164
Appendix II-I Electromagnetic Frequency (EMF) Report Note: On March 26, 2021, Atlantic Shores Offshore Wind, LLC (Atlantic Shores) submitted a Construction and Operations Plan (COP) to BOEM for the southern portion of Lease OCS-A 0499. On June 30, 2021, the New Jersey Board of Public Utilities (NJ BPU) awarded Atlantic Shores an Offshore Renewable Energy Credit (OREC) allowance to deliver 1,509.6 megawatts (MW) of offshore renewable wind energy into the State of New Jersey. In response to this award, Atlantic Shores updated Volume 1 of the COP to divide the southern portion of Lease OCS-A 0499 into two separate and electrically distinct Projects. Project 1 will deliver renewable energy under this OREC allowance and Project 2 will be developed to support future New Jersey solicitations and power purchase agreements. As a result of the June 30, 2021 NJ BPU OREC award, Atlantic Shores updated Volume I (Project Information) of the COP in August 2021 to reflect the two Projects. COP Volume II (Affected Environment) and applicable Appendices do not currently include this update and will be updated to reflect Projects 1 and 2 as part Atlantic Shores' December 2021 COP revision.

Appendix II-I

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Appendix II-I

Appendix II-I Electromagnetic Frequency (EMF) Report

Note:

On March 26, 2021, Atlantic Shores Offshore Wind, LLC (Atlantic Shores) submitted a Construction and Operations Plan (COP) to BOEM for the southern portion of Lease OCS-A 0499. On June 30, 2021, the New Jersey Board of Public Utilities (NJ BPU) awarded Atlantic Shores an Offshore Renewable Energy Credit (OREC) allowance to deliver 1,509.6 megawatts (MW) of offshore renewable wind energy into the State of New Jersey. In response to this award, Atlantic Shores updated Volume 1 of the COP to divide the southern portion of Lease OCS-A 0499 into two separate and electrically distinct Projects. Project 1 will deliver renewable energy under this OREC allowance and Project 2 will be developed to support future New Jersey solicitations and power purchase agreements.

As a result of the June 30, 2021 NJ BPU OREC award, Atlantic Shores updated Volume I (Project Information) of the COP in August 2021 to reflect the two Projects. COP Volume II (Affected Environment) and applicable Appendices do not currently include this update and will be updated to reflect Projects 1 and 2 as part Atlantic Shores' December 2021 COP revision.

Page 2: Appendix II-I

ATLANTIC SHORES OFFSHORE WIND EMF STUDY REPORT

3 Issued for Review – Incorporated Epsilon Comments 12/24/2020 AZ JT JT

2 Issued for Review – Incorporated Atlantic Shores comments 12/02/2020 AZ JT JT

1 Issued for Review – Incorporated EDR comments 10/29/2020 AZ JT JT

0 Issued for Review 10/07/2020 AZ JT JT

REV. DESCRIPTION DATE PRP’D CHK’D APPR’D

SNC-Lavalin

Page 3: Appendix II-I

EXECUTIVE SUMMARY

Atlantic Shores Offshore Wind, LLC (Atlantic Shores), a 50/50 joint venture between EDF Renewables North America and Shell New Energies US LLC, is proposing to develop an offshore wind energy generation project (the Project) within Lease Area OCS-A 0499 located on the Outer Continental Shelf (OCS) within the New Jersey Wind Energy Area.

The proposed wind energy generation facility will be located in the southern approximately 102,000 acres (413 km2) of the Lease Area, which is referred to as the Wind Turbine Area (WTA). Within the WTA, the Project will include up to 200 wind turbine generators (WTGs) and up to 10 offshore substations (OSSs). WTGs and OSSs will be connected by a system of 66 kilovolt (kV) – 150 kV inter-array cables. OSSs within the WTA will be interconnected by 66 kV – 275 kV inter-link cables.

WTGs will be aligned in a uniform grid with rows spaced 1.0 nautical mile (NM ) (1.9 km) apart in an east-northeast direction and 0.6 NM (1.1 km) apart in a north-northwest direction. The OSS positions will also be located along the same east-northeast rows as the proposed WTGs, preserving 1.0 NM-wide (1.9 km-wide) corridors between structures. At this stage of project development, the design of the facility is in early conceptualization phase. Various design options including the inter-array collection voltage, export voltage and technology, configuration of the OSSs, point of interconnection, etc. are being considered by the owner. Since a single design option has not been finalized at this stage of the project, this report provides calculated EMF from various system components considering the possible likely design combinations that may come to fruition during subsequent stages of project development. Energy from the WTA is planned to be delivered to shore via either 230 kV to 275 kV high voltage alternating current (HVAC) or 320 kV to 525 kV high voltage direct current (HVDC) export cables. Up to four export cables will be installed within each of two possible Export Cable Corridors (ECCs), for a total of up to eight export cables. The export cables will traverse federal and state waters to deliver energy from the OSSs, and come onshore underground to landfall sites located in either Monmouth County (the “Monmouth Landfall Site”) or Atlantic County (the “Atlantic Landfall Site“) in New Jersey. From the Monmouth and Atlantic Landfall Sites, new 230–525 kV HVAC or HVDC onshore interconnection transmission cables will travel underground along existing roadway, utility rights-of-way (ROWs), and/or along bike paths to up to two new substation sites (one for each onshore point of interconnection [POI]), where transmission will be stepped up or stepped down in preparation for interconnection with the electrical grid. Onshore interconnection transmission cables will continue from each of the new substations to proposed POIs to the electrical grid at the existing Larrabee Substation in Howell, New Jersey (for the Monmouth Landfall Site) or the existing Cardiff Substation in Egg Harbor Township, New Jersey (for the Atlantic Landfall Site). This report presents the results of Electric and Magnetic Field (EMF) calculations for the offshore export cables and onshore interconnection routes that are proposed to convey the generated electricity by the

Page 4: Appendix II-I

Project to one of three Candidate Substations (i.e., Cardiff 230 kV Substation, Larrabee 275 kV Substation, and an alternative location based in New York or New Jersey). A total of 52 study Cases were developed for right of ways containing either individually or combination of the inter-array, export and interconnection route cables. Additionally, four Cases were developed that comprised of offshore substations (OSS) and Onshore substation.

The electric field from the shielded power cables is blocked by the grounded cable armoring as well as the earth and therefore, the shielded cables will not be a direct source of any electric field outside the cables1. Accordingly, the modeling analysis presented in this report is limited to magnetic fields. More specifically, the modeling include an assessment of the magnetic fields from: 1) the inter-array cables running between individual WTGs and finally to the proposed OSS, 2) the offshore export cables running between the proposed OSS and landfall where the three core submarine cable splits into three separate single core cables in duct 3) the underground onshore export cables from the landfall to the proposed onshore substation, and 4) and overhead transmission lines (if required) connecting the project to one of the existing Candidate Substations.

For onshore substation cases where the substation is air insulated and has bare overhead bus conductors and the Case 47 for the overhead HV conductors between onshore substation and POI, both electric and magnetic field analyses are carried out. At this stage of the project development, the inter-array cable and offshore export cable voltage levels and technology of electricity transmission are not finalized. A parametric analysis is therefore carried out to consider following variables:

1. IAC voltage level: 66 kV, 132 kV and 150 kV. 2. Offshore export cable voltage level: 230 kV AC, 275 kV AC, 320 kV DC and 525 kV DC

The modeling is conducted using the conservative assumption of full load operation 100% of the time. In reality the Project will operate at approximately a 50% annual capacity factor with correspondingly reduced current (amperage). All other things being equal, magnetic fields are proportional to current. Locations with unique EMF characteristics were examined, and the results obtained were compared with the corresponding maximum ICNIRP2 limits.3

There are no federal standards limiting occupational or residential exposure to 60 Hertz (Hz) EMF in the United States. However, several states (including New Jersey) have set standards for transmission line electric and magnetic fields. These state guidelines are typically for “edge of right of way” and, in many instances, were established decades ago. New Jersey has an electric field guideline (3 kV/m, edge of right of way). NJDEP established this value as an interim standard in 1981. As stated above, the Project’s buried submarine and onshore cables will not be a source of electric fields. New Jersey does not have a magnetic field guideline or standard.

1 The same is true for the Gas-insulated Switchgear bus bars where the grounded enclosure forces the electric field to be zero at the enclosure. Electric field analysis is therefore not conducted for Gas-insulated Switchgear. 2 ICNIRP refers to International Commission on Non-Ionizing Radiation Protection 3 Analysis of EMF and its impact on marine life is beyond scope of this EMF study.

Page 5: Appendix II-I

The results indicate that the maximum EMF strengths obtained are within the allowable limits set by ICNIRP outside ROW. A value of 65 A/m (816.81 mG) was the maximum result of Magnetic Field at edge of ROW which relates to Case 50 (allowable limit is 400 A/m (5026.55 mG)). A value of 13.49 kV/m was the maximum result of Electric field inside the onshore 275/230 kV Substation which relates to Case 4 of substation cases (allowable limit is 8.33 kV/m). Since electric field is inversely proportional to the distance of measurement location from the energized object, increasing the bus heights of the OnSS can be used to mitigate higher electric fields.

Hence, the Project has no appreciable contribution to the surrounding environment outside ROW in terms of electric and magnetic field strengths.

Page 6: Appendix II-I

CONTENT EXECUTIVE SUMMARY ............................................................................................................................... 2

LIST OF FIGURES ........................................................................................................................................ 8

LIST OF TABLES ........................................................................................................................................ 13

Acronyms and Abbreviations ....................................................................................................................... 13

1 Introduction .......................................................................................................................................... 15

2 Project Facility Description .................................................................................................................. 16

3 Analysis Development ......................................................................................................................... 16

3.1 Input data collected ...................................................................................................................... 17

3.2 EMF Scenarios ............................................................................................................................. 17

3.3 Assumptions and Approaches ..................................................................................................... 23

4 EMF Results ........................................................................................................................................ 24

4.1 Magnetic Field Results for Cable Cases ...................................................................................... 24

4.1.1 Case 1 .......................................................................................................................................... 24

4.1.2 Case 2 .......................................................................................................................................... 25

4.1.3 Case 3 .......................................................................................................................................... 26

4.1.4 Case 4 .......................................................................................................................................... 27

4.1.5 Case 5 .......................................................................................................................................... 28

4.1.6 Case 6 .......................................................................................................................................... 29

4.1.7 Case 7 .......................................................................................................................................... 30

4.1.8 Case 8 .......................................................................................................................................... 31

4.1.9 Case 9 .......................................................................................................................................... 33

4.1.10 Case 10 ........................................................................................................................................ 34

4.1.11 Case 11 ........................................................................................................................................ 36

4.1.12 Case 12 ........................................................................................................................................ 37

4.1.13 Case 13 ........................................................................................................................................ 39

Page 7: Appendix II-I

4.1.14 Case 14 ........................................................................................................................................ 40

4.1.15 Case 15 ........................................................................................................................................ 42

4.1.16 Case 16 ........................................................................................................................................ 43

4.1.17 Case 17 ........................................................................................................................................ 45

4.1.18 Case 18 ........................................................................................................................................ 46

4.1.19 Case 19 ........................................................................................................................................ 48

4.1.20 Case 20 ........................................................................................................................................ 49

4.1.21 Case 21 ........................................................................................................................................ 51

4.1.22 Case 22 ........................................................................................................................................ 52

4.1.23 Case 23 ........................................................................................................................................ 54

4.1.24 Case 24 ........................................................................................................................................ 55

4.1.25 Case 25 ........................................................................................................................................ 57

4.1.26 Case 26 ........................................................................................................................................ 58

4.1.27 Case 27 ........................................................................................................................................ 59

4.1.28 Case 28 ........................................................................................................................................ 60

4.1.29 Case 29 ........................................................................................................................................ 61

4.1.30 Case 30 ........................................................................................................................................ 62

4.1.31 Case 31 ........................................................................................................................................ 63

4.1.32 Case 32 ........................................................................................................................................ 64

4.1.33 Case 33 ........................................................................................................................................ 65

4.1.34 Case 34 ........................................................................................................................................ 66

4.1.35 Case 35 ........................................................................................................................................ 67

4.1.36 Case 36 ........................................................................................................................................ 68

4.1.37 Case 37 ........................................................................................................................................ 69

4.1.38 Case 38 ........................................................................................................................................ 70

4.1.39 Case 39 ........................................................................................................................................ 71

Page 8: Appendix II-I

4.1.40 Case 40 ........................................................................................................................................ 72

4.1.41 Case 41 ........................................................................................................................................ 73

4.1.42 Case 42 ........................................................................................................................................ 74

4.1.43 Case 43 ........................................................................................................................................ 75

4.1.44 Case 44 ........................................................................................................................................ 76

4.1.45 Case 45 ........................................................................................................................................ 77

4.1.46 Case 46 ........................................................................................................................................ 78

4.1.47 Case 47 ........................................................................................................................................ 79

4.1.48 Case 48 ........................................................................................................................................ 80

4.1.49 Case 49 ........................................................................................................................................ 81

4.1.50 Case 50 ........................................................................................................................................ 86

4.1.51 Case 51 ........................................................................................................................................ 87

4.1.52 Case 52 ........................................................................................................................................ 90

4.2 Magnetic Field Results for Substation Cases .............................................................................. 91

4.2.1 Offshore Substation ..................................................................................................................... 91

4.2.2 Onshore Substation (Case 4: Onshore Substation 230/230 kV or 275/230 kV)........................ 135

4.3 Electric Field Results .................................................................................................................. 139

4.3.1 Onshore Substation (Case 4: OnSS 230/230 kV or 275/230 kV) .............................................. 140

4.3.2 Case 47 230 kV Overhead line from Onshore Substation to POI ............................................. 144

5 Discussion & Conclusions ................................................................................................................. 145

APPENDIX A ............................................................................................................................................. 152

Page 9: Appendix II-I

LIST OF FIGURES Figure 4-1 Magnetic Field Result of Case 1 ......................................................................................... 24 Figure 4-2 Magnetic Field Result of Case 1 with Maximum Allowable Limit ................................... 24 Figure 4-3 Magnetic Field Result of Case 2 ......................................................................................... 25 Figure 4-4 Magnetic Field Result of Case 2 with Maximum Allowable Limit ................................... 25 Figure 4-5 Magnetic Field Result of Case 3 ......................................................................................... 26 Figure 4-6 Magnetic Field Result of Case 3 with Maximum Allowable Limit ................................... 26 Figure 4-7 Magnetic Field Result of Case 4 ......................................................................................... 27 Figure 4-8 Magnetic Field Result of Case 4 with Maximum Allowable Limit ................................... 27 Figure 4-9 Magnetic Field Result of Case 5 ......................................................................................... 28 Figure 4-10 Magnetic Field Result of Case 5 with Maximum Allowable Limit ................................. 28 Figure 4-11 Magnetic Field Result of Case 6 ....................................................................................... 29 Figure 4-12 Magnetic Field Result of Case 6 with Maximum Allowable Limit ................................. 29 Figure 4-13 Magnetic Field Result of Case 7 ....................................................................................... 30 Figure 4-14 Magnetic Field Result of Case 7 with Maximum Allowable Limit ................................. 30 Figure 4-15 Zoomed Magnetic Field Result of Case 7 ....................................................................... 31 Figure 4-16 Magnetic Field Result of Case 8 ....................................................................................... 31 Figure 4-17 Magnetic Field Result of Case 8 with Maximum Allowable Limit ................................. 32 Figure 4-18 Zoomed Magnetic Field Result of Case 8 ....................................................................... 32 Figure 4-19 Magnetic Field Result of Case 9 ....................................................................................... 33 Figure 4-20 Magnetic Field Result of Case 9 with Maximum Allowable Limit ................................. 33 Figure 4-21 Zoomed Magnetic Field Result of Case 9 ....................................................................... 34 Figure 4-22 Magnetic Field Result of Case 10 ..................................................................................... 34 Figure 4-23 Magnetic Field Result of Case 10 with Maximum Allowable Limit .............................. 35 Figure 4-24 Zoomed Magnetic Field Result of Case 10 ..................................................................... 35 Figure 4-25 Magnetic Field Result of Case 11 ..................................................................................... 36 Figure 4-26 Magnetic Field Result of Case 11 with Maximum Limit................................................. 36 Figure 4-27 Zoomed Magnetic Field Result of Case 11 ..................................................................... 37 Figure 4-28 Magnetic Field Result of Case 12 ..................................................................................... 37 Figure 4-29 Magnetic Field Result of Case 12 with Maximum Limit................................................. 38 Figure 4-30 Zoomed Magnetic Field Result of Case 12 ..................................................................... 38 Figure 4-31 Magnetic Field Result of Case 13 ..................................................................................... 39 Figure 4-32 Magnetic Field Result of Case 13 with Maximum Limit................................................. 39 Figure 4-33 Zoomed Magnetic Field Result of Case 13 ..................................................................... 40 Figure 4-34 Magnetic Field Result of Case 14 ..................................................................................... 40 Figure 4-35 Magnetic Field Result of Case 14 with Maximum Limit................................................. 41 Figure 4-36 Zoomed Magnetic Field Result of Case 14 ..................................................................... 41

Page 10: Appendix II-I

Figure 4-37 Magnetic Field Result of Case 15 ..................................................................................... 42 Figure 4-38 Magnetic Field Result of Case 15 with Maximum Limit................................................. 42 Figure 4-39 Zoomed Magnetic Field Result of Case 15 ..................................................................... 43 Figure 4-40 Magnetic Field Result of Case 16 ..................................................................................... 43 Figure 4-41 Magnetic Field Result of Case 16 with Maximum Limit................................................. 44 Figure 4-42 Zoomed Magnetic Field Result of Case 16 ..................................................................... 44 Figure 4-43 Magnetic Field Result of Case 17 ..................................................................................... 45 Figure 4-44 Magnetic Field Result of Case 17 with Maximum Limit................................................. 45 Figure 4-45 Zoomed Magnetic Field Result of Case 17 ..................................................................... 46 Figure 4-46 Magnetic Field Result of Case 18 ..................................................................................... 46 Figure 4-47 Magnetic Field Result of Case 18 with Maximum Limit................................................. 47 Figure 4-48 Zoomed Magnetic Field Result of Case 18 ..................................................................... 47 Figure 4-49 Magnetic Field Result of Case 19 ..................................................................................... 48 Figure 4-50 Magnetic Field Result of Case 19 with Maximum Limit................................................. 48 Figure 4-51 Zoomed Magnetic Field Result of Case 19 ..................................................................... 49 Figure 4-52 Magnetic Field Result of Case 20 ..................................................................................... 49 Figure 4-53 Magnetic Field Result of Case 20 with Maximum Limit................................................. 50 Figure 4-54 Zoomed Magnetic Field Result of Case 20 ..................................................................... 50 Figure 4-55 Magnetic Field Result of Case 21 ..................................................................................... 51 Figure 4-56 Magnetic Field Result of Case 21 with Maximum Limit................................................. 51 Figure 4-57 Zoomed Magnetic Field Result of Case 21 ..................................................................... 52 Figure 4-58 Magnetic Field Result of Case 22 ..................................................................................... 52 Figure 4-59 Magnetic Field Result of Case 22 with Maximum Limit................................................. 53 Figure 4-60 Zoomed Magnetic Field Result of Case 22 ..................................................................... 53 Figure 4-61 Magnetic Field Result of Case 23 ..................................................................................... 54 Figure 4-62 Magnetic Field Result of Case 23 with Maximum Limit................................................. 54 Figure 4-63 Zoomed Magnetic Field Result of Case 23 ..................................................................... 55 Figure 4-64 Magnetic Field Result of Case 24 ..................................................................................... 55 Figure 4-65 Magnetic Field Result of Case 24 with Maximum Limit................................................. 56 Figure 4-66 Zoomed Magnetic Field Result of Case 24 ..................................................................... 56 Figure 4-67 Magnetic Field Result of Case 25 ..................................................................................... 57 Figure 4-68 Magnetic Field Result of Case 25 with Maximum Limit................................................. 57 Figure 4-69 Zoomed Magnetic Field Result of Case 25 ..................................................................... 58 Figure 4-70 Magnetic Field Result of Case 26 ..................................................................................... 58 Figure 4-71 Magnetic Field Result of Case 26 with Maximum Limit................................................. 59 Figure 4-72 Magnetic Field Result of Case 27 ..................................................................................... 59 Figure 4-73 Magnetic Field Result of Case 27 with Maximum Limit................................................. 60

Page 11: Appendix II-I

Figure 4-74 Magnetic Field Result of Case 28 ..................................................................................... 60 Figure 4-75 Magnetic Field Result of Case 28 with Maximum Limit................................................. 61 Figure 4-76 Magnetic Field Result of Case 29 ..................................................................................... 61 Figure 4-77 Magnetic Field Result of Case 29 with Maximum Limit................................................. 62 Figure 4-78 Magnetic Field Result of Case 30 ..................................................................................... 62 Figure 4-79 Magnetic Field Result of Case 30 with Maximum Limit................................................. 63 Figure 4-80 Magnetic Field Result of Case 31 ..................................................................................... 63 Figure 4-81 Magnetic Field Result of Case 31 with Maximum Limit................................................. 64 Figure 4-82 Magnetic Field Result of Case 32 ..................................................................................... 64 Figure 4-83 Magnetic Field Result of Case 32 with Maximum Limit................................................. 65 Figure 4-84 Magnetic Field Result of Case 33 ..................................................................................... 65 Figure 4-85 Magnetic Field Result of Case 33 with Maximum Limit................................................. 66 Figure 4-86 Magnetic Field Result of Case 34 ..................................................................................... 66 Figure 4-87 Magnetic Field Result of Case 34 with Maximum Limit................................................. 67 Figure 4-88 Magnetic Field Result of Case 35 ..................................................................................... 67 Figure 4-89 Magnetic Field Result of Case 35 with Maximum Limit................................................. 68 Figure 4-90 Magnetic Field Result of Case 36 ..................................................................................... 68 Figure 4-91 Magnetic Field Result of Case 36 with Maximum Limit................................................. 69 Figure 4-92 Magnetic Field Result of Case 37 ..................................................................................... 69 Figure 4-93 Magnetic Field Result of Case 37 with Maximum Limit................................................. 70 Figure 4-94 Magnetic Field Result of Case 38 ..................................................................................... 70 Figure 4-95 Magnetic Field Result of Case 38 with Maximum Limit................................................. 71 Figure 4-96 Magnetic Field Result of Case 39 ..................................................................................... 71 Figure 4-97 Magnetic Field Result of Case 39 with Maximum Limit................................................. 72 Figure 4-98 Magnetic Field Result of Case 40 ..................................................................................... 72 Figure 4-99 Magnetic Field Result of Case 40 with Maximum Limit................................................. 73 Figure 4-100 Magnetic Field Result of Case 41 .................................................................................. 73 Figure 4-101 Magnetic Field Result of Case 41 with Maximum Limit .............................................. 74 Figure 4-102 Magnetic Field Result of Case 42 .................................................................................. 74 Figure 4-103 Magnetic Field Result of Case 42 with Maximum Limit .............................................. 75 Figure 4-104 Magnetic Field Result of Case 43 .................................................................................. 75 Figure 4-105 Magnetic Field Result of Case 43 with Maximum Limit .............................................. 76 Figure 4-106 Magnetic Field Result of Case 44 .................................................................................. 76 Figure 4-107 Magnetic Field Result of Case 44 with Maximum Limit .............................................. 77 Figure 4-108 Magnetic Field Result of Case 45 .................................................................................. 77 Figure 4-109 Magnetic Field Result of Case 45 with Maximum Limit .............................................. 78 Figure 4-110 Magnetic Field Result of Case 46 .................................................................................. 78

Page 12: Appendix II-I

Figure 4-111 Magnetic Field Result of Case 46 with Maximum Limit .............................................. 79 Figure 4-112 Magnetic Field Result of Case 47 .................................................................................. 79 Figure 4-113 Magnetic Field Result of Case 47 with Maximum Limit .............................................. 80 Figure 4-114 Magnetic Field Result of Case 48 .................................................................................. 80 Figure 4-115 Magnetic Field Result of Case 48 with Maximum Limit .............................................. 81 Figure 4-116 Magnetic Field Result of Case 49 .................................................................................. 82 Figure 4-117 Magnetic Field Result of Case 49 with Maximum Limit .............................................. 82 Figure 4-118 Magnetic Field Result of Case 49-1 ............................................................................... 83 Figure 4-119 Magnetic Field Result of Case 49-1 with Maximum Limit ........................................... 83 Figure 4-120 Magnetic Field Result of Case 49-2 ............................................................................... 84 Figure 4-121 Magnetic Field Result of Case 49-2 with Maximum Limit ........................................... 84 Figure 4-122 Magnetic Field Result of Case 49-3 ............................................................................... 85 Figure 4-123 Magnetic Field Result of Case 49-3 with Maximum Limit ........................................... 85 Figure 4-124 Magnetic Field Result of Case 50 .................................................................................. 86 Figure 4-125 Magnetic Field Result of Case 50 with Maximum Limit .............................................. 86 Figure 4-126 Magnetic Field Result of Case 51 .................................................................................. 87 Figure 4-127 Magnetic Field Result of Case 51 with Maximum Limit .............................................. 88 Figure 4-128 Magnetic Field Result of Case 51-1 ............................................................................... 88 Figure 4-129 Magnetic Field Result of Case 51-1 with Maximum Limit ........................................... 89 Figure 4-130 Magnetic Field Result of Case 51-2 ............................................................................... 89 Figure 4-131 Magnetic Field Result of Case 51-2 with Maximum Limit ........................................... 90 Figure 4-132 Magnetic Field Result of Case 52 .................................................................................. 90 Figure 4-133 Magnetic Field Result of Case 52 with Maximum Limit .............................................. 91 Figure 4-134 Sample Configuration for Offshore Substations with AC Cables .............................. 92 Figure 4-135 Single Line Diagram for HVAC Offshore Substation ................................................... 93 Figure 4-136 OSS1-800 MW CDEGS Model ....................................................................................... 94 Figure 4-137 OSS1-800 MW CDEGS Model with Deck Profiles ...................................................... 95 Figure 4-138 OSS2-1200 MW CDEGS Model ..................................................................................... 96 Figure 4-139 OSS2-1200 MW CDEGS Model with Deck Profiles .................................................... 97 Figure 4-140 3D Magnetic Field Result of OSS1-800 MW Case at sea level ................................. 99 Figure 4-141 2D Magnetic Field Result of OSS1-800 MW Case at sea level ............................... 100 Figure 4-142 3D Magnetic Field Result of OSS1-800 MW Case at Cellar Deck Level ............... 101 Figure 4-143 2D Magnetic Field Result of OSS1-800 MW Case at Cellar Deck Level ............... 102 Figure 4-144 3D Magnetic Field Result of OSS1-800 MW Case at Cable Deck Level ............... 103 Figure 4-145 2D Magnetic Field Result of OSS1-800 MW Case at Cable Deck Level ............... 104 Figure 4-146 3D Magnetic Field Result of OSS1-800 MW Case at Main Deck Level ................. 105 Figure 4-147 2D Magnetic Field Result of OSS1-800 MW Case at Main Deck Level ................. 106

Page 13: Appendix II-I

Figure 4-148 3D Magnetic Field Result of OSS1-800 MW Case at Utility Deck Level ................ 107 Figure 4-149 2D Magnetic Field Result of OSS1-800 MW Case at Utility Deck Level ................ 108 Figure 4-150 3D Magnetic Field Result of OSS1-800 MW Case at Roof Deck Level ................. 109 Figure 4-151 2D Magnetic Field Result of OSS1-800 MW Case at Roof Deck Level ................. 110 Figure 4-152 3D Magnetic Field Result of OSS2-1200 MW Case at sea level ............................ 111 Figure 4-153 2D Magnetic Field Result of OSS2-1200 MW Case at sea level ............................ 112 Figure 4-154 3D Magnetic Field Result of OSS2-1200 MW Case at Cellar Deck Level ............. 113 Figure 4-155 2D Magnetic Field Result of OSS2-1200 MW Case at Cellar Deck Level ............. 114 Figure 4-156 3D Magnetic Field Result of OSS2-1200 MW Case at Cable Deck Level ............. 115 Figure 4-157 2D Magnetic Field Result of OSS2-1200 MW Case at Cable Deck Level ............. 116 Figure 4-158 3D Magnetic Field Result of OSS2-1200 MW Case at Main Deck Level ............... 117 Figure 4-159 2D Magnetic Field Result of OSS2-1200 MW Case at Main Deck Level ............... 118 Figure 4-160 3D Magnetic Field Result of OSS2-1200 MW Case at Utility Deck Level.............. 119 Figure 4-161 2D Magnetic Field Result of OSS2-1200 MW Case at Utility Deck Level.............. 120 Figure 4-162 3D Magnetic Field Result of OSS2-1200 MW Case at Roof Deck Level ............... 121 Figure 4-163 2D Magnetic Field Result of OSS2-1200 MW Case at Roof Deck Level .............. 122 Figure 4-164 Sample Configuration for HVDC Offshore Substations with AC/DC Cables ......... 123 Figure 4-165 Single Line Diagram for HVDC Offshore Substation ................................................. 124 Figure 4-166 OSS3-1200 MW HVDC OSS CDEGS Model ............................................................. 125 Figure 4-167 OSS3-1200 MW HVDC OSS CDEGS Model with Deck Profiles ............................ 126 Figure 4-168 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at sea level ................ 128 Figure 4-169 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at sea level ................ 129 Figure 4-170 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 1 Level ......... 129 Figure 4-171 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 1 Level ......... 130 Figure 4-172 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 2 Level ......... 130 Figure 4-173 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 2 Level ......... 131 Figure 4-174 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 3 Level ......... 131 Figure 4-175 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 3 Level ......... 132 Figure 4-176 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 4 Level ......... 132 Figure 4-177 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 4 Level ......... 133 Figure 4-178 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 5 Level ......... 133 Figure 4-179 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 5 Level ......... 134 Figure 4-180 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 6 Level ......... 134 Figure 4-181 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 6 Level ......... 135 Figure 4-182 Onshore Substation Layout .......................................................................................... 136 Figure 4-183 Onshore Substation CDEGS Model ............................................................................. 137 Figure 4-184 3D Magnetic Field Result of Onshore Substation ...................................................... 138

Page 14: Appendix II-I

Figure 4-185 2D Magnetic Field Result of Onshore Substation ...................................................... 139 Figure 4-186 3D Electric Field Result of 230/230 kV Onshore Substation .................................... 140 Figure 4-187 2D Electric Field Result of 230/230 kV Onshore Substation .................................... 141 Figure 4-188 3D Electric Field Result of 275/230 kV Onshore Substation .................................... 142 Figure 4-189 2D Electric Field Result of 275/230 kV Onshore Substation .................................... 143 Figure 4-190 Electric Field Result of Case 47.................................................................................... 144 Figure 4-191 Electric Field Result of Case 47 with Maximum Limit ............................................... 144

LIST OF TABLES Table 1-1 New Jersey State Transmission Line Standards and Guidelines [1] .............................. 15 Table 1-2 ICNIRP Guidelines for EMF Exposure to Time-varying Electric and Magnetic Fields [2] ..................................................................................................................................................................... 15 Table 1-3 ICNIRP Guidelines for EMF Exposure to Static Magnetic Field [3] ................................ 16 Table 3-1 Summary of offshore and onshore modeling configurations ........................................... 17 Table 3-2 Study Cases Developed for Inter-Array Cables ................................................................. 18 Table 3-3 Study Cases Developed for Cables at Offshore Substations .......................................... 18 Table 3-4 Study Cases Developed for Offshore Export Cables ........................................................ 20 Table 3-5 Study Cases Developed for Onshore Interconnection Transmission Cables ............... 22 Table 3-6 Study Cases Developed for Substations ............................................................................ 23 Table 4-1 Results Summary for Case 1(OSS1-800 MW) and Case 2 (OSS2-1000 MW) ............ 98 Table 4-2 Results Summary for Case 3(OSS3-1200 MW HVDC) .................................................. 127 Table 5-1 Summary Results for Cable Cases .................................................................................... 146 Table 5-2 Summary Results for Offshore HVAC Substation ........................................................... 147 Table 5-3 Summary Results for Offshore HVDC Substation ........................................................... 148 Table 5-4 Summary Results for Onshore Substation ....................................................................... 149

Acronyms and Abbreviations A Amperes AC Alternating Current AIS Air Insulated Substation Al Aluminum ASOW Atlantic Shores Offshore Wind A/m Ampere per meter A/ph Ampere per phase

Page 15: Appendix II-I

CDEGS Current Distribution, Electromagnetic Interference, Grounding and Soil Structure Analysis

Cu Copper DC Direct Current ECC Export Cable Corridor EMF Electric and Magnetic Field G Gauss HDD Horizontal Directional Drilling HVAC High Voltage Alternating Current HVDC High Voltage Direct Current Hz Hertz ICNIRP International Commission on Non-Ionizing Radiation IEEE Institute of Electrical and Electronics Engineers kV Kilovolt kV/m Kilovolt per meter km Kilometer m Meter mG Milligauss mm Millimeter mT Millitesla MW Megawatt NJ New Jersey NM Nautical Mile NY New York OCS Outer Continental Shelf OnSS Onshore Substation OSS Offshore Substation POI Point of Interconnection ROW Right of Way SNC SNC-Lavalin Inc. T Tesla WTA Wind Turbine Area WTG Wind Turbine Generator

Page 16: Appendix II-I

1 Introduction

Atlantic Shores Offshore Wind, LLC is proposing to develop an offshore wind energy generation project within Lease Area OCS-A 0499 located in the New Jersey Wind Energy Area. The proposed facility will be located in the southern approximately 102,000 acres (413 km2) of the Lease Area, which is referred to as the Wind Turbine Area (WTA). Within the WTA, the Project will include up to 200 wind turbine generators (WTGs) and up to 10 offshore substations (OSSs). WTGs and OSSs will be connected by a system of 66 kilovolt (kV) – 150 kV inter-array cables. OSSs within the WTA will be interconnected by 66 kV – 275 kV inter-link cables.

This report presents the Electric and Magnetic Field (EMF) calculations conducted using Current Distribution, Electromagnetic Interference, Grounding and Soil Structure Analysis (CDEGS) ver.16.2. The purpose of this study was to model the electrical facilities associated with the Project and calculate the resulting EMF produced by such facilities under maximum power generation scenario. Locations with unique EMF characteristics were examined, and the results obtained were compared with the corresponding maximum allowable limits. In the United States, there are no federal standards limiting occupational or residential exposure to 60 Hz EMF. However, several states have set standards for transmission line electric and magnetic fields. For the state of New Jersey, these values are listed in Table 1-1 with respect to rights-of-way (ROWs).

Table 1-1 New Jersey State Transmission Line Standards and Guidelines [1]

Electric Field (kV/m) Magnetic Field (A/m) On ROW Edge of ROW On ROW Edge of ROW

- 3 - - The International Commission on Non-Ionizing Radiation (ICNIRP), an independent organization that provides scientific advice and guidance on the human health and environmental effects of non-ionizing radiation, determined reference level limits for exposure to 60-Hz and static magnetic and electric fields, these values are listed in Table 1-2 and Table 1-3.

Table 1-2 ICNIRP Guidelines for EMF Exposure to Time-varying Electric and Magnetic Fields [2]

Exposure (60 Hz) Electric Field Strength (kV/m) Magnetic Field Strength (A/m) Magnetic Field Density [Tesla (T)]

Occupational 8.333 800 1×10-3

General Public 4.167 160 2×10-4

Page 17: Appendix II-I

Table 1-3 ICNIRP Guidelines for EMF Exposure to Static Magnetic Field [3]

Exposure (DC) Magnetic Field Strength (A/m)

Magnetic Field Density (T)

Occupational Exposure of head and of trunk 1.6×106 2 Exposure of limbs 6.4×106 8

General Public

Exposure of any part of the body 3.2×105 0.4 Exposure of persons with implanted electronic medical devices and implants containing ferromagnetic material, and dangers from flying objects

400 5×10-4

2 Project Facility Description Atlantic Shores proposes to develop the offshore wind energy generation facility that will produce electricity generated by up to 200 offshore WTGs that will be carried over inter-array cables to an OSS where the voltage will be boosted to transmission levels. The electricity will be carried to land via offshore export cables at transmission voltage levels, to an onshore substation. One of the three candidate substations (i.e., Cardiff 230 kV Substation, Larrabee 275 kV Substation, and an alternative location based in New York or New Jersey) will serve as a POI to the local transmission electrical grid. At this stage of the project development, various inter-array cables and offshore export cable voltage levels and technology of electricity transmission are being considered. A parametric analysis is therefore carried out to consider following variables in this study:

1. Inter-array cable voltage level: 66 kV, 132 kV and 150 kV. 2. Offshore export cable voltage level: 230 kV AC, 275 kV AC, 320 kV DC and 525 kV DC

In the analysis, SNC relied on the provided documents which are covering preliminary scenarios, electrical architecture, cables and/or transmission line design geometry, usage, specifications, and various other types of information provided. The following are the main project components which provide critical variables that largely affect EMF study results:

1. Inter-array cables 2. Offshore substation (OSS) 3. Offshore export cables and Onshore transmission cables 4. Onshore substation

3 Analysis Development

SNC calculated the fields from the project facilities at the maximum theoretical loadings, configuration of the ROW, cable construction, OSS and onshore substations provided by Atlantic Shores. Based on the provided data, the induced EMF were calculated and compared with relevant thresholds.

Page 18: Appendix II-I

3.1 Input data collected

Table 3-1 summarizes the input data collected from Atlantic Shores (refer to the documents listed under References at the end of this report for the basis of this information).

Table 3-1 Summary of offshore and onshore modeling configurations Configuration Description Numerical Value

Inter-Array Cables Voltage 66 kV, 132 kV, 150 kV Current 950 Amperes (A)

Cable Cross Section 1200 square millimeter (mm2 ) AL

HVAC Offshore Export Cables

Voltage 230 kV, 275 kV Current 1200 A

Cable Cross Section 2000 mm2 CU

HVDC Offshore Export Cables

Voltage 320 kV, 525 kV Current 2000 A

Cable Cross Section 2500 mm2 CU HVAC Onshore Interconnection

Transmission Cables

Voltage 230 kV, 275 kV Current 1200 A

Cable Cross Section 3000 mm2 CU

HVAC OSS Platform

Voltage 66 kV, 132 kV, 150 kV Gas-insulated

Switchgear Bays, 230 kV/275 kV Gas-insulated Switchgear Bays

Current

950 A/ph of inter-array cables. 1200 A/ph for offshore export cable and OSS

inter-link cables 502 A/ph for Shunt Reactors

Decks Cellar, Cable, Main, Utility, Roof Decks

HVDC OSS Platform

Voltage 66 kV, 132 kV, 150 kV Gas-insulated

Switchgear Bays, 400 kV Gas-insulated Switchgear Bays

Current 950 A/ph of inter-array cables. 1200 A/ph for offshore export cable

Decks 6 Decks (Deck 1-Deck 6)

Onshore Substation

Voltage 230 kV

Current 1200 A/ph of each offshore export cable. 1200 A/ph of overhead line connection

to POI substation

Route Options Cardiff POI, NJ Larrabee POI, NJ

3.2 EMF Scenarios

Based on the data collected and possible variants in terms of inter-array cable voltage, offshore export and onshore transmission cable voltage and transmission technology, a number of EMF study cases were

Page 19: Appendix II-I

developed for the parametric analysis of highest possible EMF from the main project components (mentioned in Section 0). The developed study cases are shown in Tables 3-2 to 3-6. The results for the inter-array cable cases show that the magnetic fields are highest for assessment at the seabed than at 3.28 feet (1m) above seabed quite pertinently so as the fields are assessed at a distance closer to the cable at the seabed. The analysis of the remaining submarine cables is therefore considering assessment only at the seabed.

Table 3-2 Study Cases Developed for Inter-Array Cables Case no. COP Option (Route) Circuit Name Conductor Size Laying arrangement

1

ALL

66 kV Medium Voltage Inter-Array Cable

1200 mm2 Al

Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at seabed

2

Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at 3.28 feet (1 m) above seabed

3 132 kV Medium Voltage Inter-Array Cable

1200 mm2 Al

Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at seabed

4

Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at 3.28 feet (1 m) above seabed

5 150 kV Medium Voltage Inter-Array Cable

1200 mm2 Al

Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at seabed

6

Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at 3.28 feet (1 m) above seabed

Table 3-3 Study Cases Developed for Cables at Offshore Substations Case no.

COP Option (Route)

Circuit Name Conductor Size Laying arrangement

7

ALL

At OSS where inter-array cable homeruns and offshore export

cables are congregated

1200 mm2 Al

OSS 1 (800 MW) - 10 inter-array cables (66 kV) & 4 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed

8

OSS 1 (800 MW) - 10 inter-array cables (66 kV) & 4 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed

9

OSS 1 (800 MW) - 6 inter-array cables (132 kV) & 4 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed

Page 20: Appendix II-I

Case no.

COP Option (Route)

Circuit Name Conductor Size Laying arrangement

10

OSS 1 (800 MW) - 6 inter-array cables (132 kV) & 4 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed

11

OSS 1 (800 MW) - 6 inter-array cables (150 kV) & 4 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed

12

OSS 1 (800 MW) - 6 inter-array cables (150 kV) & 4 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed

13

1200 mm2 Al

OSS 2 (12000 MW) - 16 inter-array cables (66 kV) & 5 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed

14

OSS 2 (12000 MW) - 16 inter-array cables (66 kV) & 5 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed

15

OSS 2 (1200 MW) - 8 inter-array cables (132 kV) & 5 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed

16

OSS 2 (1200 MW) - 8 inter-array cables (132 kV) & 5 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed

17

OSS 2 (1200 MW) - 8 inter-array cables (150 kV) & 5 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed

18

OSS 2 (1200 MW) - 8 inter-array cables (150 kV) & 5 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed

19 Alternative Substation

in New York or

New Jersey HVDC Option

1200 mm2 Al

OSS 3 (1200 MW) - 16 inter-array cables (66 kV) & One positive and One negative HVDC offshore export cables (320 kV or 525 kV). EMF assessment at seabed

20

OSS 3 (1200 MW) - 16 inter-array cables (66 kV) & One positive and One negative HVDC offshore export cables (525 kV). EMF assessment at seabed

21 OSS 3 (1200 MW) - 8 inter-array cables (132 kV) & One positive and One negative HVDC

Page 21: Appendix II-I

Case no.

COP Option (Route)

Circuit Name Conductor Size Laying arrangement

offshore export cables (320 kV or 525 kV). EMF assessment at seabed

22

OSS 3 (1200 MW) - 8 inter-array cables (132 kV) & One positive and One negative HVDC offshore export cables (525 kV). EMF assessment at seabed

23

OSS 3 (1200 MW) - 8 inter-array cables (150 kV) & One positive and One negative HVDC offshore export cables (320 kV or 525 kV). EMF assessment at seabed

24

OSS 3 (1200 MW) - 8 inter-array cables (150 kV) & One positive and One negative HVDC offshore export cables (525 kV). EMF assessment at seabed

Table 3-4 Study Cases Developed for Offshore Export Cables Case no.

COP Option (Route)

Circuit Name Conductor Size Laying arrangement

25

ALL HVAC Offshore Export Cable 2000 mm2 Cu

Landfall Horizontal Direction Drill (HDD) profile - 3 offshore export cables (230 kV) NY Route. EMF assessment at seabed

26 Buried in Seabed (6’ from seabed) - 3 offshore export cables (230 kV) NY Route. EMF assessment at seabed

27 Landfall HDD profile - 3 offshore export cables (275 kV) NY Route. EMF assessment at seabed

28 Buried in Seabed (6’ from seabed) - 3 offshore export cables (275 kV) NY Route. EMF assessment at seabed

29 Landfall HDD profile - 4 e offshore export cables (230 kV) NJ Route. EMF assessment at Seabed

30 Buried in Seabed (6’ from seabed) - 4 offshore export cables (230 kV) NJ Route. EMF assessment at seabed

31 Landfall HDD profile - 4 offshore export cables (275 kV) NJ Route. EMF assessment at seabed

32 Buried in Seabed (6’ from Seabed) - 4 offshore export cables (275 kV) NJ Route. EMF assessment at seabed

Page 22: Appendix II-I

Case no.

COP Option (Route)

Circuit Name Conductor Size Laying arrangement

33

Cable Crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed {4 feet (1.2 m) from seabed} - 3 offshore export cables (230 kV) NY Route. EMF assessment at seabed

34

Cable Crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed {4 feet (1.2 m) from seabed} - 3 offshore export cables (275 kV) NY Route. EMF assessment at seabed

35

Cable Crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed {4 feet (1.2 m) from seabed} - 4 offshore export cables (230 kV) NJ Route. EMF assessment at seabed

36

Cable Crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed {4 feet (1.2 m) from seabed} - 4 offshore export cables (275 kV) NJ Route. EMF assessment at seabed

37 Alternative Substation in New York or New Jersey NJ Route – Larrabee POI

320 kV HVDC Offshore Export bundled cable

2500 mm2 Cu

Landfall HDD profile. EMF assessment at seabed

38 Buried in seabed (6’ from seabed). EMF assessment at seabed

39

Cable Crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed {4 feet (1.2 m) from seabed}. EMF assessment at seabed.

40 Alternative Substation in New York or New Jersey NJ Route – Larrabee POI

525 kV HVDC Offshore Export Cable. Cable laid separately 328.08 feet (100 m) separation distance

Landfall HDD profile. EMF assessment at seabed

41 Buried in seabed (6’ from seabed). EMF assessment at seabed

42

Cable Crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed {4 feet (1.2 m) from seabed}. EMF assessment at seabed.

Page 23: Appendix II-I

Table 3-5 Study Cases Developed for Onshore Interconnection Transmission Cables Case no.

COP Option (Route)

Circuit Name Conductor Size Laying arrangement

43

ALL HVAC Onshore Interconnection Transmission Cable

3000mm2 Cu Single Core

Trench - Narrow Corridor - 4 circuits - 230 kV interconnection transmission cables. EMF assessment at surface

44

Trench - Narrow Corridor - 4 circuits - 275 kV interconnection transmission cables. EMF assessment at surface

45

HDD - 3.28 feet (1 m) depth and 10 feet (3 m) separation - 4 circuits - 230 kV interconnection transmission cables. EMF assessment at surface

46

HDD - 3.28 feet (1 m) depth and 10 feet (3 m) separation - 4 circuits - 275 kV interconnection transmission cables. EMF assessment at surface

47

NJ Route – Larrabee POI

230 kV Overhead transmission line from Onshore Substation to Larrabee POI

Twin 1272 MCM ACSR

Overhead lines. EMF assessment at 3.28 feet above ground surface

48 Alternative Substation in New York POI NJ Route – Larrabee POI

320 kV HVDC Onshore interconnection transmission cable

2500 mm2 Cu

Trench. EMF assessment at surface

49 HDD. EMF assessment at surface

50 Alternative Substation in New York POI NJ Route – Larrabee POI

525 kV HVDC Onshore interconnection transmission cable

2500 mm2 Cu

Trench - Bipole Operation. EMF assessment at surface

51 HDD. EMF assessment at surface

52 Trench - Monopole Operation. EMF assessment at surface

Page 24: Appendix II-I

Table 3-6 Study Cases Developed for Substations Case no COP Option (Route) Substation Name

1 ALL

OSS 1 – 800 MW 2 OSS 2 –1200 MW

3 Alternative Substation in New York NJ Route – Larrabee POI OSS 3 – 1200 MW HVDC

4 NJ Route – Cardiff POI NJ Route – Larrabee POI OSS 230/230 kV or 275/230 kV

3.3 Assumptions and Approaches

1. As informed by Atlantic Shores, it is understood that the currents listed in Table 3-1 are the largest possible current that can ever flow in the project facility components. The actual current flows during maximum generation scenario are expected to be lower than the currents considered in this study.

2. Cases 19-24 and Case 3 (OSS 3-1200 MW HVDC) have both AC and DC cables. As a conservative approach, the overall (total) EMF are considered additive in nature.

3. For inter-array cables which are presented in Cases 1-24, the distance of outermost cables in a ROW to the edge of ROW is assumed to be 656.168 feet (200 m).

4. For offshore export cables which are presented in Cases 25-42, the distance of outermost cables in a ROW to the edge of ROW is assumed to be 820.21 feet (250 m).

5. For onshore interconnection transmission cables which are presented in Cases 43-52, the distance of outermost cables in a ROW to the edge of ROW is assumed to be3.28 feet (1 m).

6. The cable sheaths are assumed grounded at both sending and receiving ends.

7. Soil resistivity, relative permittivity and relative permeability of sea water are assumed to be 0.2 ohm.meter (ohm. m) 72 and 1 respectively [4,5,6]. Soil resistivity, relative permittivity and relative permeability of seabed are assumed to be 0.91 ohm.m, 30 and 1 respectively [4,5,6]. For the onshore cases, soil resistivity, relative permittivity and relative permeability are assumed to be 150 ohm.m, 1 and 1, respectively.

8. For the OSS cases, EMF have been assessed at all decks as well as at sea level. The EMF at OSS decks are compared with the respective occupational limits. The EMF at sea level are compared with general public limits.

9. For the onshore substation cases, EMF have been assessed at 3.28 feet (1 m) above finished grade. The EMF inside the substation fence are compared with the respective occupational limits. The EMF outside the substation fence are compared with general public limits.

10. As noted previously, the EMF assessment for the cases comprising only of cables and/or Gas-insulated Switchgear buses, is limited to assessment of magnetic fields. For all other cases both Magnetic and Electric Fields are assessed.

Page 25: Appendix II-I

4 EMF Results The following subsections present the results obtained from CDEGS models of the study cases developed in Tables 3-2 to 3-6 for both magnetic and electric fields.

4.1 Magnetic Field Results for Cable Cases

4.1.1 Case 1

Case 1 is for 66 kV Medium Voltage Inter-Array Cables (1200 mm2 Al). Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at seabed.

Figure 4-1 Magnetic Field Result of Case 1

Figure 4-2 Magnetic Field Result of Case 1 with Maximum Allowable Limit

Page 26: Appendix II-I

4.1.2 Case 2

Case 2 is for 66 kV Medium Voltage Inter-Array Cables (1200 mm2 Al). Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at 3.28 feet (1 m) above seabed.

Figure 4-3 Magnetic Field Result of Case 2

Figure 4-4 Magnetic Field Result of Case 2 with Maximum Allowable Limit

Page 27: Appendix II-I

4.1.3 Case 3

Case 3 is for 132 kV Medium Voltage Inter-Array Cable (1200 mm2 Al). Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at seabed.

Figure 4-5 Magnetic Field Result of Case 3

Figure 4-6 Magnetic Field Result of Case 3 with Maximum Allowable Limit

Page 28: Appendix II-I

4.1.4 Case 4

Case 4 is for 132 kV Medium Voltage Inter-Array Cable (1200 mm2 Al). Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at 3.28 feet (1 m) above seabed.

Figure 4-7 Magnetic Field Result of Case 4

Figure 4-8 Magnetic Field Result of Case 4 with Maximum Allowable Limit

Page 29: Appendix II-I

4.1.5 Case 5

Case 5 is for 150 kV Medium Voltage Inter-Array Cable (1200 mm2 Al). Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at seabed.

Figure 4-9 Magnetic Field Result of Case 5

Figure 4-10 Magnetic Field Result of Case 5 with Maximum Allowable Limit

Page 30: Appendix II-I

4.1.6 Case 6

Case 6 is for 150 kV Medium Voltage Inter-Array Cable (1200 mm2 Al). Inter-array cables alone in lease area (corridor with 8 cables). EMF assessment at 3.28 feet (1m) above seabed.

Figure 4-11 Magnetic Field Result of Case 6

Figure 4-12 Magnetic Field Result of Case 6 with Maximum Allowable Limit

Page 31: Appendix II-I

4.1.7 Case 7

Case 7 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 1 (800 MW) - 10 inter-array cables (66 kV) & 4 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-13 Magnetic Field Result of Case 7

Figure 4-14 Magnetic Field Result of Case 7 with Maximum Allowable Limit

Page 32: Appendix II-I

Figure 4-15 Zoomed Magnetic Field Result of Case 7

4.1.8 Case 8

Case 8 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 1 (800 MW) - 10 inter-array cables (66 kV) & 4 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-16 Magnetic Field Result of Case 8

Page 33: Appendix II-I

Figure 4-17 Magnetic Field Result of Case 8 with Maximum Allowable Limit

Figure 4-18 Zoomed Magnetic Field Result of Case 8

Page 34: Appendix II-I

4.1.9 Case 9

Case 9 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 1 (800 MW) - 6 inter-array cables (132 kV) & 4 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-19 Magnetic Field Result of Case 9

Figure 4-20 Magnetic Field Result of Case 9 with Maximum Allowable Limit

Page 35: Appendix II-I

Figure 4-21 Zoomed Magnetic Field Result of Case 9

4.1.10 Case 10

Case 10 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 1 (800 MW) - 6 inter-array cables (132 kV) & 4 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-22 Magnetic Field Result of Case 10

Page 36: Appendix II-I

Figure 4-23 Magnetic Field Result of Case 10 with Maximum Allowable Limit

Figure 4-24 Zoomed Magnetic Field Result of Case 10

Page 37: Appendix II-I

4.1.11 Case 11

Case 11 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 1 (800 MW) - 6 inter-array cables (150 kV) & 4 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-25 Magnetic Field Result of Case 11

Figure 4-26 Magnetic Field Result of Case 11 with Maximum Limit

Page 38: Appendix II-I

Figure 4-27 Zoomed Magnetic Field Result of Case 11

4.1.12 Case 12

Case 12 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 1 (800 MW) - 6 inter-array cables (150 kV) & 4 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-28 Magnetic Field Result of Case 12

Page 39: Appendix II-I

Figure 4-29 Magnetic Field Result of Case 12 with Maximum Limit

Figure 4-30 Zoomed Magnetic Field Result of Case 12

Page 40: Appendix II-I

4.1.13 Case 13

Case 13 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 2 (1200 MW) - 16 inter-array cables (66 kV) & 5 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-31 Magnetic Field Result of Case 13

Figure 4-32 Magnetic Field Result of Case 13 with Maximum Limit

Page 41: Appendix II-I

Figure 4-33 Zoomed Magnetic Field Result of Case 13

4.1.14 Case 14

Case 14 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 2 (1200 MW) - 16 inter-array cables (66 kV) & 5 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-34 Magnetic Field Result of Case 14

Page 42: Appendix II-I

Figure 4-35 Magnetic Field Result of Case 14 with Maximum Limit

Figure 4-36 Zoomed Magnetic Field Result of Case 14

Page 43: Appendix II-I

4.1.15 Case 15

Case 15 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 2 (1200 MW) - 8 inter-array cables (132 kV) & 5 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-37 Magnetic Field Result of Case 15

Figure 4-38 Magnetic Field Result of Case 15 with Maximum Limit

Page 44: Appendix II-I

Figure 4-39 Zoomed Magnetic Field Result of Case 15

4.1.16 Case 16

Case 16 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 2 (1200 MW) - 8 inter-array cables (132 kV) & 5 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-40 Magnetic Field Result of Case 16

Page 45: Appendix II-I

Figure 4-41 Magnetic Field Result of Case 16 with Maximum Limit

Figure 4-42 Zoomed Magnetic Field Result of Case 16

Page 46: Appendix II-I

4.1.17 Case 17

Case 17 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 2 (1200 MW) - 8 inter-array cables (150 kV) & 5 offshore export cables (230 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-43 Magnetic Field Result of Case 17

Figure 4-44 Magnetic Field Result of Case 17 with Maximum Limit

Page 47: Appendix II-I

Figure 4-45 Zoomed Magnetic Field Result of Case 17

4.1.18 Case 18

Case 18 is for OSS where inter-array cable homeruns and offshore export cables are congregated (1200 mm2 Al). OSS 2 (1200 MW) - 8 inter-array cables (150 kV) & 5 offshore export cables (275 kV) including OSS interlink cables. EMF assessment at seabed.

Figure 4-46 Magnetic Field Result of Case 18

Page 48: Appendix II-I

Figure 4-47 Magnetic Field Result of Case 18 with Maximum Limit

Figure 4-48 Zoomed Magnetic Field Result of Case 18

Page 49: Appendix II-I

4.1.19 Case 19

Case 19 relates to alternative substation in New York or New Jersey, HVDC option (1200 mm2 Al). OSS 3 (1200 MW) - 16 inter-array cables (66 kV) & One positive and One negative HVDC offshore export cables (320 kV or 525 kV). EMF assessment at seabed

Figure 4-49 Magnetic Field Result of Case 19

Figure 4-50 Magnetic Field Result of Case 19 with Maximum Limit

Page 50: Appendix II-I

Figure 4-51 Zoomed Magnetic Field Result of Case 19

4.1.20 Case 20

Case 20 relates to alternative substation in New York or New Jersey, HVDC option (1200 mm2 Al). OSS 3 (1200 MW) - 16 inter-array cables (66 kV) & One positive and One negative HVDC offshore export cables (525 kV). EMF assessment at seabed.

Figure 4-52 Magnetic Field Result of Case 20

Page 51: Appendix II-I

Figure 4-53 Magnetic Field Result of Case 20 with Maximum Limit

Figure 4-54 Zoomed Magnetic Field Result of Case 20

Page 52: Appendix II-I

4.1.21 Case 21

Case 21 relates to alternative substation in New York or New Jersey, HVDC option (1200 mm2 Al). OSS 3 (1200 MW) - 8 inter-array cables (132 kV) & One positive and One negative HVDC offshore export cables (320 kV or 525 kV). EMF assessment at seabed.

Figure 4-55 Magnetic Field Result of Case 21

Figure 4-56 Magnetic Field Result of Case 21 with Maximum Limit

Page 53: Appendix II-I

Figure 4-57 Zoomed Magnetic Field Result of Case 21

4.1.22 Case 22

Case 22 relates to alternative substation in New York or New Jersey, HVDC option (1200 mm2 Al). OSS 3 (1200 MW) - 8 inter-array cables (132 kV) & One positive and One negative HVDC offshore export cables (525 kV). EMF assessment at seabed.

Figure 4-58 Magnetic Field Result of Case 22

Page 54: Appendix II-I

Figure 4-59 Magnetic Field Result of Case 22 with Maximum Limit

Figure 4-60 Zoomed Magnetic Field Result of Case 22

Page 55: Appendix II-I

4.1.23 Case 23

Case 23 relates to alternative substation in New York or New Jersey, HVDC option (1200 mm2 Al). OSS 3 (1200 MW) - 8 inter-array cables (150 kV) & One positive and One negative HVDC offshore export cables (320 kV or 525 kV). EMF assessment at seabed.

Figure 4-61 Magnetic Field Result of Case 23

Figure 4-62 Magnetic Field Result of Case 23 with Maximum Limit

Page 56: Appendix II-I

Figure 4-63 Zoomed Magnetic Field Result of Case 23

4.1.24 Case 24

Case 24 relates to alternative substation in New York or New Jersey, HVDC option (1200 mm2 Al). OSS 3 (1200 MW) - 8 inter-array cables (150 kV) & One positive and One negative HVDC offshore export cables (525 kV). EMF assessment at seabed.

Figure 4-64 Magnetic Field Result of Case 24

Page 57: Appendix II-I

Figure 4-65 Magnetic Field Result of Case 24 with Maximum Limit

Figure 4-66 Zoomed Magnetic Field Result of Case 24

Page 58: Appendix II-I

4.1.25 Case 25

Case 25 relates to HVAC Offshore export cable (2000 mm2 Cu). Landfall Horizontal Direction Drill (HDD) profile - 3 offshore export cables (230 kV) NY Route. EMF assessment at Seabed.

Figure 4-67 Magnetic Field Result of Case 25

Figure 4-68 Magnetic Field Result of Case 25 with Maximum Limit

Page 59: Appendix II-I

Figure 4-69 Zoomed Magnetic Field Result of Case 25

4.1.26 Case 26

Case 26 relates to HVAC Offshore export cable (2000 mm2 Cu). Buried in seabed (6’ from Seabed) - 3 offshore export cables (230 kV) NY Route. EMF assessment at seabed.

Figure 4-70 Magnetic Field Result of Case 26

Page 60: Appendix II-I

Figure 4-71 Magnetic Field Result of Case 26 with Maximum Limit

4.1.27 Case 27

Case 27 relates to HVAC Offshore export cable (2000 mm2 Cu). Landfall HDD profile - 3 offshore export cables (275 kV) NY Route. EMF assessment at seabed.

Figure 4-72 Magnetic Field Result of Case 27

Page 61: Appendix II-I

Figure 4-73 Magnetic Field Result of Case 27 with Maximum Limit

4.1.28 Case 28

Case 28 relates to HVAC Offshore export cable, Offshore (2000 mm2 Cu). Buried in seabed (6’ from Seabed) - 3 offshore export cables (275 kV) NY Route. EMF assessment at seabed.

Figure 4-74 Magnetic Field Result of Case 28

Page 62: Appendix II-I

Figure 4-75 Magnetic Field Result of Case 28 with Maximum Limit

4.1.29 Case 29

Case 29 relates to HVAC Offshore export cable (2000 mm2 Cu). Landfall HDD profile - 4 offshore export cables (230 kV) NJ Route. EMF assessment at seabed.

Figure 4-76 Magnetic Field Result of Case 29

Page 63: Appendix II-I

Figure 4-77 Magnetic Field Result of Case 29 with Maximum Limit

4.1.30 Case 30

Case 30 relates to HVAC Offshore export cable (2000 mm2 Cu). Buried in seabed (6’ from Seabed) - 4 offshore export cables (230 kV) NJ Route. EMF assessment at seabed.

Figure 4-78 Magnetic Field Result of Case 30

Page 64: Appendix II-I

Figure 4-79 Magnetic Field Result of Case 30 with Maximum Limit

4.1.31 Case 31

Case 31 relates to HVAC Offshore export cable (2000 mm2 Cu). Landfall HDD profile - 4 offshore export cables (275 kV) NJ Route. EMF assessment at seabed.

Figure 4-80 Magnetic Field Result of Case 31

Page 65: Appendix II-I

Figure 4-81 Magnetic Field Result of Case 31 with Maximum Limit

4.1.32 Case 32

Case 32 relates to HVAC Offshore export cable (2000 mm2 Cu). Buried in seabed (6’ from Seabed) - 4 offshore export cables (275 kV) NJ Route. EMF assessment at seabed.

Figure 4-82 Magnetic Field Result of Case 32

Page 66: Appendix II-I

Figure 4-83 Magnetic Field Result of Case 32 with Maximum Limit

4.1.33 Case 33

Case 33 relates to HVAC Offshore export cable (2000 mm2 Cu). Cable crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed {4 feet (1.2 m) from seabed} - 3 offshore export cables (230 kV) NY Route. EMF assessment at seabed.

Figure 4-84 Magnetic Field Result of Case 33

Page 67: Appendix II-I

Figure 4-85 Magnetic Field Result of Case 33 with Maximum Limit

4.1.34 Case 34

Case 34 relates to HVAC Offshore export cable (2000 mm2 Cu). Cable crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed {4 feet (1.2 m) from seabed} - 3 offshore export cables (275 kV) NY Route. EMF assessment at seabed.

Figure 4-86 Magnetic Field Result of Case 34

Page 68: Appendix II-I

Figure 4-87 Magnetic Field Result of Case 34 with Maximum Limit

4.1.35 Case 35

Case 35 relates to HVAC Offshore export cable (2000 mm2 Cu). Cable crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed {4 feet (1.2 m) from seabed} - 4 offshore export cables (230 kV) NJ Route. EMF assessment at seabed.

Figure 4-88 Magnetic Field Result of Case 35

Page 69: Appendix II-I

Figure 4-89 Magnetic Field Result of Case 35 with Maximum Limit

4.1.36 Case 36

Case 36 relates to HVAC Offshore export cable (2000 mm2 Cu). Cable crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed (4 feet (1.2 m) from seabed) - 4 offshore export cables (275 kV) NJ Route. EMF assessment at seabed.

Figure 4-90 Magnetic Field Result of Case 36

Page 70: Appendix II-I

Figure 4-91 Magnetic Field Result of Case 36 with Maximum Limit

4.1.37 Case 37

Case 37 relates to 320 kV HVDC Offshore export bundled cable (2500 mm2 Cu). Landfall HDD profile. EMF assessment at seabed.

Figure 4-92 Magnetic Field Result of Case 37

Page 71: Appendix II-I

Figure 4-93 Magnetic Field Result of Case 37 with Maximum Limit

4.1.38 Case 38

Case 38 relates to 320 kV HVDC Offshore export bundled cable (2500 mm2 Cu). Buried in seabed (6’ from seabed). EMF assessment at seabed.

Figure 4-94 Magnetic Field Result of Case 38

Page 72: Appendix II-I

Figure 4-95 Magnetic Field Result of Case 38 with Maximum Limit

4.1.39 Case 39

Case 39 relates to 320 kV HVDC Offshore export bundled cable (2500 mm2 Cu). Cable Crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed {4 feet (1.2 m) from seabed}. EMF assessment at seabed.

Figure 4-96 Magnetic Field Result of Case 39

Page 73: Appendix II-I

Figure 4-97 Magnetic Field Result of Case 39 with Maximum Limit

4.1.40 Case 40

Case 40 relates to 525 kV Offshore HVDC offshore export cable laid with 328.084 feet separation distance between positive and negative poles (2500 mm2 Cu). Landfall HDD profile. EMF assessment at seabed.

Figure 4-98 Magnetic Field Result of Case 40

Page 74: Appendix II-I

Figure 4-99 Magnetic Field Result of Case 40 with Maximum Limit

4.1.41 Case 41

Case 41 relates to 525 kV HVDC Offshore export cable laid with 328.084 feet separation distance between positive and negative poles (2500 mm2 Cu). Buried in seabed (6’ from Seabed). EMF assessment at seabed.

Figure 4-100 Magnetic Field Result of Case 41

Page 75: Appendix II-I

Figure 4-101 Magnetic Field Result of Case 41 with Maximum Limit

4.1.42 Case 42

Case 42 relates to 525 kV HVDC Offshore export cable laid with 328.084 feet separation distance between positive and negative poles (2500 mm2 Cu). Cable crossing arrangement (refer to 09_29 A131951-0309-SX-LX-0 Cab Crossing layout [47]). Buried in seabed {4 feet (1.2 m) from seabed}. EMF assessment at seabed.

Figure 4-102 Magnetic Field Result of Case 42

Page 76: Appendix II-I

Figure 4-103 Magnetic Field Result of Case 42 with Maximum Limit

4.1.43 Case 43

Case 43 relates to 230 kV HVAC Onshore interconnection transmission cable (3000 mm2 Cu Single Core) laid in trench in narrow corridor - 4 circuits arrangement. EMF assessment at surface.

Figure 4-104 Magnetic Field Result of Case 43

Page 77: Appendix II-I

Figure 4-105 Magnetic Field Result of Case 43 with Maximum Limit

4.1.44 Case 44

Case 44 relates to 275 kV HVAC Onshore interconnection transmission cable (3000 mm2 Cu Single Core) laid in trench in narrow corridor - 4 circuits arrangement. EMF assessment at surface.

Figure 4-106 Magnetic Field Result of Case 44

Page 78: Appendix II-I

Figure 4-107 Magnetic Field Result of Case 44 with Maximum Limit

4.1.45 Case 45

Case 45 relates to 230 kV HVAC Onshore interconnection transmission cable (3000 mm2 Cu Single Core) laid in HDD at 3.28 feet (1 m) depth and 10 feet (3 m) separation - 4 circuits. EMF assessment at surface.

Figure 4-108 Magnetic Field Result of Case 45

Page 79: Appendix II-I

Figure 4-109 Magnetic Field Result of Case 45 with Maximum Limit

4.1.46 Case 46

Case 46 relates to 275 kV HVAC Onshore interconnection transmission cable (3000 mm2 Cu Single Core) laid in HDD at 3.28 feet (1 m) depth and 10 feet (3 m) separation - 4 circuits. EMF assessment at surface.

Figure 4-110 Magnetic Field Result of Case 46

Page 80: Appendix II-I

Figure 4-111 Magnetic Field Result of Case 46 with Maximum Limit

4.1.47 Case 47

Case 47 relates to 230 kV HVAC Overhead transmission line from Onshore substation to Larrabee POI. EMF assessment at 3.28 feet above ground surface.

Figure 4-112 Magnetic Field Result of Case 47

Page 81: Appendix II-I

Figure 4-113 Magnetic Field Result of Case 47 with Maximum Limit

4.1.48 Case 48

Case 48 relates to 320 kV HVDC Onshore interconnection transmission cable (2500 mm2 Cu) laid in trench. EMF assessment at surface.

Figure 4-114 Magnetic Field Result of Case 48

Page 82: Appendix II-I

Figure 4-115 Magnetic Field Result of Case 48 with Maximum Limit

4.1.49 Case 49

Case 49 relates to 320 kV HVDC Onshore interconnection transmission cable (2500 mm2 Cu) laid in HDD. EMF assessment at surface.

Four separate cases were studied for Case 49 to consider various spacing between the positive and negative cables as well as depths from ground surface as follows:

Figures 4-116 & 117 – Positive and Negative Poles within same duct and buried at 23 feet (7 m) from ground. Figures 4-118 & 119 – Positive and Negative Poles in separate ducts spaced 10 feet (3 m) apart and buried 23 feet (7 m) from ground. Figures 4-120 & 121 – Positive and Negative Poles within same duct and buried at 10 feet (3 m) from ground. Figures 4-122& 123 – Positive and Negative Poles in separate ducts spaced 10 feet (3 m) apart and buried 10 feet (3 m) from ground.

Page 83: Appendix II-I

Figure 4-116 Magnetic Field Result of Case 49

Figure 4-117 Magnetic Field Result of Case 49 with Maximum Limit

Page 84: Appendix II-I

Figure 4-118 Magnetic Field Result of Case 49-1

Figure 4-119 Magnetic Field Result of Case 49-1 with Maximum Limit

Page 85: Appendix II-I

Figure 4-120 Magnetic Field Result of Case 49-2

Figure 4-121 Magnetic Field Result of Case 49-2 with Maximum Limit

Page 86: Appendix II-I

Figure 4-122 Magnetic Field Result of Case 49-3

Figure 4-123 Magnetic Field Result of Case 49-3 with Maximum Limit

Page 87: Appendix II-I

4.1.50 Case 50

Case 50 relates to 525 kV HVDC Onshore interconnection transmission cable (2500 mm2 Cu) laid in trench and operating in bipole mode. EMF assessment at surface.

Figure 4-124 Magnetic Field Result of Case 50

Figure 4-125 Magnetic Field Result of Case 50 with Maximum Limit

Page 88: Appendix II-I

4.1.51 Case 51

Case 51 relates to 525 kV HVDC Onshore interconnection transmission cable (2500 mm2 Cu) laid in HDD. EMF assessment at surface.

Three separate cases were studied for Case 51 to consider various spacing between the positive and negative cables as follows. The depths of all ducts are set to 10 feet (3 m) from ground.

Figures 4-126 & 127 – Positive and Negative Poles within same duct Figures 4-128 & 129 – Positive and Negative Poles in separate ducts spaced 6.56 feet (2 m) apart Figures 4-130 & 131 – Positive and Negative Poles in separate ducts spaced 3.28 feet (1 m) apart

Figure 4-126 Magnetic Field Result of Case 51

Page 89: Appendix II-I

Figure 4-127 Magnetic Field Result of Case 51 with Maximum Limit

Figure 4-128 Magnetic Field Result of Case 51-1

Page 90: Appendix II-I

Figure 4-129 Magnetic Field Result of Case 51-1 with Maximum Limit

Figure 4-130 Magnetic Field Result of Case 51-2

Page 91: Appendix II-I

Figure 4-131 Magnetic Field Result of Case 51-2 with Maximum Limit

4.1.52 Case 52

Case 52 relates to 525 kV HVDC Onshore interconnection transmission cable (2500 mm2 Cu) laid in trench and operating in monopole mode. EMF assessment at surface.

Figure 4-132 Magnetic Field Result of Case 52

Page 92: Appendix II-I

Figure 4-133 Magnetic Field Result of Case 52 with Maximum Limit

4.2 Magnetic Field Results for Substation Cases

4.2.1 Offshore Substation

This section presents the results for OSS simulated cases. Two main configurations for OSS were considered; i) HVAC configuration which includes AC inter-array cables, AC export cables and AC Gas-insulated Switchgear on collection system and export sides ii) HVDC configuration which includes AC inter-array cables, AC Gas-insulated Switchgear on collection system side and DC export cables.

4.2.1.1 HVAC Offshore Substations

As shown in Figures 4-134 and 4-135, the OSS receives the generated power by WTGs through 66 kV4 inter-array cables. Those 66 kV inter-array cables are aggregated by a 66 kV Gas-insulated Switchgear. Then, the voltage is converted by transformers to 230 kV or 275 kV.

4 For illustration purposes only 66 kV inter-array cable voltage level is mentioned here. IAC voltage level can either be 66, 132 or 150 kV AC.

Page 93: Appendix II-I

Figure 4-134 Sample Configuration for Offshore Substations with AC Cables

At this voltage, the electricity is carried from a 230 kV or 275 kV kV Gas-insulated Switchgear through 230 kV or 275 kV offshore export cables to an onshore substation. The simulated OSS included incoming 66 kV inter-array cables, 66 kV Gas-insulated Switchgear, 230 kV or 275 kV kV Gas-insulated Switchgear, outgoing 230 kV or 275 kV offshore export cables and two 230 kV or 275 kV OSS inter-link5 cables. Magnetic fields are calculated at sea level, Cellar Deck, Cable Deck, Main Deck, Utility Deck, and Roof Deck.

5 Atlantic Shores plan to have two interlink cables at EC voltage level carrying 1200 A each between two OSS.

Page 94: Appendix II-I

Figure 4-135 Single Line Diagram for HVAC Offshore Substation

Two cases have been simulated for HVAC OSS: • Case 1 (OSS1-800 MW): the plant generation rating for this case is 800 MW. The OSS

includes ten 66 kV inter-array cables, 66 kV Gas-insulated Switchgear, two 66/230 kV or 66/275 kV transformers, 230 kV or 275 kV Gas-insulated Switchgear, two 230 kV or 275 kV 200 MVAr reactors, and four 230 kV or 275 kV offshore export cables (including 2 Interlink cables).

• Case 2 (OSS2-1200 MW): the plant generation rating for this case is 1200 MW. The OSS includes sixteen 66 kV inter-array cables, 66 kV Gas-insulated Switchgear, three 66/230 kV or 66/275 kV transformers, 230 kV or 275 kV Gas-insulated Switchgear, three 230 kV or 275 kV 200 MVAr reactors, and five 230 kV or 275 kV offshore export cables (including 2 Interlink cables).

Page 95: Appendix II-I

Figure 4-136 OSS1-800 MW CDEGS Model

Page 96: Appendix II-I

Figure 4-137 OSS1-800 MW CDEGS Model with Deck Profiles

Roof Deck Level

Utility Deck Level

Main Deck Level

Cable Deck Level

Cellar Deck Level

Sea Level

Page 97: Appendix II-I

Figure 4-138 OSS2-1200 MW CDEGS Model

Page 98: Appendix II-I

Figure 4-139 OSS2-1200 MW CDEGS Model with Deck Profiles

The results for Case 1 and Case 2 are listed in Table 4-1. The graphical results are presented in the following sections 4.2.1.1.1 and 4.2.1.1.2.

Roof Deck Level

Utility Deck Level

Main Deck Level

Cable Deck Level

Cellar Deck Level

Sea Level

Page 99: Appendix II-I

Table 4-1 Results Summary for Case 1(OSS1-800 MW) and Case 2 (OSS2-1000 MW)

Location of Calculation

Peak Magnetic Field (A/m)

for Case 1(OSS1-800 MW)

Peak Magnetic Field (A/m)

for Case 2(OSS2-1200 MW)

Distance from energized conductor at which magnetic field drops below limits 6

OSS1 (800 MW) OSS2 (1200 MW)

Sea Level 1000.46 971.56 1.31 feet (0.4 m) from

ECs 1 feet (0.3 m) from IACs

1 feet (0.3 m) from ECs 1 feet (0.3 m) from IACs

Cellar Deck Level 480.79 389.68 - -

Cable Deck Level 649.66 389.18 - -

Main Deck Level 990.82 1181.50

1 feet (0.3 m) from 230 kV or 275 kV Gas-

insulated Switchgear bus

1.31 feet (0.4 m) from 230 kV or 275 kV Gas-

insulated Switchgear bus Utility Deck

Level 116.89 136.31 - -

Roof Deck Level 6.83 1.70 - -

It is important to mention that the peak magnetic field violates (160 A/m and 800 A/m) maximum allowable public and occupational limits at sea level and main deck level respectively (refer to Table 1-2). However, those peaks occur right at the cables or Gas-insulated Switchgear buses only and the magnetic field decays quickly while moving away from the energized conductor. SNC Lavalin analyzed the magnetic field profiles to determine the distance from the energized conductor at which the magnetic field value fall below the respective limits. The results of this analysis are indicated in Table 4-1.

The magnetic field in other areas is within maximum allowable limit (refer to Figures 4-140, 4-146, 4-152, and 4-158). The magnetic field at other deck levels (Cellar Deck, Cable Deck, Utility Deck, Roof Deck) is within its 800 A/m maximum occupational allowable limit.

Comparing calculated magnetic fields with the 160 A/m maximum allowable limit for general public is not of concern as it is anticipated that the OSS decks will be accessed only by trained workers. The magnetic fields at the sea level can be compared with 160 A/m limit as the OSS can be approached at sea level by general public. It can be seen that at the locations other than right at the cables at sea level, the magnetic fields are lower than 160 A/m.

6 Refer to Appendix A

Page 100: Appendix II-I

4.2.1.1.1 Results for Case 1 (OSS1-800 MW)

Figure 4-140 3D Magnetic Field Result of OSS1-800 MW Case at sea level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:14:14]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 600

11.3

22.5

33.8

45.1

56.4

0

500

1000

1500

Page 101: Appendix II-I

Figure 4-141 2D Magnetic Field Result of OSS1-800 MW Case at sea level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:15:05]

0 15 30 45 60

Distance from Origin of Profile (m)

0

500

1000

1500

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 1 .

Pro fi le Num ber 2 .

Pro fi le Num ber 3 .

Pro fi le Num ber 4 .

Pro fi le Num ber 5 .

Pro fi le Num ber 6 .

Pro fi le Num ber 7 .

Pro fi le Num ber 8 .

Pro fi le Num ber 9 .

Pro fi le Num ber 10 .

Pro fi le Num ber 11 .

Pro fi le Num ber 12 .

Pro fi le Num ber 13 .

Pro fi le Num ber 14 .

Pro fi le Num ber 15 .

Pro fi le Num ber 16 .

Pro fi le Num ber 17 .

Pro fi le Num ber 18 .

Pro fi le Num ber 19 .

Pro fi le Num ber 20 .

Pro fi le Num ber 21 .

Pro fi le Num ber 22 .

Pro fi le Num ber 23 .

Pro fi le Num ber 24 .

Pro fi le Num ber 25 .

Pro fi le Num ber 26 .

Pro fi le Num ber 27 .

Pro fi le Num ber 28 .

Pro fi le Num ber 29 .

Pro fi le Num ber 30 .

Pro fi le Num ber 31 .

Pro fi le Num ber 32 .

Pro fi le Num ber 33 .

Pro fi le Num ber 34 .

Pro fi le Num ber 35 .

Pro fi le Num ber 36 .

Pro fi le Num ber 37 .

Pro fi le Num ber 38 .

Pro fi le Num ber 39 .

Pro fi le Num ber 40 .

Pro fi le Num ber 41 .

Pro fi le Num ber 42 .

Pro fi le Num ber 43 .

Pro fi le Num ber 44 .

Pro fi le Num ber 45 .

Pro fi le Num ber 46 .

Pro fi le Num ber 47 .

Pro fi le Num ber 48 .

Pro fi le Num ber 49 .

Pro fi le Num ber 50 .

Pro fi le Num ber 51 .

Pro fi le Num ber 52 .

Pro fi le Num ber 53 .

Pro fi le Num ber 54 .

Pro fi le Num ber 55 .

Pro fi le Num ber 56 .

Pro fi le Num ber 57 .

Pro fi le Num ber 58 .

Pro fi le Num ber 59 .

Pro fi le Num ber 60 .

Pro fi le Num ber 61 .

Pro fi le Num ber 62 .

Pro fi le Num ber 63 .

Pro fi le Num ber 64 .

Pro fi le Num ber 65 .

Pro fi le Num ber 66 .

Pro fi le Num ber 67 .

Pro fi le Num ber 68 .

Pro fi le Num ber 69 .

Pro fi le Num ber 70 .

Pro fi le Num ber 71 .

Pro fi le Num ber 72 .

Pro fi le Num ber 73 .

Pro fi le Num ber 74 .

Pro fi le Num ber 75 .

Pro fi le Num ber 76 .

Pro fi le Num ber 77 .

Pro fi le Num ber 78 .

Pro fi le Num ber 79 .

Pro fi le Num ber 80 .

Pro fi le Num ber 81 .

Pro fi le Num ber 82 .

Pro fi le Num ber 83 .

Pro fi le Num ber 84 .

Pro fi le Num ber 85 .

Pro fi le Num ber 86 .

Pro fi le Num ber 87 .

Pro fi le Num ber 88 .

Pro fi le Num ber 89 .

Pro fi le Num ber 90 .

Pro fi le Num ber 91 .

Pro fi le Num ber 92 .

Pro fi le Num ber 93 .

Pro fi le Num ber 94 .

Pro fi le Num ber 95 .

Pro fi le Num ber 96 .

Pro fi le Num ber 97 .

Pro fi le Num ber 98 .

Pro fi le Num ber 99 .

Pro fi le Num ber 100 .

Pro fi le Num ber 101 .

Pro fi le Num ber 102 .

Pro fi le Num ber 103 .

Pro fi le Num ber 104 .

Pro fi le Num ber 105 .

Pro fi le Num ber 106 .

Pro fi le Num ber 107 .

Pro fi le Num ber 108 .

Pro fi le Num ber 109 .

Pro fi le Num ber 110 .

Pro fi le Num ber 111 .

Pro fi le Num ber 112 .

Pro fi le Num ber 113 .

Pro fi le Num ber 114 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 102: Appendix II-I

Figure 4-142 3D Magnetic Field Result of OSS1-800 MW Case at Cellar Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:08:19]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 60

0

11.3

22.5

33.8

45.1

56.4

0

100

200

300

400

500

Page 103: Appendix II-I

Figure 4-143 2D Magnetic Field Result of OSS1-800 MW Case at Cellar Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:08:02]

0 15 30 45 60

Distance from Origin of Profile (m)

0

100

200

300

400

500

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 115 .

Pro fi le Num ber 116 .

Pro fi le Num ber 117 .

Pro fi le Num ber 118 .

Pro fi le Num ber 119 .

Pro fi le Num ber 120 .

Pro fi le Num ber 121 .

Pro fi le Num ber 122 .

Pro fi le Num ber 123 .

Pro fi le Num ber 124 .

Pro fi le Num ber 125 .

Pro fi le Num ber 126 .

Pro fi le Num ber 127 .

Pro fi le Num ber 128 .

Pro fi le Num ber 129 .

Pro fi le Num ber 130 .

Pro fi le Num ber 131 .

Pro fi le Num ber 132 .

Pro fi le Num ber 133 .

Pro fi le Num ber 134 .

Pro fi le Num ber 135 .

Pro fi le Num ber 136 .

Pro fi le Num ber 137 .

Pro fi le Num ber 138 .

Pro fi le Num ber 139 .

Pro fi le Num ber 140 .

Pro fi le Num ber 141 .

Pro fi le Num ber 142 .

Pro fi le Num ber 143 .

Pro fi le Num ber 144 .

Pro fi le Num ber 145 .

Pro fi le Num ber 146 .

Pro fi le Num ber 147 .

Pro fi le Num ber 148 .

Pro fi le Num ber 149 .

Pro fi le Num ber 150 .

Pro fi le Num ber 151 .

Pro fi le Num ber 152 .

Pro fi le Num ber 153 .

Pro fi le Num ber 154 .

Pro fi le Num ber 155 .

Pro fi le Num ber 156 .

Pro fi le Num ber 157 .

Pro fi le Num ber 158 .

Pro fi le Num ber 159 .

Pro fi le Num ber 160 .

Pro fi le Num ber 161 .

Pro fi le Num ber 162 .

Pro fi le Num ber 163 .

Pro fi le Num ber 164 .

Pro fi le Num ber 165 .

Pro fi le Num ber 166 .

Pro fi le Num ber 167 .

Pro fi le Num ber 168 .

Pro fi le Num ber 169 .

Pro fi le Num ber 170 .

Pro fi le Num ber 171 .

Pro fi le Num ber 172 .

Pro fi le Num ber 173 .

Pro fi le Num ber 174 .

Pro fi le Num ber 175 .

Pro fi le Num ber 176 .

Pro fi le Num ber 177 .

Pro fi le Num ber 178 .

Pro fi le Num ber 179 .

Pro fi le Num ber 180 .

Pro fi le Num ber 181 .

Pro fi le Num ber 182 .

Pro fi le Num ber 183 .

Pro fi le Num ber 184 .

Pro fi le Num ber 185 .

Pro fi le Num ber 186 .

Pro fi le Num ber 187 .

Pro fi le Num ber 188 .

Pro fi le Num ber 189 .

Pro fi le Num ber 190 .

Pro fi le Num ber 191 .

Pro fi le Num ber 192 .

Pro fi le Num ber 193 .

Pro fi le Num ber 194 .

Pro fi le Num ber 195 .

Pro fi le Num ber 196 .

Pro fi le Num ber 197 .

Pro fi le Num ber 198 .

Pro fi le Num ber 199 .

Pro fi le Num ber 200 .

Pro fi le Num ber 201 .

Pro fi le Num ber 202 .

Pro fi le Num ber 203 .

Pro fi le Num ber 204 .

Pro fi le Num ber 205 .

Pro fi le Num ber 206 .

Pro fi le Num ber 207 .

Pro fi le Num ber 208 .

Pro fi le Num ber 209 .

Pro fi le Num ber 210 .

Pro fi le Num ber 211 .

Pro fi le Num ber 212 .

Pro fi le Num ber 213 .

Pro fi le Num ber 214 .

Pro fi le Num ber 215 .

Pro fi le Num ber 216 .

Pro fi le Num ber 217 .

Pro fi le Num ber 218 .

Pro fi le Num ber 219 .

Pro fi le Num ber 220 .

Pro fi le Num ber 221 .

Pro fi le Num ber 222 .

Pro fi le Num ber 223 .

Pro fi le Num ber 224 .

Pro fi le Num ber 225 .

Pro fi le Num ber 226 .

Pro fi le Num ber 227 .

Pro fi le Num ber 228 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 104: Appendix II-I

Figure 4-144 3D Magnetic Field Result of OSS1-800 MW Case at Cable Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:09:34]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 60

0

11.3

22.5

33.8

45.1

56.4

0

150

300

450

600

Page 105: Appendix II-I

Figure 4-145 2D Magnetic Field Result of OSS1-800 MW Case at Cable Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:09:50]

0 15 30 45 60

Distance from Origin of Profile (m)

0

150

300

450

600

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 229 .

Pro fi le Num ber 230 .

Pro fi le Num ber 231 .

Pro fi le Num ber 232 .

Pro fi le Num ber 233 .

Pro fi le Num ber 234 .

Pro fi le Num ber 235 .

Pro fi le Num ber 236 .

Pro fi le Num ber 237 .

Pro fi le Num ber 238 .

Pro fi le Num ber 239 .

Pro fi le Num ber 240 .

Pro fi le Num ber 241 .

Pro fi le Num ber 242 .

Pro fi le Num ber 243 .

Pro fi le Num ber 244 .

Pro fi le Num ber 245 .

Pro fi le Num ber 246 .

Pro fi le Num ber 247 .

Pro fi le Num ber 248 .

Pro fi le Num ber 249 .

Pro fi le Num ber 250 .

Pro fi le Num ber 251 .

Pro fi le Num ber 252 .

Pro fi le Num ber 253 .

Pro fi le Num ber 254 .

Pro fi le Num ber 255 .

Pro fi le Num ber 256 .

Pro fi le Num ber 257 .

Pro fi le Num ber 258 .

Pro fi le Num ber 259 .

Pro fi le Num ber 260 .

Pro fi le Num ber 261 .

Pro fi le Num ber 262 .

Pro fi le Num ber 263 .

Pro fi le Num ber 264 .

Pro fi le Num ber 265 .

Pro fi le Num ber 266 .

Pro fi le Num ber 267 .

Pro fi le Num ber 268 .

Pro fi le Num ber 269 .

Pro fi le Num ber 270 .

Pro fi le Num ber 271 .

Pro fi le Num ber 272 .

Pro fi le Num ber 273 .

Pro fi le Num ber 274 .

Pro fi le Num ber 275 .

Pro fi le Num ber 276 .

Pro fi le Num ber 277 .

Pro fi le Num ber 278 .

Pro fi le Num ber 279 .

Pro fi le Num ber 280 .

Pro fi le Num ber 281 .

Pro fi le Num ber 282 .

Pro fi le Num ber 283 .

Pro fi le Num ber 284 .

Pro fi le Num ber 285 .

Pro fi le Num ber 286 .

Pro fi le Num ber 287 .

Pro fi le Num ber 288 .

Pro fi le Num ber 289 .

Pro fi le Num ber 290 .

Pro fi le Num ber 291 .

Pro fi le Num ber 292 .

Pro fi le Num ber 293 .

Pro fi le Num ber 294 .

Pro fi le Num ber 295 .

Pro fi le Num ber 296 .

Pro fi le Num ber 297 .

Pro fi le Num ber 298 .

Pro fi le Num ber 299 .

Pro fi le Num ber 300 .

Pro fi le Num ber 301 .

Pro fi le Num ber 302 .

Pro fi le Num ber 303 .

Pro fi le Num ber 304 .

Pro fi le Num ber 305 .

Pro fi le Num ber 306 .

Pro fi le Num ber 307 .

Pro fi le Num ber 308 .

Pro fi le Num ber 309 .

Pro fi le Num ber 310 .

Pro fi le Num ber 311 .

Pro fi le Num ber 312 .

Pro fi le Num ber 313 .

Pro fi le Num ber 314 .

Pro fi le Num ber 315 .

Pro fi le Num ber 316 .

Pro fi le Num ber 317 .

Pro fi le Num ber 318 .

Pro fi le Num ber 319 .

Pro fi le Num ber 320 .

Pro fi le Num ber 321 .

Pro fi le Num ber 322 .

Pro fi le Num ber 323 .

Pro fi le Num ber 324 .

Pro fi le Num ber 325 .

Pro fi le Num ber 326 .

Pro fi le Num ber 327 .

Pro fi le Num ber 328 .

Pro fi le Num ber 329 .

Pro fi le Num ber 330 .

Pro fi le Num ber 331 .

Pro fi le Num ber 332 .

Pro fi le Num ber 333 .

Pro fi le Num ber 334 .

Pro fi le Num ber 335 .

Pro fi le Num ber 336 .

Pro fi le Num ber 337 .

Pro fi le Num ber 338 .

Pro fi le Num ber 339 .

Pro fi le Num ber 340 .

Pro fi le Num ber 341 .

Pro fi le Num ber 342 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 106: Appendix II-I

Figure 4-146 3D Magnetic Field Result of OSS1-800 MW Case at Main Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:11:00]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 600

11.3

22.5

33.8

45.1

56.4

0

500

1000

Page 107: Appendix II-I

Figure 4-147 2D Magnetic Field Result of OSS1-800 MW Case at Main Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:11:23]

0 15 30 45 60

Distance from Origin of Profile (m)

0

500

1000

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 343 .

Pro fi le Num ber 344 .

Pro fi le Num ber 345 .

Pro fi le Num ber 346 .

Pro fi le Num ber 347 .

Pro fi le Num ber 348 .

Pro fi le Num ber 349 .

Pro fi le Num ber 350 .

Pro fi le Num ber 351 .

Pro fi le Num ber 352 .

Pro fi le Num ber 353 .

Pro fi le Num ber 354 .

Pro fi le Num ber 355 .

Pro fi le Num ber 356 .

Pro fi le Num ber 357 .

Pro fi le Num ber 358 .

Pro fi le Num ber 359 .

Pro fi le Num ber 360 .

Pro fi le Num ber 361 .

Pro fi le Num ber 362 .

Pro fi le Num ber 363 .

Pro fi le Num ber 364 .

Pro fi le Num ber 365 .

Pro fi le Num ber 366 .

Pro fi le Num ber 367 .

Pro fi le Num ber 368 .

Pro fi le Num ber 369 .

Pro fi le Num ber 370 .

Pro fi le Num ber 371 .

Pro fi le Num ber 372 .

Pro fi le Num ber 373 .

Pro fi le Num ber 374 .

Pro fi le Num ber 375 .

Pro fi le Num ber 376 .

Pro fi le Num ber 377 .

Pro fi le Num ber 378 .

Pro fi le Num ber 379 .

Pro fi le Num ber 380 .

Pro fi le Num ber 381 .

Pro fi le Num ber 382 .

Pro fi le Num ber 383 .

Pro fi le Num ber 384 .

Pro fi le Num ber 385 .

Pro fi le Num ber 386 .

Pro fi le Num ber 387 .

Pro fi le Num ber 388 .

Pro fi le Num ber 389 .

Pro fi le Num ber 390 .

Pro fi le Num ber 391 .

Pro fi le Num ber 392 .

Pro fi le Num ber 393 .

Pro fi le Num ber 394 .

Pro fi le Num ber 395 .

Pro fi le Num ber 396 .

Pro fi le Num ber 397 .

Pro fi le Num ber 398 .

Pro fi le Num ber 399 .

Pro fi le Num ber 400 .

Pro fi le Num ber 401 .

Pro fi le Num ber 402 .

Pro fi le Num ber 403 .

Pro fi le Num ber 404 .

Pro fi le Num ber 405 .

Pro fi le Num ber 406 .

Pro fi le Num ber 407 .

Pro fi le Num ber 408 .

Pro fi le Num ber 409 .

Pro fi le Num ber 410 .

Pro fi le Num ber 411 .

Pro fi le Num ber 412 .

Pro fi le Num ber 413 .

Pro fi le Num ber 414 .

Pro fi le Num ber 415 .

Pro fi le Num ber 416 .

Pro fi le Num ber 417 .

Pro fi le Num ber 418 .

Pro fi le Num ber 419 .

Pro fi le Num ber 420 .

Pro fi le Num ber 421 .

Pro fi le Num ber 422 .

Pro fi le Num ber 423 .

Pro fi le Num ber 424 .

Pro fi le Num ber 425 .

Pro fi le Num ber 426 .

Pro fi le Num ber 427 .

Pro fi le Num ber 428 .

Pro fi le Num ber 429 .

Pro fi le Num ber 430 .

Pro fi le Num ber 431 .

Pro fi le Num ber 432 .

Pro fi le Num ber 433 .

Pro fi le Num ber 434 .

Pro fi le Num ber 435 .

Pro fi le Num ber 436 .

Pro fi le Num ber 437 .

Pro fi le Num ber 438 .

Pro fi le Num ber 439 .

Pro fi le Num ber 440 .

Pro fi le Num ber 441 .

Pro fi le Num ber 442 .

Pro fi le Num ber 443 .

Pro fi le Num ber 444 .

Pro fi le Num ber 445 .

Pro fi le Num ber 446 .

Pro fi le Num ber 447 .

Pro fi le Num ber 448 .

Pro fi le Num ber 449 .

Pro fi le Num ber 450 .

Pro fi le Num ber 451 .

Pro fi le Num ber 452 .

Pro fi le Num ber 453 .

Pro fi le Num ber 454 .

Pro fi le Num ber 455 .

Pro fi le Num ber 456 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 108: Appendix II-I

Figure 4-148 3D Magnetic Field Result of OSS1-800 MW Case at Utility Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:12:01]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 600

11.3

22.5

33.8

45.1

56.4

0

50

100

150

Page 109: Appendix II-I

Figure 4-149 2D Magnetic Field Result of OSS1-800 MW Case at Utility Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:12:22]

0 15 30 45 60

Distance from Origin of Profile (m)

0

50

100

150

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 457 .

Pro fi le Num ber 458 .

Pro fi le Num ber 459 .

Pro fi le Num ber 460 .

Pro fi le Num ber 461 .

Pro fi le Num ber 462 .

Pro fi le Num ber 463 .

Pro fi le Num ber 464 .

Pro fi le Num ber 465 .

Pro fi le Num ber 466 .

Pro fi le Num ber 467 .

Pro fi le Num ber 468 .

Pro fi le Num ber 469 .

Pro fi le Num ber 470 .

Pro fi le Num ber 471 .

Pro fi le Num ber 472 .

Pro fi le Num ber 473 .

Pro fi le Num ber 474 .

Pro fi le Num ber 475 .

Pro fi le Num ber 476 .

Pro fi le Num ber 477 .

Pro fi le Num ber 478 .

Pro fi le Num ber 479 .

Pro fi le Num ber 480 .

Pro fi le Num ber 481 .

Pro fi le Num ber 482 .

Pro fi le Num ber 483 .

Pro fi le Num ber 484 .

Pro fi le Num ber 485 .

Pro fi le Num ber 486 .

Pro fi le Num ber 487 .

Pro fi le Num ber 488 .

Pro fi le Num ber 489 .

Pro fi le Num ber 490 .

Pro fi le Num ber 491 .

Pro fi le Num ber 492 .

Pro fi le Num ber 493 .

Pro fi le Num ber 494 .

Pro fi le Num ber 495 .

Pro fi le Num ber 496 .

Pro fi le Num ber 497 .

Pro fi le Num ber 498 .

Pro fi le Num ber 499 .

Pro fi le Num ber 500 .

Pro fi le Num ber 501 .

Pro fi le Num ber 502 .

Pro fi le Num ber 503 .

Pro fi le Num ber 504 .

Pro fi le Num ber 505 .

Pro fi le Num ber 506 .

Pro fi le Num ber 507 .

Pro fi le Num ber 508 .

Pro fi le Num ber 509 .

Pro fi le Num ber 510 .

Pro fi le Num ber 511 .

Pro fi le Num ber 512 .

Pro fi le Num ber 513 .

Pro fi le Num ber 514 .

Pro fi le Num ber 515 .

Pro fi le Num ber 516 .

Pro fi le Num ber 517 .

Pro fi le Num ber 518 .

Pro fi le Num ber 519 .

Pro fi le Num ber 520 .

Pro fi le Num ber 521 .

Pro fi le Num ber 522 .

Pro fi le Num ber 523 .

Pro fi le Num ber 524 .

Pro fi le Num ber 525 .

Pro fi le Num ber 526 .

Pro fi le Num ber 527 .

Pro fi le Num ber 528 .

Pro fi le Num ber 529 .

Pro fi le Num ber 530 .

Pro fi le Num ber 531 .

Pro fi le Num ber 532 .

Pro fi le Num ber 533 .

Pro fi le Num ber 534 .

Pro fi le Num ber 535 .

Pro fi le Num ber 536 .

Pro fi le Num ber 537 .

Pro fi le Num ber 538 .

Pro fi le Num ber 539 .

Pro fi le Num ber 540 .

Pro fi le Num ber 541 .

Pro fi le Num ber 542 .

Pro fi le Num ber 543 .

Pro fi le Num ber 544 .

Pro fi le Num ber 545 .

Pro fi le Num ber 546 .

Pro fi le Num ber 547 .

Pro fi le Num ber 548 .

Pro fi le Num ber 549 .

Pro fi le Num ber 550 .

Pro fi le Num ber 551 .

Pro fi le Num ber 552 .

Pro fi le Num ber 553 .

Pro fi le Num ber 554 .

Pro fi le Num ber 555 .

Pro fi le Num ber 556 .

Pro fi le Num ber 557 .

Pro fi le Num ber 558 .

Pro fi le Num ber 559 .

Pro fi le Num ber 560 .

Pro fi le Num ber 561 .

Pro fi le Num ber 562 .

Pro fi le Num ber 563 .

Pro fi le Num ber 564 .

Pro fi le Num ber 565 .

Pro fi le Num ber 566 .

Pro fi le Num ber 567 .

Pro fi le Num ber 568 .

Pro fi le Num ber 569 .

Pro fi le Num ber 570 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 110: Appendix II-I

Figure 4-150 3D Magnetic Field Result of OSS1-800 MW Case at Roof Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:13:17]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 60

0

11.3

22.5

33.8

45.1

56.4

0.0

1.5

3.0

4.5

6.0

Page 111: Appendix II-I

Figure 4-151 2D Magnetic Field Result of OSS1-800 MW Case at Roof Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/ 5, Time: 17:13:42]

0 15 30 45 60

Distance from Origin of Profile (m)

0.0

1.5

3.0

4.5

6.0

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 571 .

Pro fi le Num ber 572 .

Pro fi le Num ber 573 .

Pro fi le Num ber 574 .

Pro fi le Num ber 575 .

Pro fi le Num ber 576 .

Pro fi le Num ber 577 .

Pro fi le Num ber 578 .

Pro fi le Num ber 579 .

Pro fi le Num ber 580 .

Pro fi le Num ber 581 .

Pro fi le Num ber 582 .

Pro fi le Num ber 583 .

Pro fi le Num ber 584 .

Pro fi le Num ber 585 .

Pro fi le Num ber 586 .

Pro fi le Num ber 587 .

Pro fi le Num ber 588 .

Pro fi le Num ber 589 .

Pro fi le Num ber 590 .

Pro fi le Num ber 591 .

Pro fi le Num ber 592 .

Pro fi le Num ber 593 .

Pro fi le Num ber 594 .

Pro fi le Num ber 595 .

Pro fi le Num ber 596 .

Pro fi le Num ber 597 .

Pro fi le Num ber 598 .

Pro fi le Num ber 599 .

Pro fi le Num ber 600 .

Pro fi le Num ber 601 .

Pro fi le Num ber 602 .

Pro fi le Num ber 603 .

Pro fi le Num ber 604 .

Pro fi le Num ber 605 .

Pro fi le Num ber 606 .

Pro fi le Num ber 607 .

Pro fi le Num ber 608 .

Pro fi le Num ber 609 .

Pro fi le Num ber 610 .

Pro fi le Num ber 611 .

Pro fi le Num ber 612 .

Pro fi le Num ber 613 .

Pro fi le Num ber 614 .

Pro fi le Num ber 615 .

Pro fi le Num ber 616 .

Pro fi le Num ber 617 .

Pro fi le Num ber 618 .

Pro fi le Num ber 619 .

Pro fi le Num ber 620 .

Pro fi le Num ber 621 .

Pro fi le Num ber 622 .

Pro fi le Num ber 623 .

Pro fi le Num ber 624 .

Pro fi le Num ber 625 .

Pro fi le Num ber 626 .

Pro fi le Num ber 627 .

Pro fi le Num ber 628 .

Pro fi le Num ber 629 .

Pro fi le Num ber 630 .

Pro fi le Num ber 631 .

Pro fi le Num ber 632 .

Pro fi le Num ber 633 .

Pro fi le Num ber 634 .

Pro fi le Num ber 635 .

Pro fi le Num ber 636 .

Pro fi le Num ber 637 .

Pro fi le Num ber 638 .

Pro fi le Num ber 639 .

Pro fi le Num ber 640 .

Pro fi le Num ber 641 .

Pro fi le Num ber 642 .

Pro fi le Num ber 643 .

Pro fi le Num ber 644 .

Pro fi le Num ber 645 .

Pro fi le Num ber 646 .

Pro fi le Num ber 647 .

Pro fi le Num ber 648 .

Pro fi le Num ber 649 .

Pro fi le Num ber 650 .

Pro fi le Num ber 651 .

Pro fi le Num ber 652 .

Pro fi le Num ber 653 .

Pro fi le Num ber 654 .

Pro fi le Num ber 655 .

Pro fi le Num ber 656 .

Pro fi le Num ber 657 .

Pro fi le Num ber 658 .

Pro fi le Num ber 659 .

Pro fi le Num ber 660 .

Pro fi le Num ber 661 .

Pro fi le Num ber 662 .

Pro fi le Num ber 663 .

Pro fi le Num ber 664 .

Pro fi le Num ber 665 .

Pro fi le Num ber 666 .

Pro fi le Num ber 667 .

Pro fi le Num ber 668 .

Pro fi le Num ber 669 .

Pro fi le Num ber 670 .

Pro fi le Num ber 671 .

Pro fi le Num ber 672 .

Pro fi le Num ber 673 .

Pro fi le Num ber 674 .

Pro fi le Num ber 675 .

Pro fi le Num ber 676 .

Pro fi le Num ber 677 .

Pro fi le Num ber 678 .

Pro fi le Num ber 679 .

Pro fi le Num ber 680 .

Pro fi le Num ber 681 .

Pro fi le Num ber 682 .

Pro fi le Num ber 683 .

Pro fi le Num ber 684 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 112: Appendix II-I

4.2.1.1.2 Results for Case 2 (OSS2-1200 MW)

Figure 4-152 3D Magnetic Field Result of OSS2-1200 MW Case at sea level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:44:04]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 600

11.3

22.5

33.8

45.1

56.4

0

500

1000

Page 113: Appendix II-I

Figure 4-153 2D Magnetic Field Result of OSS2-1200 MW Case at sea level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:44:44]

0 15 30 45 60

Distance from Origin of Profile (m)

0

500

1000

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 1 .

Pro fi le Num ber 2 .

Pro fi le Num ber 3 .

Pro fi le Num ber 4 .

Pro fi le Num ber 5 .

Pro fi le Num ber 6 .

Pro fi le Num ber 7 .

Pro fi le Num ber 8 .

Pro fi le Num ber 9 .

Pro fi le Num ber 10 .

Pro fi le Num ber 11 .

Pro fi le Num ber 12 .

Pro fi le Num ber 13 .

Pro fi le Num ber 14 .

Pro fi le Num ber 15 .

Pro fi le Num ber 16 .

Pro fi le Num ber 17 .

Pro fi le Num ber 18 .

Pro fi le Num ber 19 .

Pro fi le Num ber 20 .

Pro fi le Num ber 21 .

Pro fi le Num ber 22 .

Pro fi le Num ber 23 .

Pro fi le Num ber 24 .

Pro fi le Num ber 25 .

Pro fi le Num ber 26 .

Pro fi le Num ber 27 .

Pro fi le Num ber 28 .

Pro fi le Num ber 29 .

Pro fi le Num ber 30 .

Pro fi le Num ber 31 .

Pro fi le Num ber 32 .

Pro fi le Num ber 33 .

Pro fi le Num ber 34 .

Pro fi le Num ber 35 .

Pro fi le Num ber 36 .

Pro fi le Num ber 37 .

Pro fi le Num ber 38 .

Pro fi le Num ber 39 .

Pro fi le Num ber 40 .

Pro fi le Num ber 41 .

Pro fi le Num ber 42 .

Pro fi le Num ber 43 .

Pro fi le Num ber 44 .

Pro fi le Num ber 45 .

Pro fi le Num ber 46 .

Pro fi le Num ber 47 .

Pro fi le Num ber 48 .

Pro fi le Num ber 49 .

Pro fi le Num ber 50 .

Pro fi le Num ber 51 .

Pro fi le Num ber 52 .

Pro fi le Num ber 53 .

Pro fi le Num ber 54 .

Pro fi le Num ber 55 .

Pro fi le Num ber 56 .

Pro fi le Num ber 57 .

Pro fi le Num ber 58 .

Pro fi le Num ber 59 .

Pro fi le Num ber 60 .

Pro fi le Num ber 61 .

Pro fi le Num ber 62 .

Pro fi le Num ber 63 .

Pro fi le Num ber 64 .

Pro fi le Num ber 65 .

Pro fi le Num ber 66 .

Pro fi le Num ber 67 .

Pro fi le Num ber 68 .

Pro fi le Num ber 69 .

Pro fi le Num ber 70 .

Pro fi le Num ber 71 .

Pro fi le Num ber 72 .

Pro fi le Num ber 73 .

Pro fi le Num ber 74 .

Pro fi le Num ber 75 .

Pro fi le Num ber 76 .

Pro fi le Num ber 77 .

Pro fi le Num ber 78 .

Pro fi le Num ber 79 .

Pro fi le Num ber 80 .

Pro fi le Num ber 81 .

Pro fi le Num ber 82 .

Pro fi le Num ber 83 .

Pro fi le Num ber 84 .

Pro fi le Num ber 85 .

Pro fi le Num ber 86 .

Pro fi le Num ber 87 .

Pro fi le Num ber 88 .

Pro fi le Num ber 89 .

Pro fi le Num ber 90 .

Pro fi le Num ber 91 .

Pro fi le Num ber 92 .

Pro fi le Num ber 93 .

Pro fi le Num ber 94 .

Pro fi le Num ber 95 .

Pro fi le Num ber 96 .

Pro fi le Num ber 97 .

Pro fi le Num ber 98 .

Pro fi le Num ber 99 .

Pro fi le Num ber 100 .

Pro fi le Num ber 101 .

Pro fi le Num ber 102 .

Pro fi le Num ber 103 .

Pro fi le Num ber 104 .

Pro fi le Num ber 105 .

Pro fi le Num ber 106 .

Pro fi le Num ber 107 .

Pro fi le Num ber 108 .

Pro fi le Num ber 109 .

Pro fi le Num ber 110 .

Pro fi le Num ber 111 .

Pro fi le Num ber 112 .

Pro fi le Num ber 113 .

Pro fi le Num ber 114 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 114: Appendix II-I

Figure 4-154 3D Magnetic Field Result of OSS2-1200 MW Case at Cellar Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:45:16]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 60

0

11.3

22.5

33.8

45.1

56.4

0

100

200

300

400

Page 115: Appendix II-I

Figure 4-155 2D Magnetic Field Result of OSS2-1200 MW Case at Cellar Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:45:38]

0 15 30 45 60

Distance from Origin of Profile (m)

0

100

200

300

400

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 115 .

Pro fi le Num ber 116 .

Pro fi le Num ber 117 .

Pro fi le Num ber 118 .

Pro fi le Num ber 119 .

Pro fi le Num ber 120 .

Pro fi le Num ber 121 .

Pro fi le Num ber 122 .

Pro fi le Num ber 123 .

Pro fi le Num ber 124 .

Pro fi le Num ber 125 .

Pro fi le Num ber 126 .

Pro fi le Num ber 127 .

Pro fi le Num ber 128 .

Pro fi le Num ber 129 .

Pro fi le Num ber 130 .

Pro fi le Num ber 131 .

Pro fi le Num ber 132 .

Pro fi le Num ber 133 .

Pro fi le Num ber 134 .

Pro fi le Num ber 135 .

Pro fi le Num ber 136 .

Pro fi le Num ber 137 .

Pro fi le Num ber 138 .

Pro fi le Num ber 139 .

Pro fi le Num ber 140 .

Pro fi le Num ber 141 .

Pro fi le Num ber 142 .

Pro fi le Num ber 143 .

Pro fi le Num ber 144 .

Pro fi le Num ber 145 .

Pro fi le Num ber 146 .

Pro fi le Num ber 147 .

Pro fi le Num ber 148 .

Pro fi le Num ber 149 .

Pro fi le Num ber 150 .

Pro fi le Num ber 151 .

Pro fi le Num ber 152 .

Pro fi le Num ber 153 .

Pro fi le Num ber 154 .

Pro fi le Num ber 155 .

Pro fi le Num ber 156 .

Pro fi le Num ber 157 .

Pro fi le Num ber 158 .

Pro fi le Num ber 159 .

Pro fi le Num ber 160 .

Pro fi le Num ber 161 .

Pro fi le Num ber 162 .

Pro fi le Num ber 163 .

Pro fi le Num ber 164 .

Pro fi le Num ber 165 .

Pro fi le Num ber 166 .

Pro fi le Num ber 167 .

Pro fi le Num ber 168 .

Pro fi le Num ber 169 .

Pro fi le Num ber 170 .

Pro fi le Num ber 171 .

Pro fi le Num ber 172 .

Pro fi le Num ber 173 .

Pro fi le Num ber 174 .

Pro fi le Num ber 175 .

Pro fi le Num ber 176 .

Pro fi le Num ber 177 .

Pro fi le Num ber 178 .

Pro fi le Num ber 179 .

Pro fi le Num ber 180 .

Pro fi le Num ber 181 .

Pro fi le Num ber 182 .

Pro fi le Num ber 183 .

Pro fi le Num ber 184 .

Pro fi le Num ber 185 .

Pro fi le Num ber 186 .

Pro fi le Num ber 187 .

Pro fi le Num ber 188 .

Pro fi le Num ber 189 .

Pro fi le Num ber 190 .

Pro fi le Num ber 191 .

Pro fi le Num ber 192 .

Pro fi le Num ber 193 .

Pro fi le Num ber 194 .

Pro fi le Num ber 195 .

Pro fi le Num ber 196 .

Pro fi le Num ber 197 .

Pro fi le Num ber 198 .

Pro fi le Num ber 199 .

Pro fi le Num ber 200 .

Pro fi le Num ber 201 .

Pro fi le Num ber 202 .

Pro fi le Num ber 203 .

Pro fi le Num ber 204 .

Pro fi le Num ber 205 .

Pro fi le Num ber 206 .

Pro fi le Num ber 207 .

Pro fi le Num ber 208 .

Pro fi le Num ber 209 .

Pro fi le Num ber 210 .

Pro fi le Num ber 211 .

Pro fi le Num ber 212 .

Pro fi le Num ber 213 .

Pro fi le Num ber 214 .

Pro fi le Num ber 215 .

Pro fi le Num ber 216 .

Pro fi le Num ber 217 .

Pro fi le Num ber 218 .

Pro fi le Num ber 219 .

Pro fi le Num ber 220 .

Pro fi le Num ber 221 .

Pro fi le Num ber 222 .

Pro fi le Num ber 223 .

Pro fi le Num ber 224 .

Pro fi le Num ber 225 .

Pro fi le Num ber 226 .

Pro fi le Num ber 227 .

Pro fi le Num ber 228 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 116: Appendix II-I

Figure 4-156 3D Magnetic Field Result of OSS2-1200 MW Case at Cable Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:46:04]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 60

0

11.3

22.5

33.8

45.1

56.4

0

100

200

300

400

Page 117: Appendix II-I

Figure 4-157 2D Magnetic Field Result of OSS2-1200 MW Case at Cable Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:46:23]

0 15 30 45 60

Distance from Origin of Profile (m)

0

100

200

300

400

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 229 .

Pro fi le Num ber 230 .

Pro fi le Num ber 231 .

Pro fi le Num ber 232 .

Pro fi le Num ber 233 .

Pro fi le Num ber 234 .

Pro fi le Num ber 235 .

Pro fi le Num ber 236 .

Pro fi le Num ber 237 .

Pro fi le Num ber 238 .

Pro fi le Num ber 239 .

Pro fi le Num ber 240 .

Pro fi le Num ber 241 .

Pro fi le Num ber 242 .

Pro fi le Num ber 243 .

Pro fi le Num ber 244 .

Pro fi le Num ber 245 .

Pro fi le Num ber 246 .

Pro fi le Num ber 247 .

Pro fi le Num ber 248 .

Pro fi le Num ber 249 .

Pro fi le Num ber 250 .

Pro fi le Num ber 251 .

Pro fi le Num ber 252 .

Pro fi le Num ber 253 .

Pro fi le Num ber 254 .

Pro fi le Num ber 255 .

Pro fi le Num ber 256 .

Pro fi le Num ber 257 .

Pro fi le Num ber 258 .

Pro fi le Num ber 259 .

Pro fi le Num ber 260 .

Pro fi le Num ber 261 .

Pro fi le Num ber 262 .

Pro fi le Num ber 263 .

Pro fi le Num ber 264 .

Pro fi le Num ber 265 .

Pro fi le Num ber 266 .

Pro fi le Num ber 267 .

Pro fi le Num ber 268 .

Pro fi le Num ber 269 .

Pro fi le Num ber 270 .

Pro fi le Num ber 271 .

Pro fi le Num ber 272 .

Pro fi le Num ber 273 .

Pro fi le Num ber 274 .

Pro fi le Num ber 275 .

Pro fi le Num ber 276 .

Pro fi le Num ber 277 .

Pro fi le Num ber 278 .

Pro fi le Num ber 279 .

Pro fi le Num ber 280 .

Pro fi le Num ber 281 .

Pro fi le Num ber 282 .

Pro fi le Num ber 283 .

Pro fi le Num ber 284 .

Pro fi le Num ber 285 .

Pro fi le Num ber 286 .

Pro fi le Num ber 287 .

Pro fi le Num ber 288 .

Pro fi le Num ber 289 .

Pro fi le Num ber 290 .

Pro fi le Num ber 291 .

Pro fi le Num ber 292 .

Pro fi le Num ber 293 .

Pro fi le Num ber 294 .

Pro fi le Num ber 295 .

Pro fi le Num ber 296 .

Pro fi le Num ber 297 .

Pro fi le Num ber 298 .

Pro fi le Num ber 299 .

Pro fi le Num ber 300 .

Pro fi le Num ber 301 .

Pro fi le Num ber 302 .

Pro fi le Num ber 303 .

Pro fi le Num ber 304 .

Pro fi le Num ber 305 .

Pro fi le Num ber 306 .

Pro fi le Num ber 307 .

Pro fi le Num ber 308 .

Pro fi le Num ber 309 .

Pro fi le Num ber 310 .

Pro fi le Num ber 311 .

Pro fi le Num ber 312 .

Pro fi le Num ber 313 .

Pro fi le Num ber 314 .

Pro fi le Num ber 315 .

Pro fi le Num ber 316 .

Pro fi le Num ber 317 .

Pro fi le Num ber 318 .

Pro fi le Num ber 319 .

Pro fi le Num ber 320 .

Pro fi le Num ber 321 .

Pro fi le Num ber 322 .

Pro fi le Num ber 323 .

Pro fi le Num ber 324 .

Pro fi le Num ber 325 .

Pro fi le Num ber 326 .

Pro fi le Num ber 327 .

Pro fi le Num ber 328 .

Pro fi le Num ber 329 .

Pro fi le Num ber 330 .

Pro fi le Num ber 331 .

Pro fi le Num ber 332 .

Pro fi le Num ber 333 .

Pro fi le Num ber 334 .

Pro fi le Num ber 335 .

Pro fi le Num ber 336 .

Pro fi le Num ber 337 .

Pro fi le Num ber 338 .

Pro fi le Num ber 339 .

Pro fi le Num ber 340 .

Pro fi le Num ber 341 .

Pro fi le Num ber 342 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 118: Appendix II-I

Figure 4-158 3D Magnetic Field Result of OSS2-1200 MW Case at Main Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:47:15]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 600

11.3

22.5

33.8

45.1

56.4

0

500

1000

1500

Page 119: Appendix II-I

Figure 4-159 2D Magnetic Field Result of OSS2-1200 MW Case at Main Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:47:35]

0 15 30 45 60

Distance from Origin of Profile (m)

0

500

1000

1500

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 343 .

Pro fi le Num ber 344 .

Pro fi le Num ber 345 .

Pro fi le Num ber 346 .

Pro fi le Num ber 347 .

Pro fi le Num ber 348 .

Pro fi le Num ber 349 .

Pro fi le Num ber 350 .

Pro fi le Num ber 351 .

Pro fi le Num ber 352 .

Pro fi le Num ber 353 .

Pro fi le Num ber 354 .

Pro fi le Num ber 355 .

Pro fi le Num ber 356 .

Pro fi le Num ber 357 .

Pro fi le Num ber 358 .

Pro fi le Num ber 359 .

Pro fi le Num ber 360 .

Pro fi le Num ber 361 .

Pro fi le Num ber 362 .

Pro fi le Num ber 363 .

Pro fi le Num ber 364 .

Pro fi le Num ber 365 .

Pro fi le Num ber 366 .

Pro fi le Num ber 367 .

Pro fi le Num ber 368 .

Pro fi le Num ber 369 .

Pro fi le Num ber 370 .

Pro fi le Num ber 371 .

Pro fi le Num ber 372 .

Pro fi le Num ber 373 .

Pro fi le Num ber 374 .

Pro fi le Num ber 375 .

Pro fi le Num ber 376 .

Pro fi le Num ber 377 .

Pro fi le Num ber 378 .

Pro fi le Num ber 379 .

Pro fi le Num ber 380 .

Pro fi le Num ber 381 .

Pro fi le Num ber 382 .

Pro fi le Num ber 383 .

Pro fi le Num ber 384 .

Pro fi le Num ber 385 .

Pro fi le Num ber 386 .

Pro fi le Num ber 387 .

Pro fi le Num ber 388 .

Pro fi le Num ber 389 .

Pro fi le Num ber 390 .

Pro fi le Num ber 391 .

Pro fi le Num ber 392 .

Pro fi le Num ber 393 .

Pro fi le Num ber 394 .

Pro fi le Num ber 395 .

Pro fi le Num ber 396 .

Pro fi le Num ber 397 .

Pro fi le Num ber 398 .

Pro fi le Num ber 399 .

Pro fi le Num ber 400 .

Pro fi le Num ber 401 .

Pro fi le Num ber 402 .

Pro fi le Num ber 403 .

Pro fi le Num ber 404 .

Pro fi le Num ber 405 .

Pro fi le Num ber 406 .

Pro fi le Num ber 407 .

Pro fi le Num ber 408 .

Pro fi le Num ber 409 .

Pro fi le Num ber 410 .

Pro fi le Num ber 411 .

Pro fi le Num ber 412 .

Pro fi le Num ber 413 .

Pro fi le Num ber 414 .

Pro fi le Num ber 415 .

Pro fi le Num ber 416 .

Pro fi le Num ber 417 .

Pro fi le Num ber 418 .

Pro fi le Num ber 419 .

Pro fi le Num ber 420 .

Pro fi le Num ber 421 .

Pro fi le Num ber 422 .

Pro fi le Num ber 423 .

Pro fi le Num ber 424 .

Pro fi le Num ber 425 .

Pro fi le Num ber 426 .

Pro fi le Num ber 427 .

Pro fi le Num ber 428 .

Pro fi le Num ber 429 .

Pro fi le Num ber 430 .

Pro fi le Num ber 431 .

Pro fi le Num ber 432 .

Pro fi le Num ber 433 .

Pro fi le Num ber 434 .

Pro fi le Num ber 435 .

Pro fi le Num ber 436 .

Pro fi le Num ber 437 .

Pro fi le Num ber 438 .

Pro fi le Num ber 439 .

Pro fi le Num ber 440 .

Pro fi le Num ber 441 .

Pro fi le Num ber 442 .

Pro fi le Num ber 443 .

Pro fi le Num ber 444 .

Pro fi le Num ber 445 .

Pro fi le Num ber 446 .

Pro fi le Num ber 447 .

Pro fi le Num ber 448 .

Pro fi le Num ber 449 .

Pro fi le Num ber 450 .

Pro fi le Num ber 451 .

Pro fi le Num ber 452 .

Pro fi le Num ber 453 .

Pro fi le Num ber 454 .

Pro fi le Num ber 455 .

Pro fi le Num ber 456 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 120: Appendix II-I

Figure 4-160 3D Magnetic Field Result of OSS2-1200 MW Case at Utility Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:48:03]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 600

11.3

22.5

33.8

45.1

56.4

0

50

100

150

Page 121: Appendix II-I

Figure 4-161 2D Magnetic Field Result of OSS2-1200 MW Case at Utility Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:48:23]

0 15 30 45 60

Distance from Origin of Profile (m)

0

50

100

150

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 457 .

Pro fi le Num ber 458 .

Pro fi le Num ber 459 .

Pro fi le Num ber 460 .

Pro fi le Num ber 461 .

Pro fi le Num ber 462 .

Pro fi le Num ber 463 .

Pro fi le Num ber 464 .

Pro fi le Num ber 465 .

Pro fi le Num ber 466 .

Pro fi le Num ber 467 .

Pro fi le Num ber 468 .

Pro fi le Num ber 469 .

Pro fi le Num ber 470 .

Pro fi le Num ber 471 .

Pro fi le Num ber 472 .

Pro fi le Num ber 473 .

Pro fi le Num ber 474 .

Pro fi le Num ber 475 .

Pro fi le Num ber 476 .

Pro fi le Num ber 477 .

Pro fi le Num ber 478 .

Pro fi le Num ber 479 .

Pro fi le Num ber 480 .

Pro fi le Num ber 481 .

Pro fi le Num ber 482 .

Pro fi le Num ber 483 .

Pro fi le Num ber 484 .

Pro fi le Num ber 485 .

Pro fi le Num ber 486 .

Pro fi le Num ber 487 .

Pro fi le Num ber 488 .

Pro fi le Num ber 489 .

Pro fi le Num ber 490 .

Pro fi le Num ber 491 .

Pro fi le Num ber 492 .

Pro fi le Num ber 493 .

Pro fi le Num ber 494 .

Pro fi le Num ber 495 .

Pro fi le Num ber 496 .

Pro fi le Num ber 497 .

Pro fi le Num ber 498 .

Pro fi le Num ber 499 .

Pro fi le Num ber 500 .

Pro fi le Num ber 501 .

Pro fi le Num ber 502 .

Pro fi le Num ber 503 .

Pro fi le Num ber 504 .

Pro fi le Num ber 505 .

Pro fi le Num ber 506 .

Pro fi le Num ber 507 .

Pro fi le Num ber 508 .

Pro fi le Num ber 509 .

Pro fi le Num ber 510 .

Pro fi le Num ber 511 .

Pro fi le Num ber 512 .

Pro fi le Num ber 513 .

Pro fi le Num ber 514 .

Pro fi le Num ber 515 .

Pro fi le Num ber 516 .

Pro fi le Num ber 517 .

Pro fi le Num ber 518 .

Pro fi le Num ber 519 .

Pro fi le Num ber 520 .

Pro fi le Num ber 521 .

Pro fi le Num ber 522 .

Pro fi le Num ber 523 .

Pro fi le Num ber 524 .

Pro fi le Num ber 525 .

Pro fi le Num ber 526 .

Pro fi le Num ber 527 .

Pro fi le Num ber 528 .

Pro fi le Num ber 529 .

Pro fi le Num ber 530 .

Pro fi le Num ber 531 .

Pro fi le Num ber 532 .

Pro fi le Num ber 533 .

Pro fi le Num ber 534 .

Pro fi le Num ber 535 .

Pro fi le Num ber 536 .

Pro fi le Num ber 537 .

Pro fi le Num ber 538 .

Pro fi le Num ber 539 .

Pro fi le Num ber 540 .

Pro fi le Num ber 541 .

Pro fi le Num ber 542 .

Pro fi le Num ber 543 .

Pro fi le Num ber 544 .

Pro fi le Num ber 545 .

Pro fi le Num ber 546 .

Pro fi le Num ber 547 .

Pro fi le Num ber 548 .

Pro fi le Num ber 549 .

Pro fi le Num ber 550 .

Pro fi le Num ber 551 .

Pro fi le Num ber 552 .

Pro fi le Num ber 553 .

Pro fi le Num ber 554 .

Pro fi le Num ber 555 .

Pro fi le Num ber 556 .

Pro fi le Num ber 557 .

Pro fi le Num ber 558 .

Pro fi le Num ber 559 .

Pro fi le Num ber 560 .

Pro fi le Num ber 561 .

Pro fi le Num ber 562 .

Pro fi le Num ber 563 .

Pro fi le Num ber 564 .

Pro fi le Num ber 565 .

Pro fi le Num ber 566 .

Pro fi le Num ber 567 .

Pro fi le Num ber 568 .

Pro fi le Num ber 569 .

Pro fi le Num ber 570 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 122: Appendix II-I

Figure 4-162 3D Magnetic Field Result of OSS2-1200 MW Case at Roof Deck Level

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:48:51]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 15 30 45 60

0

11.3

22.5

33.8

45.1

56.4

0.0

0.5

1.0

1.5

2.0

Page 123: Appendix II-I

Figure 4-163 2D Magnetic Field Result of OSS2-1200 MW Case at Roof Deck Level

4.2.1.2 HVDC Offshore Substation

As shown in Figures 4-164 and 4-165, the OSS receives the generated power by WTGs through

66 kV AC inter-array cables. Those 66 kV inter-array cables are aggregated by a 66 kV Gas-

insulated Switchgear. Then, the voltage is converted by transformers to 380 kV. At this voltage,

the electricity is carried from a 400 kV Gas-insulated Switchgear and converted into DC through

AC/DC converters at either 320 kV or 525 kV. Then two HVDC offshore export cables carry the

electricity to an onshore substation. The simulated OSS included incoming 66 kV inter-array

cables, 66 kV Gas-insulated Switchgear, 66 kV/380 kV transformers, 400 kV Gas-insulated

Switchgear, and outgoing HVDC offshore export cables. Magnetic fields are calculated at sea

level and the six decks for the HVDC OSS.

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 19:49:12]

0 15 30 45 60

Distance from Origin of Profile (m)

0.0

0.5

1.0

1.5

2.0

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pro fi le Num ber 571 .

Pro fi le Num ber 572 .

Pro fi le Num ber 573 .

Pro fi le Num ber 574 .

Pro fi le Num ber 575 .

Pro fi le Num ber 576 .

Pro fi le Num ber 577 .

Pro fi le Num ber 578 .

Pro fi le Num ber 579 .

Pro fi le Num ber 580 .

Pro fi le Num ber 581 .

Pro fi le Num ber 582 .

Pro fi le Num ber 583 .

Pro fi le Num ber 584 .

Pro fi le Num ber 585 .

Pro fi le Num ber 586 .

Pro fi le Num ber 587 .

Pro fi le Num ber 588 .

Pro fi le Num ber 589 .

Pro fi le Num ber 590 .

Pro fi le Num ber 591 .

Pro fi le Num ber 592 .

Pro fi le Num ber 593 .

Pro fi le Num ber 594 .

Pro fi le Num ber 595 .

Pro fi le Num ber 596 .

Pro fi le Num ber 597 .

Pro fi le Num ber 598 .

Pro fi le Num ber 599 .

Pro fi le Num ber 600 .

Pro fi le Num ber 601 .

Pro fi le Num ber 602 .

Pro fi le Num ber 603 .

Pro fi le Num ber 604 .

Pro fi le Num ber 605 .

Pro fi le Num ber 606 .

Pro fi le Num ber 607 .

Pro fi le Num ber 608 .

Pro fi le Num ber 609 .

Pro fi le Num ber 610 .

Pro fi le Num ber 611 .

Pro fi le Num ber 612 .

Pro fi le Num ber 613 .

Pro fi le Num ber 614 .

Pro fi le Num ber 615 .

Pro fi le Num ber 616 .

Pro fi le Num ber 617 .

Pro fi le Num ber 618 .

Pro fi le Num ber 619 .

Pro fi le Num ber 620 .

Pro fi le Num ber 621 .

Pro fi le Num ber 622 .

Pro fi le Num ber 623 .

Pro fi le Num ber 624 .

Pro fi le Num ber 625 .

Pro fi le Num ber 626 .

Pro fi le Num ber 627 .

Pro fi le Num ber 628 .

Pro fi le Num ber 629 .

Pro fi le Num ber 630 .

Pro fi le Num ber 631 .

Pro fi le Num ber 632 .

Pro fi le Num ber 633 .

Pro fi le Num ber 634 .

Pro fi le Num ber 635 .

Pro fi le Num ber 636 .

Pro fi le Num ber 637 .

Pro fi le Num ber 638 .

Pro fi le Num ber 639 .

Pro fi le Num ber 640 .

Pro fi le Num ber 641 .

Pro fi le Num ber 642 .

Pro fi le Num ber 643 .

Pro fi le Num ber 644 .

Pro fi le Num ber 645 .

Pro fi le Num ber 646 .

Pro fi le Num ber 647 .

Pro fi le Num ber 648 .

Pro fi le Num ber 649 .

Pro fi le Num ber 650 .

Pro fi le Num ber 651 .

Pro fi le Num ber 652 .

Pro fi le Num ber 653 .

Pro fi le Num ber 654 .

Pro fi le Num ber 655 .

Pro fi le Num ber 656 .

Pro fi le Num ber 657 .

Pro fi le Num ber 658 .

Pro fi le Num ber 659 .

Pro fi le Num ber 660 .

Pro fi le Num ber 661 .

Pro fi le Num ber 662 .

Pro fi le Num ber 663 .

Pro fi le Num ber 664 .

Pro fi le Num ber 665 .

Pro fi le Num ber 666 .

Pro fi le Num ber 667 .

Pro fi le Num ber 668 .

Pro fi le Num ber 669 .

Pro fi le Num ber 670 .

Pro fi le Num ber 671 .

Pro fi le Num ber 672 .

Pro fi le Num ber 673 .

Pro fi le Num ber 674 .

Pro fi le Num ber 675 .

Pro fi le Num ber 676 .

Pro fi le Num ber 677 .

Pro fi le Num ber 678 .

Pro fi le Num ber 679 .

Pro fi le Num ber 680 .

Pro fi le Num ber 681 .

Pro fi le Num ber 682 .

Pro fi le Num ber 683 .

Pro fi le Num ber 684 .

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 124: Appendix II-I

Figure 4-163 2D Magnetic Field Result of OSS2-1200 MW Case at Roof Deck Level

4.2.1.2 HVDC Offshore Substation

As shown in Figures 4-164 and 4-165, the OSS receives the generated power by WTGs through 66 kV AC inter-array cables. Those 66 kV inter-array cables are aggregated by a 66 kV Gas-insulated Switchgear. Then, the voltage is converted by transformers to 380 kV. At this voltage, the electricity is carried from a 400 kV Gas-insulated Switchgear and converted into DC through AC/DC converters at either 320 kV or 525 kV. Then two HVDC offshore export cables carry the electricity to an onshore substation. The simulated OSS included incoming 66 kV inter-array cables, 66 kV Gas-insulated Switchgear, 66 kV/380 kV transformers, 400 kV Gas-insulated Switchgear, and outgoing HVDC offshore export cables. Magnetic fields are calculated at sea level and the six decks for the HVDC OSS.

Page 125: Appendix II-I

One case has been simulated for the HVDC OSS: • Case 3 (OSS 3 - 1200 MW HVDC): the plant generation rating for this case is 1200 MW.

The OSS includes eighteen 66 kV inter-array cables, 66 kV Gas-insulated Switchgear, two 66 kV/380 kV transformers, 400 kV Gas-insulated Switchgear, and two 320 kV or 525 kV HVDC export cables.

The results are presented in Table 4-2. The graphical results are presented in Section 4.2.1.2.1.

Figure 4-164 Sample Configuration for HVDC Offshore Substations with AC/DC Cables

Page 126: Appendix II-I

Figure 4-165 Single Line Diagram for HVDC Offshore Substation

Page 127: Appendix II-I

Figure 4-166 OSS3-1200 MW HVDC OSS CDEGS Model

Page 128: Appendix II-I

Figure 4-167 OSS3-1200 MW HVDC OSS CDEGS Model with Deck Profiles

Sea Level

Deck 1 Level

Deck 2 Level

Deck 3 Level

Deck 4 Level

Deck 5 Level

Deck 6 Level

Page 129: Appendix II-I

Table 4-2 Results Summary for Case 3(OSS3-1200 MW HVDC) Location of Calculation

Peak Magnetic Field (A/m) for Case 3(OSS3-1200 MW HVDC)

Distance from energized conductor at which magnetic field drops below limits 7

Sea Level 2770.45 2 feet (0.6 m) from IACs 8.2 feet (2.5m) from HVDC ECs

Deck 1 Level 1097.38 2 feet (0.6 m) from IACs

Deck 2 Level 1660.33 2 feet (0.6 m) from 66 kV Gas-insulated Switchgear bus

Deck 3 Level 1413.32 2 feet (0.6 m) from 66 kV Gas-insulated Switchgear bus

Deck 4 Level 1421.91 2 feet (0.6 m) from 66 kV Gas-insulated Switchgear bus

Deck 5 Level 1421.78 2 feet (0.6 m) from 66 kV Gas-insulated Switchgear bus

Deck 6 Level 764.14 -

It is important to mention that the peak magnetic field violates (160 A/m and 800 A/m) maximum allowable public and occupational limits at sea level and all decks respectively (refer to Table 1-2). However, those peaks occur right at the cables or Gas-insulated Switchgear buses only and the magnetic field decays quickly while moving away from the energized conductor. SNC Lavalin analyzed the magnetic field profiles to determine the distance from the energized conductor at which the magnetic field value fall below the respective limits. The results of this analysis are indicated in Table 4-2.

The magnetic field in other areas is within maximum allowable limit (refer to Figures 4-168, 4-170, 4-172, 4-174, 4-176, and 4-178). The magnetic field at Deck 6 is within its 800 A/m maximum occupational allowable limit.

Comparing calculated magnetic fields with the 160 A/m maximum allowable limit for general public is not of concern as it is anticipated that the OSS decks will be accessed only by trained workers. The magnetic fields at the sea level can be compared with 160 A/m limit as the OSS can be approached at sea level by general public. It can be seen that at the locations other than right at the cables at sea level, the magnetic fields are lower than 160 A/m.

7 Refer to Appendix A

Page 130: Appendix II-I

4.2.1.2.1 Results for Case 3 (OSS3-1200 MW HVDC)

Figure 4-168 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at sea level

Page 131: Appendix II-I

Figure 4-169 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at sea level

Figure 4-170 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 1 Level

Page 132: Appendix II-I

Figure 4-171 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 1 Level

Figure 4-172 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 2 Level

Page 133: Appendix II-I

Figure 4-173 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 2 Level

Figure 4-174 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 3 Level

Page 134: Appendix II-I

Figure 4-175 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 3 Level

Figure 4-176 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 4 Level

Page 135: Appendix II-I

Figure 4-177 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 4 Level

Figure 4-178 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 5 Level

Page 136: Appendix II-I

Figure 4-179 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 5 Level

Figure 4-180 3D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 6 Level

Page 137: Appendix II-I

Figure 4-181 2D Magnetic Field Result of OSS3-1200 MW HVDC Case at Deck 6 Level

4.2.2 Onshore Substation (Case 4: Onshore Substation 230/230 kV or 275/230 kV)

This section presents the results for Cardiff 1200 MW 230/230 kV and Larrabee 1200 MW 275/230 kV onshore substations (refer to Figure 4-182). At the onshore substation, voltage will be converted to 230 kV to be carried to the local transmission electrical grid POI Substation.

Figures 4-184 and 4-185 show the magnetic field within onshore substation. The peak magnetic field is 72.76 A/m. Thus, this peak magnetic field is within its 800 A/m maximum occupational allowable limit and 160 A/m maximum allowable limit for general public.

Page 138: Appendix II-I

Figure 4-182 Onshore Substation Layout

Page 139: Appendix II-I

Figure 4-183 Onshore Substation CDEGS Model

Page 140: Appendix II-I

Figure 4-184 3D Magnetic Field Result of Onshore Substation

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/13, Time: 10:20:05]

Distance (m)

Distance from Origin of Profile (m)

Tota

l M

agnetic F

ield

Magn. (A

mps/M

)

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 50 100 150 200 2500

35.7

71.4

107

143

179

0

20

40

60

80

Page 141: Appendix II-I

Figure 4-185 2D Magnetic Field Result of Onshore Substation

4.3 Electric Field Results

The electric field from the offshore export cables, inter-array cables and Gas-insulated switchgear

bus ducts is blocked by the grounded cable armoring and duct enclosures as well as the earth and

will not be a direct source of any electric field outside the cables or bus ducts. Therefore, this

section represents the electric field results only for the onshore substation Case and Case number

47 (in

Table 3-5) which pertains to the overhead line section between the onshore substation and POI

substation.

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/13, Time: 10:20:34]

0 50 100 150 200 250

Distance from Origin of Profile (m)

0

20

40

60

80

To

tal M

ag

ne

tic F

ield

Ma

gn

. (A

mp

s/M

)

LEGEND

Pr of ile Num ber 1.

Pr of ile Num ber 2.

Pr of ile Num ber 3.

Pr of ile Num ber 4.

Pr of ile Num ber 5.

Pr of ile Num ber 6.

Pr of ile Num ber 7.

Pr of ile Num ber 8.

Pr of ile Num ber 9.

Pr of ile Num ber 10.

Pr of ile Num ber 11.

Pr of ile Num ber 12.

Pr of ile Num ber 13.

Pr of ile Num ber 14.

Pr of ile Num ber 15.

Pr of ile Num ber 16.

Pr of ile Num ber 17.

Pr of ile Num ber 18.

Pr of ile Num ber 19.

Pr of ile Num ber 20.

Pr of ile Num ber 21.

Pr of ile Num ber 22.

Pr of ile Num ber 23.

Pr of ile Num ber 24.

Pr of ile Num ber 25.

Pr of ile Num ber 26.

Pr of ile Num ber 27.

Pr of ile Num ber 28.

Pr of ile Num ber 29.

Pr of ile Num ber 30.

Pr of ile Num ber 31.

Pr of ile Num ber 32.

Pr of ile Num ber 33.

Pr of ile Num ber 34.

Pr of ile Num ber 35.

Pr of ile Num ber 36.

Pr of ile Num ber 37.

Pr of ile Num ber 38.

Pr of ile Num ber 39.

Pr of ile Num ber 40.

Pr of ile Num ber 41.

Pr of ile Num ber 42.

Pr of ile Num ber 43.

Pr of ile Num ber 44.

Pr of ile Num ber 45.

Pr of ile Num ber 46.

Pr of ile Num ber 47.

Pr of ile Num ber 48.

Pr of ile Num ber 49.

Pr of ile Num ber 50.

Pr of ile Num ber 51.

Pr of ile Num ber 52.

Pr of ile Num ber 53.

Pr of ile Num ber 54.

Pr of ile Num ber 55.

Pr of ile Num ber 56.

Pr of ile Num ber 57.

Pr of ile Num ber 58.

Pr of ile Num ber 59.

Pr of ile Num ber 60.

Pr of ile Num ber 61.

Pr of ile Num ber 62.

Pr of ile Num ber 63.

Pr of ile Num ber 64.

Pr of ile Num ber 65.

Pr of ile Num ber 66.

Pr of ile Num ber 67.

Pr of ile Num ber 68.

Pr of ile Num ber 69.

Pr of ile Num ber 70.

Pr of ile Num ber 71.

Pr of ile Num ber 72.

Pr of ile Num ber 73.

Pr of ile Num ber 74.

Pr of ile Num ber 75.

Pr of ile Num ber 76.

Pr of ile Num ber 77.

Pr of ile Num ber 78.

Pr of ile Num ber 79.

Pr of ile Num ber 80.

Pr of ile Num ber 81.

Pr of ile Num ber 82.

Pr of ile Num ber 83.

Pr of ile Num ber 84.

Pr of ile Num ber 85.

Pr of ile Num ber 86.

Pr of ile Num ber 87.

Pr of ile Num ber 88.

Pr of ile Num ber 89.

Pr of ile Num ber 90.

Pr of ile Num ber 91.

Pr of ile Num ber 92.

Pr of ile Num ber 93.

Pr of ile Num ber 94.

Pr of ile Num ber 95.

Pr of ile Num ber 96.

Pr of ile Num ber 97.

Pr of ile Num ber 98.

Pr of ile Num ber 99.

Pr of ile Num ber 100.

Pr of ile Num ber 101.

Pr of ile Num ber 102.

Pr of ile Num ber 103.

Pr of ile Num ber 104.

Pr of ile Num ber 105.

Pr of ile Num ber 106.

Pr of ile Num ber 107.

Pr of ile Num ber 108.

Pr of ile Num ber 109.

Pr of ile Num ber 110.

Pr of ile Num ber 111.

Pr of ile Num ber 112.

Pr of ile Num ber 113.

Pr of ile Num ber 114.

Pr of ile Num ber 115.

Pr of ile Num ber 116.

Pr of ile Num ber 117.

Pr of ile Num ber 118.

Pr of ile Num ber 119.

Pr of ile Num ber 120.

Pr of ile Num ber 121.

Pr of ile Num ber 122.

Pr of ile Num ber 123.

Pr of ile Num ber 124.

Pr of ile Num ber 125.

Pr of ile Num ber 126.

Pr of ile Num ber 127.

Pr of ile Num ber 128.

Pr of ile Num ber 129.

Pr of ile Num ber 130.

Pr of ile Num ber 131.

Pr of ile Num ber 132.

Pr of ile Num ber 133.

Pr of ile Num ber 134.

Pr of ile Num ber 135.

Pr of ile Num ber 136.

Pr of ile Num ber 137.

Pr of ile Num ber 138.

Pr of ile Num ber 139.

Pr of ile Num ber 140.

Pr of ile Num ber 141.

Pr of ile Num ber 142.

Pr of ile Num ber 143.

Pr of ile Num ber 144.

Pr of ile Num ber 145.

Pr of ile Num ber 146.

Pr of ile Num ber 147.

Pr of ile Num ber 148.

Pr of ile Num ber 149.

Pr of ile Num ber 150.

Pr of ile Num ber 151.

Pr of ile Num ber 152.

Pr of ile Num ber 153.

Pr of ile Num ber 154.

Pr of ile Num ber 155.

Pr of ile Num ber 156.

Pr of ile Num ber 157.

Pr of ile Num ber 158.

Pr of ile Num ber 159.

Pr of ile Num ber 160.

Pr of ile Num ber 161.

Pr of ile Num ber 162.

Pr of ile Num ber 163.

Pr of ile Num ber 164.

Pr of ile Num ber 165.

Pr of ile Num ber 166.

Pr of ile Num ber 167.

Pr of ile Num ber 168.

Pr of ile Num ber 169.

Pr of ile Num ber 170.

Pr of ile Num ber 171.

Pr of ile Num ber 172.

Pr of ile Num ber 173.

Pr of ile Num ber 174.

Pr of ile Num ber 175.

Pr of ile Num ber 176.

Pr of ile Num ber 177.

Pr of ile Num ber 178.

Pr of ile Num ber 179.

Pr of ile Num ber 180.

Magnetic Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 142: Appendix II-I

4.3.1 Onshore Substation (Case 4: OnSS 230/230 kV or 275/230 kV)

Figures 4-186 to 4-189 show the electric field within 230/230 kV or 275/230 kV onshore

substations. It was assumed that the OnSS is operating at a voltage 10% higher than the nominal

operating voltage. The peak electric field is 10.58 kV/m and 13.49 kV/m for 230/230 kV and

275/230 kV onshore substations. The peak electric field inside the station fence violates the 8.333

kV/m maximum allowable occupational limit (refer to Table 1-2). Outside the station fence the

electric fields are below the 4.167 kV/m general public limit (refer to Table 1-2). Since electric field

is inversely proportional to the distance of measurement location from the energized object,

increasing the bus heights of the OnSS can be used to mitigate higher electric fields.

Figure 4-186 3D Electric Field Result of 230/230 kV Onshore Substation

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/13, Time: 10:48:00]

Distance (m)

Distance from Origin of Profile (m)

Ele

ctr

ic F

ield

Tota

l M

agn. (V

/M)

(xE+03)Electric Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 50 100 150 200 2500

35.7

71.4

107

143

179

0

5

10

15

Page 143: Appendix II-I

Figure 4-187 2D Electric Field Result of 230/230 kV Onshore Substation

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/10/13, Time: 10:48:21]

0 50 100 150 200 250

Distance from Origin of Profile (m)

0

5

10

15

Ele

ctr

ic F

ield

To

tal M

ag

n. (V

/M)

(xE+03) LEGEND

Pr of ile Num ber 1.

Pr of ile Num ber 2.

Pr of ile Num ber 3.

Pr of ile Num ber 4.

Pr of ile Num ber 5.

Pr of ile Num ber 6.

Pr of ile Num ber 7.

Pr of ile Num ber 8.

Pr of ile Num ber 9.

Pr of ile Num ber 10.

Pr of ile Num ber 11.

Pr of ile Num ber 12.

Pr of ile Num ber 13.

Pr of ile Num ber 14.

Pr of ile Num ber 15.

Pr of ile Num ber 16.

Pr of ile Num ber 17.

Pr of ile Num ber 18.

Pr of ile Num ber 19.

Pr of ile Num ber 20.

Pr of ile Num ber 21.

Pr of ile Num ber 22.

Pr of ile Num ber 23.

Pr of ile Num ber 24.

Pr of ile Num ber 25.

Pr of ile Num ber 26.

Pr of ile Num ber 27.

Pr of ile Num ber 28.

Pr of ile Num ber 29.

Pr of ile Num ber 30.

Pr of ile Num ber 31.

Pr of ile Num ber 32.

Pr of ile Num ber 33.

Pr of ile Num ber 34.

Pr of ile Num ber 35.

Pr of ile Num ber 36.

Pr of ile Num ber 37.

Pr of ile Num ber 38.

Pr of ile Num ber 39.

Pr of ile Num ber 40.

Pr of ile Num ber 41.

Pr of ile Num ber 42.

Pr of ile Num ber 43.

Pr of ile Num ber 44.

Pr of ile Num ber 45.

Pr of ile Num ber 46.

Pr of ile Num ber 47.

Pr of ile Num ber 48.

Pr of ile Num ber 49.

Pr of ile Num ber 50.

Pr of ile Num ber 51.

Pr of ile Num ber 52.

Pr of ile Num ber 53.

Pr of ile Num ber 54.

Pr of ile Num ber 55.

Pr of ile Num ber 56.

Pr of ile Num ber 57.

Pr of ile Num ber 58.

Pr of ile Num ber 59.

Pr of ile Num ber 60.

Pr of ile Num ber 61.

Pr of ile Num ber 62.

Pr of ile Num ber 63.

Pr of ile Num ber 64.

Pr of ile Num ber 65.

Pr of ile Num ber 66.

Pr of ile Num ber 67.

Pr of ile Num ber 68.

Pr of ile Num ber 69.

Pr of ile Num ber 70.

Pr of ile Num ber 71.

Pr of ile Num ber 72.

Pr of ile Num ber 73.

Pr of ile Num ber 74.

Pr of ile Num ber 75.

Pr of ile Num ber 76.

Pr of ile Num ber 77.

Pr of ile Num ber 78.

Pr of ile Num ber 79.

Pr of ile Num ber 80.

Pr of ile Num ber 81.

Pr of ile Num ber 82.

Pr of ile Num ber 83.

Pr of ile Num ber 84.

Pr of ile Num ber 85.

Pr of ile Num ber 86.

Pr of ile Num ber 87.

Pr of ile Num ber 88.

Pr of ile Num ber 89.

Pr of ile Num ber 90.

Pr of ile Num ber 91.

Pr of ile Num ber 92.

Pr of ile Num ber 93.

Pr of ile Num ber 94.

Pr of ile Num ber 95.

Pr of ile Num ber 96.

Pr of ile Num ber 97.

Pr of ile Num ber 98.

Pr of ile Num ber 99.

Pr of ile Num ber 100.

Pr of ile Num ber 101.

Pr of ile Num ber 102.

Pr of ile Num ber 103.

Pr of ile Num ber 104.

Pr of ile Num ber 105.

Pr of ile Num ber 106.

Pr of ile Num ber 107.

Pr of ile Num ber 108.

Pr of ile Num ber 109.

Pr of ile Num ber 110.

Pr of ile Num ber 111.

Pr of ile Num ber 112.

Pr of ile Num ber 113.

Pr of ile Num ber 114.

Pr of ile Num ber 115.

Pr of ile Num ber 116.

Pr of ile Num ber 117.

Pr of ile Num ber 118.

Pr of ile Num ber 119.

Pr of ile Num ber 120.

Pr of ile Num ber 121.

Pr of ile Num ber 122.

Pr of ile Num ber 123.

Pr of ile Num ber 124.

Pr of ile Num ber 125.

Pr of ile Num ber 126.

Pr of ile Num ber 127.

Pr of ile Num ber 128.

Pr of ile Num ber 129.

Pr of ile Num ber 130.

Pr of ile Num ber 131.

Pr of ile Num ber 132.

Pr of ile Num ber 133.

Pr of ile Num ber 134.

Pr of ile Num ber 135.

Pr of ile Num ber 136.

Pr of ile Num ber 137.

Pr of ile Num ber 138.

Pr of ile Num ber 139.

Pr of ile Num ber 140.

Pr of ile Num ber 141.

Pr of ile Num ber 142.

Pr of ile Num ber 143.

Pr of ile Num ber 144.

Pr of ile Num ber 145.

Pr of ile Num ber 146.

Pr of ile Num ber 147.

Pr of ile Num ber 148.

Pr of ile Num ber 149.

Pr of ile Num ber 150.

Pr of ile Num ber 151.

Pr of ile Num ber 152.

Pr of ile Num ber 153.

Pr of ile Num ber 154.

Pr of ile Num ber 155.

Pr of ile Num ber 156.

Pr of ile Num ber 157.

Pr of ile Num ber 158.

Pr of ile Num ber 159.

Pr of ile Num ber 160.

Pr of ile Num ber 161.

Pr of ile Num ber 162.

Pr of ile Num ber 163.

Pr of ile Num ber 164.

Pr of ile Num ber 165.

Pr of ile Num ber 166.

Pr of ile Num ber 167.

Pr of ile Num ber 168.

Pr of ile Num ber 169.

Pr of ile Num ber 170.

Pr of ile Num ber 171.

Pr of ile Num ber 172.

Pr of ile Num ber 173.

Pr of ile Num ber 174.

Pr of ile Num ber 175.

Pr of ile Num ber 176.

Pr of ile Num ber 177.

Pr of ile Num ber 178.

Pr of ile Num ber 179.

Pr of ile Num ber 180.

Electric Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 144: Appendix II-I

Figure 4-188 3D Electric Field Result of 275/230 kV Onshore Substation

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 20:45:06]

Distance (m)

Distance from Origin of Profile (m)

Ele

ctr

ic F

ield

Tota

l M

agn. (V

/M)

(xE+03)Electric Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

0 50 100 150 200 2500

35.7

71.4

107

143

179

0

5

10

15

Page 145: Appendix II-I

Figure 4-189 2D Electric Field Result of 275/230 kV Onshore Substation

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/29, Time: 20:47:42]

0 50 100 150 200 250

Distance from Origin of Profile (m)

0

5

10

15

Ele

ctr

ic F

ield

To

tal M

ag

n. (V

/M)

(xE+03) LEGEND

Pr of ile Num ber 1.

Pr of ile Num ber 2.

Pr of ile Num ber 3.

Pr of ile Num ber 4.

Pr of ile Num ber 5.

Pr of ile Num ber 6.

Pr of ile Num ber 7.

Pr of ile Num ber 8.

Pr of ile Num ber 9.

Pr of ile Num ber 10.

Pr of ile Num ber 11.

Pr of ile Num ber 12.

Pr of ile Num ber 13.

Pr of ile Num ber 14.

Pr of ile Num ber 15.

Pr of ile Num ber 16.

Pr of ile Num ber 17.

Pr of ile Num ber 18.

Pr of ile Num ber 19.

Pr of ile Num ber 20.

Pr of ile Num ber 21.

Pr of ile Num ber 22.

Pr of ile Num ber 23.

Pr of ile Num ber 24.

Pr of ile Num ber 25.

Pr of ile Num ber 26.

Pr of ile Num ber 27.

Pr of ile Num ber 28.

Pr of ile Num ber 29.

Pr of ile Num ber 30.

Pr of ile Num ber 31.

Pr of ile Num ber 32.

Pr of ile Num ber 33.

Pr of ile Num ber 34.

Pr of ile Num ber 35.

Pr of ile Num ber 36.

Pr of ile Num ber 37.

Pr of ile Num ber 38.

Pr of ile Num ber 39.

Pr of ile Num ber 40.

Pr of ile Num ber 41.

Pr of ile Num ber 42.

Pr of ile Num ber 43.

Pr of ile Num ber 44.

Pr of ile Num ber 45.

Pr of ile Num ber 46.

Pr of ile Num ber 47.

Pr of ile Num ber 48.

Pr of ile Num ber 49.

Pr of ile Num ber 50.

Pr of ile Num ber 51.

Pr of ile Num ber 52.

Pr of ile Num ber 53.

Pr of ile Num ber 54.

Pr of ile Num ber 55.

Pr of ile Num ber 56.

Pr of ile Num ber 57.

Pr of ile Num ber 58.

Pr of ile Num ber 59.

Pr of ile Num ber 60.

Pr of ile Num ber 61.

Pr of ile Num ber 62.

Pr of ile Num ber 63.

Pr of ile Num ber 64.

Pr of ile Num ber 65.

Pr of ile Num ber 66.

Pr of ile Num ber 67.

Pr of ile Num ber 68.

Pr of ile Num ber 69.

Pr of ile Num ber 70.

Pr of ile Num ber 71.

Pr of ile Num ber 72.

Pr of ile Num ber 73.

Pr of ile Num ber 74.

Pr of ile Num ber 75.

Pr of ile Num ber 76.

Pr of ile Num ber 77.

Pr of ile Num ber 78.

Pr of ile Num ber 79.

Pr of ile Num ber 80.

Pr of ile Num ber 81.

Pr of ile Num ber 82.

Pr of ile Num ber 83.

Pr of ile Num ber 84.

Pr of ile Num ber 85.

Pr of ile Num ber 86.

Pr of ile Num ber 87.

Pr of ile Num ber 88.

Pr of ile Num ber 89.

Pr of ile Num ber 90.

Pr of ile Num ber 91.

Pr of ile Num ber 92.

Pr of ile Num ber 93.

Pr of ile Num ber 94.

Pr of ile Num ber 95.

Pr of ile Num ber 96.

Pr of ile Num ber 97.

Pr of ile Num ber 98.

Pr of ile Num ber 99.

Pr of ile Num ber 100.

Pr of ile Num ber 101.

Pr of ile Num ber 102.

Pr of ile Num ber 103.

Pr of ile Num ber 104.

Pr of ile Num ber 105.

Pr of ile Num ber 106.

Pr of ile Num ber 107.

Pr of ile Num ber 108.

Pr of ile Num ber 109.

Pr of ile Num ber 110.

Pr of ile Num ber 111.

Pr of ile Num ber 112.

Pr of ile Num ber 113.

Pr of ile Num ber 114.

Pr of ile Num ber 115.

Pr of ile Num ber 116.

Pr of ile Num ber 117.

Pr of ile Num ber 118.

Pr of ile Num ber 119.

Pr of ile Num ber 120.

Pr of ile Num ber 121.

Pr of ile Num ber 122.

Pr of ile Num ber 123.

Pr of ile Num ber 124.

Pr of ile Num ber 125.

Pr of ile Num ber 126.

Pr of ile Num ber 127.

Pr of ile Num ber 128.

Pr of ile Num ber 129.

Pr of ile Num ber 130.

Pr of ile Num ber 131.

Pr of ile Num ber 132.

Pr of ile Num ber 133.

Pr of ile Num ber 134.

Pr of ile Num ber 135.

Pr of ile Num ber 136.

Pr of ile Num ber 137.

Pr of ile Num ber 138.

Pr of ile Num ber 139.

Pr of ile Num ber 140.

Pr of ile Num ber 141.

Pr of ile Num ber 142.

Pr of ile Num ber 143.

Pr of ile Num ber 144.

Pr of ile Num ber 145.

Pr of ile Num ber 146.

Pr of ile Num ber 147.

Pr of ile Num ber 148.

Pr of ile Num ber 149.

Pr of ile Num ber 150.

Pr of ile Num ber 151.

Pr of ile Num ber 152.

Pr of ile Num ber 153.

Pr of ile Num ber 154.

Pr of ile Num ber 155.

Pr of ile Num ber 156.

Pr of ile Num ber 157.

Pr of ile Num ber 158.

Pr of ile Num ber 159.

Pr of ile Num ber 160.

Pr of ile Num ber 161.

Pr of ile Num ber 162.

Pr of ile Num ber 163.

Pr of ile Num ber 164.

Pr of ile Num ber 165.

Pr of ile Num ber 166.

Pr of ile Num ber 167.

Pr of ile Num ber 168.

Pr of ile Num ber 169.

Pr of ile Num ber 170.

Pr of ile Num ber 171.

Pr of ile Num ber 172.

Pr of ile Num ber 173.

Pr of ile Num ber 174.

Pr of ile Num ber 175.

Pr of ile Num ber 176.

Pr of ile Num ber 177.

Pr of ile Num ber 178.

Pr of ile Num ber 179.

Pr of ile Num ber 180.

Electric Fields/Resultant (Total) Field

[ID:TransmissionLine @ f=60.0000 Hz ]

Page 146: Appendix II-I

4.3.2 Case 47 230 kV Overhead line from Onshore Substation to POI

Figure 4-190 Electric Field Result of Case 47

Figure 4-191 Electric Field Result of Case 47 with Maximum Limit

As shown in Figures 4-190 to 4-191, the peak electric field for case 47 is 0.087 V/m which is lower than the 3 kV/m maximum allowable limit.

Page 147: Appendix II-I

5 Discussion & Conclusions

The Project circuit maps and overall single line diagrams provided by Atlantic Shores show the following main electrical system components:

1. Inter-array cables

2. OSS

3. Offshore export cables and onshore interconnection transmission cables

4. Onshore substation

Study Cases were developed for each project component listed above. The Cases developed were modelled using CDEGS ver.16.2 considering the electrical installation details of different feeder arrangements to evaluate the EMF strengths. The primary conclusions are discussed in subsections a-d below.

a) Cable Cases (Cases 1-52)

Table 5-1 presents the magnetic field results obtained for cable Cases 1-52 and compares them with the maximum allowable limits. From the comparison, it can be concluded that the magnetic field is within its maximum allowable limits for all cases throughout the ROW.

The electric field from the shielded power cables (Cases 1-52 with the exception of Case 47) is not included as it is blocked by the grounded cable armoring as well as the earth. Electric field from cables will not be a direct source of any electric field outside the cables. The peak electric field for Case 47 is 0.087 V/m which is lower than the 3 kV/m maximum allowable limit.

Page 148: Appendix II-I

Table 5-1 Summary Results for Cable Cases

Case no. Magnetic Field Case

no.

Magnetic Field

Result Allowable limit Result Allowable limit A/m mG A/m mG A/m mG A/m mG

1 3.84 48.25 160 2010.62 30 8.00 100.53 160 2010.62 2 1.68 21.11 160 2010.62 31 1.05 13.19 160 2010.62 3 4.55 57.18 160 2010.62 32 8.25 103.67 160 2010.62 4 1.99 25.01 160 2010.62 33 18.87 237.13 160 2010.62 5 4.78 60.07 160 2010.62 34 19.45 244.42 160 2010.62 6 2.08 26.14 160 2010.62 35 18.44 231.72 160 2010.62 7 8.45 106.19 160 2010.62 36 19.03 239.14 160 2010.62 8 8.71 109.45 160 2010.62 37 3.35 42.10 400 5026.55 9 8.40 105.56 160 2010.62 38 12.15 152.68 400 5026.55 10 8.66 108.82 160 2010.62 39 27.79 349.22 400 5026.55 11 8.40 105.56 160 2010.62 40 93.24 1171.69 400 5026.55 12 8.66 108.82 160 2010.62 41 173.04 2174.48 400 5026.55 13 8.36 105.05 160 2010.62 42 263.03 3305.33 400 5026.55 14 8.62 108.32 160 2010.62 43 16.85 211.74 160 2010.62 15 8.34 104.80 160 2010.62 44 19.27 242.15 160 2010.62 16 8.61 108.20 160 2010.62 45 15.74 197.79 160 2010.62 17 8.32 104.55 160 2010.62 46 18.57 233.36 160 2010.62 18 8.58 107.82 160 2010.62 47 12.41 155.95 160 2010.62 19 14.52 182.46 160 2010.62 48 48.00 603.19 400 5026.55 20 146.53 1841.35 160 2010.62 49 0.76 9.55 400 5026.55 21 14.34 180.20 160 2010.62 49-1 18.60 233.73 400 5026.55 22 146.66 1842.98 160 2010.62 49-2 3.77 47.38 400 5026.55 23 14.66 184.22 160 2010.62 49-3 80.27 1008.70 400 5026.55 24 146.34 1838.96 160 2010.62 50 93.77 1178.35 400 5026.55 25 1.03 12.94 160 2010.62 51 5.21 65.47 400 5026.55 26 8.33 104.68 160 2010.62 51-1 59.77 751.09 400 5026.55 27 1.07 13.45 160 2010.62 51-2 32.18 404.39 400 5026.55 28 8.58 107.82 160 2010.62 52 48.01 603.31 400 5026.55 29 1.02 12.82 160 2010.62

b) HVAC Offshore Substation Case (Cases 1 and 2)

Table 5-2 presents the results obtained for magnetic fields. From the summarized results in Table 5-2, it can be concluded that:

The magnetic field violates its (160 A/m (2010.62 mG) and 800 A/m (10053.10 mG)) maximum allowable public and occupational limits at sea level and main deck level respectively (refer to Table 1-2). However, those peaks occur right at the cables or Gas-insulated Switchgear buses only and the magnetic field decays quickly while moving away from the energized conductor. SNC Lavalin calculated the distance from the energized conductor at which the magnetic field value fall below the respective limits.

The magnetic field at other Levels (Cellar Deck, Cable Deck, Utility Deck, Roof Deck) is within its 800 A/m (10053.10 mG) maximum occupational allowable limit.

Page 149: Appendix II-I

Comparing calculated magnetic fields with the 160 A/m (2010.62 mG) maximum allowable limit for general public is not of concern as it is anticipated that the OSS decks will be accessed only by trained workers. The magnetic fields at the sea level can be compared with 160 A/m (2010.62 mG) limit as the OSS can be approached at sea level by general public. It can be seen that at the locations other than right at the cables at sea level, the magnetic fields are lower than 160 A/m (2010.62 mG).

Electric field from Gas-insulated Switchgear bus enclosure will not be a direct source of any electric field outside the grounded enclosure.

Table 5-2 Summary Results for Offshore HVAC Substation

Location of Calculation

Peak Magnetic Field for Case 1(OSS1-800

MW)

Peak Magnetic Field for Case 2(OSS2-1200

MW)

Distance from energized conductor at which magnetic field drops below limits

A/m mG A/m mG OSS1 (800 MW) OSS2 (1200 MW)

Sea Level 1000.46 12572.15 971.56 12208.98

1.31 feet (0.4 m) from ECs

1 feet (0.3 m) from IACs

1 feet (0.3 m) from ECs

1 feet (0.3 m) from IACs

Cellar Deck Level 480.79 6041.79 389.68 4896.86 - -

Cable Deck Level 649.66 8163.87 389.18 4890.58 - -

Main Deck Level 990.82 12451.01 1181.50 14847.17

1 feet (0.3 m) from 230 kV or 275 kV

Gas-insulated Switchgear bus

1.31 feet (0.4 m) from 230 kV or 275 kV

Gas-insulated Switchgear bus

Utility Deck Level 116.89 1468.88 136.31 1712.92 - -

Roof Deck Level 6.83 85.83 1.70 21.36 - -

c) HVDC Offshore Substation Case (Case 3)

Table 5-3 presents the results obtained for magnetic fields. From the summarized results in Table 5-3, it can be concluded that:

The magnetic field violates (160 A/m (2010.62 mG) and 800 A/m (10053.10 mG)) maximum allowable public and occupational limits at sea level and all decks respectively (refer to Table 1-2). However, those peaks occur right at the cables or Gas-insulated Switchgear buses only and the magnetic field decays quickly while moving away from the energized conductor. SNC Lavalin calculated the distance from the energized conductor at which the magnetic field value fall below the respective limits.

Page 150: Appendix II-I

The magnetic field at Deck 6 is within its 800 A/m (10053.10 mG) maximum allowable occupational limit.

Comparing calculated magnetic fields with the 160 A/m (2010.62 mG) maximum allowable limit for general public is not of concern as it is anticipated that the OSS decks will be accessed only by trained workers. The magnetic fields at the sea level can be compared with 160 A/m (2010.62 mG) limit as the OSS can be approached at sea level by general public. It can be seen that at the locations other than right at the cables at sea level, the magnetic fields are lower than 160 A/m (2010.62 mG).

Electric field from Gas-insulated Switchgear bus enclosure will not be a direct source of any electric field outside the grounded enclosure.

Table 5-3 Summary Results for Offshore HVDC Substation

Location of Calculation

Peak Magnetic Field for Case 3(OSS3-1200 MW HVDC)

Distance from energized conductor at which magnetic field drops below limits

A/m mG

Sea Level 2770.45 34814.50 2 feet (0.6 m) from IACs 8.2 feet (2.5m) from HVDC ECs

Deck 1 Level 1097.38 13790.08 2 feet (0.6 m) from IACs

Deck 2 Level 1660.33 20864.32 2 feet (0.6 m) from 66 kV Gas-insulated Switchgear bus

Deck 3 Level 1413.32 17760.30 2 feet (0.6 m) from 66 kV Gas-insulated Switchgear bus

Deck 4 Level 1421.91 17868.25 2 feet (0.6 m) from 66 kV Gas-insulated Switchgear bus

Deck 5 Level 1421.78 17866.61 2 feet (0.6 m) from 66 kV Gas-insulated Switchgear bus

Deck 6 Level 764.14 9602.47 -

d) Onshore Substation Case (Case 4)

Table 5-4 presents the results obtained for both magnetic and electric fields. From the summarized results in Table 5-4, it can be concluded that:

The magnetic field is within its 800 A/m (10053.10 mG) maximum allowable occupational limit and 160 A/m (2010.62 mG) maximum allowable limit for general public.

The peak electric field is 10.58 kV/m for 230/230 kV and 13.49 kV/m for 275/230 kV onshore substations. The peak electric field inside the station fence violates the 8.333 kV/m maximum allowable occupational limit (refer to Table 1-2). Outside the station fence the electric fields are below the 4.167 kV/m general public limit (refer to Table 1-2). Since electric field is inversely proportional to the distance of measurement location from the energized object, increasing the bus heights of the OnSS can be used to mitigate higher electric fields.

Page 151: Appendix II-I

Table 5-4 Summary Results for Onshore Substation Case 4 (OnSS 230/230 kV or 275/230 kV)

Magnetic Field Electric Field (V/m) A/m mG

Onshore Substation

230/230 kV 72.76 914.33 10583.44

275/230 kV 72.76 914.33 13493.16

Page 152: Appendix II-I

REFERENCES

[1]. Electric and Magnetic Fields Associated with the Use of Electric Power, National Institute of Environmental Health Sciences (NIEHS). [Online]. Available: https://www.niehs.nih.gov/health/materials/electric_and_magnetic_fields_associated_with_the_use_of_electric_power_questions_and_answers_english_508.pdf

[2]. Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz to 100 KHz). [Online]. Available: https://www.icnirp.org/cms/upload/publications/ICNIRPLFgdl.pdf

[3]. Guidelines on Limits of Exposure to Static Magnetic Fields. [Online]. Available: https://www.icnirp.org/cms/upload/publications/ICNIRPstatgdl.pdf

[4]. A. D. Chave, Some Comments on Seabed Propagation of ULF/ ELF Electromagnetic Fields, Radio Science, vol. 25, no. 5, Pages 825-836, September/October 1990.

[5]. R. Somaraju and J. Trumpf, Frequency, Temperature and Salinity Variation of the Permittivity of Seawater, IEEE Transactions on Antennas and Propagation, vol. 54, no. 11, pp. 3441-3448, November 2006.

[6]. J. Cihlar and F. Ulaby, Dielectric Properties of Soils as a Function of Moisture Content. The University of Kansas Center of Research Inc. 1974.

[7]. Overall OWF Single Line Diagram Scenario 1: 1500 MW Cardiff 230 kV Substation. Drawing no. A131951-204-S01-L01-001-2.

[8]. Overall OWF Single Line Diagram Scenario 2: 1320 MW Larrabee 230 kV Substation. Drawing no. A131951-204-S02-L01-001-2.

[9]. Overall OWF Single Line Diagram Scenario 3: 880 MW Gowanus 345 kV Substation. Drawing no. A131951-204-S03-L01-2.

[10]. Array Cable Route Plan Scenario 1 Layout. Drawing no. A131951-1300-S01-L05-001 [11]. Array Cable Route Plan Scenario 2 Layout. Drawing no. A131951-1300-S02-L05-001 [12]. Array Cable Route Plan Scenario 3 Layout. Drawing no. A131951-1300-S03-L05-001 [13]. OSS Single Line Diagram Scenario 3: 880 MW Gowanus 230/66 kV Offshore Substation. Drawing no. A131951-

0900-S03-L03-002-1. [14]. 880 MW OSS General Arrangement. Cellar Deck. Drawing no. A131951-0903-S03-L03 1. [15]. 880 MW OSS General Arrangement. Cable Deck. Drawing no. A131951-0904-S03-L03 1. [16]. 880 MW OSS General Arrangement. Main Deck. Drawing no. A131951-0905-S03-L03 1. [17]. 880 MW OSS General Arrangement. Utility Deck. Drawing no. A131951-0906-S03-L03 1. [18]. 880 MW OSS General Arrangement. Roof Deck. Drawing no. A131951-0907-S03-L03 1. [19]. Offshore Export Cable Route Scenario 1 Layout. Drawing no. A131951-1100-S01-L04-005 [20]. Offshore Export Cable Route Scenario 2 Layout. Drawing no. A131951-1100-S02-L04-005 [21]. Offshore Export Cable Route Scenario 3 Layout. Drawing no. A131951-1100-S03-L04-005 [22]. Offshore Export Cable Route Scenario 1 New – Landfall Layout. Drawing no. A131951-1101-S01-L04-002 [23]. Offshore Export Cable Route Scenario 2 – Layout New Landfall. Drawing no. A131951-1101-S02-L04-002 [24]. Transition Joint Pit Arrangement. Drawing no. A131951-1504-SX-L06-001 [25]. Scenario 3 880 MW Gowanus SS 230 kV Export cable landfall access Quay side arrangement. Drawing no.

A131951-1502-SX-L06-001 [26]. Scenario 1 – 1500 MW Cardiff SS New Landfall Situation Plan HDD Operation. Drawing no. A131951-1707-S1-

L07-001 [27]. Scenario 2 – 1320 MW Larrabee SS New Landfall Situation Plan – HDD Operation. Drawing no. A131951-1707-

S2-L07-001 [28]. Scenario 1 – 1500 MW Cardiff SS New Landfall HDD Profile. Drawing no. A131951-1708-S1-L07-001

Page 153: Appendix II-I

[29]. Scenario 2 – 1320 MW Larrabee SS New Landfall HDD Situation Plan / Profile. Drawing no. A131951-1702-S2-L07-001

[30]. Onshore Cable Route – Scenario 1. Drawing no. A131951-1500-S1-L06-1 [31]. Onshore Cable Route – Scenario 2. Drawing no. A131951-1500-S2-L06-1 [32]. Onshore Cable Route – Scenario 1 Details. Drawing no. A131951-1500-S01-L06-1 [33]. Onshore Cable Trenches Standard Outline. Drawing no. A131951-1502-SX-L06-1 [34]. Onshore Cable Joint Pit Standard Outline. Drawing no. A131951-1503-SX-L06-1 [35]. Onshore HDD Standard Outline. Drawing no. A131951-1507-SX-L06-1 [36]. Onshore Substation Single Line diagram – HV/MV Cardiff. Drawing no. A131951-0700-S01-L02-1 [37]. Onshore Substation Single Line diagram – HV/MV Larrabee. Drawing no. A131951-0700-S02-L02-1 [38]. Onshore Substation Single Line diagram – HV/MV Gowanus. Drawing no. A131951-0700-S03-L02-1 [39]. Onshore Substation Site General Arrangement Cardiff. Drawing no. A131951-0702-S01-L02-1 [40]. Onshore Substation Site General Arrangement Larrabee. Drawing no. A131951-0702-S02-L02-1 [41]. Onshore Substation Site General Arrangement Gowanus. Drawing no. A131951-0702-S03-L02-1 [42]. 230 kV Steel Monopole Layout [43]. General Arrangement 3D View Jacket OSS 984 MW. Drawing no. 1100040182-ASOW-319-WTG-984-JP-GA-

01-100 [44]. General Arrangement Plan View Jacket OSS 984 MW. Drawing no. 1100040182-ASOW-319-WTG-984-JP-GA-

01-101 [45]. General Arrangement Side View Jacket OSS 984 MW. Drawing no. 1100040182-ASOW-319-WTG-984-JP-GA-

01-102 [46]. General Arrangement Main Profiles Jacket OSS 984 MW. Drawing no. 1100040182-ASOW-319-WTG-984-JP-

GA-01-103 [47]. Export and Array Cable Crossing Generic Outline. Drawing no. A131951-0309-SX-LX-0 [48]. HVDC Onshore Cable Trenches Standard Outline. Drawing no. A131951-1509-SX-L06-001 [49]. Onshore Substation Single Line diagram – HV/MV Cardiff. Drawing no. A131951 0700 - S01-L02-001 [50]. B105 253 kV, 63kA, 4000 A Gas-insulated Substations Brochure [51]. F35 170 kV, 50kA, 4000 A Gas-insulated Substations Brochure [52]. 1200 MW Offshore Standard Offshore Converter Station HV Single Line Diagram. Drawing no. OFS-OCP-000-

GPE-301-019-SL. [53]. Offshore Wind Farm Offshore Converter Station Plot Plan. File name: GE OFW PLOT PLANS - TYPICAL 1200

MW. [54]. Atlantic Offshore Wind Cardiff 1600 MW 230 kV Substation, 230 kV Switchyard Layout. Drawing no.

667967.4760.51 [55]. Atlantic Offshore Wind Cardiff 1600 MW 230 kV Substation, 230 kV Switchyard Elevation A-A B-B C-C. Drawing

no. 667967.4760.52 [56]. Atlantic Offshore Wind Cardiff 1600 MW 230 kV Substation, AIS Switchyard Elevation D-D E-E F-F. Drawing no.

667967.4760.53

Page 154: Appendix II-I

APPENDIX A

OSS results with 800A/m threshold at different Deck Levels and 160A/m threshold at sea level.

Figure 0-1 Magnetic Field at Main Deck Level for OSS1 (800 MW HVAC)

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/30, Time: 9:51:06]

150 165 180 195 210

X AXIS (METERS)

0

15

30

45

60

Y A

XIS

(M

ET

ER

S)

Total Magnetic Field Magn. (Amps/M)

LEGEND

Maximum Value : 990.821

Minimum Threshold : 800.000

990.82

971.74

952.66

933.57

914.49

895.41

876.33

857.25

838.16

819.08

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

Page 155: Appendix II-I

Figure 0-2 Magnetic Field at sea level for OSS1 (800 MW HVAC)

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/30, Time: 10:31:41]

150 165 180 195 210

X AXIS (METERS)

0

15

30

45

60

Y A

XIS

(M

ET

ER

S)

Total Magnetic Field Magn. (Amps/M)

LEGEND

Maximum Value : 1000.464

Minimum Threshold : 160.000

1000.46

916.42

832.37

748.32

664.28

580.23

496.19

412.14

328.09

244.05

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

Page 156: Appendix II-I

Figure 0-3 Magnetic Field at Main Deck Level for OSS2 (1200 MW HVAC)

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/30, Time: 11:02:21]

150 165 180 195 210

X AXIS (METERS)

0

15

30

45

60

Y A

XIS

(M

ET

ER

S)

Total Magnetic Field Magn. (Amps/M)

LEGEND

Maximum Value : 1181.501

Minimum Threshold : 800.000

1181.50

1143.35

1105.20

1067.05

1028.90

990.75

952.60

914.45

876.30

838.15

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

Page 157: Appendix II-I

Figure 0-4 Magnetic Field at sea level for OSS2 (1200 MW HVAC)

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/30, Time: 11:11:26]

150 165 180 195 210

X AXIS (METERS)

0

15

30

45

60

Y A

XIS

(M

ET

ER

S)

Total Magnetic Field Magn. (Amps/M)

LEGEND

Maximum Value : 971.560

Minimum Threshold : 160.000

971.56

890.40

809.25

728.09

646.94

565.78

484.62

403.47

322.31

241.16

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

Page 158: Appendix II-I

Figure 0-5 Magnetic Field at Deck 1 Level for OSS3 (1200 MW HVDC)

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/30, Time: 13:26:17]

137.5 187.5 237.5

X AXIS (METERS)

-25

25

75

Y A

XIS

(M

ET

ER

S)

Total Magnetic Field Magn. (Amps/M)

LEGEND

Maximum Value : 1023.585

Minimum Threshold : 800.000

1023.59

1001.23

978.87

956.51

934.15

911.79

889.43

867.08

844.72

822.36

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

Page 159: Appendix II-I

Figure 0-6 Magnetic Field at Deck 2 Level for OSS3 (1200 MW HVDC)

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/30, Time: 13:43:23]

137.5 187.5 237.5

X AXIS (METERS)

-25

25

75

Y A

XIS

(M

ET

ER

S)

Total Magnetic Field Magn. (Amps/M)

LEGEND

Maximum Value : 1598.032

Minimum Threshold : 800.000

1598.03

1518.23

1438.43

1358.62

1278.82

1199.02

1119.21

1039.41

959.61

879.80

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

Page 160: Appendix II-I

Figure 0-7 Magnetic Field at Deck 3 Level for OSS3 (1200 MW HVDC)

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/30, Time: 13:55:32]

137.5 187.5 237.5

X AXIS (METERS)

-25

25

75

Y A

XIS

(M

ET

ER

S)

Total Magnetic Field Magn. (Amps/M)

LEGEND

Maximum Value : 1246.781

Minimum Threshold : 800.000

1246.78

1202.10

1157.43

1112.75

1068.07

1023.39

978.71

934.03

889.36

844.68

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

Page 161: Appendix II-I

Figure 0-8 Magnetic Field at Deck 4 Level for OSS3 (1200 MW HVDC)

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/30, Time: 14:04:34]

137.5 187.5 237.5

X AXIS (METERS)

-25

25

75

Y A

XIS

(M

ET

ER

S)

Total Magnetic Field Magn. (Amps/M)

LEGEND

Maximum Value : 1255.181

Minimum Threshold : 800.000

1255.18

1209.66

1164.14

1118.63

1073.11

1027.59

982.07

936.55

891.04

845.52

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

Page 162: Appendix II-I

Figure 0-9 Magnetic Field at Deck 5 Level for OSS3 (1200 MW HVDC)

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/30, Time: 14:09:03]

137.5 187.5 237.5

X AXIS (METERS)

-25

25

75

Y A

XIS

(M

ET

ER

S)

Total Magnetic Field Magn. (Amps/M)

LEGEND

Maximum Value : 1255.315

Minimum Threshold : 800.000

1255.31

1209.78

1164.25

1118.72

1073.19

1027.66

982.13

936.59

891.06

845.53

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

Page 163: Appendix II-I

Figure 0-10 Magnetic Field at sea level for AC Cables, OSS3 (1200 MW HVDC)

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/30, Time: 14:18:04]

137.5 187.5 237.5

X AXIS (METERS)

-25

25

75

Y A

XIS

(M

ET

ER

S)

Total Magnetic Field Magn. (Amps/M)

LEGEND

Maximum Value : 2701.233

Minimum Threshold : 160.000

2701.23

2447.11

2192.99

1938.86

1684.74

1430.62

1176.49

922.37

668.25

414.12

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=60.0000 Hz ]

Page 164: Appendix II-I

Figure 0-11 Magnetic Field at sea level for DC Cables, OSS3 (1200 MW HVDC)

Valid License No: 2328 S/N 1339480283 Customer: SNC-Lavalin ATP Inc. SES MultiFields Pro[Date: 2020/11/30, Time: 14:23:06]

137.5 187.5 237.5

X AXIS (METERS)

-25

25

75

Y A

XIS

(M

ET

ER

S)

Total Magnetic Field Magn. (Amps/M)

LEGEND

Maximum Value : 672.833

Minimum Threshold : 160.000

672.83

621.55

570.27

518.98

467.70

416.42

365.13

313.85

262.57

211.28

Magnetic Fields/Resultant (Total) Field [ID:TransmissionLine @ f=0.0000 Hz ]