Application of Self-Thinning in Mesquite (Prosopis glandulosa var. glandulosa) to Range Management and Lumber Production

Embed Size (px)

Citation preview

  • 8/9/2019 Application of Self-Thinning in Mesquite (Prosopis glandulosa var. glandulosa) to Range Management and Lumber Pr…

    1/8

    Forest Ecology and Management,

    31 ( 1990 ) 225-232 225

    Elsevier Science Publishers B.V., Amsterdam -- Printed in The Netherlands

    A p p l i c a t i o n o f S e l f T h i n n i n g i n M e s q u i t e

    P r o sop i s g l a n du l o sa v a r . g l andu l o sa ) t o R a n g e

    M a n a g e m e n t a n d L u m b e r P r o d u c t i o n

    PETE R FELKER, JOSEP H M. MEYER and STEVEN J. GRONSKI

    Center for Semi-Arid Forest Resources, Caesar Kleberg Wildlife Research Institute Texas A I

    University, KingsviUe, TX 78363 (U.S.A.)

    (Accepted 27 January 1989)

    ABSTRACT

    Felker, P., Meyer, J.M. and Gronski, S.J., 1990. Application of self-thinnin g in mesquite (Prosopis

    glandulosa var. glandulosa) to range management and lumber production. For. Ecol. Manage.,

    31: 225-232.

    To gain a better understanding of the relationships between stand density and tree volume in

    mesquite, seven native stands were examined. Stand densities ranged from 6 to 19 000 stems h a- 1,

    and e stimat ed biomass ranged from 0.65 to 1300 kg stem -1. Regression equations were used to

    estimate biomass from basal diameters. A plot of estimated tree biomass vs. stand density was

    defined by the estima ted self-th inning line: log W-- - 1.17 log d+5. 22 (r e=0.9 5), where: W

    is stem fresh weight (kg); and d stand densi ty (stems h a- 1 . Regressions of stand dens ity on basal

    diameter, lumber volume stem-1 and tot al biomass ha-1 were also examined. When plots deemed

    to not be at full stand occupancy were excluded from the data set, a regression predicted that

    densities of 100 stems ha -1 would produce 35-cm-basal -diameter stems. This density also gave

    the highest lumber yield.

    I N T R O D U T I O N

    M e s q u i t e

    Pr osopis landul osa

    ar .

    glandulosa)

    r e e s c a n o c c u r a t d e n s i t i e s

    o f 1 0 0 0 0 s t e m s h a - 1 , w i t h b a s a l d i a m e t e r s o f 3 - 4 c m , a b o u t t e n y e a r s a f te r

    l a n d - c le a r i n g . T h e s e d e n s e s t a n d s a re a p r o b le m o n r a n g e l a n d s , w h e r e t h e y

    c o m p e t e w i t h f o ra g e s p e c i e s fo r li g h t , w a t e r a n d n u t r i e n t s ( F i s h e r , 1 9 5 0 ) . L a r g e r

    m e s q u i t e t r ee s g i v e s h a d e t o l i v e s t o c k a n d p r o d u c e a b u n d a n t b e a n s , u s e f u l f or

    a n i m a l fe e d i n d ry y e a r s ( F e l k e r , 1 9 7 9 ) . F u r t h e r m o r e , m e s q u i t e t r e e s im p r o v e

    s o i l f e r t i l i t y t h r o u g h n i t r o g e n f i x a t i o n ( R u n d e l e t a l . , 1 9 8 2 ) . L a r g e t r e e s c a n

    p r o v i d e t i m b e r w i t h p r o p e r t i e s s u i t a b l e f o r q u a l i t y h a r d w o o d f u r n i t u r e a n d

    f l o o r i n g ( W e l d o n , 1 9 8 6 ) .

    F o r m e r l y , w h e r e d e n s e s t a n d s o f m e s q u i t e e x i s t ed , e r a d i c a t io n w a s a t -

    t e m p t e d ( F i s h e r et a l ., 1 9 7 2 ) , u s u a l l y w i t h o u t s u c c e s s . I f s e l f - t h i n n i n g o c -

    0378-1127/90 / 03.50 © 1990 Elsevier Science Publishers B.V.

  • 8/9/2019 Application of Self-Thinning in Mesquite (Prosopis glandulosa var. glandulosa) to Range Management and Lumber Pr…

    2/8

      6 P FELKE R ET AL

    curr ed in mesqui te stands, t he livestock problems caused by small trees could

    be eliminated. Large mesquite trees, grown at wide spacings, might compete

    against seedlings and maintain a savannah. In search of economical and self-

    sustaining techniques for rangeland manag ement, we evaluated self-thinning

    in mesquite. Could large trees pre vent dense stands of mesquite from becoming

    established? If self-thinning occurred in mesquite, what would be the ultimate

    tree size and sta nd-density for lumber production?

    The natural thinni ng of other forest communities has been described by a

    plot of stand density (stems ha -1) vs. plant diameter or weight (Long and

    Smith, 1984). Research with other species has examined dens ity/ diam eter re-

    lationships at full-stand occupancy. In mesic areas, this can be assumed to

    occur at crown closure.

    Mesquite trees grow in semi-arid and ar id regions, where self- thinning might

    occur at low stand densities. The root: shoot biomass ratio of arid-land trees

    could exceed 1, with la teral roots ex tend ing beyon d the canopies. Indeed, Cable

    (1977), using neutron access tubes, found tha t mesquite trees used water at

    10-15 m beyond the ir canopy zones. In arid-land forests there is seldom canopy

    closure; the spacing of trees increases as an nual rainfall decreases. Thus, full-

    stand occupancy in mesquite trees may depend more on root competition than

    canopy competition. This could complicate the estimati on of a self -thinning

    line.

    MATERIALS AND METHODS

    Since mesquite stands seldom have closed canopies, it is difficult to know

    when full-site occupancy occurs. We measured large trees, at spacings several

    times the canopy diameter, to obtain an upper limit for tree size with minimal

    competition. Mesquite plantations do not exist, except for research plots. Hence,

    it was impossible to measure densit y/volu me relationships of trees at known

    ages. Instead, sites with co ntra sting density: volume ratios were chosen. Native

    mesquite stands between Kingsville and Nixon, Texas, were measured for basal

    diameters, tree heights, and canopy diameters. The mean annual rainfall in

    both locations was about 650 mm. Selection criteria were based on absence of

    irrigation and fertilization. The first, second, and fourth locations were near

    Kingsville; the other four encompassed a 15-km distance near Nixon, Texas.

    Plot sizes varied according to s tand density, with smaller plots used in denser

    stands (Table 1 ).

    A regression from the harvest of 194 young South American rosopis alba

    trees in Kingsville, Texas (Felker, unpublished data, 1986) was used for esti-

    mating the biomass of small stems at sites 1 through 3. The equation was:

    log W=2.70 lo gd b - l. l l (r2=0.957, SE=0.041)

    where: W is stem fresh weight (kg); and db, stem basal diameter (cm). The

  • 8/9/2019 Application of Self-Thinning in Mesquite (Prosopis glandulosa var. glandulosa) to Range Management and Lumber Pr…

    3/8

    SELF-THINNING IN MESQUITE 227

    TABLE 1

    W e i g h t s a n d d e n s i t ie s o f s t e m s i n s u r v e y e d m e s q u i t e Prosopis

    glandulosa

    var.

    glandulosa

    s t ands

    S i t e P l o t D i a m e t e r B i o m a s s D e n s i t y

    m 2 ) cm s t e m 1 kg s t e m 1 s t em s h a 1

    1 50 1.88 0.72 18 800

    1 50 1.85 0.60 13 800

    1 50 3.61 4.16 10 200

    1 50 3.40 3.20 10 000

    2 144 4.87 9.36 7180

    2 144 6.08 13.67 5110

    2 144 5.76 16.6 4760

    2 144 5.96 12.3 3590

    3 100 5.67 11.2 5800

    3 100 6.18 15.0 4900

    3 100 7.04 19.3 2900

    4 900 20.7 183 280

    4 900 18.8 148 320

    4 900 18.0 137 350

    4 900 15.5 95 470

    5 900 22.0 213 311

    5 900 24.7 281 244

    5 900 25.8 298 222

    6 900 30.6 452 167

    6 900 31.2 467 122

    6 900 42.4 885 111

    7 11800 43.7 943 13.9

    7 7100 49.2 1190 9.92

    7 6500 50.9 1290 5.93

    b i o m a s s o f s t e m s a t t h e o t h e r f o u r s it e s w a s e s t i m a t e d b y a r e g r e s s io n o n 1 0

    l a r g e m e s q u i t e

    P. g landu losa

    var.

    g landu losa)

    t r e e s t h a t w e r e w e i g h e d a n d

    m e a s u r e d i n S o u t h T e x a s ( E l F a d l e t al ., 1 9 8 9 ) :

    l o g W=1 05 log A b+ 3.8 3 r2--0.800, SE----0.187)

    w h e r e : A b i s s t e m b a s a l a r e a ( c m 2 ) .

    L o g a r i t h m s o f fr e s h w e i g h t ( k g s t e m - 1 w e r e e s t im a t e d w i t h t h e s e r e g re s -

    s i o n e q u a t io n s , a n d p l o t t e d o n t h e l o g a r it h m s o f s t a n d d e n s i t y ( s t e m s h a - 1 ) .

    A r e g r e s s io n d e s c r i b i n g t h i s s e l f - th i n n i n g r e l a t i o n s h i p w a s p l o t t e d o v e r t h e

    p o i n t s .

    A s t u d y c o n d u c t e d b y R o g e r s ( 1 9 8 4 ) i n L u f k i n , T e x a s r e g r e s s e d s a w n l u m -

    b e r , g r a d e 2 lu m b e r , a n d g r a d e 1 l u m b e r y i e l d s o n t h e l e n g t h s a n d d i a m e t e r s o f

    1 0 5 m e s q u i t e l o g s. B o a r d s w i t h a c l e a r s u r fa c e o f 5 .1 c m × 1 5 .2 c m w e r e c l a s s i-

  • 8/9/2019 Application of Self-Thinning in Mesquite (Prosopis glandulosa var. glandulosa) to Range Management and Lumber Pr…

    4/8

      8 P F ELKERE T AL

    f l e d a s g r a d e - 2 l u m b e r ; b o a r d s w i t h a c l e a r s u r f a c e o f a t l e a s t 5 . 1 >< b y 6 0 c m

    w e r e c o n s i d e r e d g r ad e - 1 l u m b e r . T h e m e t r i c c o n v e r s i o n s o f t h e s e r e g r e s s i o n s

    w e r e u s e d t o p r e d i c t l u m b e r v o l u m e s :

    SL = 1 . 8 6 D s e + 0 . 1 7 0 L - - 3 6 . 0

    G 2 = 1 . 1 6 D , ~ +0 .0 8 5 L - 2 0 . 0

    G 1 = 0 . 4 8 2 D s e + 0 .0 2 3 L - 9 . 2 1

    ( r e = 0 . 7 1 )

    ( r 2 = 0 . 5 3 )

    ( r 2 = 0 . 4 5 )

    w h e r e : D~e i s s m a l l - e n d d i a m e t e r o f a m e s q u i t e l o g ( c m ) ; L , m e s q u i t e l o g l e n g t h

    ( c m ) ; S L, s a w n l u m b e r ( m 3 ) ; G 2, g r a d e - 2 l u m b e r ( m 3 ) ; a n d G l , g r a d e - 1 l u m b e r

    m3).

    I n e s t i m a t i n g t r e e v o l u m e s , E1 F a d l e t a l. ( 1 9 89 ) e q u a t e d b r a n c h s e c t i o n s t o

    c y l i n d e rs , w i t h d i a m e t e r s e q u al t o t h e m e a n o f s m a l l - e n d a n d l a r g e - e n d

    t h i c k n e s s e s . L u m b e r v o l u m e s , p r e d i c t e d f r o m R o g e r s ( 1 9 8 2 ), w e r e r e g r e s s e d

    o n t h e b a s a l a r e a s ( m 2 ) o f t h e s e t r e e s t o o b t a i n :

    l og V = 1 . 2 7 l o g A b + 0 . 7 1 8

    l o g S L = 1 . 3 7 l o g A b + 0 . 4 5 3

    log G2 = 1 .35 log Ab + 0 .228

    log G1 = 1 .65 log Ab-- 0 .202

    ( r2 = 0 .9 1 , S E = 0 .1 4 1 )

    ( r2 = 0 .9 3 , S E= 0 .1 3 9 )

    (r2 = 0 . 9 3 , S E = 0 . 1 3 6 )

    ( r 2 = 0 . 9 0 , S E = 0 . 1 9 7 )

    w h e r e : V i s t r e e v o l u m e ( m 3 ); a n d r 2, c o r r e l a t i o n f o r t h e r e g r e s s i o n s o f p r e -

    d i c t e d l u m b e r v o l u m e s o n s t e m b a s a l a r e a.

    R o g e r s l u m b e r g r a d es w e r e b e l o w c o m m o n g r a d es f or o t h e r h a rd w o o d s , d u e

    t o d e f e c t s i n m e s q u i t e w o o d . B o t h R o g e r s ( 1 9 84 ) a n d E l F a d l e t a l . ( 1 9 8 9 ) u s e d

    r e g r e s s i o n s b a s e d o n l o g s g r e a t e r t h a n 1 0 c m a t t h e s m a l l e n d . S i n c e i t is d if -

    f i c u lt t o p r o c e s s s m a l l l o gs , w e c o n s i d e r e d t h e l u m b e r v o l u m e t o b e n i l i n t r e e s

    w i t h d i a m e t e r s l es s t h a n 1 5 c m .

    RESULTS

    D e n s i t y s t a t i s t i c s o f t r e e s i n t h e s u r v e y a r e a s ( T a b l e 1 ) a r e u s e f u l fo r p r e -

    d i c t in g th e b i o m a s s o f n a t i v e m e s q u i t e s t an d s . B i o m a s s s t e m - 1 r a n g e d f r o m

    0 .6 5 k g a t a s t a n d d e n s i t y o f o v e r 10 0 0 0 s t e m s h a - 1 , t o 1 3 0 0 k g a t a s t a n d

    d e n s i t y o f 1 0 s t e m s h a - 1. S t e m v o l u m e c a n b e o b t a i n e d b y d i v i d i n g m a s s b y a

    m e s q u i t e w o o d d e n s i t y o f 7 00 k g m - 3 ( W e l d o n , 1 9 8 6 ).

    S e v e r a l r eg r e s s io n s w e r e e x a m i n e d f o r p r e d i c t i n g s t e m b i o m a s s f r o m s t a n d

    d e n s i ty . W e a s s u m e d t h a t f u l l - s t a n d o c c u p a n c y d i d n o t e x i s t a t s i te 7 , a n d

    c o m p u t e d a r e g r e s s io n t h a t e x c l u d e d t h e s e t r e e s. T h e e q u a t i o n , s h o w n g r a p h -

    ica l ly in F ig . 1 , i s :

    l o g W = 1 . 1 7 l o g N + 5 . 2 2 ( r2 = 0 .9 5 , S E = 0 . 0 64 )

    w h e r e : N i s s t a n d d e n s i t y ( s t e m s h a - 1 ) .

  • 8/9/2019 Application of Self-Thinning in Mesquite (Prosopis glandulosa var. glandulosa) to Range Management and Lumber Pr…

    5/8

    S E L F - T H I N N I N G I N M E S Q U I T E 9

    3 5 - -

    0 o

    3.0

    E 2 .5

    ~ 2.o-

    ~ 1 .5-

    E

    C~

    x5

    1.0

    0

    23

    ~ 0.5-

    0

    0.0

    I

    0.5 1.0

    I I I

    1,5 2.0 2.5

    o

    o

    310 3.5 4.0 4.5

    I o g l O o f s t o n d d e n s i t U ( s t e m ha -1)

    F i g . 1 . S e l f - t h i n n i n g l i n e f o r h o n e y m e s q u i t e

    Prosopis glandulosa

    v a r .

    glandulosa)

    s t a n d s . T h e

    r e g r e s s i o n l in e : l o gl o f r e s h w e i g h t k g s t e m - 1 ) = _ 1 .1 7 X l o gl o s t a n d d e n s i t y s t e m s h a - 1 ) + 5 .2 2

    d o e s n o t i n c l u d e t h e t h r e e s i t e s i n t h e u p p e r - l e f t c o r n e r o f th i s g r a p h . )

    R e d u c i n g s t a n d d e n s i t y i s b e n e f i c ia l f or c a t t l e g r a z in g a n d l u m b e r p r o d u c -

    t i o n . A r e g r e s s io n o f b a s a l d i a m e t e r ( c m ) o n s t a n d d e n s i t y ( s t e m s h a - 1 ) i n -

    d i c a t e d w h a t t h i n n i n g r e g i m e w o u l d p r o d u c e a g i v e n- s iz e lo g. W h e n t h e l a r g es t

    t r e e s a t s i t e 7 , w i t h d e n s i t i e s b e l o w f u l l - si t e o c c u p a n c y , w e r e e x c l u d e d , t h e

    e q u a t i o n w a s:

    l o gD b - - - - 0 . 5 1 l o g N + 2 . 5 9 ( r 2 = 0 . 9 6 , S E ---- 0.0 22 )

    w h e r e : D b is b a s a l d i a m e t e r ( c m ) .

    T h i s r e g r e s s i o n e q u a t i o n p r e d i c t s t h a t 3 0 - c m a n d 4 0 - c m - b a s a l - d i a m e t e r lo g s

    c o u l d b e g r o w n a t s p a c i n g s o f 8 . 3 m a n d 1 0 .9 m r e s p e c t i v e l y ( F ig . 2 ) . H o w e v e r ,

    t h e s l o p e i s d i f f e r e n t f r o m t h e - 1 . 5 f r e q u e n t l y r e p o r t e d ( H a r p e r 1 97 7; L o n g

    a n d S m i t h , 19 8 4 ). T h e ' m i n u s 3 / 2 l a w ' s h o w s t h a t b i o m a s s h a - 1 i n c r e a s e s i n

    p r o p o r t i o n t o t h e r e c i p r o c a l o f t h e s q u a r e r o o t o f s t a n d d e n s i t y . F o r e x a m p l e ,

    i f s t a n d d e n s i t y d e c r e a s e s f r o m 1 0 00 t o 1 00 s t e m s h a - 1, t h e n b i o m a s s h a - 1

    i n c r e a s e s b y a f a c t o r o f 3 .1 6 . T h e s u b s t i t u t i o n s a r e a s f o ll o w s :

    l o g W = - 3 / 2 l o g N + l o g K o

    log ( W N a /2 = l o g K o

  • 8/9/2019 Application of Self-Thinning in Mesquite (Prosopis glandulosa var. glandulosa) to Range Management and Lumber Pr…

    6/8

    2 3 P. FELKER ET A L.

    2.0

    t .6

    u

    L

    (])

    ~J

    E 1.2

    ©

    8 o B

    x~

    ©

    D

    o.4

    ©

    \

    © 0

    I I I I I I I

    0.5 I.O 1.5 2.0 2.5 3.0 3.5 4.0 4.5

    1 0 9 1 0 o f s t o r q d d e n s i t y s t e r n s h u -1)

    F i g . 2 . S e l f - t h i n n i n g l i n e f o r h o n e y m e s q u i t e (Prosop is g landu l osa v a r . glandu losa) s t a n d s . T h e

    r e g r e s s io n l i n e: lo g lo b a s a l d i a m e t e r c m ) = - 0 . 5 1 × l og l o s t a n d d e n s i t y s t e m s h a - ~ 4 - 2 . 5 9 d o e s

    n o t i n c l u d e t h e t h r e e s i t e s i n t h e u p p e r - l e f t c o r n e r o f t h i s g r a p h . )

    O 5

    g O / / ; i

    I 0

    80 / I ~; 40

    70 / I \ i

    / I I (0 I , 0

    , , , ~ o ,

    2 0 . 0 . . . . . i

    0

    I0

    £~" 4 0 l / / [ \P , L:)O J ~"

    30 / .6 [] I

    / / o ~ E

    o~ 2o / / . . . . . . . ' . > . . , , / I ~o L

    o ~ s z S . ' " . . .. .. .. .. .. .. .. . , , . , , . , , , . " 2 ~ _ I

    J

    0.7 1.2 1.7 2.2 2.7

    3 . 2

    3.7 4.2

    S t G m d D e n s i t y l o g l O o f s t e m s h Q -1 )

    3

    F i g . 3. G r e en m e s q u i t e b i o m a s s O , t h a - 1 ) a n d l u m b e r v o l u m e s m h a - ) a s i n f l u e n e e d b y s t an d

    d e n s i t y l o g lo s t e m s h a - 1 ) . . , g r a d e -1 l u m b e r ; A , g r a d e -2 lu m b e r ; [Z , t o t a l s a w n l u m b e r .

    S i n ce W N = B ,

    K o = B N °s

  • 8/9/2019 Application of Self-Thinning in Mesquite (Prosopis glandulosa var. glandulosa) to Range Management and Lumber Pr…

    7/8

    SELF THINNING IN MESQUITE

    231

    and B

    =

    W o / N m-- 1)

    where: B is biomass ha-1; and m, slope of a self-th inning line.

    This implies that when the absolute value of the slope is greater than 1,

    biomass ha-1 increases with decreasing stand density, as in mesquite stands.

    Whe n the slope is 1, biomass ha -1 does not change with sta nd density; when

    the slope is less than 1, biomass ha -1 declines with decreasing stand density.

    Max imum biomass ha - 1 occurred at densities of about 100 stems h a - 1. Large

    trees at low stand density, and small trees at high stand density, had lower

    biomass ha-1. The sawn lumber (grade I and grade 2 lumber ) for stems larger

    tha n 15 cm diameter is presen ted in Fig. 3. At densities above 3000 st ems h a- 1,

    no lumber was produced. But, as s tand densi ty decreased to 470 stems

    h a - 1

    lumber increased rapidly. Th e volum e/de nsity relationship was described by

    the following regression:

    log SL=-- 0.77 lo gN+ 2. 84 (r2=0.70, SE=0.180)

    The largest stems, and s tems below 15 cm in diameter, were excluded from

    this regression. Sawn lumber was maximized (23 m 3 ha- 1) at densities of about

    111 stems ha -1, or stem spacings of 9.5 m. At retail prices of US 425 m- 3, non-

    select lumber from these trees would be worth US 9775.

    DISCUSSION

    Plotting mesquite biomass h a-1 on stand density indicated maximum bio-

    mass at about 100 stems ha-1. The self-thinning line developed for mesquite

    had a slope tha t was different from the - 3 / 2 often reported in literature. Re-

    cently, Weller (1987) s tate d tha t the - 3 / 2 slope is not applicable to all tree

    species. The difference between mesquite trees, and other species with differ-

    ent thin ning slopes, may relate to the extensive root system in mesquite; full

    site occupancy may occur without canopy closure in mesquite.

    The number of mesquite stems ha-1 shortly after seedling establishment

    has exceeded 10 000. In this condition, mesquite is a thre at to grass production

    on rangeland. The mini mum density we observed was 6 stems ha-1, but these

    trees were not at full-site occupancy. Under this condition, seedlings become

    established in open areas. Medium stand densities ( 100-150 stems h a- 1 could

    prevent this problem.

    Controlled thinnn ings may increase the quality of mesquite lumber. Most

    hardwoods are phototropic and develop misshapen boles when grown under

    the c rowns of other trees. Thus, it is beneficial to establish ha rdwoods in dense

    and unif orm stands (Smith, 1962). Although full-stand occupancy should be

    maintained to prevent seedling establishment, tree spacings in mechanical-

    thinn ing operations should be based on desired tree-size. Regression equations

    predict that 100 stems ha-1 would achieve basal diameters of 36.5 cm, and

  • 8/9/2019 Application of Self-Thinning in Mesquite (Prosopis glandulosa var. glandulosa) to Range Management and Lumber Pr…

    8/8

    232 P. FELKERET AL.

    sawn-lumber volumes of about 19.8 m 3 (8391 fbm 1 . It is questionable whether

    the same dens ity/volum e relationships would hold in regions with different

    rainfall, but stem spacings of about 10 m would be a good man age men t objec-

    tive for this study area.

    C O N C L U S I O N S

    Regressions of stand density on stem volume, biomass ha-1, basal diamete r

    and three grades of sawn lumber were estimated for mesquite stands. The

    regression of stem volume on stand density had a slope slightly less than - 1,

    indicat ing that mesquite biomass increased little with lower stand density. Yet,

    decreasing stand densities for mesquite lumber production was compatible with

    lumber production and land ma nage ment for cattle grazing. Maximum pre-

    dicted lumber volume (22 m 3 ha - 1 occurred in 42-cm-diameter stems at spac-

    ings of 9.5 m.

    Mesquite lumber is superior to most oaks, walnut, and Philippine mahogan y

    in hardness and shrink/swe ll characteristics; cultivating it could enhance land

    revenues, which, from cattle alone, are currently only about 6 ha-1 y ea r- '.

    R E F E R E N C E S

    C ab le , D .R . , 1977. Seas o na l u s e o f s o i l wa te r by ma tu re ve lve t mes qu i t e . J . R ang e M a nage . , 30 : 4 -

    11.

    E l F a d l , M . A . , G r o n s k i , S . J . , A s a h , H . , T i p t o n , A . , F u l b r i g h t , T . E . a n d F e l k e r , P . , 1 9 8 9. R e g r e s s i o n

    e q u a t i o n s t o p r e d i c t f r e s h w e i g h t a n d t h r e e g r a d e s o f l u m b e r f r o m l a r g e m e s q u i t e

    Prosopis

    glandulosa

    va r .

    glandulosa)

    i n Texas . F o r . Eco l . M anage . , 26 : 275-284 .

    F e l k e r , P . , 1 9 79 . M e s q u i t e : A n a l l p u r p o s e l eg u m i n o u s a r i d l a n d tr e e . I n : G . A . R i t c h i e E d i t o r ) ,

    N e w A g r i c u l t u r a l C r o p s . A A A S S y m p o s i a , V o l. 3 8. W e s t v i e w P r e s s, B o u l d e r , C o l o r a d o , p p . 8 9 -

    132.

    F i s h e r , C . E . , 1 95 0. T h e m e s q u i t e p r o b l e m i n t h e s o u t h w e s t . J . R a n g e M a n a g e . , 3 : 6 0 - 7 0 .

    H a r p e r , J . L . , 1 9 7 7. P o p u l a t i o n B i o l o g y o f P l a n t s . A c a d e m i c P r e s s , L o n d o n , p p . 1 8 3 - 22 5 .

    L o n g , J . N . a n d S m i t h , F . W . , 1 98 4. R e l a t i o n b e t w e e n s i ze a n d d e n s i t y i n d e v e l o p i n g s t a n d s : a

    d e s c r i p t i o n a n d p o s s i b l e m e c h a n i s m s . F o r . E c o l . M a n a g e . , 7 : 1 9 1 - 20 6 .

    R o g e r s , K . E . , 1 9 84 . L u m b e r a n d c l e a r c u t t i n g r e c o v e r y f r o m m e s q u i t e

    Prosop is spp. )

    l ogs . Tex as

    For . Se rv . , Fo r . P rod . Lab . , Lufk in , Pub l . 135 , 8 pp .

    R u n d e l , P . W . , N i l s e n , E . T . , S h a r i f , M . R . , V i r g i n i a , R . A . , J a r r e l l , W . M . , K o h n , D . H . a n d S h e a r e r ,

    G . B . , 1 9 82 . S e a s o n a l d y n a m i c s o f n i t r o g e n c y c l i n g f o r a

    Prosopis

    w o o d l a n d i n t h e S o n o r a n

    Des e r t . P l a n t S o i l , 67 : 343-353 .

    S m i t h , D . M . , 1 9 62 . T h e P r a c t i c e o f S i lv i c u l t u r e . W i l e y , N e w Y o r k , p p . 2 9 - 6 3 .

    W e l d o n , D . , 1 9 8 6. E x c e p t i o n a l p h y s i c a l p r o p e r t i e s o f T e x a s m e s q u i t e w o o d . F o r . E c o l . M a n a g e . ,

    16: 149-153.

    W e l l e r , D . E . , 1 9 8 7. A r e e v a l u a t i o n o f t h e - 3 / 2 p o w e r r u l e o f p l a n t s e l f - t h i n n i n g . E c o l . M o n o g r . ,

    57: 23-43.

    l f b m , f o o t b o a r d m e a s u r e , ~ 2 . 36 0 d m .