2
Volume 27B. number 4 PHYSICS LETTERS 8 July 1968 APPLICABILITY OF THE STATISTICAL MODEL TO THE DESCRIPTION OF THE POPULATION OF GROUND-STATE ROTATIONAL LEVELS S. J. MILLS and W. L. RAUTENBACH National Physical Research Laborator>'. CSIR. Pretoria. South Africa Received 30 May 1968 Comparison of the relative intensities of ground-state rotational transitions occurring in 178W. 180W and 182W. following (a, 2ny) reactions, shows that the statistical model of nuclear reactions is not applicable to the description of these intensities. The statistical model of compound nuclear re- actions [1,2] has recently been employed to ex- plain the relative populations of levels in the ground-state rotational bands of nuclei produced in neutron-evaporation reactions [3-6]. Application of the statistical model, however, implies that all the processes taking place depend mainly on general (or statistical) properties of the nucleus and very little on the finer details of nuclear structure. Such general properties in- clude particle transmission coefficients, level densities, effective moments of inertia and the nature of the y-ray cascade to the ground state of the product nucleus. Nuclear systems with near- ly identical general properties should thus yield nearly identical experimental results if the statis- tical description of nuclear processes applies. Conversely, a necessary condition for obtaining meaningful results from "best" fits between statistical model calculations and experimental data is that near-identical systems must yield approximately the same experimental results. The applicability of the statistical model to the description of the relative populations of levels in the ground-state rotational bands of deformed nuclei has therefore been tested by measuring the cross sections of the 8 + ~ 6 + and 6 + ~ 4 + transi- tions relative to that of the 4 + ~ 2 + transition for each of the nuclei 178W, 180W and 182W, prod- uced in (a, 2n) reactions. These nuclei are ad- jacent even-even isotopes in a region between closed shells and have nearly identical ground- state rotational bands [7]. On the basis of the statistical model nearly identical results should therefore be obtained for the same value of the a-particle energy Ea in excess of the (a, 2n) threshold energy Ethr. The experiment has been performed by bom- barding isotopically enriched oxide targets of about 5 mg/'cm 2 with 17 to 32 MeV a-particles. The y-ray spectra were measured with a 5 mm × × 4 cm 2 Ge(Li) detector with a typical resolution of 5 keV FWHM, placed at 90 ° to the beam direc- tion. All the rotational transitions have been assumed to have identical angular distributions within experimental errors [5,8]. The 2 + - 0 + transitions have not been considered due to large experimental errors and uncertainties in the large internal conversion correction. The experimental results are shown in fig. 1. The indicated errors are estimated effective standard deviations, and do not include any pos- sible systematic errors except those made in the determination of the peak areas in the y-ray spectra. Also shown in fig. 1 are the theoretical results obtained for different values of 3/~R, the ratio of the effective moment of inertia to the rigid-body moment of inertia. In these calculations [9] we have essentially adopted the procedure of Bishop et al. [10]. However, as has been proposed by Sarantites and Pate [11], the level densities have been evaluated only for that part of the total ex- citation energy which is associated with thermal motion of the nucleons. The expression for the level density given by Lang and Le Couteur [12] has been used, and the level density parameter has been taken as a = A/10.7, where A is the mass number of the nucleus [13]. The effects of pairing of protons and of neutrons in the nucleus have also been taken into account in the way des- cribed by Vandenbosch et al. [14]. The pairing energy has been taken as 5 = 1.0 MeV [15]. As expected, the theoretical predictions of the 207

Applicability of the statistical model to the description of the population of ground-state rotational levels

Embed Size (px)

Citation preview

Volume 27B. number 4 P H Y S I C S L E T T E R S 8 July 1968

A P P L I C A B I L I T Y O F T H E S T A T I S T I C A L M O D E L T O T H E D E S C R I P T I O N O F T H E P O P U L A T I O N O F G R O U N D - S T A T E

R O T A T I O N A L L E V E L S

S. J. M I L L S and W. L. R A U T E N B A C H National Physical Research Laborator>'. CSIR. Pretoria. South Afr ica

Received 30 May 1968

Compar ison of the re la t ive in tensi t ies of ground-s ta te rotational t rans i t ions occurr ing in 178W. 180W and 182W. following (a , 2ny) reac t ions , shows that the s ta t i s t ica l model of nuclear reac t ions is not applicable to the descr ip t ion of these in tensi t ies .

T h e s t a t i s t i c a l m o d e l of c o m p o u n d n u c l e a r r e - a c t i o n s [1,2] h a s r e c e n t l y b e e n e m p l o y e d to e x - p l a i n t he r e l a t i v e p o p u l a t i o n s of l e v e l s in t he g r o u n d - s t a t e r o t a t i o n a l b a n d s of n u c l e i p r o d u c e d in n e u t r o n - e v a p o r a t i o n r e a c t i o n s [3-6] .

A p p l i c a t i o n of t h e s t a t i s t i c a l m o d e l , h o w e v e r , i m p l i e s t h a t a l l t h e p r o c e s s e s t a k i n g p l a c e d e p e n d m a i n l y on g e n e r a l ( o r s t a t i s t i c a l ) p r o p e r t i e s of t h e n u c l e u s and v e r y l i t t l e on t he f i n e r d e t a i l s of n u c l e a r s t r u c t u r e . Such g e n e r a l p r o p e r t i e s i n - c l u d e p a r t i c l e t r a n s m i s s i o n c o e f f i c i e n t s , l e v e l d e n s i t i e s , e f f e c t i v e m o m e n t s of i n e r t i a and t h e n a t u r e of t h e y - r a y c a s c a d e to t he g r o u n d s t a t e of t h e p r o d u c t n u c l e u s . N u c l e a r s y s t e m s wi th n e a r - ly i d e n t i c a l g e n e r a l p r o p e r t i e s s h o u l d t h u s y i e l d n e a r l y i d e n t i c a l e x p e r i m e n t a l r e s u l t s if t he s t a t i s - t i c a l d e s c r i p t i o n of n u c l e a r p r o c e s s e s a p p l i e s . C o n v e r s e l y , a n e c e s s a r y c o n d i t i o n f o r o b t a i n i n g m e a n i n g f u l r e s u l t s f r o m " b e s t " f i t s b e t w e e n s t a t i s t i c a l m o d e l c a l c u l a t i o n s and e x p e r i m e n t a l d a t a i s t h a t n e a r - i d e n t i c a l s y s t e m s m u s t y i e l d a p p r o x i m a t e l y t h e s a m e e x p e r i m e n t a l r e s u l t s .

T h e a p p l i c a b i l i t y of t h e s t a t i s t i c a l m o d e l to t he d e s c r i p t i o n of t h e r e l a t i v e p o p u l a t i o n s of l e v e l s in t h e g r o u n d - s t a t e r o t a t i o n a l b a n d s of d e f o r m e d n u c l e i h a s t h e r e f o r e b e e n t e s t e d by m e a s u r i n g t h e c r o s s s e c t i o n s of t he 8 + ~ 6 + and 6 + ~ 4 + t r a n s i - t i o n s r e l a t i v e to t h a t of t h e 4 + ~ 2 + t r a n s i t i o n f o r e a c h of t he n u c l e i 178W, 180W and 182W, p r o d - u c e d in (a, 2n) r e a c t i o n s . T h e s e n u c l e i a r e a d - j a c e n t e v e n - e v e n i s o t o p e s in a r e g i o n b e t w e e n c l o s e d s h e l l s and h a v e n e a r l y i d e n t i c a l g r o u n d - s t a t e r o t a t i o n a l b a n d s [7]. On t he b a s i s of t h e s t a t i s t i c a l m o d e l n e a r l y i d e n t i c a l r e s u l t s s h o u l d t h e r e f o r e b e o b t a i n e d f o r t he s a m e v a l u e of t h e a - p a r t i c l e e n e r g y E a in e x c e s s of t h e (a, 2n) t h r e s h o l d e n e r g y E t h r .

T h e e x p e r i m e n t h a s b e e n p e r f o r m e d by b o m - b a r d i n g i s o t o p i c a l l y e n r i c h e d ox ide t a r g e t s of a b o u t 5 m g / ' c m 2 w i th 17 to 32 MeV a - p a r t i c l e s . T h e y - r a y s p e c t r a w e r e m e a s u r e d w i th a 5 m m × × 4 c m 2 Ge(Li ) d e t e c t o r w i t h a t y p i c a l r e s o l u t i o n of 5 keV FWHM, p l a c e d a t 90 ° to the b e a m d i r e c - t ion . Al l t he r o t a t i o n a l t r a n s i t i o n s h a v e b e e n a s s u m e d to h a v e i d e n t i c a l a n g u l a r d i s t r i b u t i o n s w i t h i n e x p e r i m e n t a l e r r o r s [5,8]. T h e 2 + - 0 + t r a n s i t i o n s h a v e not b e e n c o n s i d e r e d due to l a r g e e x p e r i m e n t a l e r r o r s and u n c e r t a i n t i e s in t h e l a r g e i n t e r n a l c o n v e r s i o n c o r r e c t i o n .

T h e e x p e r i m e n t a l r e s u l t s a r e s h o w n in fig. 1. T h e i n d i c a t e d e r r o r s a r e e s t i m a t e d e f f e c t i v e s t a n d a r d d e v i a t i o n s , a n d do not i n c l u d e any p o s - s i b l e s y s t e m a t i c e r r o r s e x c e p t t h o s e m a d e in t he d e t e r m i n a t i o n of t he p e a k a r e a s in t he y - r a y s p e c t r a .

A l s o s h o w n in fig. 1 a r e t he t h e o r e t i c a l r e s u l t s o b t a i n e d f o r d i f f e r e n t v a l u e s of 3 / ~ R , the r a t i o of t h e e f f e c t i v e m o m e n t of i n e r t i a to t he r i g i d - b o d y m o m e n t of i n e r t i a . In t h e s e c a l c u l a t i o n s [9] we h a v e e s s e n t i a l l y a d o p t e d t he p r o c e d u r e of B i s h o p et al . [10]. H o w e v e r , a s h a s b e e n p r o p o s e d b y S a r a n t i t e s and P a t e [11], t he l eve l d e n s i t i e s h a v e b e e n e v a l u a t e d on ly fo r t h a t p a r t of t h e t o t a l e x - c i t a t i o n e n e r g y w h i c h i s a s s o c i a t e d w i th t h e r m a l m o t i o n of t he n u c l e o n s . T h e e x p r e s s i o n f o r t he l e v e l d e n s i t y g i v e n by L a n g and Le C o u t e u r [12] h a s b e e n u s e d , and t he l e v e l d e n s i t y p a r a m e t e r h a s b e e n t a k e n as a = A / 1 0 . 7 , w h e r e A i s t he m a s s n u m b e r of t h e n u c l e u s [13]. T h e e f f e c t s of p a i r i n g of p r o t o n s and of n e u t r o n s in t he n u c l e u s h a v e a l s o b e e n t a k e n in to a c c o u n t in t he way d e s - c r i b e d by V a n d e n b o s c h et al . [14]. T h e p a i r i n g e n e r g y h a s b e e n t a k e n a s 5 = 1.0 MeV [15].

A s e x p e c t e d , t he t h e o r e t i c a l p r e d i c t i o n s of the

207

Volume 27B. number 4 P H Y S I C S L E T T E R S 8 July 1968

I 0

0 8

0-6

0 4

0 2

0

1.0

z o 08

o bJ co

0.6

0 c r

w 0.4

I--

,,-4, o -2 o,-"

1.0

0 8

i I I [ I

~82W [ j / j -

l ; o ' J f40P o 43_

t

, / ] / y " • {/y , . ......

,"" -'"" -O36

[ i I I I i i !

18Ow ~]/9 R

L/o. o 1 ~ 050

I/Z 1 / T ]"4 "°~°

i - - ' 1 " " i I I i I

! I ~ i I I i

1 7 8 w

9~'9R j 0 3 6

0.6 0 3 0

oo

t:'"'" ..o o

2 8 14

E e - E t h r (MeV)

2 o

s t a t i s t i c a l m o d e l d i f f e r v e r y l i t t l e in t he t h r e e c a s e s fo r t he s a m e v a l u e of 9 / ~ R . H o w e v e r , t he a g r e e m e n t b e t w e e n t h e e x p e r i m e n t a l r e s u l t s i s v e r y p o o r , e s p e c i a l l y f o r t h e r a t i o of t he c r o s s s e c t i o n of the 8 + - 6 + t r a n s i t i o n to t h a t of t he 4 + -- 2 + t r a n s i t i o n . F u r t h e r m o r e , " b e s t " f i t s o c c u r a t qu i t e d i f f e r e n t v a l u e s of 9 / 9 R , a nd t h e r e i s a l a r g e v a r i a t i o n in t he q u a l i t y of t h e " b e s t " f i t s ob t a ined .

T h e c o n c l u s i o n c a n t h e r e f o r e b e d r a w n t h a t t h e s t a t i s t i c a l m o d e l a l o n e i s not a l w a y s c a p a b l e of d e s c r i b i n g t he r e l a t i v e p o p u l a t i o n s of g r o u n d - s t a t e r o t a t i o n a l l e v e l s in e v a p o r a t i o n r e a c t i o n s s a t i s f a c t o r i l y . T h e r e a s o n fo r t h i s f a i l u r e p r o b - a b l y l i e s in t h e f ac t t h a t p u r e l y s t a t i s t i c a l c o n - s i d e r a t i o n s s h o u l d no t b e a p p l i e d to t he ~ - c a s c a d e t h r o u g h t he l o w e r e x c i t e d s t a t e s of t he r e s i d u a l n u c l e u s , s i n c e t he m o r e d e t a i l e d e f f e c t s of n u c - l e a r s t r u c t u r e m a y be of c o n s i d e r a b l e i m p o r t a n c e .

References 1. J. Blatt and V. F. Weisskopf, Theore t ica l nuc lear

physics (John Wiley and Sons, New York, London, 1952).

2. V .F .Wei s skopf , P h y s . R e v . 5 2 (1937) 294. 3. S.J$/gare, Nucl. Phys .A95 (1967)481. 4. S.J~/gare, Nuc l ,Phys . A95 (1967) 491. 5. B . J . Sheperd, C. F. Wil l iamson and I. Halpern. Phys .

Rev. Le t t e r s ] 7 (1966) 806. 6. G.B. Hansen, B. Elbek. K.A. Hagemann and W. F.

Hornyak, Nucl. Phys . 47 (1963) 529. 7. N.L. Lark and H. Morinaga, Nucl. Phys . 63 (1965)

466. 8. J .O . Newton, F .S . Stephens, R .M. Diamond, K.

Kotaj ima and E. Matthias, Nucl. Phys . A95 (1967) 357. S. J. Mills, D. Sc. thes i s , Po tchefs t room Univers i ty for Chr is t ian Higher Education, 1968 (unpublished). C. T. Bishop, J . R . Huizenga and J. P. Hummel , P h y s . R e v . 135 (1964) B401. D. G. Sarant i tes and B. D. Pate , Nucl. Phys . A93 (1967) 545. J. M. Lang and K. J . Le Couteur, Proc . Phys . Soc. 67A (1954) 586. D . B . B e a r d and A.McLel lan , Phys . Rev. 131 (1963) 2664. R. Vandenbosch, L. Haskin and J. C. Norman, Phys . Rev.137 (1965) Bl134. P. E. Nemirovsky and Y.V.Adamchuk , Nucl. Phys . 39 (1962) 551.

9 .

10.

11.

12.

13.

14.

15.

Fig. 1. Compar i son between exper imenta l r e su l t s (circles) and s ta t i s t ica l model calculat ions (lines). The open c i r c l e s and solid l ines r e fe r to the 6 +--* 4 + t r an s i - tion, and the closed c i r c l e s and dashed l ines to the 8 + ~ 6 + t rans i t ion. All the c r o s s sect ions a re given

rela t ive to that of the 4 + ~ 2 + t rans i t ion .

208