12
Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 DOI 10.1186/s13660-015-0571-1 RESEARCH Open Access Approximation properties of weighted Kantorovich type operators in compact disks Nazim I Mahmudov and Mustafa Kara * * Correspondence: [email protected] Eastern Mediterranean University, Mersin 10, Gazimagusa, TRNC, Turkey Abstract In this paper, we discuss the approximation properties of the complex weighted Kantorovich type operators. Quantitative estimates of the convergence, the Voronovskaja type theorem, and saturation of convergence for complex weighted Kantorovich polynomials attached to analytic functions in compact disks will be given. In particular, we show that for functions analytic in {z C : |z| < R}, the rate of approximation by the weighted complex Kantorovich type operators is 1/n. Keywords: weighted Bernstein-Kantorovich operators; Bernstein-Kantorovich operator; complex approximation 1 Introduction The first constructive (and simple) proof of Weierstrass approximation theorem was given by Bernstein []. He gave an alternative proof to the Weierstrass approximation theorem and introduced the following polynomial: B n (f )(x)= n k= p n,k (x)f k n , f : [, ] R, where p n,k (x)= ( n k ) x k ( – x) nk , x [, ]. For any f L p ([, ]), p ≤∞, Ditzian and Totik (see []) introduced the Kantorovich- Bernstein operator as follows: K n (f ; x)= n k= p n,k (x)(n + ) k n+ k+ n+ f (u) du, () where p n,k (x)= ( n k ) x k ( – x) nk , k =,,,..., n; x [, ]. Let w(x)= x α ( – x) β , α, β > –, x , () be the classical Jacobi weights. Let L p w = {f : wf L p (, )}, p < , {f : f (, ), lim x(–x) (wf )(x)=}, p = , © 2015 Mahmudov and Kara; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 DOI 10.1186/s13660-015-0571-1

R E S E A R C H Open Access

Approximation properties of weightedKantorovich type operators in compact disksNazim I Mahmudov and Mustafa Kara*

*Correspondence:[email protected] Mediterranean University,Mersin 10, Gazimagusa, TRNC,Turkey

AbstractIn this paper, we discuss the approximation properties of the complex weightedKantorovich type operators. Quantitative estimates of the convergence, theVoronovskaja type theorem, and saturation of convergence for complex weightedKantorovich polynomials attached to analytic functions in compact disks will begiven. In particular, we show that for functions analytic in {z ∈ C : |z| < R}, the rate ofapproximation by the weighted complex Kantorovich type operators is 1/n.

Keywords: weighted Bernstein-Kantorovich operators; Bernstein-Kantorovichoperator; complex approximation

1 IntroductionThe first constructive (and simple) proof of Weierstrass approximation theorem was givenby Bernstein []. He gave an alternative proof to the Weierstrass approximation theoremand introduced the following polynomial:

Bn(f )(x) =n∑

k=

pn,k(x)f(

kn

), f : [, ] →R,

where pn,k(x) =(n

k)xk( – x)n–k , x ∈ [, ].

For any f ∈ Lp([, ]), ≤ p ≤ ∞, Ditzian and Totik (see []) introduced the Kantorovich-Bernstein operator as follows:

Kn(f ; x) =n∑

k=

pn,k(x)(n + )∫ k

n+

k+n+

f (u) du, ()

where pn,k(x) =(n

k)xk( – x)n–k , k = , , , . . . , n; x ∈ [, ].

Let

w(x) = xα( – x)β , α,β > –, ≤ x ≤ , ()

be the classical Jacobi weights.Let

Lpw =

{{f : wf ∈ Lp(, )}, ≤ p < ∞,{f : f ∈ (, ), limx(–x)→(wf )(x) = }, p = ∞,

© 2015Mahmudov and Kara; licensee Springer. This is an Open Access article distributed under the terms of the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproductionin any medium, provided the original work is properly credited.

Page 2: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 Page 2 of 12

and equip Lpw with norm

‖wf ‖p =

{(∫

|(wf )(x)|p dx)/p, ≤ p < ∞,sup≤x≤ |(wf )(x)|, p = ∞.

In [], Ditzian and Totik studied the case of weighted approximation properties of Kn(f ; x)in Lp

w under the restrictions – p < α,β < –

p on the weighted parameters. In [], DellaVecchia et al. removed the restrictions on α, β and introduced a weighted generalizationof the Kn(f ; x) as follows:

K∗n (f ; x) =

n∑

k=

∫Ik

(wf )(t) dt∫

Ikw(t) dt

pn,k(x), x ∈ [, ], ()

where

–p

< α,β , ≤ p ≤ ∞, ()

and f ∈ Lpw. K∗

n (f ; x) allows a wider class of functions than the operator Kn(f ; x). Because,Della Vecchia et al. dropped the restrictions α,β < –

p and obtained (see []) direct andconverse theorems and a Voronovskaya-type relation for the weighted Kantorovich opera-tor (). Also Della Vecchia et al. solved the saturation problem of the weighted Kantorovichoperator () (see [, Theorem .]).

In [], Yu introduced the following modified operator of Kn(f ; x):

K∗n (f ; x) := ( – x)n(n + )

(∫

I

f (t) dt –∫

I

f (t) dt)

+n–∑

k=

(n + )∫

Ik

f (u) dupnk(x)

+ xn(n + )(

In–

f (t) dt –∫

In–

f (t) dt)

, ()

and direct and converse theorems and a Voronovskaya-type relation were obtained withmodification of the classical Kantorovich-Bernstein operators () with Jacobi weightsw(x) = xα( – x)β , where –

p < α,β .The goal of the present note is to introduce the complex weighted Kantorovich type

operator

Kn(f ; z) =n∑

k=

pn,k(z)∫

tα( – t)β f ( k+tn+ ) dt

B(α + ,β + ), ()

where –p < α,β and ≤ p ≤ ∞, B(·, ·) is a beta function, and we study the convergence

properties of Kn(f ; z). Notice that the approximation properties of complex generalizedKantorovich type operators are studied in [].

In the recent books of Gal [, ] (see references therein), a systematic study of the over-convergence phenomenon in a complex approximation was made for the following im-portant classes of Bernstein-type operators: Bernstein, Bernstein-Faber, Bernstein-Butzer,

Page 3: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 Page 3 of 12

Bernstein-Stancu, Bernstein-Kantorovich, Favard-Szasz-Mirakjan, Baskakov, Bernstein-Durrmeyer, and Balazs-Szabados.

Let DR be a disc DR := {z ∈ C : |z| < R} in the complex plane C. Denote by H(DR) thespace of all analytic functions on DR. For f ∈ H(DR) we assume that f (z) =

∑∞m= amzm.

We start with the following quantitative estimates of the convergence for complexweighted Kantorovich type operators attached to an analytic function in a disk of radiusR > and center .

Theorem Let f ∈ H(DR). If ≤ r < R, then for all |z| ≤ r we have

∣∣Kn(f ; z) – f (z)∣∣ ≤

n

∞∑

m=

|cm|m(m + )rm, ()

where n ∈N.

The next theorem gives a Voronovskaja type result in compact disks, for complexweighted Kantorovich type operators attached to an analytic function in DR, where R > ,and with center .

Theorem Let f ∈ H(DR). If ≤ r < R then, for all |z| ≤ r, we have

∣∣∣∣Kn(f ; z) – f (z) –(α + ) – z(α + β + )

(α + β + )(n + )f ′(z) –

z( – z)(n + )

f ′′(z)∣∣∣∣ ()

≤ n

∞∑

m=

|am|m(m – )rm +

(α + β + )n

∞∑

m=

|am|m(m – )rm,

where n ∈N.

As an application of Theorem we present the order of approximation for complexweighted Kantorovich type operators.

Theorem Let f ∈ H(DR). If ≤ r < R and if f is not a constant function, then the estimate

∥∥Kn(f ) – f∥∥

r ≥ n

Cr(f ), n ∈N, ()

holds, where the constant Cr(f ) depends on f , α, β , and r but it is independent of n.

2 Auxiliary resultsLemma For all n ∈N, m ∈N∪ {}, z ∈C we have

Kn(em; z) =

(n + )m

m∑

j=

(mj

)njB(α + m – j + ,β + )

B(α + ,β + )Bn(ej; z), ()

where em(z) = zm.

Page 4: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 Page 4 of 12

Proof The recurrence formula can be derived by direct computation:

Kn(em; z) =

(n + )m

n∑

k=

pn,k(z)

B(α + ,β + )

m∑

j=

(mj

)tα( – t)βkjtm–j dt

=

(n + )m

n∑

k=

pn,k(z)

B(α + ,β + )

m∑

j=

(mj

)kj

tα+m–j( – t)β dt

=

(n + )m

m∑

j=

(mj

)njB(α + m – j + ,β + )

B(α + ,β + )Bn(ej; z).

Lemma We have

Kn(e; z) = ,

Kn(e; z) =α +

(α + β + )(n + )+

nzn +

,

Kn(e; z) =

(n + )(α + )(α + )

(α + β + )(α + β + )+

nz(n + )

(α + )(α + β + )

+(

z +z( – z)

n

)n

(n + ) ,

Kn((e – z); z

)=

(α + ) – z(α + β + )(n + )(α + β + )

,

Kn((e – z); z

)= n z +

n z( – z)(n + ) – z – z

(α +

(n + )(α + β + )+

nzn +

)

+ nzα +

(n + )(α + β + )+

(α + )(α + )(n + )(α + β + )(α + β + )

.

Lemma For all z ∈Dr , r ≥ we have∣∣Kn(em; z)

∣∣ ≤ rm,

where em(z) = zm.

Proof Indeed, using the inequality |Bn(ej; z)| ≤ rj (see []) we get

∣∣Kn(em; z)∣∣ ≤

m∑

j=

(mj

)njB(α + m – j + ,β + )(n + )mB(α + ,β + )

∣∣Bn(ej; z)∣∣

≤ (n + )m

m∑

j=

(mj

)njrm =

( + nn +

)m

rm = rm.�

Lemma For all z ∈C, z ∈N∪ {} we have

Kn(em+; z) =z( – z)

nKn(em; z) + zKn(em; z)

+

(n + )m

m+∑

j=

(m +

j

)nj– B(α + m – j + ,β + )

B(α + ,β + )

×(

nn +

–j

m +

)Bn(ej; z). ()

Page 5: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 Page 5 of 12

Proof We know that (see [])

z( – z)n

B′n(ej; z) = Bn(ej+; z) – zBn(ej; z).

Taking the derivative of () and using the above formula we have

z( – z)n

K ′n(em; z) =

z( – z)n

m∑

j=

(mj

)njB(α + m – j + ,β + )(n + )mB(α + ,β + )

B′n(ej; z)

=m∑

j=

(mj

)njB(α + m – j + ,β + )(n + )mB(α + ,β + )

(Bn(ej+; z) – zBn(ej; z)

)

=m+∑

j=

(m

j –

)nj–B(α + m – j + ,β + )

(n + )mB(α + ,β + )Bn(ej; z) – zKn(em; z).

It follows that

Kn(em+; z) =z( – z)

nK ′

n(em; z) + zKn(em; z)

+m+∑

j=

(m +

j

)njB(α + m – j + ,β + )(n + )m+B(α + ,β + )

Bn(ej; z)

–m+∑

j=

(m

j –

)nj–B(α + m – j + ,β + )(n + )m+B(α + ,β + )

Bn(ej; z)

=z( – z)

nK ′

n(em; z) + zKn(em; z) +B(α + m + ,β + )

(n + )m+B(α + ,β + )

+m+∑

j=

(m +

j

)nj–B(α + m – j + ,β + )

(n + )mB(α + ,β + )

(–j

m + +

nn +

)Bn(ej; z)

=z( – z)

nK ′

n(em; z) + zKn(em; z)

+m+∑

j=

(m +

j

)nj–B(α + m – j + ,β + )

(n + )mB(α + ,β + )

(–j

m + +

nn +

)Bn(ej; z).

Here we used the identity(

mj –

)=

(m +

j

)j

(m + ). �

Define

En,m(z) := Kn(em; z) – em(z) –(α + ) – z(α + β + )

(α + β + )(n + )mzm– –

z( – z)(n + )

m(m – )zm–.

Lemma Let n, m ∈N, we have the following recurrence formula:

En,m(z) =z( – z)

n(Kn,q(em–; z) – em–(z)

)′

+ zEn,m–(z) –m –

n(n + )zm–( – z)

Page 6: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 Page 6 of 12

–(α + ) – z(α + β + )

(α + β + )(n + )zm–

+

(n + )m

m∑

j=

(mj

)njB(α + m – j + ,β + )

B(α + ,β + )mn – j(n + )

mnBn(ej; z).

Proof It is immediate that En,m(z) is a polynomial of degree less than or equal to m andthat En,(z) = En,(z) = .

Using () we get

En,m(z) =z( – z)

n(Kn(em–; z) – em–(z)

)′ +(m – )

nzm–( – z)

+ z(

En,m–(z) +(α + ) – z(α + β + )

(α + β + )(n + )(m – )zm–

+z( – z)(n + )

(m – )(m – )zm–)

–(α + ) – z(α + β + )

(α + β + )(n + )mzm– –

z( – z)(n + )

m(m – )zm–

+

(n + )m

m∑

j=

(mj

)njB(α + m – j + ,β + )

B(α + ,β + )mn – j(n + )

mnBn(ej; z),

En,m(z) =z( – z)

n(Kn(em–; z) – em–(z)

)′ + zm– (α + ) – z(α + β + )(α + β + )(n + )

(m – – m)

+ zm–( – z)(m – )(m – – m)

(n + )+ zm–( – z)

(m – )n

+

(n + )m

m∑

j=

(mj

)njB(α + m – j + ,β + )

B(α + ,β + )mn – j(n + )

mnBn(ej; z),

En,m(z) =z( – z)

n(Kn,q(em–; z) – em–(z)

)′

+ zEn,m–(z) +(m – )n(n + )

zm–( – z) –(α + ) – z(α + β + )

(α + β + )(n + )zm–

+

(n + )m

m∑

j=

(mj

)njB(α + m – j + ,β + )

B(α + ,β + )mn – j(n + )

mnBn(ej; z),

which is the desired recurrence formula. �

3 Proofs of the main results

Proof of Theorem By use of the above recurrence we obtain the following relationship:

Kn(em; z) – em(z) =z( – z)

nK ′

n(em–; z) + z(Kn(em–; z) – em–(z)

)

+

(n + )m

m∑

j=

(mj

)njB(α + m – j + ,β + )

B(α + ,β + )

× mn – j(n + )mn

Bn(ej; z). ()

Page 7: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 Page 7 of 12

For |z| ≤ r we can easily estimate the sum in the above formula as follows:

∣∣∣∣∣

(n + )m

m∑

j=

(mj

)nj B(α + m – j + ,β + )

B(α + ,β + )

( –

jm

–j

mn

)Bn(ej; z)

∣∣∣∣∣

≤ (n + )m

(m–∑

j=

(m –

j

)m

m – jnjB(α + m – j + ,β + )

B(α + ,β + )

∣∣∣∣ –j

m–

jmn

∣∣∣∣

)∣∣Bn(ej; z)

∣∣

+B(α + ,β + )B(α + ,β + )

nm–

(n + )m rm

≤ (n + )m

(m–∑

j=

(m –

j

)mnj

m – j

∣∣∣∣ –j

m–

jmn

∣∣∣∣

)∣∣Bn(ej; z)

∣∣ +nm–

(n + )m rm

≤ m(n + )m– + (n + )m–

(n + )m rm

=(n + )m–(m + )

(n + )m rm =(m + )(n + )

rm.

It is well known that, by a linear transformation, the Bernstein inequality in the closed unitdisk becomes

∣∣P′m(z)

∣∣ ≤ mr

‖Pm‖r , for all |z| ≤ r, r ≥ ,

for all |z| ≤ r, where Pm(z) is a complex polynomial of degree ≤ m. From the above recur-rence formula () we get

∣∣Kn(em; z) – em(z)∣∣ ≤ |z|| – z|

n∣∣K ′

n(em–; z)∣∣ + |z|∣∣Kn(em–; z) – em–(z)

∣∣ +(m + )(n + )

rm

≤ r( + r)n

m – r

∥∥Kn(em–)∥∥

r + r∣∣Kn(em–; z) – em–(z)

∣∣ +(m + )(n + )

rm

≤ r∣∣Kn(em–; z) – em–(z)

∣∣ +(m – )

nrm +

(m + )(n + )

rm

≤ r∣∣Kn(em–; z) – em–(z)

∣∣ +mn

rm.

By writing the last inequality for m = , , . . . , we can easily obtain, step by step, the follow-ing:

∣∣Kn(em; z) – em(z)∣∣

≤ mn

rm + r(m – )

nrm– + r (m – )

nrm– + · · · + rm–

nr

=n

rm(m + m – + · · · + ) ≤ m(m + )n

rm. ()

Since Kn,q(f ; z) is analytic in DR (see [, p.]), we can write

Kn(f ; z) =∞∑

m=

amKn(em; z), z ∈DR,

Page 8: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 Page 8 of 12

which together with () immediately implies for all |z| ≤ r

∣∣Kn(f ; z) – f (z)∣∣ ≤

∞∑

m=

|am|∣∣Kn(em; z) – em(z)∣∣ ≤

n

∞∑

m=

|cm|m(m + )rm. �

Proof of Theorem A simple calculation and the use of the recurrence formula () leadus to the following relationship:

En,m(z) =z( – z)

n(Kn,q(em–; z) – em–(z)

)′ + zEn,m–(z) +m –

n(n + )zm–( – z)

+

n + (zm – Bn(em; z)

)+

n +

( –

nm–

(n + )m–

)Bn(em; z)

+(α + )

(α + β + )(n + )

(nm–

(n + )m– – )

Bn(em–; z)

+α +

(α + β + )(n + )(Bn(em–; z) – zm–) –

(m – )nm–

(α + β + )(n + )m Bn(em–; z)

+

(n + )m

m–∑

j=

(mj

)njB(α + m – j + ,β + )

B(α + ,β + )mn – j(n + )

mnBn(ej; z)

:=∑

k=

Ik . ()

Firstly we estimate I, I. It is clear that

|I| ≤ m – n(n + )

rm–( + r),

|I| ≤ (m – )(α + β + )(n + )

∣∣Bn,q(em–; z)∣∣ ≤ (m – )

(α + β + )(n + ) rm–.()

Secondly using the known inequality

–m∏

k=

xk ≤m∑

k=

( – xk), ≤ xk ≤ ,

to estimate I, I, I, we have

|I| ≤ n +

( –

nm–

(n + )m–

)∣∣Bn(em; z)∣∣ ≤ m –

(n + ) rm,

|I| ≤ α + (α + β + )(n + )

( –

nm–

(n + )m–

)∣∣Bn(em–; z)∣∣ ≤ (m – )

(n + ) rm–,

|I| ≤ (n + )m

m–∑

j=

(m –

j

)m(m – )

(m – j)(m – j – )()

× njB(α + m – j + ,β + )B(α + ,β + )

( –

jm

–j

mn

)rj

≤ m(m – )(α + )(α + )(n + )m–

(α + β + )(α + β + )(n + )m rm ≤ m(m – )(n + ) rm.

Page 9: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 Page 9 of 12

Finally we estimate I, I. We use [, Theorem ..]:

|I| + |I| ≤ n +

∣∣zm – Bn(em; z)∣∣ +

(α + β + )(n + )

∣∣Bn(em–; z) – zm–∣∣

≤ m(m – )n(n + )

( + r)rm– +(m – )(m – )

(α + β + )n(n + )( + r)rm–. ()

Using (), (), (), and () in () finally we have (m ≥ )

∣∣En,m(z)∣∣

≤ r( + r)n

∣∣(Kn(em–; z) – em–(z))′∣∣ + r

∣∣En,m–(z)∣∣ +

m – n(n + )

rm–( + r)

+m(m – )n(n + )

( + r)rm– +m –

(n + ) rm +(m – )(n + ) rm–

+(m – )(m – )

(α + β + )n(n + )( + r)rm– +

(m – )(α + β + )(n + ) rm– +

m(m – )(n + ) rm

≤ r( + r)n

∣∣(Kn(em–; z) – em–(z))′∣∣ + r

∣∣En,m–(z)∣∣

+(m – )

n rm +m(m – )

n rm +m –

n rm +(m – )

n rm +(m – )(m – )

(α + β + )n rm

+(m – )

(α + β + )n rm +m(m – )

n rm

≤ r( + r)n

∣∣(Kn(em–; z) – em–(z))′∣∣ + r

∣∣En,m–(z)∣∣

+m(m – )

n rm +m(m – )

n rm +m(m – )

n rm +m(m – )

n rm

+(m – )(m – )

(α + β + )n rm +m(m – )

(α + β + )n rm +m(m – )

n rm

≤ r( + r)n

∣∣(Kn(em–; z) – em–(z))′∣∣ + r

∣∣En,m–(z)∣∣

+m(m – )

n rm +m(m – )

(α + β + )n rm

≤ r( + r)n

m – r

∥∥Kn(em–; z) – em–(z)∥∥

r + r∣∣En,m–(z)

∣∣

+m(m – )

n rm +m(m – )

(α + β + )n rm

≤ (m – )( + r)n

(m – )mn

rm– + r∣∣En,m–(z)

∣∣ +m(m – )

n rm +m(m – )

(α + β + )n rm

≤ r∣∣En,m–(z)

∣∣ +m(m – )

n rm +m(m – )

n rm +m(m – )

(α + β + )n rm

≤ r∣∣En,m–(z)

∣∣ +m(m – )

n rm +m(m – )

(α + β + )n rm.

As a consequence, we get

∣∣En,m(z)∣∣ ≤ m(m – )

n rm +m(m – )

(α + β + )n rm.

Page 10: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 Page 10 of 12

The result follows from the fact that∣∣∣∣Kn(f ; z) – f (z) –

(α + ) – z(α + β + )(α + β + )(n + )

f ′(z) –z( – z)(n + )

f ′′(z)∣∣∣∣

≤∞∑

m=

|am|∣∣En,m(z)∣∣

≤ n

∞∑

m=

|am|m(m – )rm +

(α + β + )n

∞∑

m=

|am|m(m – )rm. ()

Note that since f () =∑∞

m= amm(m – )(m – )zm– and the series is absolutely conver-gent for all |z| < R, the finiteness of the involved constants in the statement easily follows.

Proof of Theorem For all z ∈ DR and n ∈N we get

Kn,q(f ; z) – f (z)

=

n +

{(α + ) – z(α + β + )

(α + β + )f ′(z) +

z( – z)

f′′(z)

+ (n + )(

Kn,q(f ; z) – f (z) –(α + ) – z(α + β + )

(α + β + )f ′(z)mzm– –

z( – z)(n + )

f ′′(z))}

.

We apply

‖F + G‖r ≥ ∣∣‖F‖r – ‖G‖r∣∣ ≥ ‖F‖r – ‖G‖r

to get

∥∥Kn,q(f ) – f∥∥

r

≥ n +

{∥∥∥∥(α + ) – z(α + β + )

(α + β + )f ′(z) +

z( – z)

f′′(z)

∥∥∥∥r

– (n + )∥∥∥∥Kn(f ; z) – f (z) –

(α + ) – z(α + β + )(α + β + )

f ′(z) –z( – z)(n + )

f ′′(z)∥∥∥∥

r

}.

Because by hypothesis f is not a constant in DR, it follows

∥∥∥∥(α + ) – z(α + β + )

(α + β + )mzm– +

z( – z)

m(m – )zm–∥∥∥∥

r> .

Indeed, assuming the contrary it follows that (α+)–z(α+β+)(α+β+) mzm– + z(–z)

m(m – )zm– = ,for all z ∈DR, that is,

∞∑

m=

am

((α + )

(α + β + )– z

)mzm– +

∞∑

m=

amz( – z)

m(m – )zm– = ,

∞∑

m=

am(α + )

(α + β + )mzm– –

∞∑

m=

ammzm +

∞∑

m=

amm(m – )zm–

Page 11: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 Page 11 of 12

∞∑

m=

amm(m – )zm = ,

=(α + )

(α + β + )a +

∞∑

m=

am+(α + )

(α + β + )(m + )zm –

∞∑

m=

ammzm

+

∞∑

m=

am+(m + )(m)zm –

∞∑

m=

amm(m – )zm,

(α + )(α + β + )

a +∞∑

m=

(am+

(α + )(α + β + )

(m + ) – amm

+

am+(m + )(m) –

amm(m – ))

zm = ,

a = ,

am+(α + )

(α + β + )(m + ) – amm +

am+(m + )(m) –

amm(m – ) = ,

am+

((α + )

(α + β + )(m + ) +

(m + )(m))

= am

(m +

m(m – ))

,

am+ =am(m +

m(m – ))(α+)

(α+β+) (m + ) + (m + )(m)

,

for all z ∈DR\{}. Thus am = , m = , , , . . . . Thus, f is constant, which is in contradictionwith the hypothesis.

Now, by Theorem we have

(n + )∣∣∣∣Kn,q(f ; z) – f (z) –

(α + ) – z(α + β + )(α + β + )

mzm– –z( – z)

m(m – )zm–

∣∣∣∣

≤ n + n

(n

∞∑

m=

|am|m(m – )rm +

(α + β + )n

∞∑

m=

|am|(m – )(m – )rm

)→

as n → ∞.

Consequently, there exists n (depending only on f and r) such that, for all n ≥ n, we have∥∥∥∥

(α + ) – z(α + β + )(α + β + )

mzm– +z( – z)

m(m – )zm–

∥∥∥∥r

– (n + )∥∥∥∥Kn(f ; z) – f (z) –

(n + )

((α + ) – z(α + β + )

(α + β + )mzm–

+z( – z)

m(m – )zm–

)∥∥∥∥r

∥∥∥∥(α + ) – z(α + β + )

(α + β + )mzm– +

z( – z)

m(m – )zm–∥∥∥∥

r,

which implies

∥∥Kn(f ) – f∥∥

r ≥ n +

∥∥∥∥(α + ) – z(α + β + )

(α + β + )mzm– +

z( – z)

m(m – )zm–∥∥∥∥

r,

for all n ≥ n.

Page 12: Approximationpropertiesofweighted ... · MahmudovandKaraJournalofInequalitiesandApplications20152015:46 DOI10.1186/s13660-015-0571-1 RESEARCH OpenAccess Approximationpropertiesofweighted

Mahmudov and Kara Journal of Inequalities and Applications (2015) 2015:46 Page 12 of 12

For ≤ n ≤ n – we have

∥∥Kn(f ) – f∥∥

r ≥ (n + )

((n + )

∥∥Kn(f ) – f∥∥

r

)=

(n + )

Mr,n(f ) > ,

which finally implies that

∥∥Kn(f ) – f∥∥

r ≥ n +

Cr(f ),

for all n, with Cr(f ) = min{ Mr,(f ), . . . ,

Mr,n–(f ), ‖ (α+)–z(α+β+)

(α+β+) mzm– + z(–z) m(m –

)zm–‖r}. �

Competing interestsThe authors declare that they have no competing interests.

Authors’ contributionsAll authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Received: 13 November 2014 Accepted: 21 January 2015

References1. Bernstein, SN: Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math.

Kharkow 13(2), 1-2 (1912/1913)2. Ditzian, Z, Totik, V: Moduli of Smoothness. Springer, Berlin (1987)3. Della Vecchia, B, Mastroianni, G, Szabados, J: A weighted generalization of the classical Kantorovich operator. Rend.

Circ. Mat. Palermo Suppl. 82, 1-27 (2010)4. Della Vecchia, B, Mastroianni, G, Szabados, J: A weighted generalization of the classical Kantorovich operator. II.

Saturation. Mediterr. J. Math. 10(1), 1-15 (2013)5. Yu, DS: Weighted approximation by modified Kantorovich-Bernstein operators. Acta Math. Hung. 141(1-2), 132-149

(2013)6. Mahmudov, NI, Kara, M: Approximation theorems for generalized complex Kantorovich-type operators. J. Appl. Math.

2012, Article ID 454579 (2012)7. Gal, SG: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable

Mathematics, vol. 8. World Scientific, Singapore (2009)8. Gal, SG: Overconvergence in Complex Approximation. Springer, New York (2013)