Applied Maths i u II Solution

Embed Size (px)

Citation preview

  • 7/31/2019 Applied Maths i u II Solution

    1/32

    APPLIED MATHS I

    Sol u t i on :CSVTU Ex a m i n a t i on

    Papers

    Depa r tm en t of Ma th em a ticsDIMAT

    DI FFERENTI AL CALCULUS

  • 7/31/2019 Applied Maths i u II Solution

    2/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 2

    APPLIED MATHS ITime Allowed : Three hours

    Maximum Marks : 80

    Minimum Pass Marks : 28

    Note : Solve any two parts from each question. All questions carry equal marks.

    UNIT II

    DI FFERENTI AL CALCULUS

    SOLUTION (Nov-Dec-2005)

    (a) If 22log 1y x x prove that 2 22 1(1 ) (2 1) 0n n nx y n xy n y andhence show that

    1 2 1 2

    2 0( ) ( 1) .2 [( 1)!]k k

    ky k

    where k is a positive integer.

    Ans: 2

    2log 1y x x

    2

    22

    12log 1 . 1

    11

    dy xx x

    dx xx x

    2

    1 22

    1 1

    2 . 11

    x x

    y y xx x

    1 2

    12 .

    1y y

    x

    2

    11 2x y y ------------- (1)

    2 211 4x y y Differentiating with respect to x we get

    2 21 2 1 11 2 2 4x y y xy y

    2

    2 11 2x y xy ------------- (2)

    By using Leibnitz rule we get

    20 2 1 1 2 0 1 1( 1) 2 2 0 ... 0 ... 0n n n n nn n n n nC x y C xy C y C xy C y 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0n n n n n

    n n n n nC x y C xy C y C xy C y 2

    2 1 1(1 ) 2 ( 1) 0n n n n nx y n xy n n y xy ny

    2 2

    2 1(1 ) (2 1) 0n n nx y n xy n y (Proved)--------- (3)

  • 7/31/2019 Applied Maths i u II Solution

    3/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 3

    (0) 0y , 1(0) 0y , at 0x ,

    (2) becomes2

    2y

    (3) becomes 22(0) (0)n ny n y -------- (4)

    Putting all values in (4) we get3 5 2 1(0) (0) ........... (0) 0

    ky y y .2 2

    4 2

    (0) 2 (0) 2 2y y 2 2 2

    6 4(0) 4 (0) 2 2 4y y

    2 2 2 2

    8 4(0) 6 (0) 2 2 4 6y y

    Similarly,2 1 2 2 2 2

    2 2 2(0) (2 2) (0) ( 1) 2 2 4 6 ........... (2 2)

    k

    k ky k y k

    21

    2(0) ( 1) 2 2 4 6 ........... (2 2)k

    ky k

    21 2 2

    2(0) ( 1) 2 2 1 2 3 ........... ( 1)k k

    ky k

    21 2 1

    2(0) ( 1) 2 ( 1)!k k

    ky k (Proved).

    (b)Use Taylors theorem to prove that1 1 2 3sin sin 2 sin 3tan ( ) tan ( sin ) ( sin ) ( sin ) .....

    1 2 3

    z z zx h x h z h z h z

    where 1cotz x .

    Ans: Given that 1cotz x cotx z

    21 cos

    dzec z

    dx

    2sindz

    zdx

    Let 1 1( ) tan ( ) ( ) tanf x h x h f x x

    2

    2 2 2

    1 1 1'( ) sin

    1 1 cot cosf x z

    x z ec z

    2''( ) 2sin .cos . sin 2 .( sin )

    dzf x z z z z

    dx

    2'''( ) (2cos 2 .sin 2sin .cos .sin 2 )

    dzf x z z z z z

    dx

    22sin (cos 2 .sin .cos .sin 2 )( sin )z z z z z z 3

    2sin .sin 3z z

    So,2 3

    1tan ( ) ( ) ( ) '( ) ''( ) '''( ) ......2! 3!h hx h f x h f x hf x f x f x

    2 31 2 2 3tan sin ( sin .sin 2 ) 2sin .sin 3 ......

    2! 3!

    h hx h z z z z z

    2 31 ( sin ) ( sin ) ( sin )tan sin sin 2 sin 3 ......

    1 2 3

    h z h z h zx z z z

    (Ans).

  • 7/31/2019 Applied Maths i u II Solution

    4/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 4

    (c)Trace the curve 2 2( ) (3 )y a x x a x .Ans: 2 2( ) (3 )y a x x a x

    22 (3 )

    ( )

    x a xy

    a x

    2 2 2 33 0ay xy ax x ------------------ (1)

    (i) The curve is symmetrical about x-axis.(ii)The curve is passes through the origin.(iii) The tangent at origin is 2 23 0ay ax 3y x

    (iv)The curve meets the x axis at (0, 0), (3a, 0) and y axis at (0, 0).(v)When 3x a , 2 0y . So no curve for 3x a .(vi)Asymptote to the curve is x a .So, the curve is looks as follows:-

    SOLUTION (Apr-May-2006)

    (a)If 1/ 1/ 2m my y x , prove that 2 2 22 1( 1) (2 1) ( ) 0n n nx y n xy n m y .Ans: 1/ 1/ 2m my y x

    2/ 1/ 1 2m my xy 2/ 1/ 2 1 0m my xy

    21/ 2 4 4

    2

    m x xy

    1/ 2 1my x x

    2 1m

    y x x

  • 7/31/2019 Applied Maths i u II Solution

    5/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 5

    Taking logarithm both side we get,

    2log log 1y m x x

    By differentiating with respect to x we get,

    12 2

    1 11

    1 1

    xy m

    yx x x

    2

    12 2

    1 1 1

    1 1

    x xy m

    y x x x

    1 2

    1

    1

    my

    y x

    2 2 2 2

    1( 1)x y m y

    Again differentiating with respect to x we get,2 2 2

    1 2 1 12( 1) 2 2x y y xy m yy

    2 2

    2 1( 1)x y xy m y

    2 2

    2 1( 1) 0x y xy m y

    By using Leibnitz rule we get

    2 20 2 1 1 2 0 1 1( 1) 2 2 0 ... 0 ... 0n n n n nn n n n n nC x y C xy C y C xy C y m y 2 2

    0 2 1 1 2 0 1 1( 1) 2 2 0n n n n n

    n n n n n nC x y C xy C y C xy C y m y

    2 2

    2 1 1( 1) 2 ( 1) 0

    n n n n n nx y n xy n n y xy ny m y

    2 2 2

    2 1( 1) (2 1) ( ) 0n n nx y n xy n m y (Proved)

    (b)Find the first three terms in the expansion of log(1 tan )x by Maclaurinstheorem.

    Ans:3 52

    log(1 tan ) log 1 .......3 15

    x xx x

    23 5 3 5

    3 43 5 3 5

    2 1 2....... .......

    3 15 2 3 15

    1 2 1 2....... ....... ..........

    3 3 15 4 3 15

    x x x xx x

    x x x xx x

    3 5 42 3 42 1 2 1 1

    ....... ...... ....... ....... ....3 15 2 3 3 4

    x x x

    x x x x

    23 41 1 4 3 .......

    2 3 12

    xx x x

    23 42 7 .......

    2 3 12

    xx x x (Ans)

  • 7/31/2019 Applied Maths i u II Solution

    6/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 6

    (c)Trace the curve 2 2 2 2 2( )a y x a x .Ans: 2 2 2 2 2( )a y x a x

    (i) The curve is symmetrical about x-axis and y axis.(ii)The curve is passes through the origin.(iii) The tangent at origin is

    2 2 2 2 2 2

    a y x a y x y x (iv)The curve meets the x axis at (0, 0), (a, 0), (-a, 0) and y axis at (0, 0).(v)When ,x a x a , 2 0y . So no curve for ,x a x a .(vi)There is no asymptote to the curve.So, the curve is looks as follows:-

    SOLUTION (Nov-Dec-2006)

    (a)If 1sina xy e prove that 2 2 22 1

    (1 ) (2 1) ( ) 0n n nx y n xy n a y and find the

    value of (0)n

    y .

    Ans:1sina x

    y e

    1sin

    1 2 2

    1.

    1 1

    a x ayy e ax x

    2

    11 x y ay -------------- (1)

    2 2 2 211 x y a y On differentiating with respect to x we get

    2 2 21 2 1 11 2 2 2x y y xy a yy

    2 22 11 x y xy a y

    2 22 11 0x y xy a y --------------- (2)By using Leibnitz rule we get

    2 20 2 1 1 2 0 1 1(1 ) 2 2 0 ... 0 ... 0n n n n nn n n n n nC x y C xy C y C xy C y a y

  • 7/31/2019 Applied Maths i u II Solution

    7/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 7

    2 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0n n n n n

    n n n n n nC x y C xy C y C xy C y a y 2 2

    2 1 1(1 ) 2 ( 1) 0

    n n n n n nx y n xy n n y xy ny a y 2 2 2

    2 1(1 ) (2 1) ( ) 0

    n n nx y n xy n a y -----------------(3)

    At 0, (0) 1x y -------------(4)

    Then equation (1) becomes1

    (0) (0)y ay a --------- (5)

    From (2) 2 22(0) (0)y a y a ------------- (6)

    From (3) 2 22(0) ( ) (0)

    n ny n a y

    2 2 2 2 2 2 2

    3 1 4 2

    2 2 2 2

    5 3 6 4

    2 2 2 2 2 2 2 2

    (0) (1 ) (0) (1 ) (0) (2 ) (0) (2 )

    (0) (3 ) (0) (0) (4 ) (0)

    (1 )(3 ) (2 )(4 )

    y a y a a y a y a a

    y a y y a y

    a a a a a a

    Similarly2 2 2 2 2

    2 2 2 2 2 2 2

    (1 )(3 ).....(( 2) ) if n is odd(0)

    (2 )(4 )....(( 2) ) if n is evenn

    a a a n ay

    a a a n a

    (Ans)

    (b)Use Taylors theorem to prove that1 1 2 3sin sin 2 sin 3

    tan ( ) tan ( sin ) ( sin ) ( sin ) .....1 2 3

    z z zx h x h z h z h z

    where1

    cotz x .

    Ans: Given that 1cotz x cotx z

    21 cosdz

    ec zdx

    2sin

    dzz

    dx

    Let 1 1( ) tan ( ) ( ) tanf x h x h f x x

    2

    2 2 2

    1 1 1'( ) sin

    1 1 cot cosf x z

    x z ec z

    2''( ) 2sin .cos . sin 2 .( sin )

    dzf x z z z z

    dx

    2'''( ) (2cos 2 .sin 2sin .cos .sin 2 )dz

    f x z z z z zdx

    22sin (cos 2 .sin .cos .sin 2 )( sin )z z z z z z 3

    2sin .sin 3z z

    So,2 3

    1tan ( ) ( ) ( ) '( ) ''( ) '''( ) ......2! 3!h hx h f x h f x hf x f x f x

    2 31 2 2 3tan sin ( sin .sin 2 ) 2sin .sin 3 ......

    2! 3!

    h hx h z z z z z

    2 31 ( sin ) ( sin ) ( sin )tan sin sin 2 sin 3 ......

    1 2 3

    h z h z h zx z z z

    (Ans).

  • 7/31/2019 Applied Maths i u II Solution

    8/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 8

    (c)Trace the curve (1 cos )r a .Ans: Given that (1 cos )r a .

    (i) The curve is symmetrical about the initial line since its equation remainsunchanged, when changes to .

    (ii)We have sindr

    ad

    Now2

    2

    2

    2 2

    2cos(1 cos )tan cot

    / sin 2sin cos

    r a

    dr d a

    2 2 2 2tan tan( )

    Now 32 2 2 2

    Since is the angle between the tangent and initial line, therefore

    At2

    0, , So, the tangent is perpendicular to the initial line.

    For , 2 . So, the tangent is the initial line.

    (iii) Table having some values of ,r .2

    6 3 2 30

    2 1.86 1.5 0.5 0r a a a a a

    Hence the curve is as follows:-

    SOLUTION (May-June-2007)

    (a)If 1sin( sin )y m x , prove that 2 22 1(1 ) 0x y xy m y and deduce that2 2 2

    2 1(1 ) (2 1) ( ) 0

    n n nx y n xy n m y .

    Ans: 1sin( sin )y m x

    1

    1 2cos( sin )

    1

    my m xx

    ------------- (1)

    2 1

    11 cos( sin )x y m m x

    Differentiating with respect to x we get

    2 12 12 21 sin( sin )1 1

    x mx y y m m x

    x x

  • 7/31/2019 Applied Maths i u II Solution

    9/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 9

    2 22 11 x y xy m y

    2 22 11 0x y xy m y -------------- (2)Taking nth derivative of (2) with respect to x by using Leibnitz rule we get

    2 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0 ... 0 ... 0n n n n n

    n n n n n nC x y C xy C y C xy C y m y

    2 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0n n n n n

    n n n n n nC x y C xy C y C xy C y m y 2 2

    2 1 1(1 ) 2 ( 1) 0n n n n n nx y n xy n n y xy ny m y

    2 2 2

    2 1(1 ) (2 1) ( ) 0n n nx y n xy n m y (Proved)

    (b)Use Taylors theorem to prove that1 1 2 3sin sin 2 sin 3tan ( ) tan ( sin ) ( sin ) ( sin ) .....

    1 2 3

    z z zx h x h z h z h z

    Where1

    cotz x .

    Ans: Given that 1cotz x cotx z

    21 cosdz

    ec zdx

    2sindz

    zdx

    Let 1 1( ) tan ( ) ( ) tanf x h x h f x x

    2

    2 2 2

    1 1 1'( ) sin

    1 1 cot cosf x z

    x z ec z

    2''( ) 2sin .cos . sin 2 .( sin )

    dzf x z z z z

    dx

    2

    '''( ) (2cos 2 .sin 2sin .cos .sin 2 )dz

    f x z z z z z dx 22sin (cos 2 .sin .cos .sin 2 )( sin )z z z z z z

    32sin .sin 3z z

    So,2 3

    1tan ( ) ( ) ( ) '( ) ''( ) '''( ) ......2! 3!

    h hx h f x h f x hf x f x f x

    2 31 2 2 3tan sin ( sin .sin 2 ) 2sin .sin 3 ......

    2! 3!

    h hx h z z z z z

    2 31 ( sin ) ( sin ) ( sin )tan sin sin 2 sin 3 ......

    1 2 3

    h z h z h zx z z z

    (Ans).

    (c)Find the first three terms in the expansion of log(1 tan )x by Maclaurinstheorem.

    Ans:3 52

    log(1 tan ) log 1 .......3 15

    x xx x

  • 7/31/2019 Applied Maths i u II Solution

    10/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 10

    23 5 3 5

    3 43 5 3 5

    2 1 2....... .......

    3 15 2 3 15

    1 2 1 2....... ....... ..........

    3 3 15 4 3 15

    x x x xx x

    x x x xx x

    3 5 42 3 42 1 2 1 1....... ...... ....... ....... ....

    3 15 2 3 3 4x x xx x x x

    23 41 1 4 3 .......

    2 3 12

    xx x x

    23 42 7 .......

    2 3 12

    xx x x (Ans)

    (d)Trace the curve 2 2 3(2 )a y x a x .Ans: 2 2 3(2 )a y x a x

    (i) The curve is symmetrical about x axis.(ii)The curve passes through origin.(iii) Tangent at origin is 2 2 0 0a y y , x-axis is the tangent.

    (iv)The curve meets x axis at (0, 0) and (2a, 0) and y axis at (0, 0)(v)At 20, 2 0x x a y . So no curve when 0, 2x x a The curve is as follows:-

    SOLUTION (Nov-Dec-2007)(a)State Taylors theorem and Maclaurins theorem.Ans: Taylors Theorem: - If ( )f x h can be expanded an infinite series, then

    2 3

    ( ) ( ) '( ) ''( ) '''( ) ..........2! 3!

    h hf x h f x hf x f x f x

    Maclaurins Theorem: If ( )f x h can be expanded an infinite series, then

  • 7/31/2019 Applied Maths i u II Solution

    11/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 11

    2 3

    ( ) (0) '(0) ''(0) '''(0) ..........2! 3!

    x xf x f xf f f .

    (b)If 1sin( sin )

    y m x , prove that 2 22 1

    (1 ) 0x y xy m y and find(0)n

    y .

    Ans: 1sin( sin )y m x

    1

    1 2cos( sin )

    1

    my m x

    x

    ------------- (1)

    2 1

    11 cos( sin )x y m m x

    Differentiating with respect to x we get

    2 12 12 21 sin( sin )1 1

    x mx y y m m x

    x x

    2 22 11 x y xy m y

    2 22 11 0x y xy m y -------------- (2)Taking nth derivative of (2) with respect to x by using Leibnitz rule we get

    2 20 2 1 1 2 0 1 1(1 ) 2 2 0 ... 0 ... 0n n n n nn n n n n nC x y C xy C y C xy C y m y 2 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0n n n n n

    n n n n n nC x y C xy C y C xy C y m y 2 2

    2 1 1(1 ) 2 ( 1) 0

    n n n n n nx y n xy n n y xy ny m y 2 2 2

    2 1(1 ) (2 1) ( ) 0

    n n nx y n xy n m y -----------------(3)

    At 0, (0) 0x y -------------(4)

    Then equation (1) becomes1(0)y m --------- (5)

    From (2) 22(0) (0) 0y m y ------------- (6)

    From (3) 2 22(0) ( ) (0)n ny n m y

    2 2

    3 1

    42 2

    5 3

    62 2 2

    (0) (1 ) (0) (1 )(0) 0

    (0) (3 ) (0)(0) 0

    (1 )(3 )

    y m y m my

    y m yy

    m m m

    So,2 2 2 2 2

    0 if n is even(0)

    (1 )(3 )........((2 1) ) if n is oddny

    m m m n m

    (c)Obtain the Maclaurins expansion oftan( / 4 )

    x and hence find the value

    of 0tan 46 30' , to four decimal places.

    Ans:2 3

    ( ) ( ) '( ) ''( ) '''( ) ...........2! 3!

    h hf x h f x hf x f x f x

    Let ( ) tanf x x

    4( ) tan , 1f x x f

    2 4'( ) sec , ' 2f x x f

  • 7/31/2019 Applied Maths i u II Solution

    12/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 12

    2 3 4''( ) 2 tan sec 2 tan 2 tan , '' 4f x x x x x f

    2 2 2 4'''( ) 2sec 6 tan sec , '' 16f x x x x f , .

    So,2 3

    4 4 4 4 4tan( ) ( ) '( ) ''( ) '''( ) ...........

    2! 3!

    h hh f hf f f

    2 3

    4tan( ) 1 2 4 16 ...........2! 3!

    h hh h

    2 3

    4tan( ) 1 2 4 16 ...........

    2! 3!

    x xx x

    Now, by putting 03 3 3 22/ 7 33

    1 30 ' deg 0.02622 2 180 2 180 1260

    x ree

    2 30 (0.0262) (0.0262)tan(46 30 ') 1 2 (0.0262) 4 16 ...........

    2! 3!

    0 16tan(46 30 ') 1 0.0524 2 0.00068644 0.00001798 ...........

    6

    0tan(46 30') 1.0524 0.00137288 0.00004792 ........... 0tan(46 30') 1.0538208 1.0538 (Ans)

    (d)Expand 1tan x in the power of ( / 4)x upto three terms.Ans: From Taylor Series

    2 3( ) ( )( ) ( ) ( ) '( ) ''( ) '''( ) ...........

    2! 3!

    x a x af x f a x a f a f x f a

    Let 1( ) tanf x x 1

    4( ) tan , ( ) 1f x x f

    2

    42 2 2

    1 4'( ) , '( )

    1 4f x f

    x

    3

    42 22 2 2

    2 2 4''( ) , '( )

    1 4

    xf x f

    x

    22 2

    42

    1 2 2 2(1 ) 2''( )

    1

    x x x xf x

    x

    2 2 2 4 2 2

    43 3 32 2 2 2

    1 4 2 2 1 3 2 4 4 3''( ) , ''( )

    1 1 4

    x x xf x f

    x x

    So,2 34 4

    4 4 4 4 4( ) ( )( ) ( ) ( ) '( ) ''( ) '''( ) ...........

    2! 3!x xf x f x f f f

    4 2 22 32 3

    4 44 2 32 2 2 2 2 2

    2 4 4 3( ) ( )4 2 4( ) 1 ( ) ....

    4 2! 3!4 4

    x xf x x

  • 7/31/2019 Applied Maths i u II Solution

    13/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 13

    4 2 22 32 3

    4 4

    4 2 32 2 2 2 2 2

    2 4 4 3( ) ( )4 2 4( ) 1 ( ) ....

    4 2! 3!4 4

    x xf x x

    (Ans).

    SOLUTION (May-June-2008)

    (a)Define point of inflexion and write Test to check point ofinflexion.Ans: If the two portions of a curve lie on different sides of the tangent at a pointC, then this point C is said to be a point of inflexion.

    Test: Let y = f(x) be any curve. If at a point2 3

    2 30, 0

    d y d y

    dx dx then the curve has a

    point of inflexion at that point.

    (b)If 1cosa xy e , prove that 2 2 22 1(1 ) (2 1) ( ) 0n n nx y n xy n a y . Also findthe nth differential coefficient of

    1cosa xy e

    at 0x .

    Ans:1cosa x

    y e

    1cos

    1 2 2

    1.

    1 1

    a x ayy e a

    x x

    2

    11 x y ay -------------- (1)

    2 2 2 211 x y a y On differentiating with respect to x we get

    2 2 21 2 1 11 2 2 2x y y xy a yy

    2 22 11 x y xy a y

    2 22 11 0x y xy a y --------------- (2)By using Leibnitz rule we get

    2 20 2 1 1 2 0 1 1(1 ) 2 2 0 ... 0 ... 0n n n n nn n n n n nC x y C xy C y C xy C y a y 2 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0

    n n n n n

    n n n n n nC x y C xy C y C xy C y a y 2 2

    2 1 1(1 ) 2 ( 1) 0n n n n n nx y n xy n n y xy ny a y

    2 2 22 1(1 ) (2 1) ( ) 0n n nx y n xy n a y -----------------(3)

    At 20, (0)a

    x y e

    -------------(4)

    Then equation (1) becomes 21(0) (0)a

    y ay ae

    --------- (5)

    From (2) 2 2 22(0) (0)

    a

    y a y a e

    ------------- (6)

  • 7/31/2019 Applied Maths i u II Solution

    14/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 14

    From (3) 2 22(0) ( ) (0)

    n ny n a y

    2 2 2 2 2 2 22 23 1 4 2

    2 2 2 2

    5 3 6 4

    2 2 2 2 2 2 2 22 2

    (0) (1 ) (0) (1 ) (0) (2 ) (0) (2 )

    (0) (3 ) (0) (0) (4 ) (0)

    (1 )(3 ) (2 )(4 )

    a a

    a a

    y a y a a e y a y a a e

    y a y y a y

    a a a e a a a e

    Similarly

    2 2 2 2 2 2

    2 2 2 2 2 2 2 2

    (1 )(3 ).....(( 2) ) if n is odd(0)

    (2 )(4 )....(( 2) ) if n is even

    a

    n a

    a a a n a ey

    a a a n a e

    (Ans)

    (c)Expand 1sin( sin )y a x by Maclaurins theorem as for as 5x . Hence expandsin m .

    Ans: 1sin( sin )y a x

    1

    1

    2

    cos( sin )

    1

    ay a x

    x

    ------------- (1)

    2 1

    11 cos( sin )x y a a x

    Differentiating with respect to x we get

    2 12 12 21 sin( sin )1 1

    x ax y y a a x

    x x

    2 22 11 x y xy a y

    2 22 11 0x y xy a y -------------- (2)Taking nth derivative of (2) with respect to x by using Leibnitz rule we get

    2 20 2 1 1 2 0 1 1(1 ) 2 2 0 ... 0 ... 0n n n n nn n n n n nC x y C xy C y C xy C y a y 2 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0n n n n n

    n n n n n nC x y C xy C y C xy C y a y 2 2

    2 1 1(1 ) 2 ( 1) 0

    n n n n n nx y n xy n n y xy ny a y 2 2 2

    2 1(1 ) (2 1) ( ) 0

    n n nx y n xy n a y -----------------(3)

    At 0, (0) 0x y -------------(4)

    Then equation (1) becomes1(0)y a --------- (5)

    From (2) 22(0) (0) 0y a y ------------- (6)

    From (3) 2 22(0) ( ) (0)

    n ny n a y

    2 23 1

    42 2

    5 3

    62 2 2

    (0) (1 ) (0) (1 )(0) 0

    (0) (3 ) (0)(0) 0

    (1 )(3 )

    y a y a ay

    y a yy

    a a a

    Now, 1sin( sin )y a x 2 3 4 5

    1 2 3 4 5(0) (0) (0) (0) (0) (0) ......2! 3! 4! 5!

    x x x xy y xy y y y y

  • 7/31/2019 Applied Maths i u II Solution

    15/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 15

    3 52 2 2 20 . 0 (1 ) 0 (1 )(3 ) ......

    3! 5!

    x xy x a a a a a a

    3 51 2 2 2 2sin( sin ) (1 ) (1 )(3 ) ......

    3! 5!

    x xa x ax a a a a a

    By putting 1sin sinx x , then we get

    3 52 2 2 2sin sinsin( ) sin (1 ) (1 )(3 ) ......3! 5!

    a a a a a a a (Ans)

    (d)Trace the curve 2 2( ) ( )y a x x a x .Ans: 2 2( ) ( )y a x x a x

    (i) It is symmetrical about y axis.(ii) It passes through the origin.(iii) Tangent at origin is 2 2 2 2ay ax y x y x .(iv) Asymptote parallel to y axis is x a (v) At x axis it passes through (a, 0) and at y axis it passes through (0, 0).(vi) At , , 0x a x a y . So no curve when ,x a x a .The curve is as follows: -

    SOLUTION (Dec-Jan-2008-2009)

  • 7/31/2019 Applied Maths i u II Solution

    16/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 16

    (a)The nth differential of: cos .cos2 .cos3x x x .Ans: cos .cos2 .cos3x x x

    11 cos6 cos 4 cos 2

    4x x x

    Its nth derivative1

    6 cos 6 4 cos 4 2 cos 24 2 2 2

    n n nn n nx x x

    (b)If 1siny x , find (0)ny .Ans: 1siny x

    1 2

    1

    1y

    x

    2

    1 2

    1

    1y

    x

    2 2

    1(1 ) 1x y

    Again differentiating with respect to x we get2 2

    1 2 1(1 )2 2 0x y y xy

    2

    2 1(1 ) 0x y xy ----------- (1)

    Now by applying Leibnitz rule differentiating n times.

    20 2 1 1 2 0 1 1(1 ) 2 2 0 ... 0 ... 0n n n n nn n n n nC x y C xy C y C xy C y 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0n n n n n

    n n n n nC x y C xy C y C xy C y 2

    2 1 1(1 ) 2 ( 1) 0

    n n n n nx y n xy n n y xy ny 2 2

    2 1(1 ) (2 1) 0

    n n nx y n xy n y

    Now by putting n = n-2 we get2 2

    1 2(1 ) (2 1) ( 2) 0

    n n nx y n xy n y -----------(2)

    At x = 0. equation (2) becomes 2 2( 2) 0n ny n y 2

    2( 2)n ny n y ----------(3)

    Given 1siny x , so (0) 0y

    Now 22 0

    (0) 0y y .

    So2 4 2

    (0) (0) (0) ........ (0) .... 0ky y y y

    Again1 12

    1(0) 1

    1y y

    x

    So, 23 1

    (3 2) 1 1 1y y 2 2 2 2

    5 3(5 2) 3 1 3 1y y 2 2 2 27 5

    (7 2) 5 3 1y y 2 2 2 2 2

    9 7(9 2) 7 5 3 1y y

    Similarly,2 2 2 2

    0 when n is even(0)

    ( 2) ( 4) ( 6) ..........1 when n is oddny

    n n n

    (c)Expand by Maclaurins theorem the function log(1 sin )x .

  • 7/31/2019 Applied Maths i u II Solution

    17/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 17

    Ans:3 5

    log(1 sin ) log 1 .......6 120

    x xx x

    23 5 3 5

    3 43 5 3 5

    1....... .......

    6 120 2 6 120

    1 1....... ....... ..........

    3 6 120 4 6 120

    x x x xx x

    x x x xx x

    3 5 4

    2 3 41 1 1....... ...... ....... ....... ....6 120 2 3 3 4

    x x xx x x x

    23 41 2 2 3 .......

    2 6 12

    xx x x

    2 3 4

    .......2 6 12

    x x xx (Ans)

    (d)Trace the curve 2 2cos2r a .Ans: 2 2cos2r a

    2 2 2 2cos sinr a 2 2 2 2 2cos sinr r a

    By changing into Cartesian form we get 2 2 2x y a

    Which represents a hyperbola.

    The curve is as follows:-

    Solution (Apr-May-2009)

    (a)Select the correct answer.

  • 7/31/2019 Applied Maths i u II Solution

    18/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 18

    For the curve 2 2(1 ) (1 )y x x x , the origin is a

    (i) Cusp.(ii) Node.(iii) Point of Inflexion.(iv) None of the above.

    Ans: (ii) Node (Ans).

    (b)If 1sina xy e , Prove that: 2 2 22 1

    (1 ) (2 1) ( ) 0n n nx y n xy n a y . Hence find

    (0)n

    y .

    Ans:1sina x

    y e

    1sin

    1 2 2

    1.

    1 1

    a x ayy e ax x

    2

    11 x y ay -------------- (1)

    2 2 2 211 x y a y On differentiating with respect to x we get

    2 2 21 2 1 11 2 2 2x y y xy a yy

    2 22 11 x y xy a y

    2 22 11 0x y xy a y --------------- (2)By using Leibnitz rule we get

    2 20 2 1 1 2 0 1 1(1 ) 2 2 0 ... 0 ... 0n n n n nn n n n n nC x y C xy C y C xy C y a y 2 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0n n n n n

    n n n n n nC x y C xy C y C xy C y a y

    2 2

    2 1 1(1 ) 2 ( 1) 0

    n n n n n nx y n xy n n y xy ny a y

    2 2 22 1(1 ) (2 1) ( ) 0n n nx y n xy n a y -----------------(3)

    At 0, (0) 1x y -------------(4)

    Then equation (1) becomes1(0) (0)y ay a --------- (5)

    From (2) 2 22(0) (0)y a y a ------------- (6)

    From (3) 2 22(0) ( ) (0)n ny n a y

    2 2 2 2 2 2 2

    3 1 4 2

    2 2 2 2

    5 3 6 4

    2 2 2 2 2 2 2 2

    (0) (1 ) (0) (1 ) (0) (2 ) (0) (2 )

    (0) (3 ) (0) (0) (4 ) (0)

    (1 )(3 ) (2 )(4 )

    y a y a a y a y a a

    y a y y a y

    a a a a a a

    Similarly2 2 2 2 2

    2 2 2 2 2 2 2

    (1 )(3 ).....(( 2) ) if n is odd(0)

    (2 )(4 )....(( 2) ) if n is evenn

    a a a n ay

    a a a n a

    (Ans)

    (c)Find the Taylors series expansion for log(cos )x about the point3

    .

  • 7/31/2019 Applied Maths i u II Solution

    19/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 19

    Ans: Given that ( ) log(cos ), log(0.5)3

    f x x f

    '( ) , ' 33

    f x tanx f

    2

    ''( ) sec , '' 43f x x f

    2'''( ) 2sec tan , ''' 8 33

    f x x x f

    So,

    2 3

    3 3log(cos ) ( ) ' '' ''' ......

    3 3 3 2! 3 3! 3

    x x

    x f x f x f f f

    2 3

    3 3log(cos ) log(0.5) 3 ( 4) ( 8 3) ......3 2! 3!

    x x

    x x

    2 34 3

    log(cos ) log(0.5) 3 2 ......3 3 3 3

    x x x x

    (Ans).

    (d)Trace the curve 2 2 2 2 2 2( ) ( )y a x x a x .Ans: 2 2 2 2 2 2( ) ( )y a x x a x

    (i) It is symmetrical about x axis and y axis.(ii) It passes through (0, 0).(iii) No Asymptote parallel to x axis or y axis.(iv) When ,x a x a curve does not exist.(v) At x = 0,y = 0 and at y = 0, x = -a, a. So Curve passes through (0, 0),(-a, 0)

    and (a, 0).

    (vi) Tangent at origin are 2 2 2 2 2 2y a x a y x y x (vii) Hence the curve is as follows:

    SOLUTION (Nov-Dec-2009)

  • 7/31/2019 Applied Maths i u II Solution

    20/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 20

    (a) State Leibnitzs theorem for the nth derivative of the product of twofunctions.

    Ans: - Leibnitz theorem for nth derivative of product of two functions is

    nn

    n

    nn

    n

    n

    n

    n

    n

    n

    n

    nuvCvuCvuCvuCvuCuv 1112221110 ..........................)( .

    (b) If 1tany x , prove that 0)1()1(2)1(12

    2 nnn

    ynnxynyx . Hence

    find (0)n

    y .

    Ans: - 1tany x

    1 2

    1

    1y

    x

    ------------- (1)

    2

    1(1 ) 1x y

    Differentiating with respect to x we get2

    2 1(1 ) 2 0x y xy -------------- (2)

    Taking nth derivative of (2) with respect to x by using Leibnitz rule we get

    2

    0 2 1 1 2 0 1 1

    (1 ) 2 2 0 ... 2 0 ... 0n n n n n

    n n n n n

    C x y C xy C y C xy C y

    2 2 1 1(1 ) 2 ( 1) 2 0n n n n nx y nxy n n y xy ny 2

    2 1 1(1 ) 2 ( 1) 2 2 0

    n n n n nx y nxy n n y xy ny

    2 2

    2 1(1 ) 2( 1) ( ) 0n n nx y n xy n n y

    2

    2 1(1 ) 2( 1) ( 1) 0n n nx y n xy n n y -----------------(3)

    At 0, (0) 0x y -------------(4)

    Then equation (1) becomes 1(0) 1y --------- (5)

    From (2)2(0) 0y ------------- (6)

    From (3)2(0) ( 1) (0)

    n ny n n y 3 1

    23 1

    45 1

    25 3 6

    7 182

    7 3

    (0) 1 2 (0) 1 2 2! ( 1) .2!(0) 0

    (0) 3 4 (0) 4! ( 1) .4! (0) 0

    (0) 0(0) 5 6 (0) 6! ( 1) .6!

    y yy

    y y y

    yy y

    So, 12

    0 if n is even(0)

    ( 1) . ! if n is oddnny

    n

    (c) Expand xae1sin

    in ascending powers of x, by Maclaurins theorem.Ans: -

    1sina x

    y e

    1sin

    1 2 2

    1.

    1 1

    a x ayy e a

    x x

    2

    11 x y ay -------------- (1)

    2 2 2 211 x y a y

  • 7/31/2019 Applied Maths i u II Solution

    21/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 21

    On differentiating with respect to x we get

    2 2 21 2 1 11 2 2 2x y y xy a yy

    2 22 11 x y xy a y

    2 22 11 0x y xy a y --------------- (2)

    By using Leibnitz rule we get

    2 20 2 1 1 2 0 1 1(1 ) 2 2 0 ... 0 ... 0n n n n nn n n n n nC x y C xy C y C xy C y a y 2 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0

    n n n n n

    n n n n n nC x y C xy C y C xy C y a y 2 2

    2 1 1(1 ) 2 ( 1) 0n n n n n nx y n xy n n y xy ny a y

    2 2 2

    2 1(1 ) (2 1) ( ) 0n n nx y n xy n a y -----------------(3)

    At 0, (0) 1x y -------------(4)

    Then equation (1) becomes 1(0) (0)y ay a --------- (5)

    From (2) 2 22(0) (0)y a y a ------------- (6)

    From (3) 2 22(0) ( ) (0)

    n ny n a y

    2 2 2 2 2 2 2

    3 1 4 2

    2 2 2 2

    5 3 6 4

    2 2 2 2 2 2 2 2

    (0) (1 ) (0) (1 ) (0) (2 ) (0) (2 )

    (0) (3 ) (0) (0) (4 ) (0)

    (1 )(3 ) (2 )(4 )

    y a y a a y a y a a

    y a y y a y

    a a a a a a

    So, ..............)0(!5

    )0(!4

    )0(!3

    )0(!2

    )0(.)0( 5

    5

    4

    4

    3

    3

    2

    2

    1 yx

    yx

    yx

    yx

    yxyy

    .......)3)(1(.!5

    )2(!4

    )1(.!3!2

    .1 2225

    2224

    23

    22

    aaax

    aax

    aax

    ax

    axy

    .......!5

    )3)(1(!4

    )2(!3

    )1(!2

    15

    2224

    2223

    222

    xaaaxaaxaaxaaxy

    (Ans).

    (d) Expand 423 23 xxx in powers of 2x .Ans: - 423)( 23 xxxxf 1442824)2( f

    149)( 2 xxxf 291836)2( f

    418)( xxf 32436418)2( xf

    18)( xf 18)2( f

    0.............)()( xfxf viv 0.............)2()2( viv ff

    So,

    .....)2(!4

    )2()2(

    !3

    )2()2(

    !2

    )2()2().2()2()(

    432

    ivfx

    fx

    fx

    fxfxf

    .....024

    )2(18

    6

    )2(32

    2

    )2()2(2914)(

    432

    xxx

    xxf

    32 )2(3)2(16)2(2914)( xxxxf 3223 )2(3)2(16)2(2914423 xxxxxx (Ans).

  • 7/31/2019 Applied Maths i u II Solution

    22/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 22

    Solution (May-June-2010)

    (a) If xy 3sin , find ny .Ans: - xxxy 3sinsin3

    4

    1sin 3

    x

    nx

    nxy

    n

    n 32

    sin32

    sin34

    1sin 3

    (Ans).

    (b) Determine )0(n

    y wherexm

    ey1cos .

    Ans: -xm

    ey1cos ------------------- (1)

    on Differentiating222

    1

    2

    1

    2

    2

    cos

    1 )1(11

    11ymyxmyyx

    xmey

    xm

    --------------- (2)

    Again on differentiating

    1

    22

    121

    2 222)1( yymxyyyx

    0)1( 212

    2 ymxyyx ---------------- (3)

    On differentiating n times by using Leibnitz theorem we get

    022)1( 2112112

    2 nnn

    nn

    n

    n

    n

    nymyCxyyCxyCyx

    0)1(2)1( 2112

    2 nnnnnn ymnyxyynnnxyyx

    0)12()1(22

    12

    2 nnn ymnxynyx ------------------- (4)

    From (1) 2/)0( mey

    From (2)2/

    1 )0(mmey

    From (3) 2/22 )0(memy

    From (4) 0)0()0( 222 nn ymny )0()0( 222 nn ymny

    So, 2/212

    3)1()1()0( memmymy

    2/222

    3

    22

    5)3)(1()3()0( memmmymy

    2/22222

    5

    22

    7)5)(3)(1()5()0( memmmmymy

    ----------------

    Silmilary, 2/22 )0(memy

    2/222

    2

    22

    4)2()0()2()0( memmymy

    2/22222

    4

    22

    6)4)(2()0()4()0( memmmymy

    -------------

  • 7/31/2019 Applied Maths i u II Solution

    23/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 23

    So,

    evennmmmmme

    oddnmmmmmey

    m

    m

    n)8)(6)(4)(2(

    )7)(5)(3)(1()0(

    2222222222/

    22222222/

    (c) Expand xelog in powers )1( x and hence evaluate )1.1(loge correct to 4decimal places.

    Ans: - xxf elog)( , 01log)1( ef

    xxf

    1)( , 1

    1

    1)1( f

    2

    1)(

    xxf , 1)1( f

    3

    2)(

    xxf , !22)1( f

    4

    6

    )( xxf

    iv , !36)1(

    iv

    f Now, by Taylors series

    ........)1(!4

    )1()1(

    !3

    )1()1(

    !2

    )1()1()1()1()(

    432

    ivfx

    fx

    fx

    fxfxf

    ........)!3(!4

    )1()!2(

    !3

    )1()1(

    !2

    )1()1)(1(0)(

    432

    xxx

    xxf

    ........4

    )1(

    3

    )1(

    2

    )1()1(log

    432

    xxx

    xxe (Ans)

    Now

    ........4

    )11.1(

    3

    )11.1(

    2

    )11.1()11.1()1.1(

    432

    f

    ........4

    0001.0

    3

    001.0

    2

    01.01.0)1.1(log

    e

    ........00002.00003.0005.01.0)1.1(log e

    0953.0)1.1(log e upto 4 decimal places

    (d) Trace the curve 2cos22 ar .Ans: -

    i. The curve is symmetrical about the pole.ii. The curve lies wholly within the circle ar . No portion of the curve lies

    between 4/ and 4/3 .iii. 2

    22

    2tan2cottan

    dr

    dr . So, 0 at

    4

    and2

    at 0 . So tangent at origin O is

    4

    and tangent at A is

    perpendicular to initial line is

  • 7/31/2019 Applied Maths i u II Solution

    24/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 24

    iv. When varies from 0 to 4/ , r varies from a to 0 and when varies from4/3 to , r varies from 0 to a.

    So, the curve is looks like: -

    SOLUTION (Nov-Dec-2010)

    1.(a)

    Express )(xf in ascending process of )( ax .Ans from

    Taylors Theorem: - If ( )f x h can be expanded an infinite series, then2 3

    ( ) ( ) '( ) ''( ) '''( ) ..........2! 3!

    h hf x h f x hf x f x f x

    )(xf in ascending process of )( ax . Will be

    (b) If 1sin( sin )y m x , prove that 2 22 1

    (1 ) 0x y xy m y and find (0)ny .

    Ans:1sin( sin )y m x

    1

    1 2cos( sin )

    1

    my m x

    x

    -------------(1)

    2 1

    11 cos( sin )x y m m x

    Differentiating with respect to x we get

    2 12 12 21 sin( sin )1 1

    x mx y y m m x

    x x

    2 22 11 x y xy m y 2 22 11 0x y xy m y --------------(2)

    Taking nth derivative of (2) with respect to x by using Leibnitz rule we get

    2 20 2 1 1 2 0 1 1(1 ) 2 2 0 ... 0 ... 0n n n n nn n n n n nC x y C xy C y C xy C y m y 2 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0

    n n n n n

    n n n n n nC x y C xy C y C xy C y m y 2 2

    2 1 1(1 ) 2 ( 1) 0

    n n n n n nx y n xy n n y xy ny m y 2 2 2

    2 1(1 ) (2 1) ( ) 0n n nx y n xy n m y -----------------(3)

  • 7/31/2019 Applied Maths i u II Solution

    25/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 25

    At 0, (0) 0x y -------------(4)Then equation (1) becomes

    1(0)y m ---------(5)

    From (2) 22(0) (0) 0y m y -------------(6)

    From (3)2 2

    2(0) ( ) (0)n ny n m y 2 2

    3 1

    42 2

    5 3

    62 2 2

    (0) (1 ) (0) (1 ) (0) 0(0) (3 ) (0)

    (0) 0(1 )(3 )

    y m y m m yy m y

    ym m m

    So,2 2 2 2 2

    0 if n is even(0)

    (1 )(3 )........((2 1) ) if n is oddny

    m m m n m

    (c) Use Taylors theorem to prove that

    .......3

    3sinsin

    2

    2sinsin

    1

    sinsintan)(tan

    3211 z

    zhz

    zhz

    zhxhx .

    Where xz 1cot .

    Ans: Given that 1cotz x cotx z

    21 cosdz

    ec zdx

    2sin

    dzz

    dx

    Let 1 1( ) tan ( ) ( ) tanf x h x h f x x

    2

    2 2 2

    1 1 1'( ) sin

    1 1 cot cosf x z

    x z ec z

    2

    ''( ) 2sin .cos . sin 2 .( sin )

    dz

    f x z z z zdx

    2'''( ) (2cos 2 .sin 2sin .cos .sin 2 )

    dzf x z z z z z

    dx

    22sin (cos 2 .sin .cos .sin 2 )( sin )z z z z z z 3

    2sin .sin 3z z

    So,2 3

    1tan ( ) ( ) ( ) '( ) ''( ) '''( ) ......2! 3!

    h hx h f x h f x hf x f x f x

    2 31 2 2 3tan sin ( sin .sin 2 ) 2sin .sin 3 ......

    2! 3!

    h hx h z z z z z

    2 31 ( sin ) ( sin ) ( sin )tan sin sin 2 sin 3 ......1 2 3

    h z h z h zx z z z (Ans).

    (d) Trace the curve 22 )3(9 axxay .

    SOLUTION (Apr-May-2011)

  • 7/31/2019 Applied Maths i u II Solution

    26/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 26

    a) Write the Leibnnitzs theorem for the derivative of the product of two function.Ans: - Leibnitz theorem for nth derivative of product of two functions is

    nn

    n

    nn

    n

    n

    n

    n

    n

    n

    n

    n uvCvuCvuCvuCvuCuv 1112221110 ..........................)(

    .b) If 1sina xy e prove that 2 2 22 1(1 ) (2 1) ( ) 0n n nx y n xy n a y and find the

    value of (0)n

    y .

    Ans: -

    1sina xy e

    1

    sin

    1 2 2

    1.

    1 1

    a x ayy e a

    x x

    2

    11 x y ay --------------(1)

    2 2 2 211 x y a y On differentiating with respect to x we get

    2 2 21 2 1 11 2 2 2x y y xy a yy 2 22 11 x y xy a y 2 22 11 0x y xy a y ---------------(2)

    By using Leibnitz rule we get

    2 20 2 1 1 2 0 1 1(1 ) 2 2 0 ... 0 ... 0n n n n nn n n n n nC x y C xy C y C xy C y a y

    2 2

    0 2 1 1 2 0 1 1(1 ) 2 2 0n n n n nn n n n n nC x y C xy C y C xy C y a y

    2 22 1 1

    (1 ) 2 ( 1) 0n n n n n nx y n xy n n y xy ny a y 2 2 2

    2 1(1 ) (2 1) ( ) 0

    n n nx y n xy n a y -----------------(3)

    At 0, (0) 1x y -------------(4)Then equation (1) becomes

    1(0) (0)y ay a ---------(5)

    From (2) 2 22(0) (0)y a y a -------------(6)

    From (3)2 2

    2(0) ( ) (0)

    n ny n a y 2 2 2 2 2 2 2

    3 1 4 2

    2 2 2 2

    5 3 6 4

    2 2 2 2 2 2 2 2

    (0) (1 ) (0) (1 ) (0) (2 ) (0) (2 )

    (0) (3 ) (0) (0) (4 ) (0)(1 )(3 ) (2 )(4 )

    y a y a a y a y a a

    y a y y a ya a a a a a

    So,

    ..............)0(!5

    )0(!4

    )0(!3

    )0(!2

    )0(.)0( 5

    5

    4

    4

    3

    3

    2

    2

    1 yx

    yx

    yx

    yx

    yxyy

  • 7/31/2019 Applied Maths i u II Solution

    27/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 27

    .......)3)(1(.!5

    )2(!4

    )1(.!3!2

    .1 2225

    2224

    23

    22

    aaax

    aax

    aax

    ax

    axy

    .......!5

    )3)(1(!4

    )2(!3

    )1(!2

    15

    2224

    2223

    222

    x

    aaax

    aax

    aaxa

    axy

    (Ans).c) Expand tan( / 4 )x as the term and evaluate 0tan 46 30' , to four decimal places.

    Ans:

    2 3

    ( ) ( ) ( ) '( ) ''( ) '''( ) ...........2! 3!

    h hf x h f a h f x hf x f x f x

    Let ( ) tanf x x

    4( ) tan , 1f x x f

    2 4'( ) sec , ' 2f x x f

    2 3 4''( ) 2 tan sec 2 tan 2 tan , '' 4f x x x x x f

    2 2 2

    4

    '''( ) 2sec 6 tan sec , '' 16f x x x x f , .

    So,

    2 3

    4 4 4 4 4tan( ) ( ) '( ) ''( ) '''( ) ...........

    2! 3!

    h hh f hf f f

    2 3

    4tan( ) 1 2 4 16 ...........

    2! 3!

    h hh h

    2 3

    4tan( ) 1 2 4 16 ...........

    2! 3!

    x xx x

    Now, by putting

    0 3 3 3 22 / 7 331 30 ' deg 0.0262

    2 2 180 2 180 1260x ree

    2 3

    0 (0.0262) (0.0262)tan(46 30 ') 1 2 (0.0262) 4 16 ...........2! 3!

    0 16tan(46 30 ') 1 0.0524 2 0.00068644 0.00001798 ...........

    6

    0tan(46 30') 1.0524 0.00137288 0.00004792 ........... 0tan(46 30') 1.0538208 1.0538 (An

    d) Trace the curve 2 2( ) ( )y a x x a x .Ans: 2 2( ) ( )y a x x a x

    a.It is symmetrical about y axis.b.It passes through the origin.c.Tangent at origin is 2 2 2 2ay ax y x y x .d.Asymptote parallel to y axis is x a e.At x axis it passes through (a, 0) and at y axis it passes through (0, 0).f.At , , 0x a x a y . So no curve when ,x a x a .

    The curve is as follows: -

  • 7/31/2019 Applied Maths i u II Solution

    28/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 28

    SOLUTION (Nov-Dec-2011)

    1. Express )(xf in ascending process of )( ax .Ans:-( ) = [ + ( ) ] =

    (

    ) + (

    )

    (

    ) +

    ( )

    ! (

    ) +

    ( )

    ! (

    ) + .

    2. If 1sin( sin )y m x , prove that 2 22 1(1 ) 0x y xy m y and find (0)ny Ans:- Given

    1sin( sin )y m x

    = ( ) . = ( ) . . ( ) ( !) . . ,

    +

    = ( )

    ( ) = ( ) ( ) = ( ) + = (2)Again di f ferent iat ing eq(2 ) w.r . t to x ,n t ime s by Leibni tz rule ,we get( ) + + [ + ] + = ( ) ( + ) + ( ) = If x=0 ,then equation(1) becomes

    ) =mIf x=0 ,then equation (2) becomes( y) =0s

    Therefore ( ) = ( ) ( ) ( ) . ( ( )

    3. Use Taylors theorem to prove that

  • 7/31/2019 Applied Maths i u II Solution

    29/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 29

    .......3

    3sinsin

    2

    2sinsin

    1

    sinsintan)(tan

    3211 z

    zhz

    zhz

    zhxhxwhere xz

    1cot

    .

    Ans: Given that 1cotz x cotx z

    21 cos

    dzec z

    dx

    2sin

    dzz

    dx

    Let1 1( ) tan ( ) ( ) tanf x h x h f x x

    2

    2 2 2

    1 1 1'( ) sin

    1 1 cot cosf x z

    x z ec z

    2

    ''( ) 2sin .cos . sin 2 .( sin )dz

    f x z z z zdx

    2'''( ) (2cos 2 .sin 2sin .cos .sin 2 )dz

    f x z z z z zdx

    22sin (cos 2 .sin .cos .sin 2 )( sin )z z z z z z 3

    2sin .sin 3z z

    So,

    2 31tan ( ) ( ) ( ) '( ) ''( ) '''( ) ......

    2! 3!

    h hx h f x h f x hf x f x f x

    2 31 2 2 3tan sin ( sin .sin 2 ) 2sin .sin 3 ......

    2! 3!

    h hx h z z z z z

    2 31 ( sin ) ( sin ) ( sin )tan sin sin 2 sin 3 ......

    1 2 3

    h z h z h zx z z z

    (Ans).

    4. Trace the curve 22 )3(9 axxay .Ans:- (1) . The curve is symmetrical about x-axis .

    (2) The curve passes through the origin .the tangent at the origin is x=0 .(3) The curve cuts x-axis also at (3a,0) .shifting the origin to (3a,0) ,the

    new equation of the curve is

    9=( + 3) (4). No asymptote .

    (5) Solving the given equation for y, we have

    = ( ) When x is positive ,

    When 0 < < 3, = + .

  • 7/31/2019 Applied Maths i u II Solution

    30/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 30

    (ii) When > 3 , = + .(2). When x is negative , = ..

    Therefore curve doesnot lie in the region a

  • 7/31/2019 Applied Maths i u II Solution

    31/32

    UNIT IV( I Semester)

    Depar tm ent o f M athemat ics, DIM AT Page 31

    () 0 = 0 (

    1)

    0=0

    ( + 2 ) 0 = 2 ( ) 0 Case 1:- When n is a odd number , putting n=1,3,5,-------------n-2 in equation (5) ,we obtain

    Putting n=1 in equation(

    3)

    0= 0

    ( ) = 0 ( ) = 0 ( ) = 0

    Case2;- When n is a even number , putting n=2,4,6,-------------n-2 in equation (5) ,we obtain

    ( ) = 22 ( ) = 2 2

    ( ) = 42 2 ( ) ) = ( 2 ) ) 42 2

    (c) Expand xelog in powers )1( x and hence evaluate )1.1(loge correct to 4decimal places.

    Ans: -

    xxf elog)( ,01log)1( ef

    xxf

    1)(

    ,1

    1

    1)1( f

    2

    1)(

    xxf

    , 1)1( f

    32)( xxf

    , !22)1( f

    4

    6)(

    xxf

    iv , !36)1( ivf

    Now, by Taylors series

    ........)1(!4

    )1()1(

    !3

    )1()1(

    !2

    )1()1()1()1()(

    432

    ivfx

    fx

    fx

    fxfxf

    ........)!3(!4

    )1()!2(

    !3

    )1()1(

    !2

    )1()1)(1(0)(

    432

    xxx

    xxf

    ........

    4

    )1(

    3

    )1(

    2

    )1()1(log

    432

    xxx

    xxe

    Now

    ........4

    )11.1(

    3

    )11.1(

    2

    )11.1()11.1()1.1(

    432

    f

  • 7/31/2019 Applied Maths i u II Solution

    32/32

    UNIT IV( I Semester)

    ........4

    0001.0

    3

    001.0

    2

    01.01.0)1.1(log

    e

    ........00002.00003.0005.01.0)1.1(log e

    0953.0)1.1(log e upto 4 decimal places

    (d) Trace the curve 3 3 3x y axy .Sol: (1) Interchanging x and y, the given equation remains unchanged, hence there is symmetry

    about the line y=x.(2) The curve passes through the origin and the tangents at the origin are given by 3axy=0, i.e.,

    x=0, y=0 i.e., the coordinate axes. Hence (0,0) is a node.(3) The curve cuts the axes at (0,0) only.

    (4) Asymptote. From the given equation, we have

    ( ) ( + ) = .The only asymptote is + + = 0 .

    (5) From the given equation it is clear that x and y both cannot be negative since in this case lefthand side will become negative and right hand side will become positive, which is impossible.Hence the curve will not exist in the 3

    rdquadrant.

    (6) Intersection with the line (y=x): Putting y=x in the given equation, we get

    2 = 3.. , = 3 = .Hence the curve meets the line y=x in the point (3 a/2, 3 a/2). Also from the given equation

    =

    3 33 3 = 1 3

    2

    ,32

    .Thus the tangent at the point is inclined at an angle 135

    0