Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

Embed Size (px)

Citation preview

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    1/39

    UK Journal of Pharmaceutical and Biosciences Vol. 4(1), 82-120, 2016 REVIEW ARTICLE

    Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic

    Activi ty

    Preeti Sen, Kamlesh Sahu, Pushpa Prasad*, Shashikant Chandrakar, Ram Kumar Sahu, Amit Roy

    Columbia Institute of Pharmacy, Raipur- 493111 Chhatisgarh, India

    Art icl e Informat ion

    Received 17 Nov 2015

    Received in revised form 12 Jan 2016

    Accepted 15 Jan 2016

    Abs trac t

    Diabetes mellitus is a global metabolic epidemic affecting essential biochemical activities in

    almost every age group. Diabetes mellitus is a group of metabolic diseases characterized by high

    blood glucose level. When the body failed to produce sufficient insulin or is not able to insulin

    effectively or both leading to diabetes. Presently herbal drugs are widely used for the treatment of

    diabetes in worldwide. India has a long list of native medicinal plants with confirmed blood sugar

    lowering property. Some of these have proved remarkable for cure of diabetes and its

    complications. In this paper an attempt has been made to give an overview of certain Indian

    plants with their phytoconstituents and mechanism of action which have been studied for their

    antidiabetic activity.

    Keywords:

    Diabetes mellitus

    Phytoconstituents,Blood glucose,

    Insulin.

    Corresponding Author:

    E-mail: [email protected].: 09907105687

    1 Introduction

    Diabetes is characterized in people having high blood glucose called

    high blood sugar or hyperglycemia. It is one of the common

    metabolic disorders, according to current survey on diabetes about

    2.8% of the population suffers from diabetes throughout the world

    and it may cross 5.4% by the year 2025. In India, the prevalence rate

    of diabetes is estimated to be 1-5%1-3

    .

    It was first perceived as a disease associated with "sweet urine," and

    excessive muscle loss in the ancient world. Blood glucose levels are

    controlled by hormone insulin provoked by the pancreas. Insulin

    lowers the blood glucose level. When the blood glucose elevates,

    insulin is released from the pancreas to normalize the glucose

    level.4,5

    When the body failed to produce sufficient insulin or is not

    able to insulin effectively or both leading to diabetes. Consequently,

    if diabetes is not controlled commencing in acute or chronic

    complication like ketoacidosis, microangiopathy, specialy eyes,

    kidney, nerve, heart, blood vessals, failure of various organs,

    dysfunctions, etc.6

    Diabetes mellitus may present with classical characteristic features

    such as blurring of vision, excessive thirst (polydypsia), excessive

    feeding (polyphagia) excessive urination (polyuria), and weight loss.

    In its most severe forms, ketoacidosis may develop leading to stupor,

    coma and, in absence of effective treatment it causes death.7

    Mostly

    diabetes are two types namely Type I (Insulin dependent diabetes)

    and Type II (Non-insulin dependent diabetes) diabetes. The

    pathogensis of Type I and Type II diabetes are illustrated in Fig 1

    and Fig 2, respectively8.

    2 Herbal drugs

    Many Indian plants have been investigated for their beneficial use in

    Ayurveda. The numerous medicinal plants are reported for its

    antidiabetes activity. The therapeutic activity of the medicinal plants

    depends upon the nature of phytoconstituents present in the plants.

    WHO estimates that 80% of the world populations currently use

    herbal drugs for major healthcare9-21

    . WHO has listed 21,000 plants,

    which are used for medicinal purposes around the world. Among

    these 2500 species are in India, out of which 150 species are used

    commercially on a fairly large scale. India is the largest producer of

    medicinal herbs and is called as botanical garden of the world.

    Herbal products beneficial agents in antimicrobial, antidiabetic,

    antifertility, antiageing, antiarthritic, sedative, antidepressant,

    antianxiety, antispasmodic, analgesic, anti-inflammatory, anti-HIV,

    vasodilatory, hepatoprotective, treatment of cirrhosis, asthma, acne,

    impotence, menopause, migraine, gall stones, chronic fatigue,

    alzheimers disease and memory enhancing activities22,23

    .

    UK Journal of Pharmaceutical and Biosciences

    Available at www.ukjpb.comISSN: 2347-9442

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    2/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 83

    Defective insulin secretion

    Fig 1: Pathogenesis of Type 1 diabetes

    Fig 2: Pathogenesis of Type II diabetes

    Insulin resistance

    Environmental insultGenetic predisposition

    Multifactorial and polygenic

    Type II diabetes

    Hyperglycaemia

    -Due to insulin resistance

    -Amyloid induced damage

    Syndromes with sever insulin

    reistance (syndrome X,PCOD)

    Abdominal obesity

    -Due to insulin resistance

    -Amyloid induced damage

    Genetic predisposition Environmental insult

    HLA DR3/DR4 individuals high risk Damage of cells by viral infection or molecular

    Insulitis Immune responce against

    cells (normal/damaged)

    cells destruction

    Type 1 Diabetes

    Autoimmune attack

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    3/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 84

    The use of herbal drugs in the correct way provides effective and

    safe treatment for many diseases. The efficiency of the herbal drugs

    is typically subjective to the patient. The strength of the herbal drugs

    varies based on the genetic distinction, growing conditions, timing

    and method of harvesting, revelation of the herbs to air, light and

    dampness, and type of conservation of the herbs. These raw material

    are further processed and prepare methods of preparation may differ

    because of the nature of the plants active chemical constituents likepowder, decoction, hydroalcoholic tincture and fluid extracts

    24-29.

    Diabetes is becoming the third killer of the health of mankind

    because of its high prevalence, morbidity and mortality. The present

    century has progressed diverted towards naturopathy. This play an

    important role in treatment or management of lifelong prolonging

    diseases like diabetes mellitus. Diabetes mellitus alone is

    accompanied with several other diseases infecting healthy

    individuals. The treatment of each of such disease can be done by

    exploiting the herbal integrity of India13,14

    . Plants have always been a

    very good source of drug and many of the currently available drugs

    have been derived directly or indirectly form them. India is the largest

    producer of medicinal herbs and is called as botanical garden of the

    world15

    .

    The ethnobotanical information reports about 1000 plants that may

    possess antidiabetic potential among namely Combretum

    micranthum, Elephantopus scaber, Gymnema sylvestre, Liriope

    spicata, Parinari excelsa, Ricinus communis, Sarcopoterium

    spinosum, Smallanthus sonchifolius, Swertia punicea, Vernonia

    anthelmintica etc. Some of the important anti-diabetic potential

    herbal plants source and their active principles are given in the table

    1..

    Wide arrays of plant derived active principles representing

    different type of biological activity, among these alkaloids,

    glycosides, galactomannan gun, polysaccharides, peptidoglycans,

    hypoglycans, guanidine, steroids, carbohydrates, glycopeptides,

    terpenoids, amino acids and inorganic ions have demonstrated

    activity including treatment of diabetes.

    The current review is focus on use of herbal drug for the treatment of

    diabetic mellitus. List of the medicinal plants producing antidiabetic

    potential according to the different part used and mode of action are

    presented in tables 130-101

    .

    3 Conclusions

    This review discussed selective herbal plants and showed that they

    have antidiabetic activity. The medicinal plants produce antidiabetic

    activity due to presence of tannin, saponins, alkaloid, glycoside,

    polyphenol and flavonoids etc. It assists the researchers to

    understand mechanism of action, structure and potential antidiabetic

    activities of scientific evaluated plants.

    4 Competing interest

    Author claims no competing interests.

    5 Authors contributions

    PS, KS and PP carried out literature review and draft the manuscript.

    SC, RKS and AR participated in collection of data. All authors read

    and approved the final manuscript.

    6 References

    1. Patel M, Jamrozik K, Allen O, Martin FI, Eng J, Dean B. A

    high prevalence of diabetes in a rural village in Papua New

    Guinea. Diabetes Research and Clinical Practice. 1986:

    2(2): 97-103.

    2. Verma NP, Mehta SP, Madhu S, Mather HM, Keen H.

    Prevalence of known diabetes in an urban Indian

    environment. the Darya Ganj diabetes survey. British

    Medical Journal. 1986; 93(6544): 423-24.

    3. Rao PV, Ushabala P, Seshiah V, Ahuja MM, Mather HM.The Eluru survey: prevalence of known diabetes in a rural

    Indian population. Diabetes Research and Clinical

    Practice. 1989; 7(1): 29-31.

    4. Liu IM, Tzeng TF, Liou SS, Lan TW. Improvement of

    insulin sensitivity in obese Zucker rats by myricetin

    extracted from Abelmoschus moschatus. Planta Medica.

    2007; 73(10): 1054-1060.

    5. Wadood A, Wadood N, Shah SA. Effects ofAcacia arabica

    and Caralluma edulis on blood glucose levels on normal

    and alloxan diabetic rabbits. Journal of Pakistan Medicine.

    1989; 39(8): 208-212.

    6. Harris MI. Classification, Diagnostic Criteria, and

    Screening for Diabetes. National diabetes data group. 1-

    16.

    7. Shin HJ, Kim JH, Yi JH, Han SW, Kim HJ. Polyuria with

    the Concurrent manifestation of Central Diabetes Insipidus

    (CDI) & Type 2 Diabetes Mellitus (DM), Electrolyte &

    Blood Pressure. 2012; 10(1): 26-30.

    8. Ramachandran A, Snehalatha C, Viswanathan V. Burden

    of type 2 diabetes and its complications- the Indianscenario. Cur Sc. 2002; 83(12): 14711476.

    9. Huang THW, Peng G, Kota BP, Li GQ, Yamahara J,

    Roufogalis BD. Anti-diabetic action of Punica granatum

    flower extract. activation of PPAR-c and identification of

    an active component. Toxicol App Pharmacol. 2005;

    207(2): 160-169.

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    4/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 85

    10. Kumar S, Pandey KA. Chemistry and biological activities

    of flavonoids: An overview. the scientific journal. 2013; 16.

    11. Sahu RK, Singh H, Roy A. Antioxidative characteristics of

    ethanol and aqueous extracts of Curcuma amada

    rhizomes. Research J. Pharmacognosy and

    Phytochemistry. 2009; 1(01): 41-43.

    12. Huang THW, Peng G, Kota BP, Li GQ, Yamahara J,Roufogalis BD. Anti-diabetic action of Punica granatum

    flower extract, activation of PPAR-c and identification of

    an active component. Toxicol App Pharmacol. 2005;

    207(2): 160-169.

    13. Sahu RK, Sharma U, Roy A, Dewangan D, Namdeo KP.

    Antioxidant activity of ethanolic extract of bark of Ougeinia

    oojeinensis (Roxb.) Hochr on CCl 4 induced hepatotoxicity

    in rats. Bioscience, Biotechnology Research Asia. 2008;

    5(2): 783-787.

    14. Pulok KM, Kuntal M, Kakali M, Peter JH. Leads from

    Indian medicinal plants with hypoglycemic potentials. J

    Ethnopharmacol. 2006; 106: 128.

    15. Seth SD, Sharma B. In: Medicinal plants of India. Indian J.

    Med Res. 2004; 20: 911.

    16. Patel D, Zaidi I. Herbal Medicines used in Diabetes

    mellitus. International journal of Pharmaceutical Erudition.

    2012; 2(3): 15-25.

    17. Joshua LS, Pal VC, Kumar KLS, Sahu RK, Roy A.

    Antitumor activity of the ethanol extract of Amaranthus

    spinosus leaves against EAC bearing swiss albino mice.Der Pharmacia Lettre. 2010; 2(2): 10-15.

    18. Eddouks M, Maghrani M. Phlorizin-like effect of Fraxinus

    excelsior in normal and diabetic rats. J Ethnopharmaco.,

    2004; 94(1): 149-54.

    19. Gossell M, Simon OR, West ME. The past and the present

    use of plants for medicines. West Indian Medical Journal.

    2006; 55(4): 217.

    20. WHO technical report series. Guidelines for the

    Assessment of Herbal Medicines. 1996; 863: 178-184.

    21. Abhishek K, Ashutosh M, Sinha BN. Herbal drugs- present

    status and efforts to promote and regulate cultivation. The

    Pharma Review. 2000; 6: 73-77.

    22. Patel P, Harde P, Pillai J, Darji N, Patel B. Antidiabetic

    herbal drugs a review, An international research journal.

    2012; 3(1): 18-29.

    23. Coleman LM, Fowler LL, Williams ME. Use of unproven

    therapies by people with alzheimers disease. Journal of

    the American Geriatrics Society. 1995; 43: 747- 750.

    24. Sutherland LR, Verhoef MJ. Why do patients seek a

    second opinion or alternative medicine. Clinical

    Gastroenterology. 1994; 194-197.

    25. Patwardhan B, Warude D, Pushpangadan P, Bhatt N.Evidence-Based Complem, Altern Med. 2005; 2(4): 465.

    26. Nortier JL, Martinez MCM, Schmeiser HH, Arlt VM, Bieler

    A, Engl. J. Medicine. 2006; 342: 1686.

    27. Bent S, Ko R, Standardization of herbal medicines, Am. J.

    Med, 2004; 116: 478.

    28. Sukhdev S, Arun N, Kalia AN. Patentability of herbal

    products: A review. The Pharma Review. 2008; 4: 118-

    124.

    29. Calixto JB, Efficacy, safety, quality control, marketing, and

    regulatory guidelines for herbal medicines. Brazilian

    Journal of Medical and Biological Research. 2000; 33:

    179-189.

    30. Singh LW, Traditional medicinal plants of Manipur as

    antidiabetics. J Med Plant Res. 2011; 5(5): 677-687.

    31. Bhushan MS, Rao CHV, Ojha SK, Vijayakumar M, Verma

    A. An analytical review of plants for anti diabetic activity

    with their phytoconstituent & mechanism of action. Int J

    Pharm Sci Res. 2010; 1(1): 29-46.

    32. Yasir M, Jain P, Debajyoti D, Kharya MD. Hypoglycemic

    and antihyperglycemic effect of different extracts ofAcacia

    Arabica lamk bark in normal and alloxan induced diabetic

    rats. Int J Phytomed. 2010; 2(2): 133-138.

    33. Patil RN, Patil RY, Ahirwar D. Study of some medicinal

    plants for antidiabetic activity in alloxan induced diabetes.

    Pharmacologyonline. 2010; 1: 53-60.

    34. Patil RN, Patil RY, Ahirwar B, Ahirwar D. Evaluation of

    antidiabetic and related actions of some Indian medicinal

    plants in diabetic rats. Asian Pac J Trop Med. 2011; 4(1):

    20-23.

    35. Liu IM, Tzeng TF, Liou SS, Lan TW. Improvement of

    insulin sensitivity in obese Zucker rats by myricetin

    extracted from Abelmoschus moschatus. Planta Med.

    2007; 73: 1054-1060.

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    5/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 86

    36. Semwal DK, Bamola A, Rawat U, Chemical Constituents

    of some antidiabetic plant. Universities Journal of Phyto-

    chemistry and Ayurvedic Heights. 2007; 2(3): 42-47.

    37. Popp M. Chemical composition of Australian mangroves,

    II. Low molecular weight carbohydrates. Zeitschr Pflanzen.

    1984; 113(5): 41-121.

    38. Popp M, Larher F, Weigel P, Chemical composition ofAustralian mangroves, III. Free amino acids, total

    methylated onium compounds and total nitrogen. Zeitschr

    Pflanzen. 1984; 114(1): 1525.

    39. Labu ZK, Jahan K, Rahman F. Current Official Status of

    Traditional Medicine and Their Used As In Chronic

    Diseases, Bangladesh. Journal of Drug Discovery and

    Therapeutics. 2013; 1(3): 93-104.

    40. Hao D, Xiaojie GU, Xiao P, Lijia XU, Peng Y. Recent

    advances in the chemical and biological studies of

    Aconitum pharmaceutical resources. Journal of Chinese

    Pharmaceutical Sciences. 2013; 22(3): 209221.

    41. Shyaula SL, Phytochemicals, Traditional Uses and

    Processing of Aconitum Species in Nepal. Nepal Journal

    of Science and Technology. 2011; 12: 171-178.

    42. Chauhan A, Sharma PK, Srivastava P, Kumar N, Dudhe

    R. Plants having antidiabetic activity : A review. Der

    Pharma ltt. 2010; 2(3): 369-387.

    43. Bhushan MS, Rao CHV, Ojha SK, Vijayakumar M, Verma

    A. An analytical review of plants for anti diabetic activity

    with their phytoconstituent & mechanism of action. Int JPharm Sci Res. 2010; 1(1): 29-46.

    44. Kumari K, Mathew BC, Augusti KT. Antidiabetic and

    hypolipidemic effects of S-methyl cysteine sulfoxide

    isolated from Allium cepa Linn. Indian J. Biochem.

    Biophys. 1995; 32(1): 4954.

    45. Kumari K, Augusti KT. Lipid lowering effect of S-methyl

    cysteine sulfoxide from Allium cepa Linn in high

    cholesterol diet fed rats. J. Ethnopharmacol. 2007; 109:

    367371.

    46. Kumari K, Augusti KT. Antidiabetic and antioxidant effects

    of S-methyl cysteine sulfoxide isolated from Allium cepa

    Linn as compared to standard drugs in alloxan diabetic

    rats. Indian J. Exp. Biol. 2002; 40(9): 10051009.

    47. Karawya MS, Abde SM, EI-Olemy MM, Farrag NM.

    Diphenylamine an antihyperglycemic agent from onion and

    tea. J. Nat. Prod. 1984; 47(5): 775780.

    48. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A.

    Medicinal plants with potential antidiabetic activity-a review

    of ten years of herbal medicine research (1990-2000). Int J

    Diabetes Metab. 2006; 14(1): 1-25.

    49. Ayodhya S, Kusum S, Anjali S. Hypoglycaemic activity of

    different extracts of various herbal plants. Int J Ayurveda

    Res Pharm. 2010; 1(1): 212-224.

    50. Chauhan A, Sharma PK, Srivastava P, Kumar N, Duehe

    R. Plants having potential antidiabetic activity: a review.

    Der Pharm Lett. 2010; 2(3): 369-387.

    51. Modak M, Dixit P, Londhe J, Ghaskadbi S, Paul A,

    Devasagayam T. Indian herbs and herbal drugs used for

    the treatment of diabetes. J Clin Biochem Nutr. 2007;

    40(3): 163-173.

    52. Saravanan G, Ponmurugan P. Beneficial effects of S-

    allylcysteine on blood glucose and pancreatic antioxidant

    system in streptozotocin diabetic rats. Plant Foods Hum

    Nut.2010; 65: 374378.

    53. Sheela CG, Augusti KT. Antidiabetic effects of S-allyl

    cysteine sulphoxide isolated from garlic Allium sativum

    Linn. Indian J. Exp. Biol. 1992; 30(6): 523526.

    54. Mathew PT, Augusti KT. Studies on the effect of allicin

    (diallyl disulphide-oxide) on alloxan diabetes I,

    Hypoglycaemic action and enhancement of serum insulin

    effect and glycogen synthesis. Indian J. Biochem. Biophys.

    1973; 10(3): 209212.

    55. Singh LW. Traditional medicinal plants of Manipur asantidiabetics. J Med Plant Res, 2011; 5(5): 677-687.

    56. Modak M, Dixit P, Londhe J, Ghaskadbi S, Paul A,

    Devasagayam T. Indian herbs and herbal drugs used for

    the treatment of diabetes. J Clin Biochem Nutr. 2007;

    40(3): 163-173.

    57. Rajasekaran S, Ravi K, Sivagnanam K, Subramanian S.

    Beneficial effects of Aloe vera leaf gel extract on lipid

    profile status in rats with streptozotocin diabetes. Clin Exp

    Pharmacol Physiol. 2006; 33(3): 232-237.

    58. Rajendran A, Narayanan V, Gnanave I. Evaluation of

    therapeutic efficacy of Aloe vera sap in diabetes and

    treating wounds and inflammation in animals. J Appl Sci

    Res. 2007; 3(11): 1434-1436.

    59. Kima K, Kima K, Kwona J, Leea S, Konga H, Imb S.

    Hypoglycemic and hypolipidemic effects of processedAloe

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    6/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 87

    vera gel in a mouse model of non-insulin-dependent

    diabetes mellitus. Phytomedicine. 2009; 16(9): 856-863.

    60. Misawaa E, Tanakaa M, Nomaguchia K, Yamadaa M,

    Toidaa T, Takaseb M. Administration of phytosterols

    isolated from Aloe vera gel reduce visceral fat mass and

    improve hyperglycemia in Zucker diabetic fatty rats. Obes

    Res Clin Pract. 2008; 2(4): 239.

    61. Ajabnoor MA. Effect of aloes on blood glucose levels

    innormal and alloxan diabetic mice. J. Ethnopharmacol.

    1990; 28(2): 215-20.

    62. Ghannam NM, Kingston IA, Al-Meshaal M, Tariq NS,

    Parman N. experimental observations. Hormone

    Research, woodhouse. 1986; 24: 288-94.

    63. Noor A, Gunasekaran S, Soosai A, Minicab, Vijayalakshmi

    MA. Antidiabetic activity of Aloe vera and histology of

    organs in streptozotocin induced diabetic rats. Current

    science. 2008; 94(8): 1070-1076.

    64. Rehman SU, Jafri SA, Hassan S, Ishtiaq N, Muhammad N.

    Study on antidiabetic effect ofAloe veraextract on alloxan

    induced diabetic rats. Libyan Agriculture Research Center

    Journal International, 2011; 2(1): 29-32.

    65. Reyes BA, Bautista ND, Tanquilut NC, Anunciado RV,

    Leung AB, Sanchez GC, Magtoto RL, Castronuevo P,

    Tsukamura H. Anti-diabetic potentials of Momordica

    charantiaand Andrographis paniculataand their effects on

    estrous cyclicity of alloxan-induced diabetic rats.Journal of

    Ethnopharmacology. 2006; 105(1): 196200.

    66. Reyes BA, Bautista ND, Tanquilut NC, Anunciado RV,

    Leung AB, Sanchez GC. Anti-diabetic potentials of

    Andrographis paniculata and their effects on estrous

    cyclicity of alloxan-induced diabetic rats. J

    Ethnopharmacol. 2006; 105(1): 196-200.

    67. Zhang XF, Tan BK. Antihyperglycemic and antioxidant

    properties of Andrographis paniculata in normal and

    diabetic rats. Clin. Exp. Pharm. Phy. 2000; 27(5-6): 358-

    363.

    68. Yu BC, Hung CR, Chen WC, Cheng JT. Antihyperglycemic

    effect of andrographolide in streptozotocin-induced

    diabetic rats. Planta Med. 2003; 69(12): 1075-1079.

    69. Teonard L, Dimo T, D Paul. Title ??? Afr. J. Tradit,

    Complement, Altern, Med, 2006; 3: 23.

    70. Mohd M, Alam KS, Mohd A, Abhishek M, Aftab A.

    Antidiabetic activity of the aqueous extract of Annona

    squamosa in Streptozotocin inducedhyperglycemic rats. T.

    Pharm. Res. 2009; 2: 59-63.

    71. Malviya N, Jain S, Malviya S. Antidiabetic potential of

    medicinal plants. Acta Pol Pharm. 2010; 67(2): 113-118.

    72. Gupta RK, Kesari AN, Watal G, Murthy PS, Chandra R,

    Tandon V. Nutritional and hypoglycemic effect of fruit pulp

    of Annona squamosa in normal healthy and alloxan-induced diabetic rabbits. Annals Nut Metabol. 2005; 49(6):

    407-413.

    73. Rao MU, Sreenivasulu M, Chengaiah B, Reddy KJ, Chetty

    CMS. Herbal Medicines for Diabetes Mellitus. Internatioal

    Journal of PharmaTech research, 2010; 2(3): 1883-1892.

    74. Subramoniam A, Pushpangadan P, Rajasekharan S,

    Evans DA, Latha PG, Valsaraj R. Effects of Artemisia

    pallens Wall on blood glucose levels in normal and

    alloxan-induced diabetic rats. Journal of

    Ethnopharmacology, 1996; 50(1): 1317.

    75. Waheed A, Miana GA, Ahmad SI. Clinical investigation of

    hypoglycemic effect of seeds ofAzadirachta-inidcain type-

    2(NIDDM) diabetes mellitus. Pak. J. Pharm. Sci. 2006;

    19(4): 322-25.

    76. Sokeng SD, Rokeya B, Mostafa M. Title ??? Afr. J.

    Tradit, Complement. Altern. Med. 2005; 2: 94.

    77. Prabhakar PK, Doble MA. Target based therapeutic

    approach towards diabetes mellitus using medicinal plants.

    Curr. Diabetes Rev. 2008; 4(4): 291308.

    78. Chattopadhyay RR, Chattopadhyay RN, Nandy AK,

    Poddar G, Maitra SK. Preliminary report on

    antihyperglycemic effect of a fraction of fresh leaves of

    Azadirachta indica Bu. Calcutta Sch. Trop. Med, 1987; 35:

    2935.

    79. Chattopadhyay RR. Possible mechanism of

    antihyperglycemic effect ofAzadirachta indica leaf extract.

    Fitoterapia, 1993; 27(4): 332336.

    80. Chattopadhyay RR. A comparative evaluation of some

    blood sugar lowering agents of plant origin. J.

    Ethnopharmacol. 1999; 67(3): 367372.

    81. Gholap S, Kar A. Hypoglycaemic effects of some plant

    extracts are possibly mediated through inhibition in

    corticosteroid concentration. Pharmazie. 2004; 59(11):

    876878.

    82. Kar A, Choudhary BK, Bandyopadhyay NG. Comparative

    evaluation of hypoglycaemic activity of some Indian

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    7/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 88

    medicinal plants in alloxan diabetic rats. J.

    Ethnopharmacol. 2003; 84(1): 105108.

    83. Bopana KN, Kannan J, Gadgil S, Balaram R, Rathod SP.

    Antidiabetic and antihyperlipidaemic effects of neem seed

    kernel powder on alloxan diabetic rabbits. Indian J.

    Pharmacol. 1997; 29(3): 162167.

    84. Bhat M, Kothiwale SK, Tirmale AR, Bhargava SY, JoshiBN. Antidiabetic properties of Azadirachta indica and

    Bougainvillea spectabilis. In-vivo studies in murine

    diabetes model, Evid.-Based Complement, Alternat. Med,

    2011; 18: 2011.

    85. Sivaramakrishna C. Triterpenoid glycosides from Bacopa

    monnieri. Phytochemistry 2005; 66(23): 2719-2728.

    86. Ghosha T. Antidiabetic and In-Vivo Antioxidant Activity of

    Ethanolic Extract of Bacopa monnieri LinnAerial Parts : A

    Possible Mechanism of Action. Iranian Journal of

    Pharmaceutical Research. 2008; 7(1): 61-68.

    87. Chothani DL, Vaghasiya HH. A review on Balanites

    aegyptiaca Del (desert date): phytochemical constituents,

    traditional uses, and pharmacological activity.

    Pharmacognosy Review. 2011; 5(9): 55-62.

    88. Fuentes O. Hypoglycemic activity of Bauhinia candicansin

    diabetic induced rabbits. Fitoterapia. 2011; 75(6): 527-532.

    89. Saravanamuttu S, Sudarsanam D. Antidiabetic plant and

    their active ingredient. International journal of

    Pharmaceutical sciences and research, 2012; 3(10): 3639-

    3650.

    90. Frankish N, de Sousa Menezes F, Mills C, Sheridan H.

    Enhancement of insulin release from the beta-cell line INS-

    1 by an ethanolic extract of Bauhinia variegata and its

    major constituent roseoside. Planta Med. 2010; 76(10):

    995-997.

    91. Ninfalia P, Bacchioccaa M, Biagiottia AE, Gioacchinob

    AMD, Piccolib G, Stocchib V. Characterization and

    biological activity of the main flavonoids from Swiss Chard

    (Beta vulgaris subspecies cycla). Phytomedicine. 2007;

    14(2): 216-221.

    92. Yoshikawa M, Murakami T, Kadoya M, Matsuda H,

    Muraoka O, Yamahara J, Murakami N. Medicinal foodstuff,

    III. Sugar beet, Hypoglycemic oleanolic acid

    oligoglycosides, betavulgarosides I, II, III, and IV, from the

    root of Beta vulgaris L. (Chenopodiaceae). Chemical and

    pharmaceutical Bulletin (Tokyo). 1996; 44(6): 12121217.

    93. Meliani N, Amine Dib ME, Allali H, Tabti B. Hypoglycaemic

    effect of Berberis vulgaris L, in normal and streptozotocin

    induced diabetic rats. Asian Pac J Trop Biomed. 2011;

    1(6): 468-471.

    94. Chang SL, Chang CL, Chiang YM, Hsieh RH, Tzeng CR,

    Wu TK, Sytwu HK, Shyur LF, Yang WC. Polyacetylenic

    compounds and butanol fraction from Bidens pilosa can

    modulate the defferentiation of helper T cells and prevent

    autoimmune diabetes in non-obese diabetic mice. Planta

    Med. 2004; 70(11): 1045-1051.

    95. Saleem R, Ahmad M, Hussain SA. Hypotensive,

    hypoglycaemic and toxicological studies on the flavonol

    Cglycoside shamimin from Bombax ceiba. Planta Med.

    1999; 65(4): 331334.

    96. Sokeng SD, Rokeya B, Mostafa M. Title ??? Afr. J.

    Tradit, Complement, Altern, Med. 2005; 2: 94.

    97. Karageuzyan KG, Vartanyan GS, Agadjanov MI,

    Panossian AG, Hoult JR. Restoration of the disordered

    glucosefatty acid cycle in alloxan- diabetic rats

    bytrihydroxyoctadecadienoic acids from Bryonia alba, a

    native Armenian medicinal plant. Planta Med. 1998; 64(5):

    417-422.

    98. Almeida RN, Filho J, Naik SR. Chemistry and

    pharmacology of an ethanol extract of Bumelia sartorum. J

    Ethnopharmacol. 1985; 14(2): 173-185.

    99. Ninfalia P, Bacchioccaa M, Biagiottia AE, Gioacchinob

    AMD, Piccolib G, Stocchib V. Characterization and

    biological activity of the main flavonoids from Swiss Chard

    (Beta vulgaris subspecies cycla). Phytomedicine. 2007;

    14(2): 216-221.

    100. Kannur DM, Hukkeri VI, Akki KS. Antidiabetic activity of

    Caesalpinia bonducella seed extracts in rats. Fitoterpia.

    2006; 77(7-8): 546-549.

    101. Biswas, co workers. To study Caesaplinia

    bonducellaMethanol Alloxan Induced Diabetic Rats.

    Pharmaceutical Biology. 1997; 41(5): 388-391.

    102. Hatapakki BC, Suresh HM, Bhoomannavar V, Shivkumar

    SI. Effect of Cassia auriculata Linn Flowers against

    alloxan-induced diabetes in rats. J Nat Remedies. 2005;

    5(2): 132-136.

    103. Nammi S, Boini MK, Lodagala SD, Behara RB. The juice

    of fresh leaves of Catharanthus roseus Linn, reduces

    blood glucose in normal and alloxan diabetic rabbits. BMC

    Complement Altern Med. 2003; 2-3(1): 3-4.

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    8/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 89

    104. Malviya N, Jain S, Malviya S. Antidiabetic potential of

    medicinal plants. Acta Pol Pharm. 2010; 67(2): 113-118.

    105. Rasineni K, Bellamkonda R, Singareddy SR, Desireddy S.

    Antihyperglycemic activity of Catharanthus roseus leaf

    powder in streptozotocin-induced diabetic rats. Phcog Res.

    2010; 2(3): 195.

    106. Islam MS, Choi H, Green tea. anti- diabetic ordiabetogenic, a dose response study. Biofactors. 2007;

    29(1): 45-53.

    107. Parmar N, Rawat M, Kumar JV. Camellia sinensis (Green

    Tea): A Review. Global Journal of Pharmacology. 2012;

    6(2): 52-59.

    108. Sharma B, Salunke R, Balomajumder C, Daniel S, Roy P.

    Antidiabetic potential of alkaloid rich fraction from Capparis

    deciduas on diabetic mice. J Ethnopharmacol . 2010;

    127(2): 457-462.

    109. Ooi CP, Yassin Z, Hamid TA. Momordica charantia for

    type 2 diabetes mellitus. Cochrane Database Syst Rev.

    2010; 17(2): 1-2.

    110. Jarvill-Taylor KJ, Anderson RA, Gaves DJ. A hydroxy-

    chalcone derived from cinnamon functions as a mimetic for

    insulin in 3T3-L1 adipocytes. J Am Coll Nut. 2001; 20(4):

    327-36.

    111. Cao H, Polansky MM, Anderson RA. Cinnamon extract

    and polyphenols affect the expression of tristetraprolin,

    insulin receptor, and glucose transporter 4 in mouse 3T3-

    L1 adipocytes. Arch Biochem Biophys. 2007; 459(2): 214-22.

    112. Baker WL, Gutierrez-Williams G, White CM, Kluger J,

    Coleman CI. Effect of cinnamon on glucose control and

    lipid parameters. Diabetes Care. 2008; 31(1): 41-3.

    113. Crawford P. Effectiveness of Cinnamon for Lowering

    Hemoglobin A1C in Patients with Type 2 Diabetes: A

    Randomized, Controlled Trial. J Am Board Fam Med.

    2009; 22(5): 507-12.

    114. Muhammad S, Amusa NA. The important food crops and

    medicinal plants of northwestern Nigeria. Research

    Journal of Agriculture and Biological Sciences. 2005; 1(3):

    254260.

    115. Inngjerdingen K, Nergrd CS, Diallo D, Mounkoro PP,

    Paulsen BS. An ethnopharmacological survey of plants

    used for wound healing in Dogonland. Mali, West Africa.

    Journal of Ethnopharmacology. 2004; 92(2): 233244.

    116. Hostettmann K, Marston A. Twenty years of research into

    medicinal plants: results and perspectives. Phytochemistry

    Reviews. 2002; 37(1): 275285.

    117. Karou D, Dicko MH, Simpore J, Traore AS. Antioxidant

    and antibacterial activities of polyphenols from

    ethnomedicinal plants of Burkina Faso. African Journal of

    Biotechnology. 2005; 4(8): 823828.

    118. Olajide OA, Makinde JM, Okpako DT. Evaluation of the

    anti-inflammatory property of the extract of Combretum

    micranthum G. Inflammopharmacology. 2003; 11(3): 293

    237.

    119. Chika A, Bello SO. Antihyperglycaemic activity of aqueous

    leaf extract of Combretum micranthum, in normal and

    alloxan-induced diabetic rats. journal of

    Ethnopharmacology. 2010. 129(1). 3437.

    120. Ayodhya S, Kusum S, Anjali S. Hypoglycaemic activity of

    different extracts of various herbal plants. Int J Ayurveda

    Res Pharm. 2010; 1(1): 212-224.

    121. Islam MS, Choi H. Green tea, anti-diabetic or

    diabetogenic: a dose response study. Biofactors. 2007;

    29(1): 45-53.

    122. Adaobi CE, Peter AA, Charles CO, Chinwe BO.

    Experimental evidence for the antidiabetic activity of

    Cajanus cajan leaves in rats. J Basic Clin Pharm. 2010;

    1(2): 81-84.

    123. Amalraj T, Ignacimuthu S. Hypoglycemic activity of

    Cajanus cajan in mice, Indian J Exp Biol. 1998; 36(10):1032-1033.

    124. Jagtap AG, Patil PB. Antihyperglycemic activity and

    inhibition of advanced glycation end product formation by

    Cuminum cyminum in streptozolocin induced diabetic rats.

    Food Chem Toxicol. 2010; 48(8): 2030-2036.

    125. Gupta VK, Sharma SK. Plant as natural antioxidants.

    Natural product radiance. 2006; 4: 326-334.

    126. Ahmad M, Akhtar MS, Malik T Gilani AH. Hypoglycaemic

    action of the flavonoid fraction of Cuminum nigrum seeds.

    Phytother Res, 2000; 14: 103-106.

    127. Kang C, Kim E, Synergistic effect of curcumin and insulin

    on muscle cell glucose metabolism. Food ChemToxicol.

    2010; 48: 2366-2373.

    128. Mukhtar HM, Ansari SH, Ali M, Bhat ZA, Naved T. Effect of

    aqueous extract of Cyamopsis tetragonoloba Linn beans

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    9/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 90

    on blood glucoselevel in normal and alloxan-induced

    diabetic rats. Indian J Exp Biol. 2004; 42: 1212-1215.

    129. Ramos RR, Flores Saenz JL, Alarcon Aguilar F.

    Antihyperglycaemic effect of some edible plants. J

    Ethnopharmacol. 1995; 48: 25-32.

    130. Iwu MM, Okunji CO, Ohiaeri GO, Akah P, Corley D,

    Tempesta MS. Hypoglycaemic activity of dioscoretine fromtubers of Dioscorea dumetorum in normaland alloxan

    diabetic rabbits. Planta Med. 1990; 56: 264-267.

    131. Chauhan A, Sharma PK, Srivastava P, Kumar N, Duehe

    R. Plants having potential antidiabetic activity. a review.

    Der Pharm Lett.2010; 2(3): 369-387.

    132. Xiu LM, Miura AB, Yamamoto K, Kobayashi T, Song QT,

    Kitamura H Cyong JC. American Journal of Chinese

    Medicine. 2001; 29: 493500.

    133. Chauhan A, Sharma PK, Srinivastava P, Kumar N, Duehe

    R. Plants having potential antidiabetic activity. A review.

    Der pharm let.2010; 2(3):369-387.

    134. Arjyun P, Shivesh J, Sahu AN. Antidiabetic activity of

    aqueous extract of Eucalyptus citriodora hook in alloxan

    induced diabetic rats. Pharmacogn Mag. 2009; 5: 51-54.

    135. Suryanarayana P, Kumar PA, Saraswat M, Petrash JM,

    Reddy GB. Inhibition of aldose reductase by tannoid

    principles of Emblica officinalis. Implications for the

    prevention of sugar cataract. Mol Vis. 2004; 10: 148-154.

    136. Rao MU, Sreenivasulu M, Chengaiah B, Reddy KJ, Chetty

    CM. Herbal medicines for diabetes mellitus. a review. Int J

    PharmTech Res. 2010; 2(3): 1883-1892.

    137. Maroo J, Vasu VT , Gupta S. Dose dependent

    hypoglycemic effect of aqueous extract of Enkostemma

    litturale blume in alloxan induced diabetic rats.

    Phytomedicine. 2003; 10: 196-199.

    138. Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J.

    Effect of mangiferin on hyperglycemia and atherogenicity

    in streptozotocin diabetic rats. J Ethnopharmacol. 2005;

    97(3): 497-501.

    139. Vinod D and Rangari. Pharmacognosy Phytochemistry.

    vol.2. 1st Edition. Career Publication; Nashik. 2007; 184.

    140. Nampoothiri SV, Prathapan A, Cherian OL, Raghu KG,

    Venugopalan VV Sundaresan A. In- vitro antioxidant and

    inhibitory potential of Tetminalia bellerica and Emblica

    officinalis fruits against LDL oxidation and key enzymes

    linked to type 2 diabetes. Food Chem Toxicol.

    2011;49(1):125-131

    141. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A.

    Medicinal plants with potential antidiabetic activity-a review

    of ten years of herbal medicine research. (1990-2000). Int

    J Diabetes Metab. 2006; 14(1): 1-25.

    142. Singh LW. Traditional medicinal plants of Manipur asantidiabetics. J Med Plant Res, 2011; 5(5): 677-687.

    143. Saxena A, Vikram NK. Role of selected Indian plants in

    management of type 2 diabetes: a review. J Altern

    Complement Med, 2004; 10(2):369-378.

    144. Kaczmar T. Herbal support for diabetes management. Clin

    Nutr Insights. 1998; 6(8): 1-4.

    145. Eddouks M ,Maghrani M. Phlorizin-like effect of Fraxinus

    excelsior in normal and diabetic rats. J Ethnopharmacol

    2004; 94:149-154.

    146. Maghrani M, Michel JB, Eddouks M. Hypoglycaemic

    activity of Retama raetam in rats. Phytotherapy Res, 2005;

    19: 125-128.

    147. Rao MU, Sreenivasulu M, Chengaiah B, Reddy KJ,Chetty

    CM. Herbal medicines for diabetes mellitus. a review Int J

    PharmTech Res. 2010; 2(3): 1883-1892.

    148. Mall GK, Mishra PK, Prakash V. Antidiabetic and

    hypolipidemic activity of Gymnema sylvestre in alloxan

    induced diabetic rats. Glob J Biotech Biochem. 2009; 4(1):

    37-42.

    149. Daisy P, Eliza J, Mohamed FKA. A novel dihydroxy

    gymnemic triacetate isolated from Ginkgo biloba

    possessing normoglycemic and hypolipidemic activity on

    STZ-induced diabetic rats. J Ethnopharmacol. 2009;

    126(2): 339-344.

    150. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A.

    Medicinal plants with potential antidiabetic activity-a review

    of ten years of herbal medicine research (1990-2000). Int J

    Diabetes Metab. 2006; 14(1): 1-25.

    151. Navarrete A, Mata R. Antihyperglycemic effect of

    constituents from Hintonia standleyana in streptozotocin-

    induced diabetic rats. Planta Medica. 2005; 71(12): 1099-

    1105.

    152. Ojewole JA. Antinociceptive. Anti-inflammatory and

    antidiabetic properties of Hypoxis hemerocallidea Fisch.

    And C.A. Mey. corm [African Potato] aqueous extract in

    mice and rats. J Ethnopharmaco; 2006, 103(1): 126-134.

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    10/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 91

    153. Bahle S, John AO. Med. J. Islam. Acad. Sci. 2000; 13-75.

    154. Tripathi YB, Tripathi P, Upadhyay BN. Assessment of the

    adrenergic beta-blocking activity of Inula racemosa. J

    Ethnopbarmacol, 1988; 23(1): 3-9.

    155. Kusano S, Abe H. Antidiabetic activity of white skinned

    sweet potato Ipomoea batatas L. in obese Zucker fatty

    rats. Biol Pharm Bull.2000; 23(1): 23-26.

    156. A TY. Anti-diabetes Agents: Tetralone Derivative from

    Juglans regia. Chinese Chemical Letters. 2003; 14 (5):

    489-490.

    157. Garg SK, Shah MA, Garg KM. Antilymphocytic and

    immunosuppressive effects of Lantana camara leaves in

    rats. Indian J Exp Biol. 1997; 35(12): 1315-1318.

    158. Judy WV, Hari SP, Stogsdill WW, Judy JS, Naguib YM,

    Passwater R. Antidiabetic activity of a standardized extract

    (Glucosol) from Lagerstmemia speciosa leaves in Type II

    diabetics. A dose-dependence study. J Elhnopharmacol

    2003; 87(1): l15-117.

    159. Zhao R, Li Q, Xiao B. Effect of Lycium barbarum

    polysaccharide on the improvement of insulin resistance in

    NIDDM rats. Yakugaku Zasshi J Pharm Society Japan.

    2005; 125(12): 981-988.

    160. Wu H, Guo H, Zhao R. Effect of Lycium barbarum

    polysaccharide on the improvement of antioxidant ability

    and DNA damage in NIDDM rats.Yakugaku Zasshi J

    Pharm Society Japan.2006; 126(5): 365-3671.

    161. Chen WH, Qian H , Wang HZ. Effect of polysaccharide

    from ophiopogonis tuber on blood sugar in normal and

    experimental diabetic mice. The Chinese Journal of

    Modern Applied Pharmacy.1998; 15(4): 2123.

    162. He L.X.Hypoglycemic effects of polysaccharide from

    ophiopogonis tuber. China Practical Medical, 2007; 2: 48

    50.

    163. Luo J, Quan J, Tsai J, Hob ensack CK, Sullivan C, Hector

    R, Reaven GM, Nongenetic mouse models of non-

    insulindependent diabetes mellitus. Metabolism.1998;

    47(6): 663-668.

    164. Cherng J, Shih M. Improving glycogenesis in streptozocin

    diabetic mice after administration of green algae Chlorella.

    Life Sciences. 2006; 78 : 11811186.

    165. Chen X, Bai X, Liu Y, Tian LY, Zhou J, Zhou Q, Fang J

    ,Chen JC. Anti-diabetic effects of water extract and crude

    polysaccharides from tuberous root of Liriope spicata var.

    prolifera in mice. Journal of Ethnopharmacology. 2009;

    122(2): 205-209.

    166. Marles R, Farnsworth NR. Phytomedicine. 1995; 2(2):

    137189.

    167. Arvigo R, Balick M. Rainforest Remedies. One Hundred

    Healing Herbs of Belize, Lotus Press. Twin Lakes. 1993.

    168. Akhtar Ms, Athar AM, Yaqub M. Effect of Momordica

    charantia. Journal of Nutritional Science and Vitaminology.

    2001; 47: 340344.

    169. Sarkar S, Pranava M,Marita P. Pharmacological Research.

    1996; 33(1): 14.

    170. Miura T, Itoh C, Iwamoto N, Kato M, Kawai M, Park RS,

    Suzuki I. Journal Of Nutritional Science and Vitaminology,

    2001;47(4): 340344.

    171. Srivastava y, Venkatakrishna-Bhatt H, Verma Y, Venkaiah

    K, Raval HB. Phytotherapy Research.1993; 7: 285289.

    172. Ahmed I, Adeghate E, Sharma AK, Pallot DJ, Singh J.

    Diabetes Research and Clinical Practice, 1998; 40(1):

    145151.

    173. Welihinda J, Karunanayake EH. Journal of

    Ethnopharmacology. 1986; 17: 247255.

    174. Sharma AK, Ahmed I, Tadayyon M, International Journal

    of Diabetes. 1995; 4: 2938.

    175. Ng TB, Wong CM, Li WW. Journal of Ethnopharmacology.

    1986; 15: 107117.

    176. Welihinda J, Arvidson G, Gylfe E, Hellman B, Karlsson E,

    Acta Biologica et Medica Germanica. 1982; 41(12): 1229

    1240.

    177. Welihinda J, Karunanayake HE. Journal of

    Ethnopharmacology. 1986; 17(3): 247255.

    178. Basch WE, Gabardi S, Ulbricht C. Bitter Melon

    (Momordica charantia). A Review of Efficacy and Safety.

    Am J Health-Syst Pharm.2003; 60(4) : 356-359.

    179. Chen F, Nakashima N, Kimura I, Kimura M. Hypoglycemic

    activity and mechanisms of extracts from mulberry leaves(Folium mori) and cortex mori radicis in streptozotocin-

    induced diabetic mice. Yakugaku Zasshi. 1995; 115(6):

    476482.

    180. Grover JK, Vats V, Rathi SS, Dawar R. Traditional Indian

    antidiabetic plants attenuate renal hypertrophy, urine

    volume and albuminuria in streptozotocin induced diabetic

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    11/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 92

    mice Journal of Ethnopharmacology. 2001; 76(3): 233

    238.

    181. Khan BA, Abraham A, Leelamma S. BHypoglycemic action

    of Murraya koeingii (curry leaf) and Brassica juncea

    (mustard). mechanism of action. Indian Journal of

    Biochemistry and Biophysics, 1995; 32(2): 106108.

    182. Mallick C, Maiti RK, Ghosh DD. Iranian Journal ofPharmacology & Therapeutics, 2006.

    183. Ojewole JA. Antiinflammatory, analgesic and

    hypoglycemic effects of Mangifera indica Linn. Stem -bark

    aqueous extract. Methods Findings Experiment. Clin

    Pharmacol 2005; 27(8): 547-554.

    184. Martinez G, Delgado R, Perez G, Garrido G, Nunez G,

    Selles AJ, Leon OS. Evaluation of the in vitro antioxidant

    activity of Mangifera indica L. extract. Phytotherapy

    Research 2000; 14(6): 424-27.

    185. Pillai VR, Santhakumari G. Hypoglycaemic activity of Melia

    azadirachta Linn. Indian J Med Res. 1981; 74: 931.

    186. Saravanamuttu S, Sudarsanam D. Antidiabetic Plants and

    Their Active Ingredients: A Review. International Journal of

    Pharmaceutical Sciences and Research, 2012; 3(10):

    3639-3650.

    187. Tahseen MA, Mishra G. Ethnobotany and Diuretic Activity

    of Some Selected Indian Medicinal Plants. A Scientific

    Review. the Pharma Innovation Journal. 2013; 2(3):

    109-121.

    188. Knoss W, Reuter B, Zapp J. Biosynthesis of the Labdane

    Diterpene Marrubiin in Marrubium Vulgare via A Non-

    Mevalonate Pathway. Biochemical Journal. 1997; 326:

    449-454.

    189. Dhanabal SP, Sureshkumar M, Ramanathan M, Suresh B.

    Hypoglycemic effect of ethanolic extract of Musa

    sapientum on alloxan induced diabetes mellitus in rats and

    its relation with antioxidant potential. J Herb

    Pharmacother. 2005; 5(2): 7-19.

    190. Kanter M. Effects of Nigella sativa and its Major

    Constituent. Thymoquinone on Sciatic Nerves in

    Experimental Diabetic Neuropathy. Neurochem Res. 2008;

    33(1): 87-96.

    191. Fararh KM, Atoji Y, shmizu Y, takewaki T. Insulintropic

    properties of Nigella sativa oil in streptozotocin plus

    nicotinamide diabetic hamster. Res Vet Sci, 2002; 73(3):

    279-28.

    192. Prakash P, Gupta N. Therapeutic uses of Ocimum

    sanctum Linn with a note on eugenol and its

    pharmacological actions: a shortreview. Indian J Physiol

    Pharmacol. 2005; 49(2): 125-131.

    193. Andier, Dusul. Tomer and Geaser.The antidiabetic activity

    of the bark of Polyalthia Longgifolia. Journal of Agriculture

    and Food Chemstry.1990; 17: 704.

    194. Modak M, Dixit P, Londhe J, Ghaskadbi S, Paul A T.

    Indian Herbs and Herbal Drugs Used for the Treatment of

    Diabetes. J. Clin. Biochem. Nutr. 2007; 40(3): 163173.

    195. Eidi M, Darzi R. Antidiabetic effect of Olea europaea L. in

    normal and diabetic rats. Phytother Res. 2009; 23(3): 347-

    50.

    196. Poudyal H, Campbell F, Brown L. Olive leaf extract

    attenuates cardiac. hepatic and metabolic changes in

    carbohydrate. High fat-fed rats. J Nutr 2010; 140(5): 946-

    53.

    197. Jeti CV, anin T, Miljkovi D, Stojanovi I, Dekanski D, Stoi

    Gujii S, Dried leaf extract of Olea europaea ameliorates

    islet-directed autoimmunity in mice. Br J Nutr. 2010;

    103(10): 1413-24.

    198. Jemai H, El Feki A, Sayadi S. Antidiabetic and antioxidant

    effects of hydroxytyrosol and oleuropein from olive leaves

    in alloxan-diabetic rats. J Agric Food Chem. 2009; 57(19):

    8798-804.

    199. Krenisky JM, Luo J, Reed MJ, Carney JR. Isolation and

    antihyperglycemic activity of bakuchiol from Otholobiumpubescens a Peruvian medicinal plant used for the

    treatment of diabetes. Biol Pharm Bull. 1999; 22(10):

    1137-1140.

    200. Gupta R, Gupta RS.Effect of Pterocarpus marsupium in

    streptozotocin-induced hyperglycemic state in rats.

    comparison with glibenclamide, Diabetol. Croat, 2009;

    38(2): 3945.

    201. Rao BK, Giri R, Kesavulu MM, Apparao C. Effect of oral

    administration of bark extracts of Pterocarpus santalinus L.

    on blood glucose level in experimental animals. J.

    Ethnopharmacol. 2001; 74(1): 6974.

    202. Mukhtar HM, Ansari SH, Ali M, Bhat ZA, Naved T. Effect of

    aqueous extract of Pterocarpus marsupium wood on

    alloxan-induced diabetic rats. Pharmazie. 2005; 60(6):

    478479.

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    12/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 93

    203. Ahmad F, Khalid P, Khan MM, Chaubey M, Rastogi AK

    Kidwai JR. Hypoglycemic activity of Pterocarpus

    marsupium wood. J. Ethnopharmacol. 1991; 35(1): 7175.

    204. Mankani KL, Evaluation of hepatoprotective activity of

    stem bark of Pterocarpus marsupium Roxb Indian J.

    Pharmaco. 2005; 37(3): 165168.

    205. Saxena A, Naval KV .Role of Selected Indian Plants inManagement of Type 2 Diabetes. A Review. the Journal of

    Alternative and Complementary Medicine. 2004; 10(2):

    369378.

    206. Raphael KR, Sabu MC, Kuttan R .Hypoglyccmic effect of

    methanol extract of Phyllanthus amarus Schum & Thonn

    onalloxan induced diabetes mcllitus in rats and its relation

    with antioxidant potential. Indian J Exp Biol. 2002; 40(4):

    905-909.

    207. Jafri MA, Aslam M, Javed K, Singh S. Effect of Punica

    granatum Linn. (Flowers) on blood glucose level in normal

    and alloxaninduced diabetic rats. Journal of

    Ethnopharmacology. 2000; 70(3): 309314.

    208. Vitaminol. Improvement of insulin resistance by panax

    ginseng in fructose-rich chowfed rats. Horm, Metab Res,

    2005; 37(13): 146-51.

    209. Panax ginseng Monograph. Alternative Medicine Review.

    2009; 14(2): 172-176.

    210. Mishra R, Shuaib M, Shravan, Mishra PS. A review on

    herbal antidiabetic drugs. Journal of Applied

    Pharmaceutical Science, 2011; 1(6): 235-237.

    211. Deguchi Y, Osada K, Uchida K, Kimura H, Yoshikawa M,

    Kudo T, Yasui H ,Watanuki M, Nippon Nogei Kagaku

    Kaishi. 1998; 72: 923931.

    212. Rai PK, Mehta S, Watal G. Hypolipidaemic &

    hepatoprotective effects of Psidium guajava raw fruit peel

    inexperimental diabetes. Indian J Med Res. 2010; 131(6):

    820-824.

    213. Olsnes S, Sandvig K, Refsnes K, Pihl A. Rates of different

    steps involved in the inhibition of protein synthesis by the

    toxic lectins abrin and ricin. J. Biol. Chem. 1976; 251(13):

    39853992

    214. Kirtikar KR and Basu BA, Indian Med, Plants . 1991; 3:

    22742277.

    215. Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN ,Ray C.

    Screening of Indian plants for biological activity. Part I.

    Indian J. Exp. Biol 1968, 6, 232247.

    216. Shokeen P, Anand P, Krishna Murali Y, Tandon V.

    Antidiabetic activity of 50% ethanolic extracts of Ricinus

    communis and its puri ed fractions. Food and Chemical

    Toxicology. 2008; 46(11): 34583466.

    217. Rollet B. Bibliography on mangrove research. 1600

    1975. London. UNESCO Paris Pub Information Retrieval

    Ltd, 1981; 479.

    218. Thangam TS, Kathiresan K. Mosquito larvicidal activity of

    mangrove plant extracts and synergistic activity of

    Rhizophora apiculata with pyrethrum against Culex

    quinquefasciatus. Int J Pharma, 1997; 35(1): 1-3.

    219. Williams LA. Rhizophora mangle triterpenoids with

    insecticidal activity. Naturwissenschaften. 1999; 86(9):

    450-2.

    220. Chauhan A, Sharma PK, Srinivastava P, Kumar N, Duehe

    R. Plants having potential antidiabetic activity. A review.

    Der pharm let. 2010; 2(3): 369-387.

    221. Augusti KT, Joseph P, Babu TD. Biologially active

    Principles isolated from salacia oblonga Wall. Indian

    Journal of Physiology and Pharmacology. 1995; 39: 415-

    417.

    222. Yaniv Z, Dafni A, Friedman J, Palevitch D. Plants used for

    the treatment of diabetes in Israel. Journal of

    Ethnopharmacology. 1987; 19(2): 145151.

    223. Henkin Z, Seligman NG. Survival of Sarcopoterium

    spinosum seedlings growing on terra rossa soil. Israel

    Journal of Plant Sciences, 2007; 55(1): 4551.

    224. Dafni A, Yaniv Z, Palevitch D. Ethnobotanical survey of

    medicinal-plants in Northern Israel. Journal of

    Ethnopharmacology,1984; 10(3): 295310.

    225. Shani J, Joseph B, Sulman FG, Fluctuations in the

    hypoglycaemic effect of Poterium spinosum L. Archives

    Internationales de Pharmacody- name et de

    Therapie.1970; 185(2) 344349.

    226. Smirin P, Taler D, Abitbol G, Brutman-Barazani T, Kerem

    Z, R. Sampson S, Rosenzweig T. Sarcopoterium

    spinosum extract as an antidiabetic agent In vitro and in

    vivo study Journal of Ethnopharmacology. 2010; 129: 10

    17.

    227. Latha M, Pari L. Effect of an aqueous extract of Scoparia

    dulcis on plasma and tissue glycoproteins in streptozotocin

    induced diabetic rats. Die Pharmazie. 2005; 60(2): 151-

    154.

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    13/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 94

    228. Pari L, Latha M, Antihyperlipidemic effect of Scoparia

    dulcis (sweet broomweed) in streptozotocin diabetic rats J

    Med Food. 2006; 9(1): 102-107.

    229. Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic

    effects of stevioside in type 2 diabetic subjects. Metab.

    Clin. Exp. 2004; 53 (1): 73-6.

    230. Mentreddy SR, Mohamed AI, Rimando AM. Medicinalplants with hypoglycemic/anti-hyperglycemic properties: a

    review. Proc Assoc Adv Ind Crop Conf. 2005; 20: 341-353.

    231. Rajalakshmi M, Eliza J, Priya CE, Nirmala A, Daisy P.

    Antidiabetic properties of Tinospora cordifolia stem

    extracts on streptozotocin-induced diabetic rats. Afr J

    Pharm Pharmacol. 2009; 3(5): 171-180.

    232. Chandraprakash. indian herbal medicines used for

    treatment of dementia: an overview. world journal of

    pharmaceutical research. 2014; 3(6): 344-382.

    233. Rai PK, Jaiswal D, Mehta S, Watal G. Anti-hyperglycaemic

    potential of Psidium guajava raw fruit peel. Indian J Med

    Res. 2009; 129: 561-565.

    234. Patel P, Harde P, Pillai J, Darji N, Patel B. Sat Kaival

    College Of Pharmacy Pharmacophore. An International

    Research Journal Antidiabetic Herbal Drugs A Review

    Available Online At Review Article Pharmacophore. 2012;

    3(1): 18-29.

    235. Ali L. Characterization of the hypoglycemic effects of

    Trigonella foenum graecum seed. Planta Medica. 1995;

    61(4): 358-360.

    236. Metzker H, Holscher U. Efficacy of a combined sabal-

    urtica preparation in the treatment of benign prostatic

    hyperplasia (BPH).Urologie. 1996; 36: 292-300.

    237. Nagaraju N, Rao KN. Folk medicine for diabetes from

    Rayalaseema of Andhra Pradesh. Workshop on Medicinal

    Plants, Ayurvedic College. 1989; 9(11): 31.

    238. Kesari AN, Gupta RK, Singh SK, Diwakar S, Watal G.

    Hypoglycaemic and antihyperglycaemic activity of Aegle

    marmelos seed extract in normal and diabetic rats. J.

    Ethnopharmacol, 2006; 107(3): 374379.

    239. Fatima SS, Rajasekhar MD, Kumar KV, Kumar MTS, Babu

    KR, Rao CA. Antidiabetic and antihyperlipidemic activity of

    ethyl acetate:Isopropanol (1:1) fraction of Vernonia

    anthelmintica seeds in Streptozotocin induced diabetic

    rats. Food and chemical toxicology. 2010; 48(2): 495-501.

    240. Akah P, Okafor C. Blood sugar lowering effect of Vernonia

    amygdalina in an experimental rabbit model. Phytother.

    Res. 1992; 6(3): 171173.

    241. Sy GY, Ciss A, Nongonierma RB, Sarr M, Mbodj NA, Faye

    B. Hypoglycaemic and antidiabetic activity of the acetonic

    extract of Vernonia colorata leaves in normoglycaemic and

    alloxan induced diabetic rats. J. Ethnopharmacol, 2005;

    98(1): 171175.

    242. Bhushan MS, Rao CHV, Ojha SK, Vijayakumar M, Verma

    A. An analytical review of plants for anti diabetic activity

    with their phytoconstituent & mechanism of action. Int J

    Pharm Sci Res. 2010; 1(1): 29-46.

    243. Meenakshi P, Bhuvaneshwari R, Rathi MA, Thiruoorthi L,

    Guravaiah DC, Jiji MJ. Antidiabetic activity of ethanolic

    extract of Zaleya decandra in alloxan- induced diabetic

    rats. Appl Biochem Biotechnol. 2010; 162(4): 1153-1159.

    244. Abdl- zaher Ao, Salim SY, Assaf MH, Abdel- Hady RH.

    Teucrium polium antidiabetic activity and toxicity of

    Zizyphus spina Christi leaves. J Ethnopharmocolgy.

    2005; 101(1-3): 129-138.

    245. Kato A, Higuchi Y, Goto H, Kizu H, Okamoto T, Asano N.

    Inhibitory effects of Zingiber officinale Roscoe derived

    components on aldose reductase activity In-vitro and I n-

    vivo. J Agric Food Chem. 2006; 54(18): 6640- 6644.

    246. Singh K, Verma B. Role of Ayurvedic Herbs on

    Madhumeha (Diabetes Mellitus). International Journal of

    Ayurvedic & Herbal Medicine. 2013; 3(2): 1136-1144.

    247. Abdel-Zaher AO, Salim SY, Assaf MH, Abdel-Hady RH.

    Antidiabetic activity and toxicity of Zizyphus spinachristi

    leaves. J Ethnopharmacol. 2005; 101(1): 129-138.

    248. Osadebe PO, Odoh EU, Uzor PF. The search for new

    hypoglycemic agent from plants. African journal of

    pharmacy and pharmacology. 2011; 8: 292-303.

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    14/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 95

    Table 1: Medicinal plants reported antidiabetic activity along with active constituents and mechanism of action

    Medicinal

    plantsFamily Parts used Active consti tuents

    Mechanism of action

    (MOA)

    Structure of chemical

    constituentRef

    Acacia Arabica

    Rubiaceae Seeds FlavonoidInsulin secretagogue

    activity

    OHO

    OOH

    meO Ome

    Ome

    10,30,31,32

    3,34

    Abelmoschus

    moschatus

    Malvaceae

    Whole plant,

    Aerial part of

    plant

    Ambrettolide,

    essential oils,

    myricetin (3,5,7-

    trihydroxy

    phenyl)chromen-4-

    one.

    Increasing the ability of

    adipocytes & to uptale

    glucose

    OHO

    OOH

    OH

    OH

    OH

    OH

    35,248

    Achinochloa spp.

    Poaceae SeedsSugars, volatile oils,

    rare alkaloids

    Changes in hexokinase

    activity CCCC

    OC

    CH2OH

    HH

    OH

    OH

    H

    H

    OH

    OH

    H

    36

    Aconitum

    carmichaelic

    Ranuculaceae Roots Diterpenoid, alkaloids

    Increase the

    permeability of the

    membrane for sodium

    ion

    CH3

    H

    H

    H

    O

    H

    O

    H

    O

    OH

    CH3

    37,38

    Aconitum

    carmichaeli

    Ranuculaceae Roots Glycan A,B,C,DStimulation of in vitro

    insulin secretion

    OHO

    HO

    HOOH

    O

    HO O

    OH

    O

    O

    HO

    OH

    NHAc

    OO

    HO NHAc N

    A

    OH

    O

    HO

    HO

    HO

    OHO

    39,40,41

    Adansonnia

    digitata

    Bombacaeae Stem bark

    Glycosides,

    alkaloids,

    semigossypal

    MOA not availableN

    ON R2

    R1

    42

    Abroma

    augustumMalvaceae Roots

    Abromine, its

    hydrochloride and

    phytosterol

    Lowering blood sugarH

    CH3

    CH3

    CH3

    CH3

    CH3

    CH3

    H

    H

    HO

    42

    Abies pindrow Pinaceae Root,LeafD-pinitol (3-o-mehtyl-

    chiroinositol)

    Insulin secretogouge

    activityOH

    CH3

    H2CO

    HO

    CH3

    6

    5

    1

    4

    2

    3

    OH

    43

    Adhtoda vasica

    (justice

    aadhtoda)

    Acanthaceae leaves

    Pegain-type alkaloid

    volatile oil, vasicine,

    vasicinone,v asicinol

    MOA not availableN

    N

    CH2

    OH

    42

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    15/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 96

    Allium

    cepa(Onion)Liliaceae

    Bulbs(oil),

    stems, tops

    5-methy cysteine

    sulfoxide (SMCE),

    Diphenylamine,

    Onion,

    Sulphide

    Lowering blood

    glucose level,

    Regulation of the

    enzyme

    hexokinase/glucokinas

    e

    CH3

    S O

    H2C

    CH COOHH2N

    44,45,46,47

    Allium sativum Alliaceae Bulbs, cloves

    Allyl propyl

    Disulphide,allicin,5-

    allyl

    cysteine(SACE),Allici

    n(diallyl thiosulfinate)

    Antihyperglycemic and

    antinociceptive effectCH2

    S

    S

    CH2

    O

    48,49,50,51

    2,53,54

    Aloe vera (ab

    ghiakwar)

    Liliaceae leaves

    Pentosidesbarbaloin,i

    sobarbaloin,aloin,Lop

    henol(phytosterols),24

    -methyene-cycloartanol

    Maintain glucose

    homeostasis,

    Stimulates insulin

    release from pancreatic

    -cells

    O

    HO O OH

    O

    HO

    OH

    OH

    HO

    55,56,57,58

    9,60

    Aloe

    Barbadensis

    Liliaceae leavesArboranA,ArboarnB,

    Aloesin

    Stimulating synthesis

    and/or release of

    insulin

    OCH3 OH

    O

    OH

    OH

    OH

    OH

    O

    O

    CH3

    61,62,63,64

    Althaea

    officinalis

    MalvaceaeLeaves, whole

    plantsMucilage MOA not available

    N

    H

    COOH

    COOH

    CH3

    CH3

    CH3

    CH3

    42

    Ajuga spp.

    Labiatae Stem & rootsDiterpenoid,ajugalact

    oneMOA not available

    O

    OH

    OHH

    CH3

    O

    CH3

    CH3

    O

    O

    OHH

    OH

    O

    CH3

    36,248

    Allium spp.

    Liliaceae

    Onion & Garlic

    cloves

    Allicin, allylpropyl

    disulphide & alliin

    Stimulating effect on

    glucose,

    Utilaization and

    antioxidant enzyme

    CH2

    S+ O

    O

    O- NH2

    36

    Althaea spp.

    Malvaceae Stem & roots

    Isoquercitrin,

    glycosides

    MOA not available O

    OH

    OH

    O

    OOH

    O

    OH

    OH

    OH

    OHOH

    42

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    16/39

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    17/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 98

    Areca catechu Arecaceae Seed Arecaine & arecoline MOA not available

    N

    OH

    CH3

    O

    73

    Artemisia pallens AseraceaeLeaves &

    flowersGermacranolide

    Increased plasma

    insulin lavel

    Hypoglycemic,

    increases peripheral

    glucose utilization or

    inhibits glucose

    reabsorption

    O

    OH

    O

    O

    74

    Azadirachta

    indica

    Meliaceae Leaves &seeds Azadirachtin & nimbin

    Glycogenolytic effect

    due to epinephrine

    action was blocked Aco

    O

    CH3

    CH3

    O

    CO2Me

    O

    H

    O OH

    CO2ME

    OH

    O

    me

    O

    me

    O

    O+O

    +O

    OH

    75,76,77,78

    9,80,81,82,

    ,84

    Bamusa

    arundinacea

    Gramineae Leaves & stemDimethoxybenzoquino

    ne, allantoinMOA not available

    NH

    NH

    O

    O

    NH NH2

    O

    36

    Barleria lupulina Acanthaceae Aerial part

    Alkaloids,tannins

    Diterpinoids,cyanogen

    etic compound,

    saponin

    MOA not available OHOO

    CH3

    CH3CH3

    CH3

    42

    Berberis

    aristata(DARHAL

    D)

    Berberidaceae Stem bark root

    Berberine, palmitine

    jatrorrhizine

    columbamine

    MOA not availableCH3

    O

    42

    Bhighia sapida

    SapindaceaeUnripe fruits &

    seedsHypogylcin A& C MOA not available

    CH2

    O

    OH

    NH2

    42

    Bhighia sapida

    SapindaceaeAkee apple

    seedsHypogylcin A& B MOA not available

    OH

    CH2

    NH2

    O

    36

    Bacooa monnieri ScrophulariaceaeAerial parts,

    leaf

    Hersaponin,

    bacoside A

    MOA not available

    RO

    CH3 CH2OH

    CH3 CH3

    CH3

    COOH

    CH3 CH3

    85,86

    Balanites

    aegyptiacaZygophyllaceae

    Mespcarp of

    fruit

    Pure saponin,

    steroidal saponinsMOA not available

    RO

    CH3 CH2OH

    CH3 CH3

    CH3

    COOH

    CH3 CH3

    87

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    18/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 99

    Bauhinia

    candicans

    Fabaceae LeafTrigonelline,kaempfer

    ol dirhamnoside

    Reduce plasma

    glucose level

    N+

    CH3

    OH

    O

    88,248

    Bauhinia

    purpureaFabaceae Leaf

    Flavonoid containing

    fractionMOA not available OH

    O

    OOH

    meO Ome

    Ome

    10,89

    Bauhinia

    variegate

    Caesalpiniaceae &

    FabaceaeBark, leaves

    Flavonoids

    ,RoseosideMOA not available

    O

    OH

    OH OH

    OH

    O

    CH3

    CH3CH3

    OCH3

    OH

    90

    Beta vulgaris Amaranthaceae Root

    Phenolics

    ,betacyanins

    Lower blood glucose

    level by regeneration of-cells

    C

    H

    H

    C HH

    H

    CH3

    OH

    C HH

    H

    C

    H

    H

    C HH

    CH3

    C

    H

    H

    OH

    91,92

    Berberis vulgaris Berberideceae Root bark Saponins MOA not available

    RO

    CH3 CH2OH

    CH3 CH3

    CH3

    COOH

    CH3 CH3

    93

    Bidens pilosa AsteraceaeWhole plant,

    leafcytopiloyne MOA not available

    CH3O

    OH

    94

    Bombax ceiba BombacaceaeFruit, heart

    wood, leaf

    C-flavonol, glycoside

    shaimiminMOA not available

    O

    OH

    OH

    OH

    OH

    OOH

    OH

    O

    OHOH

    OH

    OH

    95

    Boswellia serrata Burseraceae Gum resin Oleo-gum, resin MOA not available

    CH3

    CH3

    CH3

    CH3

    CH3 H

    HH

    OH

    O

    OH

    CH3

    CH3

    89

    Bougainvillea

    spectabilis

    Rubiaceae &

    nyctaginaceaeSeeds

    Alcohol, pinitol, D-

    pinitol (3-o-methyl

    chiroinositol)

    Increase glucose

    uptakeOH

    CH3

    H2CO

    HO

    CH3

    6

    5

    1

    4

    2

    3

    OH

    36,89

    Bryonia alba

    Cucurbitaceae RootTrihydroxyoctadecadi-

    enoic acids

    Metabolic changes

    induced in diabetic

    O

    OH

    O

    OH

    O

    O OHOH

    OH

    OH

    OH

    OH

    OH

    96,97

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    19/39

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    20/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 101

    Cluytia

    richardiana

    Euphorbiaceae Whole plant Saudin (diterpenoid) MOA not available

    O

    O

    O

    O

    O

    O

    CH3H O

    CH3

    42

    Ceiba pentandra

    Malvaceae Roots ,leaves Saponins,tannins MOA not available

    RO

    CH3 CH2OH

    CH3 CH3

    CH3

    COOH

    CH3 CH3

    36

    Centratherum

    anthelminticum

    Asteraceae Seed Alkaloids MOA not available

    N

    ON R2

    R1

    36

    Clerodendron

    phlomoides

    Verbenaceae Whole plant Valeporiates MOA not available

    R1

    CH3

    R2

    CH3

    36

    Camellia

    sinensisTheaceae Leaves Caffeine & catechins

    Increase insulin activity

    and prevent oxidative

    damage,

    Responsible for the

    hypoglycemic activity

    C

    C

    C

    N

    N

    C

    N

    C

    CH3

    O

    CH3

    O CH3

    106,107

    Capparis

    deciduasCapparidaceae Fruit

    Spermidine,

    Isocodono carpine

    Hypoglycaemic,

    hypolipideamic NH2 N NH

    H

    108

    Cinnamomum

    zeylanicumLauraceae Bark

    Cinnamaldehyde,

    eugenolMOA not available

    CH

    109,110,11

    112,113

    Combretum

    micronthumCombretaceae Leaves Polyphenols MOA not available

    O

    OH

    OH

    OH

    OH

    OH

    114,115,11

    117,118

    Camellia

    sinensisTheaceae Leaf

    Epigallocatechin 3-

    gallate

    Increases insulin

    secretion

    O

    OH

    OH

    O

    OH

    OH

    O

    OH

    OH

    OH

    OH

    119,120

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    21/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 102

    Cajanus cajan FabaceaeLeaves, seed,

    fruit

    Arginine, ascorbic

    acid

    Lowering plasma

    glucose level

    NH

    NH

    NH2 O

    OH

    NH2

    121,122

    Caesalpinia

    ferreaCaesalpinaceae Fruit

    Ellagic acid

    (EA),2 (2,3,6-

    trihydroxy-4carboxy

    pheny)

    ellagic acid (TEA)

    MOA not available

    O

    O O

    OH

    OH

    O

    OH

    OH

    89

    Caesalpinia

    digyna

    Fabaceae Root Bergenin MOA not available

    O

    O

    O

    CH3

    OH

    O

    OHH

    OH

    OH

    CH3

    OH

    89

    Caesalpinia

    bonducellaCaesalpiniaceae Seed Caesalpin F MOA not available

    O

    O

    CH3 O

    O

    89

    Caesalpinia

    BonducCaesalpiniaceae Seed, kernel Caesalpinianone MOA not available - 89

    Coccinia spp.

    CucurbitaceaeCoccinia

    root/Tvy gourd

    Cucurbitacins

    (triterpenoid),

    -elaterin

    Stimulation of glycogen

    synthatase activityOH

    O

    MeMe

    Me

    H H

    OMe

    OH

    Me O

    MeOH

    Me

    OH

    Me

    H

    36

    Coptis chinensis

    Ranunculaceae Whole plantRanunculin glycoside,

    isoquinolin alkaloidMOA not available O

    OH

    OH

    OH

    O

    O

    O

    OH

    36

    Corchorous

    olitoris

    Tiliaceae Jute leave cardiac glycoside MOA not available10

    5

    1

    4

    2

    3

    8

    7

    9

    6

    13

    14

    12

    1117

    16

    15

    OH

    CH3

    CH3R

    OH

    36

    Cucumis sativus

    Cucurbitaceae Cucumber fruit

    Cucurbitacins

    (terpenoids),

    -elaterin

    MOA not available OH

    O

    MeMe

    Me

    H H

    OMe

    OH

    Me O

    MeOH

    Me

    OH

    Me

    H

    36

    Cuminus

    cyminus

    Ambelifereae Cumin seed -Pinene, -terpinol MOA not available

    CH3

    CH3

    123

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    22/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 103

    Curcumo

    domestica

    valeton

    Zingiberaceae Leaf

    Curcumin, -

    pinene,camphene,

    eugenol, -sitesterol

    MOA not available

    OH

    OCH3

    O O

    O

    O

    C

    124

    Cuscuta reflexa

    roxb

    Convolvuraceae Stem

    Flavonoid,dulcitol,

    bergenin, loumerins

    glycoside, lactone

    MOA not available OHO

    OOH

    meO Ome

    Ome

    10,124

    Cryptostegia

    grandiflora

    Asclepialaceae Arial part Triterpene alkaloids MOA not available

    OH

    CH3

    CH3

    CH3 CH3

    CH3

    CH3

    CH2

    CH3

    42

    Cuminum nigrum

    (zira siyah)

    Umbeliferae Flower, seeds Volatile oil MOA not available - 125,126

    Cyamposis

    tetragonolobus

    Leguminasae Fruit seeds Gaur gum MOA not availableO

    CH2OH

    H

    OH

    H

    H OH

    H

    O

    H

    OH

    CH2

    H

    O

    CH3 H

    OH

    H

    OH H

    O

    OH

    H

    OH

    H

    OH

    H

    CH3

    HOH2C

    H

    127

    Cynodon

    dactylon

    Roaceae Whole plant

    Mucilage, arabinose,

    xylose, ,uronic acid

    derivetives

    MOA not available

    NH

    COOH

    COOH

    CH3

    H

    COOH

    CH3

    42

    Daucus carota

    linn.

    Apiaceae Root

    Carotenes,

    carotenoids,glycoside, flavonoids,

    suger quarternary

    base

    MOA not available

    CH3

    CH3 CH3

    CH3CH3 C3

    CH3

    CH3

    CH3CH3

    128

    Dendrophthoe

    memecylifolia

    Loranthaceae Whole plantGlycoprotien,

    Polypeptide lignansMOA not available NH2 C CNC C NC C N

    C

    H

    R O

    H

    R

    H

    O

    H

    R

    H

    O

    H H

    C

    R

    C

    O

    36

    Diflocyclos

    palmatus

    Cucurbitaceae FruitCucurbitacins

    (terpenoids) -elaterinMOA not available OH

    O

    MeMe

    Me

    H H

    OMe

    OH

    Me O

    MeOH

    Me

    OH

    Me

    H

    36

    Dioscorrea spp. Dioscoreaceae Tubers Diosgenin MOA not available O

    OH

    CH3

    H

    H

    H

    CH3

    CH3 O

    CH3

    36

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    23/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 104

    Dipteracanthus

    prostrates

    Acanthaceae Whole plantAlkaloid, terpenoid,

    diterpenoid, saponinMOA not available

    N

    ON R2

    R1

    36

    Discorea batelus

    Discoraeceae Tubers Mucilage alkaloids MOA not available

    NH

    COOH

    COOH

    CH3

    H

    COOH

    CH3

    42

    Dioscorea

    Demetorum

    Discoraeceae Tuber

    Mucilage, saponin,

    alkaloids discoretine,

    dihydrodiscorine

    To posses

    hypoglycemic effect

    NH

    COOH

    COOH

    CH3

    H

    COOH

    CH3

    129,42,89

    D.japonica Discoreaceae - Discorane A,B,C,D,E MOA not available

    OHCOOH

    CH3

    NH

    89

    Echinops

    echinatus

    Asteraceae Roots

    Isobutylamide,

    steroidal

    glycoalkaloids

    MOA not available O

    OH

    H H

    H

    H

    H

    H

    CH3H

    36

    Eleuthrococus

    senticosus

    AraliaceaeSiberian

    ginseng

    Saponins,

    eleutharansMOA not available

    RO

    CH3 CH2OH

    CH3 CH3

    CH3

    COOH

    CH3 CH3

    36

    Ephedra

    dislachya Ephedraceae

    Stem & Roots

    arial stem

    Ephedrin, ephedrans

    A,B,C,D,E MOA not available NH CH3

    CH3

    OH

    130,131,13

    Eucalyptus

    globules

    Myrtaceae Leaves Calytosides

    Increase insulin

    secretion from clonal

    pancreatic beta line

    (BRIN-BD 11)

    - 133

    Eriobotrya

    japonica

    Rosaceae LeavesMerolidol glycoside &

    ursolic acidMOA not available

    O

    CH3CH3

    H

    CH3

    H CH3

    H

    CH3

    CH3

    O

    H

    CH3

    O

    36

    Euphorbia

    prostrate

    Euphorbiaceae Whole plantTriterpenoids,

    eupohol, euphorbolMOA not available

    OH

    CH3CH3

    H

    CH3

    CH3

    CH3

    CH3

    CH3

    CH3

    CH3 CH2

    42

    Embelica

    officenalis garthEuphorbiaceae Fruit

    Vitc (L-ascorbic acid)

    polyphenol, ellagic

    acid, galic acid

    MOA not available

    OH

    OH

    CO2H

    OH

    134

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    24/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 105

    tannins

    Elephentopus

    scarber

    Asteraceae Whole plantTerpenoids, & 2,6,23-

    Trienoloids

    To reduce the blood

    glucose level

    O

    CH3

    OH

    CH3 OH

    O

    OO

    OH

    CH3

    OO

    OHOH OH

    OH

    135

    Eugenia uniflora Myrtaceae Leaf

    Uniflorin A, uniflorin B

    (+)-(3a,4a,5b)-L, 2-

    methylpiperidine-

    3,4,5-Triol

    Regulation of the

    enzyme

    hexokinase/glucokinas

    e

    NH

    OH

    OH

    HO

    H

    CH3

    H

    89

    Erigenon

    breviscapusCampositae Plant extract Scutellarin MOA not available

    O

    O OOH

    OH

    OH O

    OH

    OH O

    OH

    OH

    89

    Eriobotrya

    japonicaRosaceae Leaf

    Corosolic acid,

    3-epicorosolic acid,

    methyl ester,

    2--hydroxy-3-

    3oxours-12-en-28-oic

    acid,

    turmeric acid methyl

    ester,

    ursolic acid

    MOA not availableOH

    CH3

    CH3CH3

    CH3 CH3

    CH3O

    OH

    CH3

    CH3

    OH

    89

    Enicotema

    littorale

    Gentianaceae Whole plantSwertiamerin, ophelic

    acid, tannins,alkaloids

    Decrease glucosylated

    hb & glucose 6

    phosphatesO

    O

    OHO

    OH

    OH

    OH

    H OH

    O

    CH3

    136

    Embelica

    officinalis

    Euphorbiaceae Fruit, seed, leaf

    Polyphenols,

    Flavonoids,

    Kaempferol,ellagic

    acid,gallic acid

    MOA not availableOH

    OH O

    OH

    OH

    10,137,138

    Eleusin coracana Poaceae Seed coat Polyphenols MOA not availableOOH

    OH O

    OH

    OH

    OH

    89

    Eichhornia

    crassipesPontederiaceae Shoot rhizome

    Terpenoids,

    glycoside,

    flavonoids,tannis,

    alkaloids

    MOA not available

    N

    N

    N

    CH3 O

    CH3

    OH

    CH3

    89

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    25/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 106

    Exostema

    mexicanumRubaceae Stem bark

    4-phenylcoumarins

    glycoside, chlorogenic

    acid,ursolic acid

    MOA not available

    O OOH

    OH

    89

    Exotema

    caribecumRubiaceae Stem bark

    4-phenylcoumerins

    glycosides,

    chlorogenic acid,

    ursolic acid

    MOA not available

    O OOH

    OH

    89

    Eulipta alba AsteraceaeWhole plant,

    leaf

    Coumestane like

    eudelolactone,

    tesmethylecedelol

    acetone,

    furanocoumarins

    oleanane, taraxastane

    glycosides

    Regulation of the

    enzyme

    hexokinase/glucokinas

    eCH3

    CH3H

    CH3

    H

    CH3

    CH3

    H

    H CH3

    CH3CH3

    139

    Ficus

    bengelensis

    (Anjir jangli,

    katumani)

    Moraceae Root Bark, bark

    Bengalinoside,Phytost

    eroine flavonoids,

    glycosides, glycosidal

    fraction,

    Leucopelphinidin &

    leucopepargonin

    Inhibit insulin

    degradative process

    CH3

    OH

    H

    HCH3

    CH3

    CH3

    H

    CH3

    CH3

    140,141,14

    143

    F. glomerata

    Mortaceae Bark Sitaosteryl glucoside MOA not availableO

    OH

    HOH2C

    OH OH

    O

    CH3

    CH3

    CH3

    CH3

    CH3

    CH3

    42

    Ficus spp.

    Moraceae LeavesNerolidol glycoside &

    ursolic acidMOA not available

    OH

    CH3

    CH3CH3

    CH3 CH3

    CH3O

    OH

    CH3

    CH3

    OH

    36

    Foeniculum

    valgare mill.

    Apiaceae Fruit oil

    Volatile oil,

    fenchone,anethole,lim

    onene, anisaldehyde,

    estragole

    MOA not available

    CH3

    CH3CH3

    O

    124

    Fumeria

    palviflora

    Papaveraceae Whole plantSanguinarine,

    alkaloidsMOA not available

    NH

    +O

    O

    O

    O

    CH3

    42

    Ficus erligiosa Moraceae Bark-sitosteryl-d-

    glucosideMOA not available

    O

    OH

    HOH2C

    OH OH

    O

    CH3

    CH3CH3

    CH3

    CH3

    CH3

    89

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    26/39

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    27/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 108

    Hamada

    salicornica

    Hamamelidaceae Whole plantHamamelitanin,

    hamameloseMOA not available

    O OH

    OH

    OH

    OHOH

    42

    Humulus lupulus

    Cannabinaceae Sterobiles Humulon & lupulon MOA not availableCH3

    OH

    CH3

    CH3 OH OH

    O

    CH3

    CH3

    OH

    CH3

    42

    Haldinia

    cardifolia

    RubaceaeStem & roots

    bark

    Indole,

    oxindole,quinoline,

    purine alkaloids

    MOA not available

    NH

    36

    Hippophae

    rhamnoide

    Elaeagnaceae Thorn plantIndole alkaloide ,

    cyclitolsMOA not available

    NH

    36

    Hordueme

    valgare

    Gramineae Barley sproutsVolatile oil,alkaloids,

    saponin, terpenoidsMOA not available

    RO

    CH3 CH2OH

    CH3 CH3

    CH3

    COOH

    CH3 CH3

    36

    Hydrostis

    Canadensis

    BerberidaceaeGoldenseal

    root

    Hydrastine, berberin

    & canadine alkaloidsMOA not available

    N+

    O

    O

    CH3OH

    CH3OH

    36

    Hygrophila

    auriculata

    AcanthaceaeBerleria plant

    root, seedSemidrying oil MOA not available

    CH3CH3

    CH3CH3

    O

    36

    Hovenia dulcis Rhamnaceae Entire plant Flavonoids MOA not available OHO

    OOH

    meO Ome

    Ome

    10,89

    Holostemma

    adakodienAsclepiadaceae Root Flavonoids MOA not available OH

    O

    OOH

    meO Ome

    Ome

    10,89

    Hintonia

    standleyanaRubiaceae Leaf Phenylcoumarins MOA not available

    O O

    150

    Hintonia laciflora Rubiaceae Leaf, rootNeoflavonoid,

    coutareageninMOA not available

    O O

    89

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    28/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 109

    Harpagophytum

    procumbensPedalliaceae Root

    Isovenillic acid-3

    hydroxy-4-methoxy-

    benzoic acid

    MOA not available

    OH

    OO

    CH3

    OH

    89

    Hydnocarpus

    wightianaAchariaceae Seed hulls

    Acetyllbetulinic acid,

    betulinic acid, ursolic

    acid , acetyl ursolic

    acid

    MOA not available

    O OOH

    OH

    89

    Hypoxis

    hemerocallideaHypoxidaceae Root tuber Hypoxoside MOA not available

    OH

    O C

    C

    H

    C CH CH

    H H

    H

    OH

    O

    151,152

    Inula heleniam

    CampositaeElecampnae

    rootInulin MOA not available

    O

    HOH2C

    H

    H OH

    OHOH

    O

    H

    H

    CH2

    OHH

    OHH

    OH

    HOH2C

    H

    36

    Inula rocemosa

    Asteraceae Root Volatile oilLower plasma insulin

    and glucose level- 153

    Ipomoea batatus Convolvulaceae Root, leaf AN acidic glycoprotein

    Reduced insulin

    resistance & blood

    glucose level

    - 154

    Juniperus

    communis Cupressaceae Dried berries Isocrupressic acid

    Increase peripheral

    glucose consumption &induce insulin secretion

    CH3H

    O

    OH

    CH2CH

    3

    CH3

    OH

    89

    Juglans regia

    JuglandaceaeRoot, leaves,

    unripe fruit

    4-hydroxy -tetralone-

    4-0--D-E6-0-

    (3,4,5,trihydroxybenzo

    il) glucopyranoside &

    4 hydroxy- -telralone

    MOA not available - 155

    Kalopanax pictus

    Araliaceae Stem bark Kalopanax, saponin A MOA not available

    RO

    CH3 CH2OH

    CH3 CH3

    CH3

    COOH

    CH3 CH3

    36

    Kalanchoe

    pinnata

    Crossulaceae Leaf Bryophilin A MOA not available

    O

    OO

    H

    H

    OH

    H

    OH

    CH3

    H

    O

    OCH3

    O

    36

  • 7/24/2019 Approach to Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    29/39

    Senet al.Phytochemistry and Mechaniasm of Action of Plants having Antidiabetic Activity

    UK J Pharm & Biosci, 2016: 4(1); 110

    Lantana camara Verbenacae Leaves

    Lantanoside,

    lantanone

    MOA not available

    OOH

    OH

    OH

    OH

    O

    O O

    O O

    O O

    O

    O

    CH3

    CH3

    OH

    CH3

    OH

    H

    H

    O

    OH

    CH3

    OCH3

    CH3

    H

    156

    Lagerstroemic

    speciosa (jarul)

    Lythraceae

    Bark, root,

    seed, leave &

    ripe fruits

    Alkaloids,nephthaquin

    olone,lausone,gallotanins-

    penta-o-galloyl-

    glucopyranose (pgg)

    MOA not available

    OH

    O

    O

    157

    Lathyrus spp

    Papilionoceae Whole plantBerberin, kaempferol,

    quercetinMOA not available

    OH

    OH O

    OH

    OH

    36

    Launaea

    nudicaulis

    Composite Roots Glycoside MOA not available

    O

    OHH

    CH3

    H

    H

    R1

    R2

    CH3

    O

    OH

    42

    Lepidium

    ruderaleCrucifarae Arial part Lepidine MOA not available

    N

    CH3

    42

    Leucena

    leucocephala

    Leguminosae Seed Mimosine MOA not available N

    O

    OH

    CH2

    CH

    HOOC

    NH2

    42

    Larrea tridentate Zygophyllaceae Leaf

    Masoprocal

    nordihydroguaiaretic

    acid

    MOA not availableCH3

    CH3

    OH

    OH

    OH

    OH

    89

    Lithospermumery

    throrhizon

    Boraginaceae Whole plant

    Caffeine, ferulic p-

    coumarin

    lithosperman A,B,C

    MOA not available

    C

    C

    C

    N

    N

    C

    N

    C

    CH3

    O

    CH3

    O CH3

    36

    Lupines albus

    Leguminosae Lupin seedLinolinic & palmitic

    acid

    Lower serum glucose

    levelCH3

    O

    36