24
Applications of Gel Permeation Chromatography (GPC) to Asphalt Binder Binder Characterization William H. Daly Ionela Glover, Ioan Negulescu Chris Abadie, Rafael Cueto

Applications of Gel Permeation Chromatoggpyraphy (GPC ......Applications of Gel Permeation Chromatoggpyraphy (GPC) to Asphalt Binder Characterization William H. Daly Ionela Glover,

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • Applications of Gel Permeation Chromatography g p y(GPC) to Asphalt Binder Binder Characterization

    William H. DalyIonela Glover, Ioan NegulescuChris Abadie, Rafael Cueto

  • YOUR WORLD DESTINATION…TARGETED!TARGETED!

    RAPRAP

    11/4/2010 2

  • The CoThe Co authorsauthorsThe CoThe Co--authorsauthors

    Ioan Negulescu Ionela GloverIonela Glover

    11/4/2010 3Chris Abadie Rafael Cueto

  • ObjectivesObjectives

    Develop Experimental Procedures for utilizing GelDevelop Experimental Procedures for utilizing Gel Permeation Chromatography (GPC)

    Evaluate binder changes during processing sequence i GPC

    Observe impact of RAP addition during processing

    using GPC

    Follow aging process by coring pavements at annual intervals

    11/4/2010 4

  • Down the Road, Asphalt Cement Preparation

    Polymer-radial-linear

    511/4/2010

  • Sequence of Binder Samples for this Studythis Study

    1.BinderRefinery

    6.Binder Extracted from Road Cores

    after 6 months7.After 12 months

    Refinery after 6 months

    2.Binder Hot Mix Asphalt

    Plant (tank)

    5.Binder Extracted from Fresh Road

    Cores

    8.After 24 months(no samples yet)

    Plant (tank)

    3 B E

    Cores

    3.Binder Extracted from HMA Plant :

    Mixture Binder+Agg.+RAP

    (DRUM)

    4.Binder Extracted from HMA (after

    transport)

    RAP

    11/4/2010 6

  • A B EA B E

    CORE 6”6”

    Asphalt Binder ExtractionAsphalt Binder Extraction

    SOHXLET EXTRACTION ROTAVAPOR

    7vacuum

    OVERNIGHTSEDIMENTATION

  • GPC Sample Preparation

    2‐3% concentrationin THF

    3‐5 mLsyringe

    PTFE 45μm

    % insoluble by weight

    8

    PTFE 45μmfilter

    1.5 mL vialPTFE 45μm

    THF washed filter11/4/2010

  • Agilent 1100 GPC SystemAgilent 1100 GPC System

    911/4/2010

  • Typical PMAC GPC Chromatogram

    ative scale)

    RI signal (Re

    laD

    20 25 30 35 40

    Timeor Volume (minormL) PMAC

    10

    Time or Volume (min or mL)Elution rate: 1ml/min

    11/4/2010

  • Regions of a PMAC GPC chromatogram, showing the relationship between elution volume and molecular weights relationship between elution volume and molecular weights

    values, based on calibration curve.

    1111/4/2010

  • GPC chromatogram of binders Before and after 1 year in the Before and after 1 year in the

    field

    0.20

    0.22

    0.24

    0.20

    0.25

    US 190 new0.14

    0.16

    0.18

    0.21

    0.24

    0.27Supplier C Supplier B

    0 10

    0.12

    0.14

    0.16

    0.18

    0.10

    0.15

    ts

    US

    190

    1 yr

    s U

    S 1

    90 n

    ew

    US 190 new

    0.06

    0.08

    0.10

    0.12

    0.12

    0.15

    0.18

    s LA

    18

    new

    LA 1

    8 af

    ter 1

    yr

    LA 18 after 1 yr

    0.02

    0.04

    0.06

    0.08

    0.10

    0.00

    0.05 DR

    I uni

    DR

    I uni

    t s

    -0.02

    0.00

    0.02

    0.04

    0 00

    0.03

    0.06

    0.09

    DR

    I uni

    ts

    DR

    I uni

    ts L

    LA 18 new

    25 30 35 40

    0.00

    25 30 35 40

    US 190 after 1 year

    Ve, mL20 25 30 35 40 45

    -0.04 0.00

    Ve, mL

    12

  • Distribution of components in original asphalt binders

    VHMw HMw MMw Sum Asphaltenes Maltenes

    PG 1000 300K 300 45K 45 19K 1000 19K 19 3K 3 0 2KPG 1000-300K 300-45K 45-19K 1000-19K 19-3K 3-0.2K

    A 64-22 0.0% 0.0% 0.0% 0.0% 15% 85%

    A 70-22M 0.2% 0.6% 0.5% 1.3% 15% 84%

    A 76-22M 0 6% 3 0% 0 7% 4 3% 14% 82%A 76-22M 0.6% 3.0% 0.7% 4.3% 14% 82%

    B 64-22 0.0% 0.0% 0.0% 0.0% 19% 81%

    B 70-22M 0.1% 1.2% 0.6% 1.9% 17% 81%

    B 76-22M 0.3% 1.0% 0.8% 2.1% 16% 82%

    C 64-22 0.0% 0.0% 0.0% 0.0% 16% 84%

    C 70-22M 0.0% 0.5% 0.8% 1.3% 17% 82%

    C 76-22 M 0.1% 1.3% 1.2% 2.7% 17% 81%

    11/4/2010 13

  • Distribution of components VHMw HMw MMw Sum Asphaltenes Maltenes

    1000-300K 300-45K 45-19K 1000-19K 19-3.5K 3.5-0.2K

    Supplier A2

    Refinery 0.0% 0.4% 1.9% 2.3% 22% 76%

    Tank 0.2% 1.2% 1.0% 2.4% 18% 79%

    RAP for US 71 0.0% 0.7% 2.2% 3.0% 27% 70%

    us 71 0.0% 0.4% 1.9% 2.3% 22% 76%

    US 71/after1 yr 0.0% 1.3% 1.8% 3.1% 25% 72%

    US 71/after 2 yr 0.1% 1.5% 1.7% 3.4% 19% 77%

    Supplier B2

    Refinery 0.1% 1.0% 1.8% 2.8% 24% 73%

    Tank 0.3% 1.1% 1.2% 2.6% 18% 79%

    RAP 0.0% 0.5% 2.3% 2.8% 27% 70%

    LA 1 after drum 0.1% 1.0% 1.9% 2.9% 24% 73%

    LA 1 after truck 0.1% 1.0% 1.9% 2.9% 24% 73%

    LA1 0.1% 1.0% 1.8% 2.8% 24% 73%

    LA 1/after1 yr 0.1% 1.3% 2.5% 3.9% 21% 75%

    LA 1/ after2 yr 0.0% 1.0% 2.0% 3.0% 25% 72%

    Supplier C1

    Refinery 0.1% 2.0% 1.5% 3.6% 21% 75%

    Tank 0.1% 2.1% 0.8% 3.1% 18% 79%

    11/4/2010 14

    NO RAP

    US 190 0.1% 2.0% 1.5% 3.6% 21% 75%

    US 190/after 1yr 0.3% 1.6% 1.6% 3.5% 13% 84%

    Us 190/after 2 yr 0.1% 1.6% 1.8% 3.5% 19% 78%

  • Typical Binder THF InsolublesTypical Binder THF InsolublesPG Grade or RAP sample Typical % insoluble THF on 0.45 mμ

    filter

    64-22, original 4%-5%

    76-22 original 6-7%

    76 22 core new route 10 11%76-22, core new route 10-11%

    RAP 7-10%

    Source Atypical

    B1 refinery 18%

    LA 18 new 23%

    11/4/2010 15

  • 79%

    Supplier A

    Refinery

    76%79%

    70%

    76%

    72%

    77%

    Tank

    RAP for US 71

    us 71

    US 71/after1 yr

    22%

    18%

    27%

    22%25%

    19%

    US 71/after 2 yr

    2.3% 2.4% 3.0% 2.3% 3.1% 3.4%

    16

    1000‐19K 19‐3.5K 3.5‐0.2K

    Sum Asphaltenes Maltenes

  • 79%

    Supplier B

    Refinery

    73%

    79%

    70%73% 73% 73%

    75%72%

    Tank 

    RAP 

    LA 1 after drum

    LA 1 after truck

    LA1 

    24%

    18%

    27%24% 24% 24%

    21%

    25%LA 1/after1 yr

    LA 1/ after2 yr

    2.8%2.6%2.8%2.9%2.9%2.8%3.9%3.0%

    17

    1000‐19K 19‐3.5K 3.5‐0.2K

    Sum Asphaltenes Maltenes

  • Supplier C

    75%79%

    75%

    84%

    78%

    Refinery

    Tank75% 75%

    NO  RAP

    US 190

    US 190/after 1yr

    21%18%

    21%19%

    Us 190/after 2 yr

    3.6% 3.1% 3.6% 3.5%

    13%

    3.5%

    11/4/2010 18

    1000‐19K 19‐3.5K 3.5‐0.2K

    Sum Asphaltenes Maltenes

  • Recommendations •Library of RAP Samples•History of Selected RAP Sources

    RecommendationsFuture Work

    • Impact ofImpact of different blending processes

    •Does SHRP characterization  apply to RAP mixes

    •Aging  properties of Binders containing RAP  at various  glevels

    11/4/2010 19

  • Not readyNot ready

    0 25

    LA 116 15% and 20% RAP 

    0.2

    0.25

    0.15

    15%RAP

    0.05

    0.120%RAP

    0

    22 27 32 37 42 47

    11/4/2010 20

  • RTFO vs Core RoadRTFO vs. Core Road

    VHMw HMw MMw Sum Asphaltenes Maltenes

    1000-300K 300-45K 45-19K 1000-19K 19-3.5K 3.5-0.2K

    Refinary A/ RTFO 0 2% 1 3% 0 9% 2 4% 20% 78%Refinary A/ RTFO 0.2% 1.3% 0.9% 2.4% 20% 78%

    LA 26 core road 0.2% 1.5% 1.4% 3.1% 25% 72%

    Refinery B/ RTFO 0.3% 1.2% 1.3% 2.9% 19% 79%

    LA18 core road 0.0% 1.2% 2.3% 3.5% 26% 70%

    Refinery D/ RTFO 0.5% 0.8% 0.7% 2.0% 16% 82%

    LA 15 core road 0.2% 1.2% 0.9% 2.3% 20% 77%

    21

  • Old RAP  vsnewer PMAC Aging newer PMAC 

    RAP   Additives, nature and content

    simulation related to GPC 

    analysis

    Concerns

    RAP Sto a e Percentage RAP  upper 

    limits

    RAP Storage time and conditions

    11/4/2010 22

  • Conclusions

    Field samples containing RAP

    Conclusions

    Field samples containing RAP show slower oxidation than that predicted by RTFO laboratory aging suggesting that addition of g g gg g20 wt% RAP is beneficial to oxidative stabilization. 

    Addition of RAP during the mixing process increases themixing process increases the asphaltene content with a corresponding decrease in the maltenes content.  

    Experimental data limited by number of RAP samples available. Please send us

    lmore samples.

    23

  • Thank You , any Questions ??

    11/4/2010 24