76
Introduction Algorithms Examples Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick, Jan 2009

Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Approximations of the The Mumford-ShahFunctional for Unit Vector Fields

Jonas Haehnle

University of Tübingen

Warwick, Jan 2009

Page 2: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

IntroductionThe FunctionalMotivation

AlgorithmsSplitting & ProjectionSplitting & PenalisationPenalisation without Splitting

ExamplesComparison: Projection vs. PenalisationComparison: CB vs. RGB

Page 3: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Vectorial Mumford-Shah Functional(sphere valued functions)

For Ω⊆ Rd , d ≥ 2, find

(v,Γ) := argminK⊂Ω closed,

u∈H1(Ω\K ,S2)

E(u,K ),

E(u,K ) :=α

2

∫Ω\K|∇u|2dx +

γ

2

∫Ω|u−g|2dx + βH d−1(K ) ,

g ∈ L∞(Ω,S2): original image, K : edge set (closed).

3 Terms: smoothing, fidelity, edge length.

Page 4: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Vectorial Mumford-Shah Functional(sphere valued functions)

For Ω⊆ Rd , d ≥ 2, find

(v,Γ) := argminK⊂Ω closed,

u∈H1(Ω\K ,S2)

E(u,K ),

E(u,K ) :=α

2

∫Ω\K|∇u|2dx +

γ

2

∫Ω|u−g|2dx + βH d−1(K ) ,

g ∈ L∞(Ω,S2): original image, K : edge set (closed).

3 Terms: smoothing, fidelity, edge length.

Page 5: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Weak Formulation(sphere valued functions)

For g ∈ L∞(Ω;S2), u ∈ SBV (Ω,S2), minimise

E(u) :=α

2

∫Ω|∇u|2dx +

γ

2

∫Ω|u−g|2dx + βH d−1(Su∩Ω) .

Thm: (Carriero-Leaci, 91): ∃ solution u, and(u,Su) solves original problem.

Page 6: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Weak Formulation(sphere valued functions)

For g ∈ L∞(Ω;S2), u ∈ SBV (Ω,S2), minimise

E(u) :=α

2

∫Ω|∇u|2dx +

γ

2

∫Ω|u−g|2dx + βH d−1(Su∩Ω) .

Thm: (Carriero-Leaci, 91): ∃ solution u, and(u,Su) solves original problem.

Page 7: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Vectorial Ambrosio-Tortorelli Functional(sphere valued functions)

For u,g ∈ H1(Ω;S2), s ∈ H1(Ω, [0,1]), minimise

ATε (u,s) :=α

2

∫Ω

(s2 + kε )|∇u|2dx +γ

2

∫Ω|u−g|2dx

∫Ω

ε|∇s|2 +14ε

(1−s)2dx.

s : “phase function”, i.e. K ≈ s ≈ 0, Ω\K ≈ s ≈ 1.

Thm (Ambrosio-Tortorelli, 90/92):0 < kε = o(ε) =⇒ ATε (u,s)

Γ→ E(u,K ).

Page 8: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Vectorial Ambrosio-Tortorelli Functional(sphere valued functions)

For u,g ∈ H1(Ω;S2), s ∈ H1(Ω, [0,1]), minimise

ATε (u,s) :=α

2

∫Ω

(s2 + kε )|∇u|2dx +γ

2

∫Ω|u−g|2dx

∫Ω

ε|∇s|2 +14ε

(1−s)2dx.

s : “phase function”, i.e. K ≈ s ≈ 0, Ω\K ≈ s ≈ 1.

Thm (Ambrosio-Tortorelli, 90/92):0 < kε = o(ε) =⇒ ATε (u,s)

Γ→ E(u,K ).

Page 9: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Vectorial Ambrosio-Tortorelli Functional(sphere valued functions)

For u,g ∈ H1(Ω;S2), s ∈ H1(Ω, [0,1]), minimise

ATε (u,s) :=α

2

∫Ω

(s2 + kε )|∇u|2dx +γ

2

∫Ω|u−g|2dx

∫Ω

ε|∇s|2 +14ε

(1−s)2dx.

s : “phase function”, i.e. K ≈ s ≈ 0, Ω\K ≈ s ≈ 1.

Thm (Ambrosio-Tortorelli, 90/92):0 < kε = o(ε) =⇒ ATε (u,s)

Γ→ E(u,K ).

Page 10: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Prototype Problem

I Non-convex Functional (Mumford-Shah).

I Non-convex constraint (u ∈ S2).I With AT: Strong nonlinear coupling between u and s.I Extending work on harmonic maps to S2

(convex functional, non-convex constraint):Alouges (97), Bartels (05), Bartels-Prohl (07).

Page 11: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Prototype Problem

I Non-convex Functional (Mumford-Shah).I Non-convex constraint (u ∈ S2).

I With AT: Strong nonlinear coupling between u and s.I Extending work on harmonic maps to S2

(convex functional, non-convex constraint):Alouges (97), Bartels (05), Bartels-Prohl (07).

Page 12: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Prototype Problem

I Non-convex Functional (Mumford-Shah).I Non-convex constraint (u ∈ S2).I With AT: Strong nonlinear coupling between u and s.

I Extending work on harmonic maps to S2

(convex functional, non-convex constraint):Alouges (97), Bartels (05), Bartels-Prohl (07).

Page 13: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Prototype Problem

I Non-convex Functional (Mumford-Shah).I Non-convex constraint (u ∈ S2).I With AT: Strong nonlinear coupling between u and s.I Extending work on harmonic maps to S2

(convex functional, non-convex constraint):Alouges (97), Bartels (05), Bartels-Prohl (07).

Page 14: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Colour Image Segmentation

I Chromaticity & Brightness (CB) Colour Model:

RGB image g : Ω→ [0,255]3 ⊂ N3:I B := |g|, andI C := g/|g|= g/B : Ω→ S2.

I Sources: Mumford-Shah (89)Chan-Kang-Shen (01): TV, CBTang-Sapiro-Caselles (01): Harmonic flow, CBOsher-Vese (04): p-harmonic flow, CBBartels-Prohl (06): PM, CBBellettini-Coscia (94), Bourdin (99): MS, grayscale

Page 15: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Colour Image Segmentation

I Chromaticity & Brightness (CB) Colour Model:RGB image g : Ω→ [0,255]3 ⊂ N3:

I B := |g|, andI C := g/|g|= g/B : Ω→ S2.

I Sources: Mumford-Shah (89)Chan-Kang-Shen (01): TV, CBTang-Sapiro-Caselles (01): Harmonic flow, CBOsher-Vese (04): p-harmonic flow, CBBartels-Prohl (06): PM, CBBellettini-Coscia (94), Bourdin (99): MS, grayscale

Page 16: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Colour Image Segmentation

I Chromaticity & Brightness (CB) Colour Model:RGB image g : Ω→ [0,255]3 ⊂ N3:

I B := |g|, andI C := g/|g|= g/B : Ω→ S2.

I Sources: Mumford-Shah (89)Chan-Kang-Shen (01): TV, CBTang-Sapiro-Caselles (01): Harmonic flow, CBOsher-Vese (04): p-harmonic flow, CBBartels-Prohl (06): PM, CBBellettini-Coscia (94), Bourdin (99): MS, grayscale

Page 17: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Nematic Liquid Crystals

I Simplified Ericksen’s energy∫Ω

12

s2|∇n|2 + |∇s|2 + W0(s)dx,

I s ∈ [−1/2,1]: degree of orientation (often s ≥ 0),n ∈ S2: director.

I Sources: Lin (89), Lin-Luskin (89)Virga (94), Alouges (97), Bartels-Prohl (07)

Page 18: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Nematic Liquid Crystals

I Simplified Ericksen’s energy∫Ω

12

s2|∇n|2 + |∇s|2 + W0(s)dx,

I s ∈ [−1/2,1]: degree of orientation (often s ≥ 0),n ∈ S2: director.

I Sources: Lin (89), Lin-Luskin (89)Virga (94), Alouges (97), Bartels-Prohl (07)

Page 19: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

The FunctionalMotivation

Nematic Liquid Crystals

I Simplified Ericksen’s energy∫Ω

12

s2|∇n|2 + |∇s|2 + W0(s)dx,

I s ∈ [−1/2,1]: degree of orientation (often s ≥ 0),n ∈ S2: director.

I Sources: Lin (89), Lin-Luskin (89)Virga (94), Alouges (97), Bartels-Prohl (07)

Page 20: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 1: Splitting & Projection

FE Discr. −→h→0

Alouges-Splitting ?−→n→∞

AT on S2 Γ−→ε→0

MS on S2

Easy to solve numerically.Exact sphere constraint.

Page 21: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 1: Splitting & Projection

FE Discr. −→h→0

Alouges-Splitting ?−→n→∞

AT on S2 Γ−→ε→0

MS on S2

Easy to solve numerically.Exact sphere constraint.

Page 22: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 1: Splitting & Projection

I Splitting: In every iteration, minimise first for u, then for s.

I 1st step, based on Alouges (97):Look for update w s.t. ATε (u−w,s)≤ ATε (u,s).

I Only take w s.t. w⊥ u a.e. =⇒I projecting u−w never increases energyI existence (u ·w = 0 is linear constraint)

I 2nd step: ∃ by convexity & coercivity, 0≤ s ≤ 1 bymax-principle (or testing with cutoff functions).

Page 23: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 1: Splitting & Projection

I Splitting: In every iteration, minimise first for u, then for s.I 1st step, based on Alouges (97):

Look for update w s.t. ATε (u−w,s)≤ ATε (u,s).

I Only take w s.t. w⊥ u a.e. =⇒I projecting u−w never increases energyI existence (u ·w = 0 is linear constraint)

I 2nd step: ∃ by convexity & coercivity, 0≤ s ≤ 1 bymax-principle (or testing with cutoff functions).

Page 24: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 1: Splitting & Projection

I Splitting: In every iteration, minimise first for u, then for s.I 1st step, based on Alouges (97):

Look for update w s.t. ATε (u−w,s)≤ ATε (u,s).I Only take w s.t. w⊥ u a.e.

=⇒I projecting u−w never increases energyI existence (u ·w = 0 is linear constraint)

I 2nd step: ∃ by convexity & coercivity, 0≤ s ≤ 1 bymax-principle (or testing with cutoff functions).

Page 25: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 1: Splitting & Projection

I Splitting: In every iteration, minimise first for u, then for s.I 1st step, based on Alouges (97):

Look for update w s.t. ATε (u−w,s)≤ ATε (u,s).I Only take w s.t. w⊥ u a.e. =⇒

I projecting u−w never increases energyI existence (u ·w = 0 is linear constraint)

I 2nd step: ∃ by convexity & coercivity, 0≤ s ≤ 1 bymax-principle (or testing with cutoff functions).

Page 26: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 1: Splitting & Projection

I Splitting: In every iteration, minimise first for u, then for s.I 1st step, based on Alouges (97):

Look for update w s.t. ATε (u−w,s)≤ ATε (u,s).I Only take w s.t. w⊥ u a.e. =⇒

I projecting u−w never increases energyI existence (u ·w = 0 is linear constraint)

I 2nd step: ∃ by convexity & coercivity, 0≤ s ≤ 1 bymax-principle (or testing with cutoff functions).

Page 27: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Properties

I Energy decreasing.

I (un,sn) (u,s) in H1 (up to subseq).I un→ u in L2, and wn→ 0 in H1.I Limit fulfils constraints.I Problem: Cannot identify limit

limn→∞

(|∇un+1|2sn,ϕ

),

so cannot show (u,s) stationary point of ATε (·, ·).

Page 28: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Properties

I Energy decreasing.I (un,sn) (u,s) in H1 (up to subseq).

I un→ u in L2, and wn→ 0 in H1.I Limit fulfils constraints.I Problem: Cannot identify limit

limn→∞

(|∇un+1|2sn,ϕ

),

so cannot show (u,s) stationary point of ATε (·, ·).

Page 29: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Properties

I Energy decreasing.I (un,sn) (u,s) in H1 (up to subseq).I un→ u in L2, and wn→ 0 in H1.

I Limit fulfils constraints.I Problem: Cannot identify limit

limn→∞

(|∇un+1|2sn,ϕ

),

so cannot show (u,s) stationary point of ATε (·, ·).

Page 30: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Properties

I Energy decreasing.I (un,sn) (u,s) in H1 (up to subseq).I un→ u in L2, and wn→ 0 in H1.I Limit fulfils constraints.

I Problem: Cannot identify limit

limn→∞

(|∇un+1|2sn,ϕ

),

so cannot show (u,s) stationary point of ATε (·, ·).

Page 31: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Properties

I Energy decreasing.I (un,sn) (u,s) in H1 (up to subseq).I un→ u in L2, and wn→ 0 in H1.I Limit fulfils constraints.I Problem: Cannot identify limit

limn→∞

(|∇un+1|2sn,ϕ

),

so cannot show (u,s) stationary point of ATε (·, ·).

Page 32: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Discretisation

I Polygonal Lipschitz domain, uniform triangulation,continuous, piecewise affine FE.

I Only linear eqns in every iteration.I Energy decreasing, if all int. angles ≤ π/2 (AC).I Sphere constraint exactly fulfilled on nodal points.I Limit fulfils constraints.I Problem: As before.

Page 33: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Discretisation

I Polygonal Lipschitz domain, uniform triangulation,continuous, piecewise affine FE.

I Only linear eqns in every iteration.

I Energy decreasing, if all int. angles ≤ π/2 (AC).I Sphere constraint exactly fulfilled on nodal points.I Limit fulfils constraints.I Problem: As before.

Page 34: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Discretisation

I Polygonal Lipschitz domain, uniform triangulation,continuous, piecewise affine FE.

I Only linear eqns in every iteration.I Energy decreasing, if all int. angles ≤ π/2 (AC).

I Sphere constraint exactly fulfilled on nodal points.I Limit fulfils constraints.I Problem: As before.

Page 35: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Discretisation

I Polygonal Lipschitz domain, uniform triangulation,continuous, piecewise affine FE.

I Only linear eqns in every iteration.I Energy decreasing, if all int. angles ≤ π/2 (AC).I Sphere constraint exactly fulfilled on nodal points.

I Limit fulfils constraints.I Problem: As before.

Page 36: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Discretisation

I Polygonal Lipschitz domain, uniform triangulation,continuous, piecewise affine FE.

I Only linear eqns in every iteration.I Energy decreasing, if all int. angles ≤ π/2 (AC).I Sphere constraint exactly fulfilled on nodal points.I Limit fulfils constraints.

I Problem: As before.

Page 37: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Discretisation

I Polygonal Lipschitz domain, uniform triangulation,continuous, piecewise affine FE.

I Only linear eqns in every iteration.I Energy decreasing, if all int. angles ≤ π/2 (AC).I Sphere constraint exactly fulfilled on nodal points.I Limit fulfils constraints.I Problem: As before.

Page 38: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 2: Splitting & Penalisation

FE Discr. −→h→0

Splitting −→n→∞

Reg. GL-AT Γ−→ε→0

MS on S2

Harder to solve numerically.Approx. sphere constraint.

Page 39: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 2: Splitting & Penalisation

FE Discr. −→h→0

Splitting −→n→∞

Reg. GL-AT Γ−→ε→0

MS on S2

Harder to solve numerically.Approx. sphere constraint.

Page 40: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 2: Splitting & Penalisation

I Splitting again.

I No projection, but Ginzburg-Landau penalisation: add

1δε

∫Ω

(|u|2−1

)2dx.

I Identifying limits needs higher regularity of s, so add

ηε

p

∫Ω|4s|pdx.

Page 41: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 2: Splitting & Penalisation

I Splitting again.I No projection, but Ginzburg-Landau penalisation: add

1δε

∫Ω

(|u|2−1

)2dx.

I Identifying limits needs higher regularity of s, so add

ηε

p

∫Ω|4s|pdx.

Page 42: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 2: Splitting & Penalisation

I Splitting again.I No projection, but Ginzburg-Landau penalisation: add

1δε

∫Ω

(|u|2−1

)2dx.

I Identifying limits needs higher regularity of s, so add

ηε

p

∫Ω|4s|pdx.

Page 43: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Properties

I Γ-convergence for proper scalings of δε and ηε

(δε slower than ε, ηε much faster).

I Solutions exist in each step.I Energy decreasing.I (un,sn) (u,s) in H2×W 2,p (up to subseq).I For p > d , un→ u in H1, and sn→ s in L∞,

so identifying limits works.

Page 44: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Properties

I Γ-convergence for proper scalings of δε and ηε

(δε slower than ε, ηε much faster).I Solutions exist in each step.

I Energy decreasing.I (un,sn) (u,s) in H2×W 2,p (up to subseq).I For p > d , un→ u in H1, and sn→ s in L∞,

so identifying limits works.

Page 45: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Properties

I Γ-convergence for proper scalings of δε and ηε

(δε slower than ε, ηε much faster).I Solutions exist in each step.I Energy decreasing.

I (un,sn) (u,s) in H2×W 2,p (up to subseq).I For p > d , un→ u in H1, and sn→ s in L∞,

so identifying limits works.

Page 46: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Properties

I Γ-convergence for proper scalings of δε and ηε

(δε slower than ε, ηε much faster).I Solutions exist in each step.I Energy decreasing.I (un,sn) (u,s) in H2×W 2,p (up to subseq).

I For p > d , un→ u in H1, and sn→ s in L∞,so identifying limits works.

Page 47: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Properties

I Γ-convergence for proper scalings of δε and ηε

(δε slower than ε, ηε much faster).I Solutions exist in each step.I Energy decreasing.I (un,sn) (u,s) in H2×W 2,p (up to subseq).I For p > d , un→ u in H1, and sn→ s in L∞,

so identifying limits works.

Page 48: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Discretisation/Disadvantages

I sn now needs hermite elements (but...).

I Nonlinear eqns need to be solved.I Sphere constraint only approximated.I Two additional parameters.

Page 49: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Discretisation/Disadvantages

I sn now needs hermite elements (but...).I Nonlinear eqns need to be solved.

I Sphere constraint only approximated.I Two additional parameters.

Page 50: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Discretisation/Disadvantages

I sn now needs hermite elements (but...).I Nonlinear eqns need to be solved.I Sphere constraint only approximated.

I Two additional parameters.

Page 51: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Discretisation/Disadvantages

I sn now needs hermite elements (but...).I Nonlinear eqns need to be solved.I Sphere constraint only approximated.I Two additional parameters.

Page 52: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 3: Penalisation without Splitting

FE Discr. Γ−→h→0

MS on S2

Hard to solve numerically.Approx. sphere constraint.

Page 53: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Algorithm 3: Penalisation without Splitting

FE Discr. Γ−→h→0

MS on S2

Hard to solve numerically.Approx. sphere constraint.

Page 54: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Penalisation without Splitting

I No splitting.

I No projection, but Ginzburg-Landau penalisation.I Direct Γ-convergence of 1st -order FE-functional (as in

Bellettini-Coscia, 94).I Advantage: No additional regularisation term needed.I Disadvantage: No convergent algorithm known.

Page 55: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Penalisation without Splitting

I No splitting.I No projection, but Ginzburg-Landau penalisation.

I Direct Γ-convergence of 1st -order FE-functional (as inBellettini-Coscia, 94).

I Advantage: No additional regularisation term needed.I Disadvantage: No convergent algorithm known.

Page 56: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Penalisation without Splitting

I No splitting.I No projection, but Ginzburg-Landau penalisation.I Direct Γ-convergence of 1st -order FE-functional (as in

Bellettini-Coscia, 94).

I Advantage: No additional regularisation term needed.I Disadvantage: No convergent algorithm known.

Page 57: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Penalisation without Splitting

I No splitting.I No projection, but Ginzburg-Landau penalisation.I Direct Γ-convergence of 1st -order FE-functional (as in

Bellettini-Coscia, 94).I Advantage: No additional regularisation term needed.

I Disadvantage: No convergent algorithm known.

Page 58: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Splitting & ProjectionSplitting & PenalisationPenalisation without Splitting

Penalisation without Splitting

I No splitting.I No projection, but Ginzburg-Landau penalisation.I Direct Γ-convergence of 1st -order FE-functional (as in

Bellettini-Coscia, 94).I Advantage: No additional regularisation term needed.I Disadvantage: No convergent algorithm known.

Page 59: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

Projection

Figure: U0 ≡ g (left) and U10 (right).

Page 60: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

Projection

Figure: U0 ≡ g (left) and U10 (right).

Page 61: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

Projection

Figure: Section at x = 0.5 through U0 ≡ g and U10.

Page 62: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

Projection

Figure: Section at x = 0.5 through U0 ≡ g and U10.

Page 63: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

Projection vs. Penalisation

Figure: S10, projection (left) and penalisation (right).

Page 64: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

Projection vs. Penalisation

Figure: S10, projection (left) and penalisation (right).

Page 65: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

Projection vs. Penalisation

Figure: Section at y = 0.375 through S10, projection (left) andpenalisation (right).

Page 66: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

Projection vs. Penalisation

Figure: Section at y = 0.375 through S10, projection (left) andpenalisation (right).

Page 67: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

Penalisation

0 1 2 3 4 5 6 7 8 9 100.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02Min and Max of Norm(u)

min(|u|)max(|u|)

Figure: Min and max of ‖U‖.

Page 68: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

CB Model

ATε (u,v ,s) :=α

2

∫Ω

(s2 + kε )|∇u|2dx +γ

2

∫Ω|u−g|2dx

+α1

2

∫Ω

(s2 + kε )|∇v |2dx +γ1

2

∫Ω|v −b|2dx

∫Ω

ε|∇s|2 +14ε

(1−s)2dx,

I g,u: Original and iterate chromaticity,I b,v : Original and iterate brightness,I s: Joint edge-indicator.

Page 69: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

CB Model

ATε (u,v ,s) :=α

2

∫Ω

(s2 + kε )|∇u|2dx +γ

2

∫Ω|u−g|2dx

+α1

2

∫Ω

(s2 + kε )|∇v |2dx +γ1

2

∫Ω|v −b|2dx

∫Ω

ε|∇s|2 +14ε

(1−s)2dx,

I g,u: Original and iterate chromaticity,I b,v : Original and iterate brightness,I s: Joint edge-indicator.

Page 70: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

CB

Figure: U0 ≡G (left) and U10 (right).

Page 71: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

CB

Figure: U0 ≡G (left) and U10 (right).

Page 72: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

CB vs. RGB

Figure: Crop of U10, CB (left) and RGB (right).

Page 73: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

CB vs. RGB

Figure: Crop of U10, CB (left) and RGB (right).

Page 74: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

CB vs. RGB

Figure: S10, CB (left) and RGB (right).

Page 75: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

CB vs. RGB

Figure: S10, CB (left) and RGB (right).

Page 76: Approximations of the The Mumford-Shah Functional for Unit ... · Approximations of the The Mumford-Shah Functional for Unit Vector Fields Jonas Haehnle University of Tübingen Warwick,

IntroductionAlgorithmsExamples

Comparison: Projection vs. PenalisationComparison: CB vs. RGB

Thank You