9
485 Korean Chem. Eng. Res., Vol. 42, No. 5, October, 2004, pp. 485-493 ¤ ( ¤ ¿ · § 9 5 £ ô 608-739 100 (2004 9 2 , 2004 9 15 ) Application of Microwave Energy in Chemical Engineering Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo Park Division of Applied Chemical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Busan 608-739, Korea (Received 2 September 2004; accepted 15 September 2004) . . , , - , . , . Abstract The fast and convenient heating of foodstuffs in microwave ovens is routinely used in the common life. Recently, many researchers have recognized other potential applications for this method of heating, then have applied the rapid and selective heating associated with microwave technology to a number of useful processes. With the tool of the basic information required to apply the microwave technology to many processes, this paper reviewed briefly the principle and characteristic of microwave heating, the design of microwave unit, the interaction of microwave-matter, and the outlook of future microwave technology. Especially, it is focussed to explain the microwave thermal and non- thermal effects in organic synthesis based on medium effects and mechanistic considerations. Key words: Microwave, Energy, Polarization, Microwave Effect, Non-thermal, Superheating 1. Fig. 1 , 300 MHz 30 GHz, 1 m 1 cm [1]. , 1 cm 25 cm , , 12.2 cm(2.45 GHz) 33.3 cm(900 MHz) [2]. 2 Randall Booth , [3]. 1950 , , 1970 1980 . Fig. 2 , , , . ( , ) ( , ) , , [4, 5]. , , , , , , [6-10]. To whom correspondence should be addressed. E-mail: [email protected]

Application of Microwave Energy in Chemical Engineering · 2014-08-13 · Application of Microwave Energy in Chemical Engineering Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Application of Microwave Energy in Chemical Engineering · 2014-08-13 · Application of Microwave Energy in Chemical Engineering Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo

485

Korean Chem. Eng. Res., Vol. 42, No. 5, October, 2004, pp. 485-493

� �

����� ����� ���� ��

���������������†

����� �������608-739 ��� �� ��� �100

(2004� 9� 2� ��, 2004� 9� 15� ��)

Application of Microwave Energy in Chemical Engineering

Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo Park†

Division of Applied Chemical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Busan 608-739, Korea

(Received 2 September 2004; accepted 15 September 2004)

� �

������ ���� ��� ���� ����� ��� ������ ����� ����. �� � ���� ����� � �� �� ���� ���� �� � ��� �� ��� �� ���� ��� �� ��� ��� ���� �� ���. ��� � ���� ���� ��� � ��� ���� ��� ���� �� ����� ���� ��� �� � ��, ���� ��� �, ����-���� ����, ������ �� ��� �� ��� ��� �����. ��, ��� � ����� ���� ������� ����� �� � ��� ��� ����� ����.

Abstract − The fast and convenient heating of foodstuffs in microwave ovens is routinely used in the common life.Recently, many researchers have recognized other potential applications for this method of heating, then have appliedthe rapid and selective heating associated with microwave technology to a number of useful processes. With the tool ofthe basic information required to apply the microwave technology to many processes, this paper reviewed briefly theprinciple and characteristic of microwave heating, the design of microwave unit, the interaction of microwave-matter,and the outlook of future microwave technology. Especially, it is focussed to explain the microwave thermal and non-thermal effects in organic synthesis based on medium effects and mechanistic considerations.

Key words: Microwave, Energy, Polarization, Microwave Effect, Non-thermal, Superheating

1. � �

������ Fig. 1� ��� ��� ������ ���� �

�� �� ��� ���� ������, ���� 300 MHz��

30 GHz, ��� 1 m�� 1 cm� ����� ����� �� �

�����[1]. ��, ��� 1 cm�� 25 cm ��� ������

�� ��� ��� ���� ��, ��� ��� ������ �

� ��� ���� ��, �� ��� ��� �� ��� �

� ��� � ��� ����� ������ 12.2 cm(2.45 GHz)

�� 33.3 cm(900 MHz)� ���� ��[2]. ������ ���

�� 2��� � ���� ���� � ���� �� ����

��� Randall� Booth� �� ��� ����� ���� ��

�� ����� ��� � �� �����, �� ��� ���

��� �� ���� ����� �����[3]. 1950��� ��

������ ���� ����� ��� ��� �, ���� �

���� �� ���� �� �� ��� ���� ��� �

���� ����� ���� ����, 1970� � 1980���

��� ��� �� �� � ��� ��� ��� ����� �

�� ��� ������� �� ����� �� ���� ��

���.

������ ��� ���� � ��� ��� ��� ��

Fig. 2� �� ��, �� �� ��� ���� ��� �����

����� ��� ��� ���� �� ��� ��, �� ��

��, ��� �� �� ����� ���. ��� ����� �

�� ���� ��(�� ��� ��, �� �� �� �) � ��

� ��(�� �� ��, �� �� �� �)� ���� � ��

� ���� ��, ��� ��� �, ��� ���� �� ��

��� ���� ��[4, 5]. ��, ��� ��, ���� �, �

��� ��, ���� ��� ��, ���� ��, �� � �

� ��� ��� ��� ��� ��� ��[6-10]. ���� �†To whom correspondence should be addressed.E-mail: [email protected]

Page 2: Application of Microwave Energy in Chemical Engineering · 2014-08-13 · Application of Microwave Energy in Chemical Engineering Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo

486 ���������������

���� �42� �5� 2004� 10�

� ��� ���� ��� �� � �� �� �� ��� ���

�� ������ �� ����, �����, �� ����, �

� ��� � � ��� �� ���� ��� ��[11-14].

������ �� �� �� �� ����� ���� ��

�� ������ �� �� �� �� ��� ��� �

�� ���� ����� �, ����� �� � �� �

��� � ��� ���� ��[15], ����� ��� �

������ ���� ��� ���� �� �� ����

� �� ��� ��� ����� �� ��� ��[16]. ���

� ��� �� � ���� �� ����� ���� ��

� � �� �� � ����� ������ �� ��� ��

�� �� ��� ���� �� �� ��� ��� ��� �

�� ����� ���� ��[8]. �, ��� ��� �� ��

� ������ � �� ��� ��� �� ���� ���

��� ���� ���� � �� ����� ��� �� ��

� �� � �� �� ��� �� � ��� ���.

�� �� ��� ��, 1980�� �� Gedye� ��� ���

���� ������ �� �����, Kingston� ���

��� �� ������� �� ��� �, �������

� ��� � ����� ������� ������ ����

� ��� ��� Fig. 3� �� �� ���� ��� ��� �

�� ���� ��[17, 18]. �� ���� �� �� �����

��� ��� ����� � � �, ���� �� �

�� � ��, ������� ��� �� ����� ���� �

�[19, 20]. �, ��� � �� ����� ��� �� ��

��� � ��, � ��� ����, ��� ��� ����

�� �� ��� �� ����� ���. ���, ��� �

�� ���� �� ���� ���� ����� ��� �

�� ��. ��� ���� �� � ����� ��� ���

�� ��� ��(��, ��, ��, ��� �� �)� ��

� ��� ����� � �� ��� �� ��� ��

����.

2. ����� ��� �� � ��

2-1. ����� �� ��

������ ��� ����� �, ��� ��� ��� ��

��, �� �� ��� ���� ��� ��� ��. �� ��,

�� ����� ��� �� �� ���� ������ ���

�� ���� ���. Al2O3, MgO, SiO2 � ���� �� ��

�� ���� ���� ���� ������ ������, �

�� Fig. 4� �� ��� ��� ����� ��� ����

(tan δ) �� ������ ����� ������ ����

coupling�� ���� ���� ����� ��(hot spot)� �

� thermal runaway ��� ����� ��[21]. �, �� ��, �

Fig. 1. Electromagnetic spectrum.

Fig. 2. Behaviors of microwaves.

Fig. 3. Trend of publications in organic microwave synthesis.

Fig. 4. Loss tangent with increasing temperature for fused-silica andsoda-lime-silica glasses.

Page 3: Application of Microwave Energy in Chemical Engineering · 2014-08-13 · Application of Microwave Energy in Chemical Engineering Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo

����� ����� ���� �� 487

Korean Chem. Eng. Res., Vol. 42, No. 5, October, 2004

� ��� �� �� �� ��, Co2O3, MnO2, NiO, Fe2O3, CuO

�� �� ��� �� ��� ���� ��� Table 1 � 2� �

� ������ � ���� ����[22, 23]. ��, �� ���

� �� �� ���� �� ��� ��� ���� ������

���� ��� ���� ���.

2-2. ��� �� ��

������ ��� ����� �, ��� ������ ��

���� ��� Fig. 5� ��� �� ���� ��� ����

� ���� ���� ��[24]. ���� ��� �� ��� �

���, ����, ����� �� ���� � ������� �

��� ����. ����� �� �� ��� ���� ��

���� ����� ���, ��� ��, �� �� ��� ��

�� ����.

�� ��� ���� ����� �� ����� ��� � �

��� ��� ����� ���� ��� ��. �������

�� �� ��� ��� ���� �� ��� �� ��. ��

��, ��������� �� �� ��� ��(������)�

�� ��� ���� �� �� ��� ��� �� ��[25].

���� ����� ��� ���� ����� ���� ��

�� ����� ����� �� ��� ����� �� �

�, ����� ����� �� ��� ���� ���� ��

����� ����� �� ����� ����. �� ����

� ��� ���� ��� �� ����� ��� �� ��

��� ��. ��, ������ �� 1 GHz ��� �� ���

��� ���� ���� ��� ��� ��� ��� ��� �

��� ��� ���� ��� ��� ��� ��� ��� ��

�� ��� �� ��� ���� ��, ���� ���� ��

��� ���� ���� �� ��. �, �� ��� ����

���� ��� ����, � �� ��� ��� �� ����.

��������� ���� � ��� ��� �� �����

������ ����� ������(ion migration loss�

conduction loss)� �� ��� ��� ��� ��� ��[24]. �

������ �� �� ��� �, �� �� �� �����

��� �� ��� ��� ������� �� ��� ���

��� ��� ��.

2-3. ����� ��� ��

������ �� ����� �, ��� ��� ���� �

� ������ �� P(W/m3)� ��� ��� � (1)� ��� �

��[26, 27].

P=2πfεοεr' tan δ E2 (1)

��� � (1)�� �� ���� ����� ��� �����

� ���(f), �� ��� ��(εr')� ����(tan δ) ���

�� ���(E(V/m))� ��� ���� � � ��. �����

���� ���� ����� ����� ��� ���� ��

��, ����� ����� �� ��� �����, �� ��

��� �� ��� �� �� ��� ������ ���

� ��� � ��� � � ��. ��� �� �� �� ���

Table 1. Temperatures of the liquid samples irradiated at the microwavepower of 600 W

SamplesTemperature after

1 min irradiation (oC)Boiling point

(oC)Dipolar moment

(Debye)

H2O 81 100 5.9EtOH 78 78 5.8n-C5H11OH 106 137 5.7CH3CO2H 110 119 5.6DMF 131 153 10.8n-C6H14 25 98 0.0CCl4 28 77 0.0

Table 2. Temperatures of the solid samples irradiated at the microwavepower of 600 W

Samples Irradiation time (min) Final temperature (oCs)

Al 6 1577C 1 1,283Co 3 1697Cu 7 1228Fe 7 1768Zn 3 1581

CuO 6 1167Cu2O 6 1,012Fe3O4 3 1,258MnO 6 1113MnO2 6 1,287WO3 6 1581ZnO 3 1,270

Fig. 5. Schematic presentation of polarization mechanisms.

Page 4: Application of Microwave Energy in Chemical Engineering · 2014-08-13 · Application of Microwave Energy in Chemical Engineering Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo

488 ���������������

���� �42� �5� 2004� 10�

�� ���� ������ ������ ����� �����

���� ��� � ��. �� ��, � (1)� Table 3� ���

��� ���� ����� ��� Fig. 6� �� ��� �

�� �� ��� ����.

����� ��� � �� ������ ���� ����

� ���� �� ���� ����. ������ ����

� �� ���� ������ ��� ��� ���� ���

���� ��� ��� � (2)� ����.

D=3λo/{8.686π tan δ(εr' /εo)1/2} (2)

��� λo� ������� ����. ���� ���� ���

�� ���� ��. ����, ���� ���� ����� �

���� ��� � �� ��, �� �� ��� �� ��

�� ��� ���� ����.

�� �� ������ t� �� ∆T(oC)�� ������

��� ���� ��� ��� � (3)�� ���.

P(W)=4.18 Cp M ∆T/ηt (3)

��� Cp� ��� ��(cal/g oC), M� ��� ��, η� ����

�� ����. ��� ����� ��� Pin� ��� �� ���

��� �� ���� Peff �� �� η=Peff /Pin�� �� � ��, �

���� η� � 70-80% ����. ��, �� ���� ���

� ���� Pf , �� ���� Pr���� P=Pf - Pr� �� � ��.

3. ����� �� ��

3-1. ���� ����� ��

���� ����� ������ ��� 2.45 GHz, �� 700 W

� ��� ������ �� �� � �� ���� ���� �

�� ��� ����, PID ���� ���� � ����� ��

��� � �� ����� �� ��� Fig. 7� � ��� �

�� ��� � ��[28]. ��� ������ ���� ����

� �� ���� �� ������ ����� ����� �

�� �� ����� cavity� ��� ���� ��, ����

� �����. ���� ���� �� cavity� ��� 2 cm�

�� ��� ��� ���� ����, ���� ��� ����

� ����� ���� ����, ���� �� ������

���� �� ���� �� �� ����� ���. ����

��� ���� �� cavity� ��� �� � 1 cm� ��� �

� ���� ��� � ��� ��. �� ��� ������ �

� ���� �� ������ ��� ���� �� ���

��� �������� ��� ���� ����. Cavity� �

�� �� �, ������ ���� ��� λ/4��� ��� �

� ��� ��� ��� ��� ����� ���� ��� �

� ��� ����[29].

3-2. ��� ����� ��

��� �� ��� ����� ����� Fig. 8� �� �

��, ��� ����� ����� Fig. 9� ��� �� �� �

�� ���� ��� ���� ����� ��, �� �� �

�� ��� �� ����[30]. � ��� ���� ����, �

���� �� ����� ���/���� 1-5 kW� �����

� ����, circulator� ��� ������ ������� �

��� �� dummy load� ��� ���� ������ ��

�� ��� ��, dummy load� ��� ������ �� ��

�� ��� ��, �� ������ �� ������ �� �

����� �� ����, ���� ���� ���� �� �

����� ��� ��� ������ load� � ����� �

�� ��, applicator� load� ���� ����� ���� ��

� ��. ��, applicator� ���� ������� ���� �

Table 3. Permittivity of various elastomer at ambient temperatureand at 3 GHz

Elastomer ASTM designation ε' ε"

Natural rubber NR 2.35 0.00645Styrene-butadiene SBR 2.45 0.01070Polybutadiene BR - 0.00538Ethylene-propylene EPDM 2.35 0.00670Polyisobutylene IIR 2.35 0.00210Polychloroprene CR 4.00 0.13560Nitrile NMR 2.80 0.05040

Fig. 6. Heating rates of polymers exposed to microwaves.

Fig. 7. The schematic diagram of microwave system.

Page 5: Application of Microwave Energy in Chemical Engineering · 2014-08-13 · Application of Microwave Energy in Chemical Engineering Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo

����� ����� ���� �� 489

Korean Chem. Eng. Res., Vol. 42, No. 5, October, 2004

���� mode-stirrer� ����� ���� ������ ��

�� �� ������ ����� ��[31, 32].

3-3. ��������� ����

��� ���� ����� �� ��� ���� ��� ��

�� ����� ���� ������ ������ ���� �

�� �� ��� ����. �� ������� ���� optical

fiber thermometer� ���� ��� �����[33], 250 oC���

�� ����� ��� ����. �� ����� ��� ���

�� pyrometer� ���� ��� �����[34, 35], ��� �

�� �� ���� ��� ������ ����� ��� ��

��� ��� ���� �� � ��. ��� �� ���� �

��� ��� ��� ���� ��� �� ����� ��

�� ��� ��� ����[36, 37].

4. ����� �� ��

����� ��� ������� ������ �� ��

��� ���� �� �� ��� ��� ���� ��� ��

��. �, �� ���� ���� ��� ���-��� ����

� ���� ��� Fig. 10� �� ��� ��(dipolar polarization)

� ����, ����� ���� ���� ��� ���� ��

�� ���� �, ���� ��� �� � ��� ����

����� ���� �� ����. �� ������ ���

� ����(thermal effect) � ��� ��(non-thermal effect)��

�� ��� �� �� ����� ��� �� ���� �

��� ����[15, 25]. �� ��, ��� Table 4� �� ���

�� �� ��� �� �� ������ ���� ����

�� ���� ��� ���� ��� � ��� ��� ���

�, ���� � ������ ����� ����� ����

�� ����� �� �����. ��, ��� Table 5� ��

monotrifluoroacetamido o-arylenediamines� ��� �����

�� ��� 2-trifluoromethylarylimidazoles ���� ����

����� ��� ��� ���� ��� �� �����

�� ��� �� ��.

Fig. 8. The picture of industrial microwave system.

Fig. 9. The schematic diagram of industrial microwave system.

Fig. 10. The schematic of dipole polarization under microwaves; (a)without any constraint, (b) submitted to a continuous electricfield, and (c) submitted to an alternating electric field withmicrowave frequency.

Table 4. A comparison of reaction times and yield in representative reactions using classical and microwave heating

Compound synthesized Procedure followed Reaction time Average yield (%) kmicrowave/kclassical

Hydrolysis of benzamide to benzoic acid in waterC6H5COOH Classical 1 h 90C6H5COOH Microwave 10 min 99 6

Oxidation of toluene to benzoic acid in waterC6H5COOH Classical 25 min 40C6H5COOH Microwave 5 min 40 5

Esterification of benzoic acid with methanolC6H5COOCH3 Classical 8 h 74C6H5COOCH3 Microwave 5 min 76 96

SN2 reaction of 4-cyanophenoxide ion with benzylchloride in methanolNCC6H4OCH2C6H5 Classical 16 h 89NCC6H4OCH2C6H5 Microwave 4 min 93 240NCC6H4OCH2C6H5 Classical 12 h 65NCC6H4OCH2C6H5 Microwave 35 sec 65 1,240

Page 6: Application of Microwave Energy in Chemical Engineering · 2014-08-13 · Application of Microwave Energy in Chemical Engineering Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo

490 ���������������

���� �42� �5� 2004� 10�

4-1. ������ ��/��� ��

�� ��� ������� ���� ����� �� �� �

��� ��� ���� �� ��� ����� ��� �� ��

�� ����� ���� �� ��� ��� �� �����

����. � ���� �� ��� ��� �� ��� ���

� � ���� ����, ��, �� � ��� �� �� ��

��� ��� ���� ��� ���� ��� ����.

��, ���� �� ���� ������ ��·����, ��

� ���� ������ ���� ���� �� ��� �� �

� ��� �� �� ��� ���� � ��� ����. �� �

�� ������ ��� ��� ����. ������ ���

��� �� ��� � (4)� � (5)� �� ��� � ��[25].

k=A exp(−∆G/RT) (4)

∆G=∆H-T∆S (5)

��� k� ����, A� ��, ∆G� ������, R� ���

�, T� ����, ∆H� ��, ∆S� ���� ����. ��

��� ��� A� �� �� ∆G� ��� ����. Binner �

[38]� ��� � (4)�� ������� ���� �� A� ��

� ��� ����� ����, �� ��� titaninium carbide�

����� ���� ����� ����� �����. �, ��

� � ��� ���� ������ ���� ����� �

��, ���� �� ���� ���� �� ���� �

��� ������� ��� � � ���� �� � �

�. Lewis �[39]� ��� � (5)�� ��������� ���

Fig. 11� �� ������� ��� ����� polyamic acid

� ���� ���� ����� ����� �����. �, �

�� ��� �� ��� � (5)� T∆S� ����� ∆G� ����.

������ ��� ��� ���� ��, �� ���� ��

��(dielectric relaxation)� �� ���� ��� ���� �

�� ��� ����, � ���� ���� ������ ��

��. �, ������ ������ �� ���� �� �� �

� ������� ��� ���� ����� ������ ��

�� ��� �� �� ��� ������ ����� ����

��[40].

��� ������ ���� ��, �� ���� ����

� ������ ����, ��� ���� ������ ���

� ���. ������ � ���� ��� ����� ���

� �� ��� ���� �� ��� ����� �� ��

��(superheating effect)�� ���, �� ��� Table 6� ��

���. ��, ��� Fig. 12� �� ����� multi-mode system

� ��� ������ �� �� ��� �� ����, ��

��� ��� � � ���� ����. ����� �����

���� ����� � ��� � �� ���� ����, �

���� �� �� ��� ����� ��� ����

� ������ �� ��� ����[41].

4-2. ��� ��� �� ����� ��

����� ���� �� ��� �� �� ����� �

� ���� ���. �� ��� ���� ������� ���

�� ���� ������� ����� ��� �� ����,

���� �� ������ ��� ���� ����. ��� �

� ���� ����� ��� ��� ����� �����

��� ��� ���� ������� ����� ���[42].

Table 5. A series of 2-trifluoromethylarylimidazoles synthesized bycyclocondensation of monotrifluoroacetylated o-arylenediamines

R1 R2Temperature

(oC)

Yield (%)

Microwave (2 min) Classical (20 h)

H H 125 87 23H CH3 127 84 19

NO2 H 134 95 28

Fig. 11. Kinetic plots for microwave and classical activation for theimidization reaction.

Table 6. Boiling points of polar solvents

SolventsClassical

conditions (oC)Microwave exposure

(oC)Difference

(oC)

Water 100 105 51-Butanol 117 138 212-Butanol 98 127 29Methanol 65 84 191-Pentanol 136 157 211-Heptanol 176 208 32Acetone 56 89 33Ethyl acetate 77 102 25Tetrahydrofuran 67 103 36Acetonitrile 82 120 38

Fig. 12. Heating profile of heptanol with various microwave power.

Page 7: Application of Microwave Energy in Chemical Engineering · 2014-08-13 · Application of Microwave Energy in Chemical Engineering Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo

����� ����� ���� �� 491

Korean Chem. Eng. Res., Vol. 42, No. 5, October, 2004

�� ����� ����� propan-1-ol ��� ���� ethanoic

acid� ����� ����� ����� �� ��� ��� �

� ����[43].

��� ��(xylene, toluene, carbon tetrachloride, hydrocarbons)�

���� ������� ������ ��� ����� �� �

��� �� �����, ���� �� ��� ����� ��

�� ������ ����� ���� ������ �� ���

� ����. ��� ��� Fig. 13� �� ����� ��� �

� ���� ��� ��� �����, ���� ����� ��

� � ���� ������� ����. �� ����� �

���� aryldiazepinone� ������� �� ��� ���

���� � � � ����[44], dibutyl ether� ��� xylene �

�� ���� � ����� ����� ��� diels-alder ��

� ����� ��� Fig. 14� �� �� � ����[45].

��� ���� �� ������� ��� � �� ���

�� �� ������ ���� ����� ���� ����

� ��� ��� � � ��, ����� ���, ���, ���

�� ��� �� � ��. ������ ����� ��� � �

� ��� ������� ���� ��� ���� � ��� �

�� ��, ��-�� ��� �� ��� ��, ���� �� �

�� ���� ����� ��� �� � ��[46].

4-3. ����� �� ����� ��

��� ������ ����� ��� ����� ����

�� �� � ��� ��� ��� ��� �� ���� ��

� ����� ����� ����� ��� ��� ��. ���

����� ����� �� ���� ��� ��� �����

����� ������ ��� ����� ���� ��� �

��. ��� Fig. 15� �� ������ ����(ground state;

GS)�� �� ��(transition state; TS)� ��� ��� ����

� ����� ����� ��� ���� �� ����� ��

� ��� � ��. �, ��������� TS� GS� ��� �

�� ��� ���� ����, �� ������� ��� ��

� ���� ���� ���� ������� ����� ��

�� � ��[47].

4-4. ���� ��� �� ����� ��

������ ����� �� TS� ��� ��� Hammond

��[48]� ��� �� �� ��� ��� ����� ��� �

�� � ��. ��� Fig. 16���� � � �������

���� ����� ����� TS −∼ GS� ��� �� ���

����� ���� �� ��� TS� GS ���� ��� ��

���� ����� ���� �� ��� ����� ���

� ��� ��. � � ������� ���� ����

� ����� ����� ���� �� ��� TS� ��� �

��� ���� ���� ��� �� ����� ����� �

��� �� ��� ����� ��� �� ���� ���� �

��. �� ��� ����� ��� ����� ����� �

���� �� ���� ��� ����� �� ����� ��

��� ��� �� �� ���� ��� Lewis� ���� ��

��[49].

Fig. 13. The schematic presentation of volumetric microwave heating,compared to classical heating.

Fig. 14. Yield against time for Diels-Alder reaction with xylene.

Fig. 15. Relative stabilization of more polar TS than GS.

Fig. 16. The position of the transition state along the reaction coordi-nates.

Page 8: Application of Microwave Energy in Chemical Engineering · 2014-08-13 · Application of Microwave Energy in Chemical Engineering Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo

492 ���������������

���� �42� �5� 2004� 10�

4-5. ���� �� ����� ��

��� ����� ����, ����� ����� �����

��� ���(steric selectivity) �� ��� ���(chemo selectivity)

� ���[50]. �� ��, GS� ��� �� ��(competitive reaction)

� ���� ���� ������ ����, � � ��� TS�

���� ����� ����� ����[51].

4-6. ��� �� � ��� ����� ��� �

�� � ����� �� ���� �� � ��� Figs. 7� 8�

����� ��� ��� ��, ��� ����� ��� ���

���� ��� ���� ���. �� ��, ����� ����

� � ������ ������ �� �� ��� ����[52].

��� ��� ��� ���� ������ ���� ��� ��

��� ���� ��� ��� ���� ��� ��� ��� �

���[53]. ���� � ��� ��� ��� flux� ��� ��

��� ��� �� �����, �� ���� �� ��� ���

� ��� �� ����[54, 55]. �� ������ ��� ���

���� ���� ����� ����� ���, � ����

��� ��� �� �����, ��� ��� � ��� ���

� �� ��� ����� ��� ����[56, 57]. ��, ����

�� ��� �� ��� ��� �� ������ ��� ���

�� ������ ����, �� ���� � �� �� ��.

5. �� ��

�� ������ �� ��� �� � � �� ��� �

�� �� ������ �� � ��� ��� ��� ��� �

����. ��� ����� ��� ����, ����, ����,

����, ���� �� ��� ����� �� ��� �� �

���, �� ��� ��, � ��� �����, �������

��� � � ��, ������ �� �� �� � ��

�� ��� ���� ����.

��, ����� ��� �� ��� ���, ����� ��

� ��� ���� ���� ��� �� ���� ��� ��

�� �� ���� ���� ��� � ���� ���� ��

�� ��� ��. (1) ��� ����� �����, ��� ��

�� ���� �� � ��. (2) ��� ��� ����� ��

� ���� � ��. (3) ��� ����� �� � ��. (4)

�� �� �� �� ��� ��� ����. (5) �� ��� �

��� ������ �� ����� �� �� �. (6) ��

� ����. (7) �� ��� ����. (8) �� �� �����

��� �� �� ���.

��� ��� ����� ��� ��� ���� �����

�� � ���� �� � �� ��� ��� ��� �� � �

�� �� ��� �� �� ���, ��� ��� ��� ��

��� � 70-80% ��� ����, ��� �� ��� � 5-10�

��� ���� � ��, �� ���� �� ��� � 20-40%

��� �� � ��. �� �� ����� ��� �� ��

� �� ���, ������ ��� � ���� �� ���

��� ���� ��� ����� ��� ��� ��� ���

�� �. �, �� � ��, ����� �� ��, �� ���

���� ���� ��, ���� �� �� ���� �� �

� ���� �� �����.

� �

� ��� �� ��� ��� ����� � Brain Busan

21 ��� ����� ������ �� ������.

����

1. Laverghetta T. S., Practical Microwaves, Prentice-Hall, New Jer-sey(1996).

2. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, New York(1985).

3. Loupy, A., Microwaves in Organic Synthesis, Wiley-VCH, Wein-heim(2002).

4. Sutton, W. H., “Microwave Processing of Ceramic Materials,”Am. Ceram. Soc. Bull., 68, 376-386(1989).

5. Chabinsky, I. J., “Applications of Microwave Energy Past,Present and Future Brave New World,” MRS Symp. Proc., 124,17-29(1988).

6. Oda, S. J., “Microwave Remediation of Hazardous Waste: AReview,” MRS Symp. Proc., 347, 371-382(1994).

7. Bolomey, J. C. and Metail, J. P., “Review of the French Activityin Microwave Control and Processing of Materials,” MRS Symp.Proc., 189, 15-26(1991).

8. Kingston, H. M. and Jassie, L. B., “Microwave Energy for AcidDecomposition at Elevated Temperatures and Pressures usingBiological and Botanical Samples,” Anal. Chem., 58, 2534-2541(1986).

9. Park, S. S. and Meek, T. T., “Characterization of ZrO2-Al2O3

Composites Sintered in a 2.45 GHz Electromagnetic Field,” J.Mater. Sci., 26, 6309-6313(1991).

10. Fathi, Z., Folz, D. C., Clark, D. E. and Hutcheon, R., “SurfaceModification of Sodium Aluminosilicate Glasses using Micro-wave Energy II,” Ceram. Trans., 36, 333-340(1993).

11. Liao, L. Q., Liu, L. J., Zhang, C., He, F., Zhou, R. X. and Wan,K., “Microwave-Assisted Ring-Opening Polymerization of ε-carprolactone,” J. Polymer Sci., 40A, 1749-1755(2002).

12. Newalker, B. L., Olanrewaju, J. and Komarneni, S., “Direct Syn-thesis of Titanium-Substituted Mesoporous SBA-15 MolecularSieve under Microwave-Hydrothermal Conditions,” Chem. Mater.,13, 552-557(2001).

13. Ding, Y., Masuda, N. and Miura, Y., “Preparation of Polar Ori-ented Sr2TiSi2O8 Films by Surface Crystallization of Glass andSecond Harmonic Generation,” J. Non-Crystalline Solids, 203,88-95(1996).

14. Komarneni, S., Li, D., Newalkar, B., Katsuki, H. and Bhalla, A.S., “Microwave-Polyol Process for Pt and Ag Nanoparticles,”Langmuir, 18, 5959-5962(2002).

15. Jacob, J., Chia, L. H. L. and Boey, F. Y. C., “Thermal and Non-Thermal Interaction of Microwave Radiation with Materials,” J.Mater. Sci., 30, 5321-5327(1995).

16. Karz, J. D. and Blake, R. D., “Microwave Enhanced Diffusion,”Ceram. Trans., 21, 95-106(1991).

17. Raner, K. D., Strauss, C. R. and Trainor, R. W., “A New Micro-

Page 9: Application of Microwave Energy in Chemical Engineering · 2014-08-13 · Application of Microwave Energy in Chemical Engineering Ji Un Im, Seong-Soo Hong, Gun-Dae Lee and Seong Soo

����� ����� ���� �� 493

Korean Chem. Eng. Res., Vol. 42, No. 5, October, 2004

wave Reactor for Batchwise Organic Synthesis,” J. Org. Chem.,60, 2456-2460(1995).

18. Strauss, C. R. and Trainor, R. W., “Developments in Microwave-Assisted Organic Chemistry,” Aust. J. Chem., 48, 1665-1692(1995).

19. Caddick, S., “Microwave Assisted Organic Reactions,” Tetrahe-dron, 51, 10403-10432(1995).

20. Kingston, H. M. and Haswell, S. J., Microwave Enhanced Chem-istry, Amer. Chem. Soc., Washington DC(1997).

21. Berteaud A. J. and Badot J. C., “High Temperature MicrowaveHeating in Refractory Materials,” J. Microwave Power, 11, 315-320(1976).

22. Tinga, W. R., “Fundamentals of Microwave-Material Interac-tions and Sintering,” MRS Symp. Proc., 124, 33-44(1994).

23. Ford, J. D. and Pei, D. C. T., “High Temperature Chemical Pro-cessing,” J. Microwave Power, 2, 61-64(1967).

24. Hippel, A. V., Dielectric Materials and Applications, ArtechHouse, London(1995).

25. Perreux, L. and Loupy, A., “A Tentative Rationalization of Micro-wave Effects in Organic Synthesis According to the Reaction Medium,and Mechanistic Consideration,” Tetrahedron, 57, 9199-9223(2001).

26. Okress, E. C., Microwave Power Engineering, Academic Press,New York(1968).

27. Metaxas, A. C. and Meredith R. J., Industrial Microwave Heat-ing, Peter Peregrinus Ltd., London(1993).

28. Jung, K. S., Ro, J. Y., Lee, J. Y. and Park, S. S., “Conventional Ver-sus Microwave Synthesis of Phthalocyanine Material,” J. Mater.Sci. Lett., 20, 2203-22-5(2001).

29. Laverghetta, T. S., Microwave Materials and Fabrication Tech-niques, Artech House, London(2000).

30. Copson D. A., Microwave Heating, AVI Publishing Co., Con-necticut(1975).

31. Kashyap, S. C. and Wyslouzil, A., “Methods for ImprovingHeating Uniformity of Microwave Ovens,” J. Microwave Power,12, 223-230(1977).

32. Chan, C. T., and Reader, H. C., Understanding Microwave Heat-ing Cavities, Artech House, London(2000).

33. Luxtron Corporation, 2775 Northwestern Parkway, Santa Clara,CA 95051-0941, USA(www.luxtron.com.).

34. Land Infrared, 10 Friends Lane, Newtown, PA 18940-1814,USA(www.landinst.com.).

35. Raytek Corporation, 1201 Shaffer Road, PO Box 1820, SantaCruz, CA 95061-1820, USA(www.ravtek.com.).

36. Olmstead, W. E. and Browdwin, “A Model for ThermocoupleSensitivity During Microwave Heating,” Int. J. Heat Mass Trans-fer, 40, 1559-1565(1997).

37. Pert, E. P., Carmel, Y., Birnboim, A., Olorunyolemi, T., Gers-hon, D., Calame, J., Lloyd, I. K. and Wilson, O. C., “TemperatureMeasurements during Microwave Processing: The Significanceof Thermocouple Effects,” J. Am. Ceram. Soc., 84, 1981-1986(2001).

38. Binner, J. G. P., Fernie, J. A. and Whitaker, P. A., “The Effect ofComposition on the Microwave Bonding of Alumina Ceram-ics,” J. Mater. Sci., 33, 3017-3029(1998).

39. Lewis, D. A., Summers, J. D., Ward, T. C. and McGrath, J. E.,“Accelerated Imidization Reactions using Microwave Radia-tion,” J. Polymer Sci., 30A, 1647-1651(1992).

40. Shibata, C., Kashima, T. and Ohuchi K., “Nonthermal Influenceof Microwave Power on Chemical Reactions,” Jpn. J. Appl.

Phys., 35, 316-319(1996).41. Kabza, K. G., Chapados, B. R., Gestwicki, J. E. and McGrath, J.

L., “Microwave-Induced Esterification using HeterogeneousAcid Catalyst in a Low Dielectric Constant Medium,” J. Org.Chem., 65, 1210-1214(2000).

42. Langa, F., Cruz, P., Hoz, A., Espildora, E., Cossio, F. P. and Lecea,B., “Modification of Regioselectivity in Cycloadditions to C70 underMicrowave Irradiation,” J. Org. Chem., 65, 2499-2507(2000).

43. Raner, K. D. and Strauss, C. R., “Influence of Microwaves onthe Rate of Esterification of 2,4,6-Trimethylbenzoic Acid with 2-Propanol,” J. Org. Chem., 57, 6231-6234(1992).

44. Chandra Sheker Reddy, A., Shanthan Rao, P. and Venkatarat-nam, R. V., “Fluoro Organics: A Facile and Exclusive Synthesisof Novel 2- or 4-trifluoromethyl(1H,5)arylodiazepines,” Tetrahe-dron Lett., 37, 2845-2848(1996).

45. Laurent, R., Laporterie, A., Dubac, J., Lefeuvre, S. and Audhuy,M., “Specific Activation by Microwaves: Myth or Reality,” J.Org. Chem., 57, 7099-7102(1992).

46. Tanaka, K. and Toda, F., “Solvent-Free Organic Synthesis,” Chem.Rev., 100, 1025-1074(2000).

47. Carrillo, J. R., Diaz-Ortiz, A., Cossio, F. P., Gomez-Escalonilla,M. J., Hoz, A., Moreno, A. and Prieto, P., “Synthesis of Pyra-zolo[3,4-b]pyridines by Cycloaddition Reactions under Micro-wave Irradiation,” Tetrahedron, 50, 1569-1577(2000).

48. Hammond, G. S., “A Correlation of Reaction Rates,” J. Am.Chem. Soc., 77, 334-336(1955).

49. Carrillo-Munoz, J. R., Bouvet, D., Guibe-Jampel, E., Loupy, A. andPetit, A., “Microwave-Promoted Lipsase-Catalyzed Reactions, Res-olution of (±)-1-phenylethanol,” J. Org. Chem., 61, 7746-7749(1996).

50. Hoz, A., Diaz-Ortiz, A., Moreno, A. and Langa, F., “Cycloaddi-tions under Microwave Irradiation Conditions: Methods andApplications,” Eur. J. Org. Chem., 65, 3659-3673(2000).

51. Varma, R. S., Dahiya, R. and Kumar, S., “Clay Catalyzed Syn-thesis of Imines and Enamines under Solvent-Free Conditionsusing Microwave Irradiation,” Tetrahedron Lett., 38, 2039-2042(1997).

52. Park, S. S., Hwang, E. H., Kim, B. C. and Park, H. C., “Synthe-sis of Hydrated Aluminum Sulfate from Kaolin by MicrowaveExtraction,” J. Am. Ceram. Soc., 83, 1341-1345(2000).

53. Park, S. S., Jung, K. S., Kim, B. C., Lee, S. E. and Park, H. C.,“Microwave Heating Induced Crystallization of PbTiO3 from aPbO-B2O3-ZnO-TiO2 Glass Joined to Alumina,” Glass Tech., 43,70-74(2002).

54. Park, H. C., Kim, S. W., Lee, S. G., Kim, J. K., Hong, S. S., Lee,G. D. and Park, S. S., “Synthesis of α-alumina Platelets usingFlux Method in 2.45 GHz Microwave Field,” Mater. Sci. Eng. A,363, 330-334(2003).

55. Kim, S. W., Lee, S. G., Kim, J. K., Kwon, J. Y., Park, H. C. andPark, S. S., “Synthesis of Aluminum Borate Whiskers via FluxMethod with and without Microwaves,” J. Mater. Sci., 39, 1445-1447(2004).

56. Jung, K. S., Kwon, J. H., Shon, S. M., Ko, J. P., Shin, J. S. andPark, S. S., “Microwave Synthesis of Metal Phthalocyanineunder Solvet-Free Conditions,” J. Mater. Sci., 39, 723-726(2004).

57. Jung, K. S., Kwon, J. H., Son, S. M., Shin, J. S., Lee, G. D. andPark, S. S., “Characteristics of the copper Phthalocyanines Syn-thesized at Various Conditions under the Classical and Micro-wave Processes,” Syn. Met., 141, 259-264(2004).