2
The MAX IV Laboratory ‐ We make the invisible visible APPLICATIONS IN THE PACKAGING INDUSTRY BIOPLASTICS AND BIOFOAMS SLU and KTH Plant proteins such as wheat gluten (WG) are promising alternatives to petroleum based packaging materials. The proteins are biodegradable and are relatively low‐ cost byproducts from the bioethanol fuel industry. They can be polymerized by processing into bioplastic films or foams for various applications. The morphology (shape and form) of packaging materials can be correlated with functions that are important for packaging applications, for example mechanical strength and air barrier properties. Researchers at the Swedish University of Agricultural Sciences (SLU) and the Royal Institute of Technology (KTH) are regular visitors at the MAX IV Laboratory where they use X‐ray scattering techniques (SAXS and WAXS) to understand the morphology of materials based on WG proteins. In particular, two different materials have been investigated at MAX IV Laboratory; bioplastic (WG‐glycerol‐additives) films and WG foams. The properties of bioplastic WG films are strongly affected by manufacturing processes and film composition. For future applications it is hence important to understand how these properties can be changed in a controlled manner. SAXS measurements at the MAX IV Laboratory helped researchers improve their understanding of the relationship between shape and form and the function of various types of bioplastic films. The research showed how the film morphology could be tailored by blending the bioplastics with various chemicals including sodium hydroxide, ammonium hydroxide and salicylic acid during manufacturing. The most important result was the observation of hexagonal (HCP) structures in some of the films, which influence the strength of the material. In addition, foams made from wheat gluten were developed and showed different density and strength depending on the fractions of different proteins they contained (for example gliadin‐ or glutenin‐rich). The X‐ray scattering experiments were of the highest importance in gaining information on how the foam morphology can be tailor‐made for packaging applications. POLYMER COMPOSITES Tetra Pak Tetra Pak is a global supplier of food processing and packaging solutions, present in more than 170 countries with some 22,000 employees. In 2011 Tetra Pak produced Figure 1. 2D SAXS pattern on extruded wheat gluten bioplastic films containing ammonium hydroxide and salicylic acid. Figure 2. Proposed model for the HCP scattering objects in the extruded wheat gluten bioplastic films.

Applications in the packaging industry _ MAX IV Laboratory.pdf

Embed Size (px)

Citation preview

Page 1: Applications in the packaging industry _ MAX IV Laboratory.pdf

The MAX IV Laboratory ‐ We make the invisible visible

APPLICATIONS IN THEPACKAGING INDUSTRY

BIOPLASTICS AND BIOFOAMS

SLU and KTH

Plant proteins such as wheat gluten (WG) are promising alternatives to petroleum based packaging materials. The proteins are biodegradable and are relatively low‐cost byproducts from the bioethanol fuel industry. They can be polymerized by processing into bioplastic films or foams for various applications.

The morphology (shape and form) of packaging materials can be correlated with functions that are important for packaging applications, for example mechanicalstrength and air barrier properties. Researchers at the Swedish University of Agricultural Sciences (SLU) and the Royal Institute of Technology (KTH) are regular visitorsat the MAX IV Laboratory where they use X‐ray scattering techniques (SAXS and WAXS) to understand the morphology of materials based on WG proteins. 

In particular, two different materials have been investigated at MAX IV Laboratory; bioplastic (WG‐glycerol‐additives) films and WG foams.

The properties of bioplastic WG films are strongly affected by manufacturing processes and film composition. For future applications it is hence important tounderstand how these properties can be changed in a controlled manner. SAXS measurements at the MAX IV Laboratory helped researchers improve theirunderstanding of the relationship between shape and form and the function of various types of  bioplastic films. The research showed how the film morphology couldbe tailored by blending the bioplastics with various chemicals including sodium hydroxide, ammonium hydroxide and salicylic acid during manufacturing. The mostimportant result was the observation of hexagonal (HCP) structures in some of the films, which influence the strength of the material.

In addition, foams made from wheat gluten were developed and showed different density and strength depending on the fractions of different proteins they contained(for example gliadin‐ or glutenin‐rich). The X‐ray scattering experiments were of the highest importance in gaining information on how the foam morphology can betailor‐made for packaging applications.

POLYMER COMPOSITES

Tetra Pak

Tetra Pak is a global supplier of food processing and packaging solutions, present in more than 170 countries with some 22,000 employees. In 2011 Tetra Pak produced

Figure 1. 2D SAXS pattern on extruded wheat gluten bioplastic films containing ammonium hydroxide and salicylic acid.

Figure 2. Proposed model for the HCP scattering objects in the extruded wheat gluten bioplastic films.

Page 2: Applications in the packaging industry _ MAX IV Laboratory.pdf

over 167 billion packages worldwide. Researchers at Tetra Pak are continuously developing new materials for use in their various packages.

One such material is a polymer based composite. This composite is tested for improved gas barrier properties compared with conventional plastic‐based films and mayhence be used to increase the shelf‐life of packaged products.

In their effort to understand the properties of the composite material, Tetra Pak researchers visited the beamline I911‐SAXS at the MAX IV Laboratory to perform SAXS.The technique is sensitive to the size, distribution, orientation and aggregation of the particles in the polymer matrix, which are factors known to influence the gasbarrier properties of the material. Figure 3 illustrates the advantage of using the material with the “tortuous” diffusion path instead of conventional composites in gasbarrier plastic films.

The experiments helped the Tetra Pak researchers understand how the particles were distributed in the polymer matrix and how they influence the final properties ofthe composite. Their visit to the MAX IV Laboratory thus provided them with an important puzzle piece in their development of improved materials for usage inpackages for food distribution.

Figure 3. Illustration of how the gas barrier properties differ between conventional (top) and "tortous path" (bottom) polymer composites.