    Tem

    pera

    ture

    = 4

    8,3

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,416 b

    ar

    Flo

    w =

    182,4

    11 m

    3/h

    Out

    Tem

    pera

    ture

    = 4

    8,6

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,400 b

    ar

    Flo

    w =

    178,9

    65 m

    3/h

    Uniq

    ue N

    am

    e =

    In lin

    e F

    ilter

    Tota

    l Pre

    ssure

    Loss

    = 0

    ,028 b

    ar

    Cas

    e 4

    -3:

    SW

    coo

    ling

    sys

    tem

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 1

    1

    KQETypewritten TextAverage Duty Power = 4,11 kWAverage Duty Efficiency (%) = 77,0

  • Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Low

    sea c

    hest

    Flo

    w =

    361,6

    52 m

    3/h

    Tem

    pera

    ture

    = 3

    2,0

    C

    Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Hig

    h s

    ea c

    hest

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    3Pum

    p M

    odel =

    CASE4-4

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 0

    ,00 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    0,0

    0D

    uty

    Pre

    ssure

    Ris

    e =

    0,0

    00 b

    ar

    Duty

    Flo

    w =

    0,0

    00 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    2Pum

    p M

    odel =

    CASE4-4

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 4

    ,70 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    78,2

    7D

    uty

    Pre

    ssure

    Ris

    e =

    0,7

    12 b

    ar

    Duty

    Flo

    w =

    186,1

    09 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    1Pum

    p M

    odel =

    CASE4-4

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 4

    ,62 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    79,4

    4D

    uty

    Pre

    ssure

    Ris

    e =

    0,7

    53 b

    ar

    Duty

    Flo

    w =

    175,5

    44 m

    3/h

    Orifice

    Siz

    e =

    320 m

    mTota

    l Pre

    ssure

    Loss

    = 0

    ,000 b

    ar

    Flo

    w =

    363,4

    78 m

    3/h

    Pre

    ssure

    = 1

    m F

    luid

    gEle

    vation =

    6 m

    Uniq

    ue N

    am

    e =

    Overb

    oard

    Flo

    w =

    363,4

    79 m

    3/h

    Tem

    pera

    ture

    = 4

    8,4

    C

    Out

    Tem

    pera

    ture

    = 4

    8,3

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,517 b

    ar

    Flo

    w =

    182,2

    28 m

    3/h

    Out

    Tem

    pera

    ture

    = 4

    8,5

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,502 b

    ar

    Flo

    w =

    179,4

    24 m

    3/h

    Uniq

    ue N

    am

    e =

    In lin

    e F

    ilter

    Tota

    l Pre

    ssure

    Loss

    = 0

    ,028 b

    ar

    Cas

    e 4

    -4:

    SW

    coo

    ling

    sys

    tem

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 1

    2

    KQETypewritten TextAverage Duty Power = 4,66 kWAverage Duty Efficiency (%) = 78,9

  • Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Low

    sea c

    hest

    Flo

    w =

    361,0

    94 m

    3/h

    Tem

    pera

    ture

    = 3

    2,0

    C

    Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Hig

    h s

    ea c

    hest

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    3Pum

    p M

    odel =

    CASE4-5

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 0

    ,00 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    0,0

    0D

    uty

    Pre

    ssure

    Ris

    e =

    0,0

    00 b

    ar

    Duty

    Flo

    w =

    0,0

    00 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    2Pum

    p M

    odel =

    CASE4-5

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 5

    ,27 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    79,5

    8D

    uty

    Pre

    ssure

    Ris

    e =

    0,8

    10 b

    ar

    Duty

    Flo

    w =

    186,1

    41 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    1Pum

    p M

    odel =

    CASE4-5

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 5

    ,15 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    80,2

    3D

    uty

    Pre

    ssure

    Ris

    e =

    0,8

    51 b

    ar

    Duty

    Flo

    w =

    174,9

    53 m

    3/h

    Orifice

    Siz

    e =

    320 m

    mTota

    l Pre

    ssure

    Loss

    = 0

    ,000 b

    ar

    Flo

    w =

    362,9

    21 m

    3/h

    Pre

    ssure

    = 1

    m F

    luid

    gEle

    vation =

    6 m

    Uniq

    ue N

    am

    e =

    Overb

    oard

    Flo

    w =

    362,9

    21 m

    3/h

    Tem

    pera

    ture

    = 4

    8,5

    C

    Out

    Tem

    pera

    ture

    = 4

    8,3

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,616 b

    ar

    Flo

    w =

    181,7

    27 m

    3/h

    Out

    Tem

    pera

    ture

    = 4

    8,5

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,601 b

    ar

    Flo

    w =

    179,3

    68 m

    3/h

    Uniq

    ue N

    am

    e =

    In lin

    e F

    ilter

    Tota

    l Pre

    ssure

    Loss

    = 0

    ,027 b

    ar

    Cas

    e 4

    -5:

    SW

    coo

    ling

    sys

    tem

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 1

    3

    KQETypewritten TextAverage Duty Power = 5,21 kWAverage Duty Efficiency (%) = 79,9

  • Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Low

    sea c

    hest

    Flo

    w =

    362,2

    15 m

    3/h

    Tem

    pera

    ture

    = 3

    2,0

    C

    Pre

    ssure

    = 4

    ,5 m

    Flu

    id g

    Ele

    vation =

    2,5

    mU

    niq

    ue N

    am

    e =

    Hig

    h s

    ea c

    hest

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    3Pum

    p M

    odel =

    CASE4-6

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 0

    ,00 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    0,0

    0D

    uty

    Pre

    ssure

    Ris

    e =

    0,0

    00 b

    ar

    Duty

    Flo

    w =

    0,0

    00 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    2Pum

    p M

    odel =

    CASE4-6

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 5

    ,91 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    80,5

    8D

    uty

    Pre

    ssure

    Ris

    e =

    0,9

    17 b

    ar

    Duty

    Flo

    w =

    186,9

    56 m

    3/h

    Uniq

    ue N

    am

    e =

    SW

    Cool. p

    um

    p #

    1Pum

    p M

    odel =

    CASE4-6

    NSL1

    50-3

    30

    Ele

    vation =

    3,5

    mD

    uty

    Pow

    er

    = 5

    ,76 k

    WD

    uty

    Eff

    icie

    ncy

    (%

    ) =

    80,8

    5D

    uty

    Pre

    ssure

    Ris

    e =

    0,9

    57 b

    ar

    Duty

    Flo

    w =

    175,2

    59 m

    3/h

    Orifice

    Siz

    e =

    320 m

    mTota

    l Pre

    ssure

    Loss

    = 0

    ,000 b

    ar

    Flo

    w =

    364,0

    41 m

    3/h

    Pre

    ssure

    = 1

    m F

    luid

    gEle

    vation =

    6 m

    Uniq

    ue N

    am

    e =

    Overb

    oard

    Flo

    w =

    364,0

    41 m

    3/h

    Tem

    pera

    ture

    = 4

    8,4

    C

    Out

    Tem

    pera

    ture

    = 4

    8,3

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,721 b

    ar

    Flo

    w =

    182,1

    30 m

    3/h

    Out

    Tem

    pera

    ture

    = 4

    8,5

    CIn

    Tem

    pera

    ture

    = 3

    2,0

    CH

    eat

    Tra

    nsf

    err

    ed =

    3270,0

    0 k

    WTota

    l Pre

    ssure

    Loss

    = 0

    ,705 b

    ar

    Flo

    w =

    180,0

    85 m

    3/h

    Uniq

    ue N

    am

    e =

    In lin

    e F

    ilter

    Tota

    l Pre

    ssure

    Loss

    = 0

    ,028 b

    ar

    Cas

    e 4

    -6:

    SW

    coo

    ling

    sys

    tem

    AP

    PE

    ND

    IX 1

    - C

    ALC

    ULA

    TIO

    N D

    OC

    UM

    EN

    TSP

    AG

    E N

    O. 1

    4

    KQETypewritten TextAverage Duty Power = 5,84 kWAverage Duty Efficiency (%) = 80,7

  • Member of

    Green Ship of the Future

    Calculation Appendix.pdfCALCULATION2.pdfCALCULATION