21
Appendix Table A.I. Fundamental Constants Speed of light in vacuo (c) Planck's constant (h) Avogadro's number (No) Charge of electron (e) Atomic mass unit (u) Mass of electron Mass of proton Mass of neutron Boltzmann constant (k) To convert Btu Btu Btu.1h Btujh ft 2 Btu/h ft 3 centimeters feet inches joules joules joules joules kilograms kg/cm 2 kWh kWh pounds Ibjin 2 meters MeV MWd watts Wjm 2 W/m 3 2.9979 X 10 8 m s - 1 6.6262 X 10- 34 1 s 6.0220 X 10 23 mol- 1 1.60219 x 1O- 19 C 1.660566 X 10- 27 kg 9.109534 X 10- 31 kg = 5.4858 X 10- 4 u 1.672649 X 10- 27 kg = 1.007276 u 1.674954 x 10- 27 kg = 1.008665 u 1.3805 x 1O- 23 1/K Table A.2. Conversion Factors to multiply by joules 1055 kWh 2.931 x 10- 4 watts 0.2931 Wjm 2 3.155 W/m 3 10.35 inches 0.3937 meters 0.3048 centimeters 2.540 Btu 9.478 x 10- 4 kWh 2.778 x 10- 7 MeV 6.242 x 10 12 MWd 1.157 x 10- 11 pounds 2.2046 Ibjin. 2 14.22 Btu 3412 joules 3.600 x 10 6 kilograms 0.4536 kg/cm 2 0.0703 feet 3.281 joules 1.602 x 10- 13 joules 8.640 x 10 10 Btujh 3.412 Btu/h ft 2 0.3170 Btujh ft 3 0.0966 367

Appendix - Springer978-1-4613-3527-6/1.pdf · Btu/h ft 3 centimeters feet inches joules joules joules joules ... 450 422.1 0.019433 1.1011 430.2 775.4 1205.6 a . Appendix 3 • a

Embed Size (px)

Citation preview

Appendix

Table A.I. Fundamental Constants

Speed of light in vacuo (c) Planck's constant (h) Avogadro's number (No) Charge of electron (e) Atomic mass unit (u) Mass of electron Mass of proton Mass of neutron Boltzmann constant (k)

To convert

Btu Btu Btu.1h Btujh ft 2

Btu/h ft 3

centimeters feet inches joules joules joules joules kilograms kg/cm 2

kWh kWh pounds Ibjin 2

meters MeV MWd watts Wjm 2

W/m 3

2.9979 X 108 m s - 1

6.6262 X 10- 34 1 s 6.0220 X 1023 mol- 1

1.60219 x 1O- 19 C 1.660566 X 10- 27 kg 9.109534 X 10- 31 kg = 5.4858 X 10- 4 u 1.672649 X 10- 27 kg = 1.007276 u 1.674954 x 10- 27 kg = 1.008665 u 1.3805 x 1O- 23 1/K

Table A.2. Conversion Factors

to multiply by

joules 1055 kWh 2.931 x 10- 4

watts 0.2931 Wjm 2 3.155 W/m3 10.35 inches 0.3937 meters 0.3048 centimeters 2.540 Btu 9.478 x 10- 4

kWh 2.778 x 10- 7

MeV 6.242 x 1012

MWd 1.157 x 10- 11

pounds 2.2046 Ibjin. 2 14.22 Btu 3412 joules 3.600 x 106

kilograms 0.4536 kg/cm2 0.0703 feet 3.281 joules 1.602 x 10- 13

joules 8.640 x 1010

Btujh 3.412 Btu/h ft 2 0.3170 Btujh ft 3 0.0966

367

368

Table A.3. Masses of Selected Particles and Atoms in Atomic Mass Unitsa

Particle/Atom Mass (u)

Particle Proton 1.007276470 Neutron 1.008665012 Electron 5.4858026 x 10- 4

IX particle 4.001506180

Atomb

I H' 1.007825037

I H2 2.014101787 IH3 3.016049286

2He3 3.016029297 2He4 4.00260325 L'7 3 1 7.0160045

4Be7 7.0169297

4Be9 9.0121825

5 B'D 10.0129380

6C'2 12.00000000

7 N '4 14.003074008

80'6 15.99491464 43 Tc,07 106.91464 491n 115 114.903875 491n 116 115.905257

50Sn" 6 115.9017435 51Sb'33 132.91521 90 Th231 231.036298564 90 Th232 232.038053805

92 U 234 234.040947400

92 U 23 5 235.043925247

92 U 238 238.050785782 94PU239 239.052157781 94PU240 240.053808657 94PU241 241.056846915

, From A. H. Waps.r:i and K. Bos, Atomic Data and Nucleus Data Tables, The 1977 Atomic Mass Evaluation, Academic Press, New York (1977).

b Mass given is that of neutral atom.

Appendix

Appendix 369

Table A.4. Microscopic and Macroscopic Absorption and Scattering Cross Sections for the Elements

Atomic Density (Ja (1, :Ea :E, Element Symbol number (g cm- 3 ) (b) (b) (em-I) (em -I)

Actinium Ac 89 10.1 515 13.8 AlUminum AI 13 2.70 0.230 1.49 0.0139 0.0898 Antimony Sb 51 6.69 5.4 4.2 0.179 0.139 Argon Ar 18 0.678 0.644 Arsenic As 33 5.73 4.3 7 0.198 0.322 Barium Ba 56 3.5 1.2 0.0184 Beryllium Be 4 1.85 0.0092 6.14 0.00114 0.759 Bismuth Bi 83 9.75 0.033 0.00093 Boron B 5 2.34 759 3.6 98.9 0.469 Bromine Br 35 3.12 6.8 6.1 0.160 0.143 Cadmium Cd 48 8.65 2450 5.6 113.6 0.260 Calcium Ca 20 1.55 0.43 0.0100 Carbon C 6 1.6 0.0034 4.75 0.000273 0.381 Cerium Ce 58 6.77 0.63 4.7 0.0183 0.137 Cesium Cs 55 1.87 29.0 0.246 Chlorine CI 17 33.2 Chromium Cr 24 7.19 3.1 3.8 0.258 0.316 Cobalt Co 27 8.9 37.2 6.7 3.38 0.609 Copper Cu 29 8.96 3.79 7.9 0.322 0.671 Deuterium D 1 0.00053 3.390 Dysprosium Dy 66 8.54 930 100 29.4 3.16 Erbium Er 68 9.05 162 11.0 5.28 0.359 Europium Eu 63 5.25 4600 8.0 95.7 0.166 Fluorine F 9 0.0095 4.0 Gadolinium Gd 64 7.90 49000 1480 Gallium Ga 31 5.90 2.9 6.5 0.148 0.331 Germanium Ge 32 5.32 2.3 7.5 0.1015 0.331 Gold Au 79 19.3 98.8 5.83 Hafnium Hf 72 13.31 102 8 4.58 0.359 Helium He 2 <0.05 0.76 Holmium Ho 67 8.78 66.5 9.4 2.13 0.301 Hydrogen H 1 0.332 20.436 Indium In 49 7.31 193.5 7.42 Iodine I 53 4.93 6.2 0.145 Iridium Ir 77 22.4 426 14 29.9 0.98 Iron Fe 26 7.87 2.55 10.9 0.216 0.925 Krypton Kr 36 25.0 7.50 Lanthanum La 57 6.17 9.0 9.3 0.241 0.249 Lead Pb 82 1l.35 0.170 11.4 0.0056 0.376 Lithium Li 3 0.534 70.7 3.28 Lutetium Lu 71 9.84 77 8 2.61 0.271 Magnesium Mg 12 1.738 0.063 3.42 0.00271 0.147 Manganese Mn 25 7.4 13.3 2.1 1.079 0.170 Mercury Hg 80 13.55 375 15.26 Molybdenum Mo 42 10.22 2.65 5.8 0.170 0.372

(continued overleaf)

370 Appendix

Table A.4.-col1t.

Atomic Density rr a rrs La Ls Element Symbol number (g cm- 3 ) (b) (b) (cm- l ) (cm-l)

Neodymium Nd 60 6.90 50.5 16 1.455 0.461 Neon Ne 10 0.038 2.42 Nickel Ni 28 8.90 4.43 17.3 0.404 1.580 Niobium Nb 41 8.57 1.15 0.0639 Nitrogen N 7 1.85 10.6 Osmium Os 76 22.6 15.3 1.095 Oxygen 0 8 0.00027 3.76 Palladium Pd 46 12.0 6.9 5.0 0.469 0.340 Phosphorus P 15 1.82 0.180 0.00637 Platinum Pt 78 21.45 10.0 11.2 0.662 0.742 Plutonium Pu 94 19.84 1011.3 7.7 50.55 0.385 Potassium K 19 0.862 2.10 1.5 0.0279 0.0199 Praseodymium Pr 59 6.77 11.5 3.3 0.333 0.0955 Protactinium Pa 91 15.37 210 8.4 Radium Ra 88 5.0 11.5 0.153 Radon Rn 86 0.72 Rhenium Re 75 21.02 88 11.3 5.98 0.77 Rhodium Rh 45 12.41 150 10.9 Rubidium Rb 37 1.532 0.37 6.2 0.00399 0.0670 Ruthenium Ru 44 12.41 2.56 0.189 Samarium Sm 62 7.45 5800 173 Scandium Sc 21 2.989 26.5 24 1.06 0.96 Selenium Se 34 4.79 11.7 9.7 0.427 0.354 Silicon Si 14 2.33 0.16 2.2 0.0080 0.110 Silver Ag 47 10.50 63.6 3.73 Sodium Na 11 0.971 0.530 3.2 0.0135 0.0814 Strontium Sr 38 2.54 1.21 10 0.0211 0.175 Sulfur S 16 2.07 0.520 0.975 0.0202 0.0379 Tantalum Ta 73 16.65 21 6.2 1.164 0.343 Technetium Tc 43 11.5 19 1.33 Tellurium Te 52 6.24 4.7 0.138 Terbium Tb 65 8.234 25.5 20 0.796 0.624 Thallium Tl 81 11.85 3.4 9.7 0.1187 0.339 Thorium Th 90 11.72 7.40 12.67 0.225 0.385 Thulium Tm 69 9.314 103 12 3.42 0.399 Tin Sn 50 7.31 0.63 0.0234 Titanium Ti 22 4.54 6.1 4.0 0.348 0.228 Tungsten W 74 19.3 18.5 1.17 Uranium U 92 19.1 7.59 8.90 0.367 0.430 Vanadium V 23 6.11 5.04 4.93 0.364 0.356 Xenon Xe 54 24.5 4.30 Ytterbium Yb 70 6.97 36.6 25.0 0.888 0.607 Yttrium Y 39 4.46 1.28 7.60 0.0387 0.230 Zinc Zn 30 7.133 1.10 4.2 0.0723 0.276 Zirconium Zr 40 6.506 0.185 6.40 0.00795 0.275

Appendix 371

Table AS. Absorption and Fission Cross Sections for Some Heavy Isotopes Involved in Nuclear Fuel Cycle

Atomic Abundance Isotope number (%) U. (b) uf (b)

Th232 90 100 7.40 Th233 90 1515 15 Th234 90 1.8 Pa233 91 41 <0.1 U 233 92 578.8 531.1 U 234 92 0.0057 100.2 U 235 92 0.72 680.8 582.2 U 236 92 5.2 U 238 92 99.28 2.70 U 239 92 36 14 Np239 93 45 <1 PU239 94 1011.3 742.5 PU240 94 289.5 0.030 PU241 94 1377 1009 PU242 94 18.5 <0.2

Table A.6. Westcott g Factors for Some Important Isotopes

U 233 U 235 PU239 U 238 PU240

Temperature (0C) g. gf g. gf g. gf g. g.

20 0.9983 1.0003 0.9780 0.9759 1.0723 1.0487 1.0017 1.0270 100 0.9972 1.0011 0.9610 0.9581 1.1611 1.1150 1.0031 1.0518 200 0.9973 1.0025 0.9457 0.9411 1.3388 1.2528 1.0049 1.0823 300 0.9987 1.0044 0.9357 0.9291 1.5895 1.4507 1.0067 1.1160 400 1.0010 1.0068 0.9294 0.9208 1.8905 1.6904 1.0085 1.1536 600 1.0072 1.0128 0.9229 0.9108 2.5321 2.2037 1.0122 1.2521 800 1.0146 1.0201 0.9182 0.9036 3.1006 2.6595 1.0159 1.4478

1000 1.0226 1.0284 0.9118 0.8956 3.5353 3.0079 1.0198 .1.9026

372 Appendix

Table A.7. Properties of Dry Saturated Steam as a Function of Temperature (English Units)·

Specific volume Specific enthalpy (ft 3 /lb) (Btu/lb)

Temperature, Pressure, T P Sat. liquid Sat. vapor Sat. liquid Evap. Sat. vapor

(OF) (psia) vJ Vg hJ hJg h.

32.018 0.08866 0.016022 3302 0.01 1075.4 1075.4 300 66.98 0.017448 6.472 269.73 910.4 1180.2 310 77.64 0.017548 5.632 280.06 903.0 1183.0 320 89.60 0.017652 4.919 290.43 895.3 1185.8 330 103.00 0.017760 4.312 300.84 887.5 1188.4 340 117.93 0.017872 3.792 311.30 879.5 1190.8 350 134.53 0.017988 3.346 321.80 871.3 1193.1 360 152.92 0.018108 2.961 332.35 862.9 1195.2 370 173.23 0.018233 2.628 342.96 854.2 1197.2 380 195.60 0.018363 2.339 353.62 845.4 1199.0 390 220.2 0.018498 2.087 364.34 836.2 1200.6 400 247.1 0.018638 1.8661 375.12 826.8 1202.0 410 276.5 0.018784 1.6726 385.97 817.2 1203.1 420 308.5 0.018936 1.5024 396.89 807.2 1204.1 430 343.3 0.019094 1.3521 407.89 796.9 1204.8 440 381.2 0.019260 1.2192 418.98 786.3 1205.3 450 422.1 0.019433 1.1011 430.2 775.4 1205.6 460 466.3 0.019614 0.9961 441.4 764.1 1205.5 470 514.1 0.019803 0.9025 452.8 752.4 1205.2 480 565.5 0.020002 0.8187 464.3 740.3 1204.6 490 620.7 0.020211 0.7436 475.9 727.8 1203.7 500 680.0 0.02043 0.6761 487.7 714.8 1202.5 510 743.5 0.02067 0.6153 499.6 701.3 1200.9 520 811.4 0.02091 0.5605 511.7 687.3 1198.9 530 884.0 0.02117 0.5108 523.9 672.7 1196.6 540 961.5 0.02145 0.4658 536.4 657.5 1193.8 550 1044.0 0.02175 0.4249 549.1 641.6 1190.6 560 1131.8 0.02207 0.3877 562.0 625.0 1187.0 570 1225.1 0.02241 0.3537 575.2 607.6 1182.8 580 1324.3 0.02278 0.3225 588.6 589.3 1178.0 590 1429.5 0.02319 0.2940 602.5 570.1 1172.5 600 1541.0 0.02363 0.2677 616.7 549.7 1166.4 610 1659.2 0.02411 0.2434 631.3 528.1 1159.4 620 1784.4 0.02465 0.2209 646.4 505.0 1151.4 630 1916.9 0.02525 0.2000 662.1 480.2 1142.4 640 2057.1 0.02593 0.1805 678.6 453.4 1131.9 650 2205 0.02673 0.16206 695.9 423.9 1119.8 660 2362 0.02767 0.14459 714.4 391.1 1105.5 670 2529 0.02882 0.12779 734.4 353.9 1088.3 680 2705 0.03032 0.11127 756.9 309.8 1066.7 690 2892 0.03248 0.09428 783.8 253.9 1037.7 700 3090 0.03666 0.07438 822.7 167.5 990.2 705.44 3204 0.05053 0.05053 902.5 0 902.5

a From J. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore, Steam Tables, Wiley, New York (1969).

Appendix 373

'(able A.S. Properties of Dry Saturated Steam as a Function of Pressure (English Units)a

Specific volume Specific enthalpy (ft3 fib) (Btuflb)

Pressure, Temperature, p T Sat. liquid Sat. vapor Sat. liquid Evap. Sat. vapor

(psia) (OF) vI V • hI hI. h.

14.696 211.99 0.016715 26.80 180.15 970.4 1150.5 100 327.86 0.01 7736 4.434 298.61 889.2 1187.8 200 381.86 0.018387 2.289 355.6 843.7 1199.3 300 417.43 0.018896 1.5442 394.1 809.8 1203.9 400 444.70 0.019340 1.1620 424.2 781.2 1205.5 500 467.13 0.019748 0.9283 449.5 755.8 1205.3 600 486.33 0.02013 0.7702 471.7 732.4 1204.1 700 503.23 0.02051 0.6558 491.5 710.5 1202.0 800 518.36 0.02087 0.5691 509.7 689.6 1199.3 900 532.12 0.02123 0.5009 526.6 669.5 1196.0

1000 544.75 0.02159 0.4459 542.4 650.0 1192.4 1100 556.45 0.02195 0.4005 557.4 631.0 1188.3 1200 567.37 0.02232 0.3623 571.7 612.3 1183.9 1300 577.60 0.02269 0.3297 585.4 593.8 1179.2 1400 587.25 0.02307 0.3016 598.6 575.5 1174.1 1500 596.39 0.02346 0.2769 611.5 557.2 1168.7 1600 605.06 0.02386 0.2552 624.0 538.9 1162.9 1700 613.32 0.02428 0.2358 636.2 520.6 1156.9 1800 621.21 0.02472 0.2183 648.3 502.1 1150.4 1900 628.76 0.02517 0.2025 660.1 483.4 1143.5 2000 636.00 0.02565 0.18813 671.9 464.4 1136.3 2100 642.95 0.02616 0.17491 683.6 445.0 1128.5 2200 649.64 0.02670 0.16270 695.3 425.0 1120.3 2300 656.09 0.02728 0.15133 707.0 404.4 1111.4 2400 662.31 0.02791 0.14067 718.8 383.0 1101.8 2500 668.31 0.02860 0.13059 730.9 360.5 1091.4 2750 682.46 0.03077 0.10717 763.0 297.4 1060.4 3000 695.52 0.03431 0.08404 802.5 213.0 1015.5 3203.6 705.44 0.05053 0.05053 902.5 0 902.5

a From J. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore, Steam Tables, Wiley, New York (1969).

Bibliography

Chapter 1

A. P. ARYA, Fundamentals of Nuclear Physics, Allyn and Bacon, Boston (1966). A. BEISER, Concepts of Modern Physics, 3rd ed., McGraw-Hill, New York (1981). Brookhaven National Laboratory, Neutron Cross Sections, BNL 325, 2nd ed. (1964) and

Supplements (1964, 1965, 1966), available from National Technical Information Service, Springfield, Virginia.

W. E. BURCHAM, Nuclear Physics, An Introduction, McGraw-Hill, New York (1963). B. L. COHEN, Concepts of Nuclear Physics, McGraw-Hill, New York (1971). R. D. EVANS, The Atomic Nucleus, McGraw-Hill, New York (1955). H. FRAUENFELDER and E. M. HENLEY, Subatomic Physics, Prentice-Hall, Englewood Cliffs, New

Jersey (1974). I. KAPLAN, Nuclear Physics, Addison-Wesley Press, Reading, Massachusetts (1955). R. E. LAPp and H. L. ANDREWS, Nuclear Radiation Physics, 3rd ed., Prentice-Hall, Englewood

Cliffs, New Jersey (1964). C. M. LEDERER, J. M. HOLLANDER, and I. PERLMAN, Table of Isotopes, 6th ed., John Wiley and

Sons, New York (1968). S. F. MUGHABGHAB and D. I. GARBER, Neutron Cross Sections, BNL 325, 3rd ed., Vol.

(Resonance Parameters), Brookhaven National Laboratory, Upton, New York (1973). E. SEGRE, Nuclei and Particles, Benjamin, New York (1965). H. SEMAT and J. R. ALBRIGHT, Introduction to Atomic and Nuclear Physics, 5th ed., Holt,

Rinehart and Winston, New York (1972). A. H. WAPSTRA and K. Bos, Atomic Data and Nuclear Data Tables, The 1977 Atomic Mass

Evaluation, Academic Press, New York (1977).

Chapter 2

E. A. C. CROUCH, Fission-Product Yields from Neutron-Induced Fission, Atomic Data and Nuclear Data Tables 19, 417-432, Academic Press, New York (1977).

S. GLASSTONE and M. C. EDLUND, The Elements of Nuclear Reactor Theory, D. Van Nostrand Company, Princeton, New Jersey, and New York (1952).

D. R. INGLIS, Nuclear Energy: Its Physics and Its Social Challenge, Addison-Wesley, Reading, Massachusetts (1973).

J. R. LAMARSH, Introduction to Nuclear Reactor Theory, Addison-Wesley, Reading, Massachusetts (1966).

S. F. MUGHABGHAB and D. I. GARBER, Neutron Cross Sections, BNL 325, 3rd ed., Vol. 1, Brookhaven National Laboratory, Upton, New York (1973).

A. M. WEINBERG and E. P. WIGNER, The Physical Theory of Neutron Chain Reactors, University of Chicago Press, Chicago (1958).

375

376 Bibliography

Chapter 3

G. 1. BELL and S. GLASSTONE, Nuclear Reactor Theory, Van Nostrand Reinhold, New York (1970).

J. J. DUDERSTADT and L. J. HAMILTON, Nuclear Reactor Analysis, John Wiley and Sons, New York (1976).

A. R. FOSTER and R. L. WRIGHT, Basic Nuclear Engineering, 2nd ed., Allyn and Bacon, Boston (1973).

S. GLASSTONE and M. C. EDLUND, The Elements of Nuclear Reactor Theory, D. Van Nostrand Company, Princeton, New Jersey, and New York (1952).

S. GLASSTONE and A. SESONSKE, Nuclear Reactor Engineering, Van Nostrand Reinhold, New York (1967).

P. l. GRANT, Elementary Reactor Physics, Pergamon Press, Oxford (1966). A. F. HENRY, Nuclear Reactor Analysis, M.LT. Press, Cambridge, Massachusetts (1975). D. L. HETRICK, Dynamics of Nuclear Reactors, University of Chicago Press, Chicago and

London (1971). D. lAKEMAN, Physics of Nuclear Reactors, The English Universities Press, London (1966). G. R. KEEPIN, Physics of Nuclear Kinetics, Addison-Wesley, Reading, Massachusetts (1965). J. R. LAMARSH, Introduction to Nuclear Engineering, Addison-Wesley, Reading, Massachusetts

(1975). J. R. LAMARSH, Introduction to Nuclear Reactor Theory, Addison-Wesley, Reading,

Massachusetts (1966). S. E. LIVERHANT, Elementary Introduction to Nuclear Reactor Physics, John Wiley and SODS,

New York (1960). R. V. MEGHREBLIAN and D. K. HOLMES, Reactor Analysis, McGraw-Hili, New York (1960). R. L. MURRAY, Nuclear Energy, Pergamon Press, New York (1975). R. L. MURRAY, Nuclear Reactor Physics, Prentice-Hall, Englewood Cliffs, New Jersey (1957). J. POP-JORDANOV, Ed., Developments in the Physics of Nuclear Power Reactors, International

Atomic Energy Agency, Vienna (1973). L. J. TEMPLIN, Ed., Reactor PhYSics Constants, ANL-5800, 2nd ed., Argonne National

Laboratory (1963). J. G. TYROR and R. 1. VAUGHAN, An Introduction to the Neutron Kinetics of Nuclear Power

Reactors, Pergamon Press, Oxford (1970). L. E. WEAVER, Reactor Dynamics and Control, American Elsevier Publishing Company, New

York (1960). A. M. WEINBERG and E. P. WIGNER, The Physical Theory of Neutron Chain Reactors, University

of Chicago Press, Chicago (1958). J. WEISMAN, Elements of Nuclear Reactor Design, Elsevier/North-Holland, New York (1977). C. H. WESTCOTT, Effective Cross Section Values for Well-Moderated Thermal Reactor Spectra,

AECL-llOl, 3rd ed., Atomic Energy of Canada Ltd., Chalk River, Ontario (1964). P. F. ZWEIFEL, Reactor Physics, McGraw-Hili, New York (1973).

Chapter 4

S. BANERJEE, E. CRITOPH, and R. G. HART, Thorium as a Nuclear Fuel for CANDU Reactors, Can. J. Chem. Eng. 53(3), 291-296 (1975).

I. P. BELL, Thorium, its Properties and Characteristics, Nucl. Eng. 2(19), 418~22 (1957). E. CRITOPH, Fuel management in power reactors: Fuel management and refuelling schemes, in

Developments in the Physics of Nuclear Power Reactors, l. Pop-Jordanov, Ed., International Atomic Energy Agency, Vienna (1973), pp. 201-220.

Bibliography 377

D. M. ELLIOTT and L. E. WEAVER, Eds., Education and Research in the Nuclear Fuel Cycle, University of Oklahoma Press, Norman, Oklahoma (1972).

A. R. KAUFMANN, Ed., Nuclear Reactor Fuel Elements: Metallurgy and Fabrication, John Wiley and Sons, New York and London (1962).

R. W. NICHOLS, Uranium and Its Alloys, Nucl. Eng. 2(18), 355-365 (1957). A. M. PERRY and A. M. WEINBERG, Thermal breeder reactors, Ann. Rev. Nucl. Sci. 22, 317-354

(1972). T. H.-PIGFORD and K. P. ANG, The plutonium fuel cycles, Health Phys. 29(4),451-468 (1975). P. SILVENNOINEN, Reactor Core Fuel Management, Pergamon Press, Oxford (1976).

Chapter 5

W. V. GoEDDEL and J. N. SILTANEN, Materials for high-temperature nuclear reactors. Ann. Rev. Nucl. Sci., 17, 189-252 (1967).

R. E. NIGHTINGALE, Nuclear Graphite, Academic Press, New York and London (1962). D. R. OLANDER, Fundamental Aspects of Nuclear Reactor Fuel Elements, National Technical

Information Service, U.S. Department of Commerce, Springfield, Virginia 22161 (1976). E. C. W. PERRYMAN, Nuclear Materials: Prospect and Retrospect, AECL-5125, Atomic Energy

of Canada, Chalk River, Ontario (1975). E. ROBERTS, J. IORII, and B. ARGALL, Westinghouse pressurized water reactor fuel development

and performance, Nucl. Energy 19(5), 335-346 (1980). J. A. L. ROBERTSON, Irradiation Effects in Nuclear Fuels, Gordon and Breach Science Publishers,

New York (1969). M. T. SIMNAD, Fuel Element Experience in Nuclear Power Reactors, Gordon and Breach Science

Publishers, New York (1971). M. T. SIMNAD and L. P. ZUMWALT, Materials and Fuels for High Temperature Nuclear Energy

Applications, MIT Press, Cambridge, Massachusetts (1964). C. O. SMITH, Nuclear Reactor Materials, Addison-Wesley, Reading, Massachusetts (1967). G. H. VINEYARD, in Physics and the Energy Problem-I974, M. D. Fiske and W. W. Havens,

Eds., American Institute of Physics, New York (1974), pp. 182-201. W. D. WILKINSON and W. F. MURPHY, Nuclear Reactor Metallurgy, D. Van Nostrand,

Princeton, New Jersey (1958).

Chapter 6

P. G. BARNETT, A Correlation of Burnout Data for Uniformly Heated Annuli and Its Use for Predicting Burnout in Uniformly tleated Rod Bundles, United Kingdom Atomic Energy Authority Report AEEW-R463 (1966), available from Her Majesty's Stationery Office, London.

D. BUTTERWORTH and G. F. HEWITT, Eds., Two-Phase Flow and Heat Transfer, Oxford University Press, Oxford (1977).

M. M. EL-WAKIL, Nuclear Energy Conversion, American Nuclear Society, LaGrange Park, Illinois (1978).

M. M. EL-WAKIL, Nuclear Heat Transport, American Nuclear Society, LaGrange Park, Illinois (1978).

G. F. HEWITT and N. S. HALL-TAYLOR, Annular Two-Phase Flow, Pergamon Press, Oxford (1970).

J. P. HOLMAN, Heat Transfer, 3rd ed., McGraw-Hili, New York (1972).

378 Bibliography

J. H. KEENAN, F. G. KEYES, P. G. HILL, and J. G. MOORE, Steam Tables (English Units), John Wiley and Sons, New York (1969).

R. V. MACBETH, The burn-out phenomenon in forced-convection boiling, AdL Chern. Eng. 7, 207-293 (1968).

L. S. TONG, Boiling Heat Transfer and Two-Phase Flow, John Wiley and Sons, New York (1965). L. S. TONG and J. WEISMAN, Thermal Analysis of Pressurized Water Reactors, American Nuclear

Society, Hinsdale, Illinois (1970). J. WEISMAN, Elements of Nuclear Reactor Design, Elsevier/North-Holland, New York (1977).

Chapter 7

M. M. EL-WAKIL, Nuclear Energy Conversion, American Nuclear Society, LaGrange Park, Illinois (1978).

R. V. MOORE, Ed., Nuclear Power, Cambridge University Press, London (1971). A. V. NERO, A Guidebook to Nuclear Reactors, University of California Press, Berkeley and Los

Angeles (1979). F. J. PEARSON, Nuclear Power Technology, Oxford University Press, London (1963). J. G. WILLS, Nuclear Power Plant Technology, John Wiley and Sons, New York and London

(1967).

Chapter 8

Central Electricity Generating Board (United Kingdom), Wylfa Power Station, available from CEGB, 825 Wimslow Road, Manchester, England.

K. H. DENT, The Standing of Gas-Cooled Reactors, Nuc!. Energy 19(4), 257-271 (1980). English Electric, Babcock and Wilcox, Taylor Woodrow Atomic Power Construction Company

Limited, Hinkley Point-Sizewell-Wylfa Head-A logical development, Nucl. Eng. (April 1965).

L. MASSIMO, The Physics of High Temperature Reactors, Pergamon Press, Oxford (1975). J. D. McKEAN, Hartiepool-A milestone in gas-cooled reactors, Nucl. Eng. Int. 14, 724-730

(1969). National Nuclear Corporation (United Kingdom), Heysham 2/Torness, Nucl. Eng. Int. 26(310),

27-42 (1981). Nuclear Energy 20(2), Special Issue on Magnox Reactors (April 1981). L. R. SHEPHERD, The future of the high temperature reactor, J. Br. Nucl. Energy Soc. 16(2), 123-

132 (1977). R. E. WALKER and T. A. JOHNSTON, Fort Saint Vrain nuclear power station, Nucl. Eng. Int. 14,

1064-1068 (1969). G. L. WESSMAN and T. R. MOFFETTE, Safety design bases of the HTGR, Nucl. Sa! 14(6),618-

634 (1973).

Chapter 9

L. F. DALE, Grand Gulf contributes to growth in the Sunbelt, Nucl. Eng. Int. 25(304), 35-41 (1980).

C. EICHELDINGER, Sequoyah nuclear steam supply system, Nucl. Eng. Int. 16, 850-856 (1971). General Electric Company, BWR/6, General Description of a Boiling Water Reactor (1980),

available from General Electric Company, San Jose, California 95125.

Bibliography 379

A. L. HElL, The Sequoyah reactors-Fuel and fuel components, Nucl. Eng. Int. 16, 857-859 (1971).

Westinghouse Electric Corporation, Summary Description of Westinghouse Pressurized Water Reactor Nuclear Steam Supply System (1979), available from Westinghouse Water Reactor Divisions, Pittsburgh, Pennsylvania.

A. ZACCARIA, Advantages of the Mark III Containment, Nucl. Eng. Int. 25(304), 49-50 (1980).

Chapter 10

Atomic Energy of Canada Limited, CANDU Nuclear Power Station, available from Marketing Divison, AECL, 275 Slater Street, Ottawa, Ontario.

Atomic Energy of Canada Limited, CANDU 600 (1979), available from Public Affairs Office, AECL, Sheridan Park, Mississauga, Ontario.

British Nuclear Energy Society, Steam Generating and Other Heavy Water Reactors (Proceedings of a Conference held at the Institution of Civil Engineers, May 1968), available from the British Nuclear Energy Society, Great George Street, London.

1. S. FOSTER and E. CRITOPH, The status of the Canadian nuclear power program and possible future strategies, Ann. Nucl. Energy 2, 689-703 (1975).

1. L. GRAY, The Canadian nuclear power programme, J. Br. Nucl. Energy Soc. 13(3),227-239 (1974).

Hydro Electric Power Commission of Ontario/Atomic Energy of Canada Limited, CANDU 500 Pickering Generating Station (1969).

W. B. LEWIS and 1. S. FOSTER, Canadian Operating Experience with Heavy Water Power Reactors, AECL-3569 (1971), available from Atomic Energy of Canada Limited, Chalk River, Ontario.

H. C. McINTYRE, Natural-Uranium Heavy-Water Reactors, Sci. Am. 233(4), 17-27 (1975). 1. A. L. ROBERTSON, The CANDU reactor system: An appropriate technology, Science 199,

657-664 (1978).

Chapter 11

T. D. BEYNON, The nuclear physics of fast reactors, Rep. Prog. Phys. 37, 951-1034 (1974). British Nuclear Energy Society, Fast Reactor Power Stations (Proceedings of an International

Conference held on 11-14 March 1974), Thomas Telford Limited, London (1974). P. V. EVANS, Ed., Fast Breeder Reactors, Symposium Publications Division, Pergamon Press,

Oxford (1967). W. HAFELE, D. FAUDE, E. A. FISCHER, and H. 1. LANE, Fast breeder reactors, Ann. Rev. Nucl.

Sci. 20, 393-434 (1970). 1. M. LAITHWAITE, The fast breeder reactor at Dounreay, in Nuclear Power, R. V. Moore, Ed.,

Cambridge University Press, London (1971), pp. 152-167. W. MARSHALL, Some questions and answers concerning fast reactors, Nucl. Energy 19(5), 319-

334 (1980). 1. MOORE and 1. I. BRAMMAN, Fast reactor development in the U.K., Nuc!. Energy 20(1), 15-22

(1981). Nuclear Engineering International, Creys-Malville nuclear power station, Nuc!. Eng. Int. 23,

272, 43-60 (1978). F. STORRER, Introduction to the physics offast power reactors, in Developments in the Physics of

Nuclear Power Reactors, 1. Pop-lordanov, Ed., International Atomic Energy Agency, Vienna (1973), pp. 247-291.

380 Bibliography

Chapter 12

American Physical Society, Report of the study group on light water reactor safety, Rev. Mod. Phys. 47 (Suppl. No. 1) (1975).

American Physical Society, Report of the study group on nuclear fuel cycles and waste management, Rev. Mod. Phys. 50(1), Part II (1978).

V. E. ARcHER, Effects of low-level radiation: A critical review, Nucl. Sa! 21(1), 68-82 (1980). J. E. BOUDREAU, The mechanistic analysis of LMFBR accident energetics, Nucl. Sa! 20(4),402-

413 (1979). T. B. CoCHRAN, The Liquid Metal Fast Breeder Reactor, Johns Hopkins University Press.

Baltimore and London (1974). B. L. COHEN, Hazards from Plutonium Toxicity, Health Phys. 32,359-379 (1977). B. L. COHEN, High-level radioactive waste from light-water reactors, Rev. Mod. Phys. 49(1), 1-

20 (1977). F. R. FARMER, Nuclear Reactor Safety, Academic Press, New York and London (1977). H. K. F AUSKE, The role of core disruptive accidents in design and licencing of LMFBRs, Nucl.

Sa! 17(5), 550-567 (1976). J. GRAHAM, Fast Reactor Safety, Academic.Press, New York and London (1971). International Atomic Energy Agency, Environmental Aspects of Nuclear Power Stations

(Proceedings of a Symposium, New York, August 1970), IAEA Vienna (1971). International Atomic Energy Agency, Nuclear Power and the Environment, IAEA Vienna (1973). H. INHABER, Risk with energy from conventional and nonconventional sources, Science 203

(4382),718-723 (1979). J. G. KEMENY, Ed., Report of the President's Commission on the Accident at Three Mile Island,

October 1979, available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

H. W. KENDALL, The Risks of Nuclear Power Reactors (A Review of the NRC Reactor Safety Study, WASH-1400), Union of Concerned Scientists, Cambridge, Massachusetts (1977).

R. E. LAPP and H. L. ANDREWS, Nuclear Radiation Physics, 3rd ed., Prentice-Hall, Englewood Cliffs, New Jersey (1963).

C. K. LEEPER, How safe are reactor emergency cooling systems?, Phys. Today 26(8), 30-35 (1973).

T. H. Moss, and D. L. SILLS, The Three Mile Island Nuclear Accident: Lessons and Implications, The New York Academy of Sciences, New York (1981). .

National Research Council, Advisory Committee on the Biological Effects of Ionizing Radiation, The Effects on Populations of Exposure to Low Levels of Ionizing Radiation, BEIR Report, National Academy of Sciences, Washington, D.C. (1972).

T. H. PIGFORD, Environmental Aspects of Nuclear Energy Production, Ann. Rev. Nucl. Sci. 24, 51S-559 (1974).

E. E. POCHlN, Estimated Population Exposure from Nuclear Power Production and Other Radiation Sources, Nuclear Energy Agency, O.E.C.D., Paris (1976).

A. PORTER, G. A. MCCAGUE, S. PLOURDE-GAGNON, and W. R. STEVENSON, Report of the Royal Commission on Electric Power Planning, Vol. I (Concepts, Conclusions and Recommendations), Royal Commission on Electric Power Planning, Toronto, Ontario (1980).

L. A. SAGAN and R. ELIASSEN, Human and Ecologic Effects of Nuclear Power Plants, C. C. Thomas, Springfield, Illinois (1974).

R. D. SMITH, Fast Reactor Safety, Nucl. Energy 20(1),49-54 (1981). L. S. TAYLOR, Radiation Protection Standards, CRC Press, Cleveland, Ohio (1971). T. J. THOMPSON, and J. G. BECKERLEY, Eds., The Technology of Nuclear Reactor Safety, Vol. J,

Reactor Physics and Control, M.l.T. Press, Cambridge, Massachusetts (1964).

Bibliography 381

T. J. THOMPSON and J. G. BECKERLEY, Eds., The Technology of Nuclear Reactor Safety, Vol. II, Reactor Materials and Engineering, M.LT. Press, Cambridge, Massachusetts (1973).

United Nations Scientific Committee on the Effects of Atomic Radiation, Ionizing Radiation: Levels and Effects, United Nations, New York (1972).

United States Atomic Energy Commission, Theoretical Possibilities and Consequences of Major Accidents in Large Nuclear Plants, USAEC Report WASH-740, USAEC, Washington, D.C. (1957).

United States Atomic Energy Commission, The Safety of Nuclear Power Reactors (Light Water Cooled) and Related Facilities, USAEC Report WASH-1250, USAEC, Washington, D.C. (1973).

United States Atomic Energy Commission, Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants, USAEC Report WASH-1400 (Rasmussen Report), USAEC, Washington, D.C. (1975).

United States Nuclear Regulatory Commission, Risk Assessment Review Group Report, NUREGjCR-0400, U.S. Nuclear Regulatory Commission, Washington D.C. 20555 (1978).

R. E. WEBB, The Accident Hazards of Nuclear Power Plants, University of Massachusetts Press, Amherst, Massachusetts (1976).

M. WILLRICH and R. K. LESTER, Radioactive Waste Management and Regulation, Macmillan Publishing Company, New York (1977).

R. WILSON, Physics of Liquid Metal Fast Breeder Reactor Safety, Rev. Mod. Phys. 49(4), 893-924 (1977).

Index

Absorbed radiation dose, 308 Absorption, photoelectric, 38, 307 Actinides, 323 Activation foils, 45-47 Activation products, 317 Activity, 8 Alpha particle

discovery, 2 energy spectrum, 8 scattering, 2

Annihilation, 38 Annular flow, 196 Argon-4I,318 Atom

definition, 1 energy levels of, 5 structure of, 1-4

Atomic mass number, 3 Atomic mass unit, 12 Atomic number, 3

Barn, 25 Be9 (n, 2n) reaction, 23 Be9 (0:, n) reaction, 35 Becquerel, 8 Beta particle

discovery, 2 energy spectrum, 8

BF3(boron trifluoride) counter, 43 Binding energy, 11-17

definition, 12

383

Binding energy (continued) formula, 14-16

Biological effectiveness, relative, 308 Blanket, 72, 290 Boiling, nucleate, 195

departure from, 196 Boiling water reactor: see Reactor Booster rods, 121,279 Breeder reactor, 71 Breeding gain, 287 Brown's Ferry incident, 347 Buckling, 95

table of values, 98 Burnout, 196 Burn-up of fuel, 133-135

reactivity change due to, 133

Calandria,275 CANDU reactor, 116,224,269-282 carbon

material properties (graphite), 162-165

pyrolytic, 165 Carbon-14, 319-321 Cell

effects of radiation on, 305-312 Ceramic fuels, 155-159 Cermet fuel, 160 Chain reaction, 56, 60-68 Chemical shim, 142 Chromosomes, 306

384

Cladding, 156 Coated particles, 160-162, 243 Coincidence method, 41 Compound nucleus, 18 Compton scattering, 38, 307 Containment

ice condenser, 261 pressure suppression, 266

Control rods, 67 calibration of, 109

Convection heat transfer coefficient, 189

Conversion, 68 Conversion factors, 367 Conversion ratio, 69, 128-131 Coolants for reactors, 203-204 Cooling systems

gas-cooled reactor, 213-214 liquid metal, 215 water-cooled reactors, 204-213

Cooling towers, 366 Core, 99 Counter

fission, 44 Geiger-Muller, 37 Ge(Li),40 Hilborn, 45 proportional, 37 scintillation, 38 semiconductor, 40

Creep, 168 Critical heat flux, 196 Critical mass, 61 Critical reactor, 61 Cross section

absorption, 25 capture, 25 for fissile isotopes, 72-74 macroscopic, 26 for neutron reactions, 20-29 nuclear, 24-26 scattering, 25, 29 tables, 369-371 thermal,85 total,25

Curie, 8 Cytoplasm, 306

Decay constant, 8 Delayed neutrons, 56

fraction of, 105-106 precursors, 57 in reactor control, 57, 105, 137 yields in fission, 106

Deuterium, 3, 170 Diffusion

area, 90 coefficient, 88 equation, 89 length,90 neutron, 87 parameters (table), 91

DNA, 306, 310 Dollar, 108 Doppler broadening, 114

in fast reactor, 295 Dose, absorbed radiation, 308 Dose-effect coefficients, 339 Dose equivalent, 308 DOUbling time, 286 Drywell, 256, 267, 329 Dual-cycle BWR, 251

Earthquakes, 345 Economizer, 217

Index

Effective delayed neutron fraction, 110 Efficiency

thermal, 205, 365 thermodynamic, 205

Electron discovery of, 2 mass, 13

Electron volt, 5 Emergency core cooling systems, 325 Energy decrement, logarithmic, 79 Energy release in fission, 58-60 Energy spectrum of reactor neutrons,

77-86,284 Enthalpy, 198 Eta (71), 63

values for fissile isotopes, 64 variation with neutron energy, 127 variation with temperature, 112

Evaporator, 217

Index

Event tree analysis, 332 Extrapolation distance, 92

Fast breeder reactor: see Reactor Fast fission, 62 Fast fission factor, 65 Fault tree analysis, 333 Fertile material, 68 Film boiling, 197 Fissile isotopes

nuclear properties of, 72-74, 125-140 Fission, 23, 51-60

delayed neutrons in, 56 energy release in, 58-60 fast, 62 neutrons, 55

energy spectrum of, 57 products, 55

mass distribution, 55 poisoning effect, 117 -123 range of, 59 in reactor waste, 359-364

spontaneous, 54 threshold, 54

Fission products: see Fission Fluence, neutron, 133 Flux flattening, 143 Flux, neutron, 24, 77

2200 meter per second, 85 Form factor, 143 Fort St. Vrain high temperature

reactor, 241-245 Four-factor formula, 66 Fourier equation, 181 Fuel

axial variation of temperature, 190-194

bundle, 156 densification, 159,255 dispersion-type, 159-162 element bowing in fast reactor, 296 heat generation in, 175-194 management, 141-144 uranium metal, 153-155 uranium oxide, 155-159

Fundamental constants, 367

Fundamental mode solutions, 103 Fusion, 14

Gametes, 306 Gamma ray, 5

origin of, 7 Gas-cooled reactor: See Reactor Gas multiplication, 38 Gas turbine, 214 Gaseous diffusion process, 149-153 Ge(Li) detector, 40 Genes, 306 Grand Gulf boiling water reactor,

263-268 Graphite, 162-165

irradiation effects, 163 Gray, 308

Half-life, 10 Hartlepool advanced gas-cooled

reactor, 234-241 Heat conduction in fuel, 180-188 Heat flux, 188 Heat generation in fuel, 175-194 Heat transfer

by boiling coolant, 195-202 by convection, 189

Heavy water, 170-173 production by G-S process, 170

Heavy water reactor: see Reactor Hilborn detector, 45

Ionization potential, 6 Irradiation effects

on fuel, 146 on reactor materials, 145-146 on uranium metal, 155 on uranium oxide, 157-159 on water, 172

Isotope, 3

Jet pumps, 209

385

386

Kinetic theory of gases, I Kinetics, reactor, 102-123 Krypton-85, 317

Leakage, neutron, 61, 88 _variation with temperature, 113

Lethargy, neutron, 82 Level width, 19 Lifetime, neutron, 104 Light water reactor: see Reactor Linear energy transfer, 308 Local-conditions hypothesis, 200 Logarithmic energy decrement, 79 Loss-of-coolant accident, 325

sequence of events following, 329-332

Magic numbers, 16 Mass defect, II Mass-energy equivalence, 7 Mass number, atomic, 3 Masses, atomic, 368 Materials for nuclear reactors, 145-173 Maxwell-Boltzmann distribution, 84 Mean free path, 27-29, 88 Meltdown, 331 Mitochondria, 306 Mitosis, 306 Moderating ratio, 81 Moderator, 62 Moderator dump, 279 Multibatch loading, 143 M ultigroup method, 89 Multiplication factor, 61

effective, 61 excess, 104 for natural uranium reactor, 63-66

Mutation, 311

Neptunium-237,361 Neptunium-239,68 Neutrino, 8 Neutron

absorption rate, 85

Neutron (continued) capture reaction, 22 delayed, 56-58 detectors, 43-47 discovery of, 3

Index

energy spectrum in reactor, 77-86, 284

fluence, 133 flux, 24, 77

energy dependence of, 77-86 spatlal dependence of, 87-100

interaction with nucleus, 17-20 lethargy, 82 lifetime, 104 mass, 13 multiplication factor, 61 prompt, 56 scattering, 21-22, 87 sources, 35-37 thermal, 63, 84

Neutrons per fission, 63 Nitrogen-I 6, 317 Nonleakage probability, 95 Nu(v),63 Nucleon, 3 Nucleus

binding energy of, 12-17 compound, 18 discovery of, 2 energy levels of, 6, 18 liquid drop model of, 15,52 radius of, 4

On-load refueling, 143 One-group critical equation; 95 One-group method, 90-98 Organic coolant, 203, 273

Pair production, 38, 307 Pebble-bed concept, 245 Pellet-clad int~raction, 158 Period of reactor, 108 Photoelectric absorption, 38, 307 Photo neutrons, 36, 269 Photo peak, 39

Index

Pickering CANDU reactor, 275-281 Pi meson, II Pinch point, 216 Plutonium

isotopes of, 68 production of, 68, 129-136 recycle, 136-138 role in nuclear reactors, 68-72

Plutonium-239, fission cross-section, 73

Plutonium-240, role in plutonium recycle, 137

Point reactor model, 104 Poisson equation, 180-182

solutions of, 182-188 Positron, 5 Power density, 100 Precursors, delayed neutron, 57 Pressure suppression chamber, 329 Pressure vessel, pre-stressed concrete,

230,353 Pressurized water reactor: See Reactor Pressurizer, 206 Prompt critical, 109 Prompt jump, 109 Protactinium-233, 140 Proton, 2

mass, 13 Prototype Fast Reactor, 299-302 Pulse-shape discrimination, 44

Quality factor, 308

Ra-Be source, 35 Rad,308 Radiation

biological effects of, 305-314 cosmic, 312 delayed effects of, 311 detectors, 37-47 dose limits, 312-315 doses due to nuclear fuel cycle,

319-322 table, 322

emission of. 5

Radiation (continued) natural background, 312 quality factor, 308

387

relative biological effectiveness, 308 stochastic effects of, 314

Radiation dose, absorbed, 308 Radiative capture, 23 Radioactivity, 4-11

discovery of, 2 of reactor after shutdown, 316,

323-324 releases from nuclear power plants,

312-322 systematics of, 8-11

Radon-222, from uranium mining, 319 Rankine cycle, 216 Reactivity, 103

changes due to burn-up, 133-135 temperature coefficient of, 111-115 void coefficient of, 116-117

Reactivity-period relationship, 108 Reactor

accidents, 322-359 fatality estimates, 340-343

advanced gas-cooled, 229,234-241 boiling light water (CANDU), 281 boiling water, 209-213, 263-268 fast breeder, 225, 283-303

dynamic behavior of, 294-299 gas-cooled, 289 neutron energy spectrum in, 284 safety, 355-359

gas-cooled, 213, 224, 227-247 accidents in, 352-354

heavy water, 222, 269-282 heterogeneous, 100-102 high-temperature gaS-COOled, 229,

241-247 light water moderated, 222, 249-268

accidents in, 347-352 magnox, 227, 230-234 organic cooled heavy water, 273 pressurized water, 204-209,257-262 safety and environmental aspects,

305-366 steam generating heavy water, 272,

282

388

Reactor (continued) survey of types, 221-226 thermal, 62, 22 I water-cooled, 204-213

Reactor Safety Study (WASH-1400), 323

results of, 34 1-343 validity of, 343-347

Reflector, 67, 99 Regeneration, 2 I 7 Reheat, 217 Relative biological effectiveness, 308 Rem, 308 Reprocessing

radiation dose due to, 322 Resonance, 18 Resonance absorption, 31

effect of lumping, 101 Resonance escape probability, 65

variation with temperature, 113-115 Rod cluster control, 254, 260

Safety aspects fast breeder reactor, 294-299,

355-359 gas-cooled reactor, 352-354 heavy water reactor, 354-355 light water reactors, 322-352

Samari um-149, 122-123 Sb-Be source, 36 Scattering

Compton, 38, 307 neutron elastic, 21, 79-84 neutron inelastic, 21, 62

Sector control, 122 Secular equilibrium, 10 Separation potential, 151 Separative work, 15 I Sequoyah pressurized water reactor,

257-262 Shutdown system failure, 345 Sievert, 308 Slowing-down power, 81 Sodium coolant, 215,288 Sodium vapor explosion, 359

Sodium-24, 288 Sources, neutron, 35-37

photoneutron,36-37 Spectral shift control, 142 Spin-pairing effect, 16, 54 Steam binding, 33 I Steam generator, 206 Steam quality, 21 I Steam tables, 372-373 Steel, stainless, 165-167

fast neutron swelling, 165 Subcoo1ing,212 Superheat, 215-217, 252-253

Index

Temperature coefficient of reactivity, 111-115

Thermal effects of nuclear power stations, 364-366

Thermal efficiency, 205, 365 Thermal neutrons, 63, 84 Thermal rachetting of uranium, 155 Thermal resistance, 186 Thermal utilization, 65

variation with temperature, 114 Thorium cycle, 71,129,138-140 Three Mile Island incident, 347-352 Transients, 103, 108,325 Transport theory, 79 Transuranic elements, 51 Tritium, 3, 317-318 Two-group equations, 99 Two-group method, 98-100

Uranium carbide, 159 enrichment, 149-153 isotopic ratios, 3, 125 metal, 153-155 oxide, 155-159 production, 147-148

Uranium-235, fission cross-section, 72 Uranium-238

fission cross-section, 73 resonance absorption in, 32, IOJ

Index

V oid coefficient of reactivity, 116-117 of sodium in fast reactor, 295

Waste, radioactive disposal of, 359-364 estimated fatality rates, 364

Wastes, treatment of liquid, 318 Westcottg factors, 86, 371 Wigner energy, 164, 352 Windscale incident, 164,352 Wylfa magnox station, 230-234

Xenon effect on reactor kinetics, 117-122 oscillations, 121-122 override, 121

Xenon- I35, production of, ll8 X-rays, 6

Zirconium, 167-170 creep of pressure tubes, 168-170 hydride, 168

Zygote, 306

389