50
Applied Superconductivity Josephson Effects, Superconducting Electronics, and Quantum Circuits Lecture Notes Summer Semester 2013 R. Gross and F. Deppe © Walther-Meißner-Institut

Applied Superconductivity - Walther Meißner Institut - … Notes (download of scripts, handouts, etc.) Seminars (announcement of seminars) SS 2013: - Advances in Solid-State Physics

  • Upload
    vonga

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Applied Superconductivity

Josephson Effects, Superconducting Electronics,

and Quantum Circuits

Lecture Notes Summer Semester 2013

R. Gross and F. Deppe

© Walther-Meißner-Institut

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 2

General Remarks on the Courses to the Field

Superconductivity and Low Temperature Physics

The following lectures are offered on a regular basis: 1. Superconductivity and Low Temperature Physics I

Foundations of Superconductivity

2. Superconductivity and Low Temperature Physics II (SS 2013: Thu., 12:30h, HS 3) Foundations of Low Temperature Physics and Techniques

3. Applied Superconductivity Josephson-Effects, Superconducting Electronics, Quantum Circuits

4. Several Seminars (see announcements)

Documents and Hints: http://www.wmi.badw.de Teaching (announcement of lectures) Lecture Notes (download of scripts, handouts, etc.)

Seminars (announcement of seminars)

SS 2013: - Advances in Solid-State Physics Tue. 10:15 – 11:30h Seminar room 143, WMI - Superconducting Quantum Circuits Tue. 14:30 – 16:00h Library, WMI

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 3

Applied Superconductivity Superconductivity and Low Temperature Physics II

Spin Electronics

Sum

mer

Sem

este

r 2

01

3

VO, ÜB,

Skript

Seminar: Superconducting Quantum Circuits

Tue., 14.30 – 16.00 h, Seminar room, WMI

Seminar: Advances in Solid State Physics

Tue., 10.15 – 11.45 h, Seminar room, WMI

Seminar: Spin Mechanics and Spin Dynamics

Wed., 10.15 – 11.45 h Seminar room, WMI

Mon. and Wed., 14.15 – 15.45 h Seminar room, WMI

Tue, 13.30 – 15.00 h Seminar room, WMI

VO, ÜB,

Skript

VO, ÜB,

Skript

Rudolf Gross Frank Deppe

Thu, 12.30 – 14.00 h Physics Department, HS3

Hans Hübl

S. Gönnenwein

Walther-Meißner-Institut (www.wmi.badw.de)

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 5

I Foundations of the Josephson Effect

1 Macroscopic Quantum Phenomena 1.1 The Macroscopic Quantum Model of Superconductivity 1.2 Fluxoid/Flux Quantization 1.3 Josephson Effect

2 JJs: The Zero Voltage State 2.1 Basic Properties of Lumped Josephson 2.2 Short Josephson Junctions 2.3 Long Josephson Junctions

3 JJs: The Voltage State 3.1 The Basic Equation of the Lumped Josephson Junction 3.2 The Resistively and Capacitively Shunted Junction Model 3.3 Response to Driving Sources 3.4 Additional Topic: Effect of Thermal Fluctuations 3.5 Secondary Quantum Macroscopic Effects 3.6 Voltage State of Extended Josephson Junctions

Contents of Lecture

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 6

Contents of Lecture

II Applications of the Josephson Effect

4 SQUIDs

4.1 The dc-SQUID 4.2 The rf-SQUID 4.3 Additional Topic: Other SQUID Configurations 4.4 Instruments Based on SQUIDs 4.5 Applications of SQUIDs

5 Digital Electronics

5.1 Superconductivity and Digital Electronics 5.2 Voltage State Josephson Logic 5.3 RSFQ Logic 5.4 Analog-to-Digital Converters

6 The Josephson Voltage Standard

6.1 Voltage Standards 6.2 The Josephson Voltage Standard 6.3 Programmable Josephson Voltage Standard

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 7

7 Superconducting Photon and Particle Detectors 7.1 Superconducting Microwave Detectors: Heterodyne 7.2 Superconducting Microwave Detectors: Direct Detectors 7.3 Thermal Detectors 7.4 Superconducting Particle and Single Photon Detectors 7.5 Other Detectors

8 Microwave Applications

8.1 High Frequency Properties of Superconductors 8.2 Superconducting Resonators and Filters 8.3 Superconducting Microwave Sources

Contents of Lecture

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 8

III Superconducting Quantum Circuits

Contents of Lecture

9 Superconducting Quantum Bits 9.1 Quantum Bits and Quantum Computers 9.2 Implementation of Quantum Bits 9.3 Why Superconducting Qubits

10 Superconducting Circuit Quantum Electrodynamics (circuit-QED) 10.1 Light-matter interaction 10.2 Cavity vs. Circuit QED 10.3 Ultra-strong coupling

11 Quantum Microwaves 11.1 Dual-path tomography of propagating quantum microwaves 11.2 Planck spectroscopy 11.3 Path entanglement of continuous-variable quantum microwaves

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 9

Werner Buckel, Reinhold Kleiner, Supraleitung – Grundlagen und Anwendungen, VCH-Verlag, Weinheim (2012).

R. Gross, A. Marx Festkörperphysik, Oldenbourg-Verlag (2012).

M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York (1975).

K. K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach Science Publishers, New York (1986).

T. P. Orlando, K. A. Delin, Foundations of Applied Superconductivity, Addison-Wesley, New York (1991).

Vorlesungsskript: R. Gross, A. Marx, http://www.wmi.badw.de/teaching/Lecturenotes/index.html

Bibliography

Introduction

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 11

Temperature Scale

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

tem

per

atu

re (

K)

same amount of new physics on every decade of log T scale

center of hottest stars

center of the sun, nuclear energies

electronic energies, chemical bonding

surface of sun, highest boiling temperatures

organic life

liquid air

liquid 4He universe

superfluid 3He

lowest temperatures of condensed matter

elec

tro

nic

m

ag

net

ism

nu

clea

r-

ma

gn

etis

m

sup

erco

nd

uct

ivit

y

low

te

mp

era

ture

re

se

arc

h

lowest temperature in nuclear spin system achieved by adiabatic demagnetization of Rhodium nuclei: ≈ 100 pK

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 13

Carl Paul Gottfried von Linde * 11. Juni 1842 in Berndorf, Oberfranken

† 16. November 1934 in Munich

Low Temperature Technology in Germany

1868 offer of chair at the Polytechnische Schule München (now TUM)

1873 development of cooling machine allowing the temperature stabilization in beer brewing

21. 6. 1879 foundation of „Gesellschaft für Linde’s Eismaschinen AG“ together with two beer brewers and three other co-founders

1892 - 1910 re-establishment of professorship

12.5.1903 patent application: „Lindesches Gegenstrom- verfahren“ liquefaction of oxygen (-182°C = 90 K)

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 14

• Helium liquefaction: 1908 • discovery of superconductivity: 1911 H. K. Onnes, Comm. Leiden 120b (1911)

Nobel Price in Physics 1913

Discovery of Superconductivity (1911)

choice of name:

infinite electrical conductivity

He

ike

Kam

me

rlin

gh O

nn

es

(18

53

-19

26

)

superconductivity

Universität Leiden (1911)

Tc = - 269°C

Hg

Temperatur (K) W

ider

stan

d

(W)

<

"for his investigations on the properties of matter at low temperatures which led, inter alia to the production of liquid helium"

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 16

Kammerlingh Onnes and van der Waals

Kammerlingh Onnes and technician Flim

Discovery of Superconductivity (1911)

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 17

path dependent final state of the perfect conductor

perfect conductor in magnetic field

increase Bext

increase

Bext

decrease T

decrease T

C

C PC

PC PC

conductor

perfect conductor PC

PC

switch off Bext

Perfect conductor in magnetic field

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 18

perfect diamagnetism

Walther Meißner (1882 – 1974)

Discovery of the Meißner-Ochsenfeld Effect (1933)

Robert Ochsenfeld (1901 – 1993)

W. Meißner, R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfähigkeit, Naturwissenschaften 21, 787 (1933).

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 19

Wa

lth

er M

eiß

ner

(1

88

2 –

19

74

)

superconductors perfectly expel magnetic field

ideal diamagnetism, c = – 1

0 1 exin BB c

choice of name for perfect diamagnetism:

Meißner-Ochsenfeld Effect

superconductor

T > TC T < TC

B B

(c = magnetic susceptibility

Discovery of the Meißner-Ochsenfeld Effect (1933)

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 20

superconductor in magnetic field

Meißner-Ochsenfeld- Effect

or

perfect diamagnetism

super- conductor

C

C

SC SC

SC

increase

Bext

decrease T

increase Bext

decrease T

switch off Bext

SC

SC conductor

path independent final state of the superconductor

superconducting state is a

thermodynamic phase

Superconductor in magnetic field

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 21

Walther Meißner * 16. Dezember 1882 in Berlin

† 15. November 1974 in Munich

1913 – 1934 building and heading of low temperature laboratory at the Physikalisch-Technischen- Reichsanstalt, liquefaction of H2 (20K)

7.3.1925 first liquefaction of He in Germany (4.2 K, 200 ml), 3rd system world-wide besides Leiden and Toronto

1933 discovery of perfect diamagnetism of superconductors together with Ochsenfeld Meißner-Ochsenfeld Effect

1934 offer of chair at the Technische Hochschule München (now TUM)

1946 – 1950 president of the Bayerischen Akademie der Wissenschaften

1946 foundation of the commission for Low Temperature Research Walther-Meißner-Institut

Walther Meißner (1882 – 1974)

Walther Meißner - der Mann, mit dem die Kälte kam W. Buck, D. Einzel, R. Gross, Physik Journal, Mai 2013

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 25

1935 Fritz and Heinz London

first „quantum mechanical“

theory of superconductivity

(phenomenological)

macroscopic wave function

London equations

Fritz London (1900 – 1954)

Theory of Superconductivity

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 27

Alexei Abrikosov Lev Landau Vitaly Ginzburg

Nobel Prize 2003 Nobel Prize 2003 Nobel Prize 1962

Ginzburg-Landau Theory (1952)

"for his pioneering theories for condensed matter, especially liquid helium"

Nobel Prize in Physics 1962

Lev Davidovich Landau

“for their pioneering contributions to the theory of superconductors and superfluids”

Vitaly Ginzburg, Alexei Abrikosov

Nobel Prize in Physics 2003

(together with Anthony Leggett)

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 29

Tag der Physik 07. 07. 2000

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 30

J. Bardeen L. N. Cooper R. Schrieffer

Microscopic (BCS) Theory (1957)

Nobel Prize in Physics 1972

"for their jointly developed theory of superconductivity, usually called the BCS-theory"

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 31

Flux Quantization (1961)

R. Doll M. Näbauer

B.S. Deaver W.M. Fairbank

• Robert Doll Martin Näbauer (Wather-Meißner-Institut)

• Bascom S. Deaver William Martin Fairbanks (Stanford University)

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 32

Flux Quantization

(a) (b)

-0.1 0.0 0.1 0.2 0.3 0.4-1

0

1

2

3

4

reso

na

nce

am

plitu

de

(m

m/G

au

ss)

Bcool

(Gauss)

0.0 0.1 0.2 0.3 0.40

1

2

3

4

tra

pp

ed

ma

gn

etic f

lux (

h/2

e)

Bcool

(Gauss)

F0

prediction by Fritz London: h/e first experimental evidence for the existence of Cooper pairs

Paarweise im Fluss D. Einzel, R. Gross, Physik Journal 10, No. 6, 45-48 (2011)

R. Doll, M. Näbauer Phys. Rev. Lett. 7, 51 (1961)

B.S. Deaver, W.M. Fairbank Phys. Rev. Lett. 7, 43 (1961)

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 34

Brian David Josephson (geb. 04. 01. 1940)

Prediction of the Josephson Effect (1962)

(together with Leo Esaki and Ivar Giaever)

Nobel Prize in Physics 1973

"for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects"

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 35

Johannes Georg Bednorz * 16. Mai 1950 in Neuenkirchen im Kreis Steinfurt

Karl Alexander Müller * 20. April 1927 in Basel)

Discovery of the High Tc Superconductivity (1986)

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 36

Discovery of the High Tc Superconductivity (1986)

J. Georg Bednorz (b. 1950) K. Alexander Müller (b. 1927)

"for their important break-through in the discovery of superconductivity in ceramic materials"

Nobel Prize in Physics 1987

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 37

Energy Technology Generators, motors

Trasnformers Fault current Limiters

Magnetic energy storage Cables

Applications of Superconductivity

Electronics Sensors (e.g. SQUIDs)

RSFQ Logic Quantum Computing

Medical Technology Magnetic Resonance Imaging

Magneto-encephalography Magneto-cardiography

Traffic Ship motors

Superconducting levitation trains

Processing Separation of ore Water treatment

Microwave Technology Filters, Antennas

Cavities Mixers, Sources,

Receivers

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 39

Superconducting Wires, Tapes, and Cables

Superconducting Wires: NbTi, Nb3Sn in Cu-matrix

HTS tapes

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 41

Applications of superconductivity

• power applications (transport and storage

of energy energy storage (2 MJ)

current limiter

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 42

Fault Current Limiters

(Source: Physik Journal 6, 2011)

superconducting fault current limiter in the power station Boxberg of Vattenfall

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 43

Generators

(Source: Physik Journal 6, 2011)

superconducting rotor for hydroelectric power station

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 44

Superconducting Magnets

(So

urc

e: P

hys

ik J

ou

rnal

6, 2

01

1)

production of superconducting solenoids for MRI systems at Siemens, Erlangen

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 45

• transportation systems and traffic

maximum velocity:

581 km/h (02. 12. 2003)

Jap. Yamanashi MAGLEV-System

MLX01

(42.8 km long test track between Sakaigawa and Akiyama, Japan)

Applications of superconductivity

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 46

Atlas detector

high energy physics • superconducting magnets

MRI systems

fusion

Applications of superconductivity

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 48

high-field MRI system (for whole-body tomography)

MAGNETOM® AERA 1.5T

integrated MRI-PET system Siemens Biograph-mMR, 3 T

Applications of superconductivity

MRI Systems

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 49

Electronics Applications

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 50

• sensors and detectors

microwave receivers

Quantum interference detectors

Applications of superconductivity

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 52

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

B (Tesla)

earth magnetic field

urban noise

car @ 50m

screw driver @ 2m

transistor, IC chip @ 2m

single transistor @ 1m

car @ 2km

lung particle

human heart muscles

foetal heart human eye human brain (a)

human brain (stimulated) foetal brain

biomagnetic signals environmental noise signals

Biomagnetism

Superconducting Quantum Interference

Detector (SQUID)

sensitivity: a few fT/√Hz

1 mm PTB Berlin

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 53

Biomagnetism

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 54

Source: K. K. Likharev, SUNY Stony Brook

Josephson Computer

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 55

________________________

Stony Brook ____________________________________________

PetaFLOPS Scale Computing:

Speed and Power Scales (Year 2006)

Semiconductors (CMOS)

Performance: > 105 chips @ 10 GFLOPS each Power: ≈ 150 W per chip total > 15 MW

Footprint: >30 x 30 m2 latency > 3 ms

Superconductors (RSFQ)

Performance: 4·103 processors @ 256 GFLOPS each Power: ≈ 0.05 W per PE node total 250 W @ 5 K (100 kW @ 300 K) Footprint: 1 x 1 m2 latency 20 ns

Source: K. K. Likharev, SUNY

Rapid Single Flux Quantum (RSFQ) Logic

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 56

Intel dual-core 45 nm

(2007)

first transistor (1947)

Bardeen, Brattain, & Shockley

vacuum tubes

ENIAC (1946)

Enigma (1940)

physics

technology

superconducting Qubit

20 µm

WMI

From mechanical to quantum mechanical IP

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 57

Flux Qubit

coplanar waveguide resonator 1.25 GHz

Q > 105

hybrid ring S23 = - 3 dB S31 = - 50 dB

Superconducting Quantum Circuits

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 58

The Nobel Prize in Physics 2012

David J. Wineland Serge Haroche

The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 59

study of light – matter interaction on a fundamental quantum level

Light-matter interaction

• consequences of quantum nature of light on light-matter interaction

• quantum mechanical control and manipulation of light and matter

basis for quantum information technology

Cavity QED

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 60

why artificial atoms?

- tunability of (by design & in experiment)

• transition frequency

• selection rules / symmetry

- (ultra) strong coupling to resonator modes

Light-matter interaction

T. Niemczyk et al., Nature Physics 6, 772 (2010)

F. Deppe et al. , Nature Physics 4, 686 (2008) T. Niemczyk et al., arXiv:1107.0810v1

Circuit QED

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 61

Prospects of Circuit QED systems

fundamental quantum

experiments

solid state quantum technology &

quantum sensors

quantum information &

communication

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 62

Collaborative Research Center 631: Solid State Quantum Information Processing

spokesman: R. Gross

Quantum Information Processing

R. G

ross

, A. M

arx

an

d F

. De

pp

e, ©

Wal

the

r-M

eiß

ne

r-In

stit

ut

(20

01

- 2

01

3)

Intro - 63

Cluster of Excellence Nanosystems Initiative Munich (NIM)

spokesman: J. Feldmann coordinator of RA I -Quantum Nanophysics: R. Gross

Nanosystems