115
MILLSITE DAM REHABILITATION OUTLET WORKS EXTENSION DRAFT DESIGN REPORT Prepared for Utah Division of Water Resources Prepared by November 2015

Appendix I - FCE Outlet Design Report (DRAFT)

  • Upload
    ledang

  • View
    236

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Appendix I - FCE Outlet Design Report (DRAFT)

MILLSITE DAM REHABILITATION OUTLET WORKS EXTENSION

DRAFT DESIGN REPORT

Prepared for

Utah Division of Water Resources

Prepared by

November 2015

Page 2: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

TABLE OF CONTENTS

1 Introduction ...................................................................................................................... 1-1

2 Existing Outlet Works...................................................................................................... 2-1 2.1 Layout of Pipelines and Other Facilities .............................................................. 2-1 2.2 Outlet Discharge Valve ........................................................................................ 2-2 2.3 Plunge Pool .......................................................................................................... 2-2

3 Outlet Pipe ....................................................................................................................... 3-1 3.1 Pipe Wall Thickness ............................................................................................ 3-1 3.2 Hydraulic Analysis............................................................................................... 3-1

4 Outlet Works Extension ................................................................................................... 4-1 4.1 Vault Layout and Design ..................................................................................... 4-1 4.2 Pipe Diversions Layout and Design ..................................................................... 4-3 4.3 Discharge Valve Replacement ............................................................................. 4-4 4.4 Plunge Pool .......................................................................................................... 4-6 4.5 Miscellaneous Design .......................................................................................... 4-7

5 Conclusion and General Conditions ................................................................................ 5-1

List of Tables Table 4.1: Roof Loading .............................................................................................................. 4-1 Table 4.2: Structural Design Software ......................................................................................... 4-2 Table 4.3: Heavyweight Nonwoven Geotextile Fabric Properties .............................................. 4-6

Appendices Appendix A – Hydraulic Model Data Appendix B – Structural Design Data Appendix C – Miscellaneous Information

i 11/6/2015

Page 3: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

1 Introduction

The existing Millsite Dam is not in compliance with current minimum Utah Dam Safety standards. As a result, a berm will be constructed at the toe of the existing dam to stabilize the dam for seismic conditions. This berm necessitates the extension of the outlet works further downstream. Franson Civil Engineers (FCE) is assisting the Utah Division of Water Resources (Water Resources) with design work for the Millsite Dam Rehabilitation. FCE is preparing the Outlet Works section of the Millsite Dam Rehabilitation Design Report. This section focuses on the extension and relocation of the existing outlet works. For project background details, refer to the Millsite Dam Rehabilitation Design Report prepared by Water Resources. The proposed outlet works extension and relocation will include the following main construction items:

a. Extending the existing outlet tunnel

b. Extending the existing 54-inch main outlet pipe

c. Extending all appurtenances, such as electrical wiring, air vent shaft, tunnel drains, etc. necessary for operation of the outlet works

d. Replacing the existing 8-inch culinary pipeline with a new culinary pipeline (size is being increased to 12-inch) along the entire length of the outlet tunnel

e. Relocating or replacing the connections for existing pipelines, including: i. Two 36-inch diameter irrigation pipelines ii. One 12-inch stock water pipeline, which currently connects to one of the

36-inch pipelines iii. One 24-inch culinary pipeline (separate from the other culinary pipeline

mentioned above) iv. One 24-inch pipeline that supplies cooling water to the power plant south of

Castle Dale

f. Replacing the existing 42-inch Howell Bunger valve with two plunger valves

g. Constructing a new vault and a building to house the relocated utilities

h. Relocating the water connection to the golf course booster station, if necessary

i. Existing or new tunnel inlet valves: i. Replacing the electric actuator for the existing 54-inch butterfly valve with a

hydraulic actuator ii. Installing a new 8-inch butterfly valve with manual and hydraulic actuators

1-1 11/6/2015

Page 4: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

2 Existing Outlet Works

The dam was originally built in 1971. In 2000, the outlet works were modified to allow connection of two 36-inch pipes and a 12-inch stockwater pipe for a pressurized irrigation system. A new vault was constructed and the discharge valve was moved farther downstream to facilitate the new connections. This section briefly explains the current configuration of the outlet works.

2.1 Layout of Pipelines and Other Facilities

The existing vaults consist of the following pipelines and controls as described in a report prepared by Water Resources:

• An 8-inch steel pipe which serves the Castle Valley Special Service District. It has an exterior paint coating. The existence of an interior coating is uncertain. It runs from the bulkhead of the inlet tower, down through the tunnel and control house, and into a meter box to the south of the control house. This pipe joins with a 12-inch steel pipe in this box, which then transitions into a 24-inch pipe and serves the special service district. The upper end of the pipe has a gate valve and two gate valves in the meter box which can isolate the meter. This entire pipe up to the upstream gate valve will be replaced as part of this project due to corrosion of the pipe and a desire of the special service district to increase the size of this pipe.

• A 12-inch steel pipe which serves the special service district. It has an exterior epoxy coating in the tunnel, transitioning to a painted coating outside the tunnel. The existence of an interior coating is uncertain. The pipe tees off of the 54-inch pipe in the control house, and then runs to the same meter box as the 8-inch steel pipe previously mentioned. This 12-inch pipe transitions to a 24-inch pipe that runs southeast, and then bends to the east on the south side of the maintenance shed, continuing east towards the service district’s facilities. The 24-inch pipe is reported to be ductile iron. The 12-inch pipe has a gate valve in the tunnel, a valve just upstream of the meter box, and one in the meter box. There is an older dysfunctional meter in the meter box, and a saddle type magmeter or paddle wheel meter.

• A 24-inch steel pipe serving PacifiCorp that tees off of the 54-inch mainline in the control house, and then runs into a metering building to the north of the control house, where it is metered using an orifice meter. The pipe then transitions to a 26-inch fiberglass pipe after the metering building. The pipe has one main butterfly valve in the control house, but has a 6-inch bypass line around the main valve with two gate valves and a globe valve, the gate valves being able to isolate the globe valve. PacifiCorp has specifically requested that their steel pipe be replaced with ASTM grade B, 24-inch O.D. pipe with 3/8-inch wall thickness, and that a custom spigot x flanged fitting, which they would provide, and a JCM Style 304 adapter be used to join the new steel pipe to the existing fiberglass pipe.

2-1 11/6/2015

Page 5: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

• The Ferron Canal and Reservoir Company has a newer control vault downstream of the

historical control house. In this structure, two 36-inch steel pipes tee off of the main pipe. Each pipe has a butterfly valve, but each also has a 6-inch bypass line around the butterfly valve. Each bypass has two gate valves and a globe valve, the gate valves being able to isolate the globe valve. The 36-inch lines turn east after exiting the control box. The 36-inch pipes transition to PVC pipe downstream of the control box.

• A 12-inch steel stock waterline branches off of one of the 36-inch pipes, upstream of the main 36-inch butterfly valve. This stock waterline has one butterfly valve. It turns east after exiting the control vault. This stock waterline transitions to PVC pipe downstream of the control vault.

• There are floor drains and groundwater drains under the canal company’s newer control vault which run into a manhole southeast of the structure, and then drain into the stream channel.

• A drain which collects seepage in the old tunnel, and the left toe drain, currently runs through the newer control vault where they can be diverted into buckets for measurement. The drain pipes then run out of the vault and into the stream channel.

• The golf course has diversions coming off of the special service district’s line, and off of the stock waterline owned by the canal company. Both of the golf course’s lines run to the west side of the maintenance shed where they feed a pump. Both of these lines are 6-inch PVC until they transition to HDPE pipe just before they enter the pump.

2.2 Outlet Discharge Valve

Also housed in the vault is the existing discharge valve. This is a 42-inch Howell-Bunger (HB) valve that serves as the primary outlet and drains into the existing irrigation canal. The HB valve is fitted with a concrete valve chamber to convert the valve discharge from a spray to a concentrated jet. This HB valve was put in when the dam was built in 1971. The canal personnel indicated that it is difficult to get replacement parts for the current HB valve and servicing the valve is a complicated process. For these reasons, and also because the valve is past its design life, the existing HB valve will need to be replaced with a new control valve. The HB valve is currently being operated at 20% of its maximum capacity, and much of the time it is open.

2.3 Plunge Pool

The existing plunge pool is upstream of the irrigation canal that supplies water to the North, South, and Molen Ditches. The canal personnel indicated that the side walls of the plunge pool channel are eroding due to the high velocity jet from the HB valve and wave action.

2-2 11/6/2015

Page 6: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

3 Outlet Pipe

3.1 Pipe Wall Thickness

The existing outlet pipe is a 54-inch epoxy-coated steel pipe. As indicated in the record drawings, the original wall thickness was 5/16 inches. Water Resources has recently commissioned a study evaluating the integrity of the existing outlet pipe. The structural analysis showed that at some locations there was a decrease in the wall thickness of approximately 1/16 inches, with the lowest reading showing a loss of 5/64 inches due to water dripping on the pipe from seams in the tunnel. The deteriorating affects have been mitigated and Dam Safety anticipates that the outlet pipe should have at least 50 more years of service life. The analysis also indicated that the maximum stress in the outlet pipe, as a result of the full reservoir head, bending and settlement stresses, and seismic forces would be 7,500 psi, well under the assumed minimum yield strength of 30,000 psi. FCE evaluated this study and determined that an additional study to determine the required wall thickness of the outlet pipe extension was not necessary and that it would be a reasonable assumption to maintain the original wall thickness of 5/16 inches for the new section of outlet pipe.

3.2 Hydraulic Analysis

A hydraulic model was prepared using WaterCAD to size the outlet pipe to ensure that the peak demands are supplied even during low reservoir levels. The existing 54-inch steel pipe is extended until after most of the demand is met and then it is reduced to a 36-inch steel pipe. The mainline was sized to meet the following demands:

• 36-inch pipe, irrigation flow – 35.34 cfs • 36-inch pipe, irrigation flow – 35.34 cfs • 12-inch pipe, stock water flow – 1 cfs • 8-inch pipe, golf course flow – 3.5 cfs (this flow was added to the 12-inch pipeline in the model) • 24-inch pipe, culinary water flow – 10 cfs • 24-inch pipe, power plant flow – 20 cfs • 36-inch pipe, outlet flow to canal – 263 cfs • 10-inch pipe, outlet flow to canal – 10.84 cfs

The outlet flow was obtained from data on the Emery Water Conservancy District website and represents the maximum flow released from the outlet to the North, South, and Molen Ditches on the same day between June 2002 and June 2014. The remaining peak demands were supplied by the respective project stakeholders. The model shows that the 54-inch and 36-inch transmission pipelines are capable of supplying the peak demands until the reservoir level drops to approximately 12 feet of head. When the water level in the reservoir drops to 12 feet above the inlet to the outlet works, the peak demands above cannot be met concurrently. This water level is 38 feet below the conservation pool water level and as such the peak demands could not be requested by the water users. Based on the model and this observation, the 54-inch pipe and a short section of 36-inch pipe can meet the peak demands of the system.

3-1 11/6/2015

Page 7: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

4 Outlet Works Extension

4.1 Vault Layout and Design

4.1.1 Layout Considerations

The current outlet works facilities consist of the original building and four separate underground vaults. All the facilities had their own access point to an aboveground entrance with a door and stairs. All the stakeholders expressed support for an efficient pipe layout to be housed in a single vault. Various versions of the pipe layout were distributed among the stakeholders for comment until the final layout seen in the design drawings was agreed upon.

4.1.2 Structural Analysis

Vault The loads considered for design of the concrete outlet vault were snow loads, earthquake loads, live loads and dead loads typical for this area and type of building. Wind loads were not considered due to the vault being mostly buried. The structural steel design of the roof joists is to be determined by the steel joist manufacturer and coordinated by the contractor. Assumptions were made as to the type and weight of members to be used so that an accurate dead load could be determined. Snow loads were determined from the location and elevation of the site and are in accordance with building code requirements. Live loads were assumed to be typical roof maintenance loads. Table 4.1 shows the roof loads considered in the vault design. It should be noted that the vault’s roof was not designed with the loads shown in Table 4.1. The roof loads shown in the table were used to estimate the loading on the vertical walls of the vault.

Table 4.1: Roof Loading Roof Load Description Load (lb/ft2) Snow 40.3 Tin 0.75 Structural Panels 3.5 Joists 4.1 Live Loads 20 Earthquake Equivalent 28.9

The design loads in various loading combinations were considered and the most conservative loading was taken and used for the rest of the design. The design load was distributed over the roof structure and the resulting loads on the walls were determined. These roof loads in combination with backfilling and soil loads were then used to design the walls of the vault. Two methods were used for the wall design. Some of the walls were supported internally by other walls. These walls were designed using the Portland Cement Association’s design guide for rectangular concrete tanks. All other walls that were completely or partially unsupported by other

4-1 11/6/2015

Page 8: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

walls were designed as retaining structures using QuickRWall structural design software. The results of both design methods were compared and the more conservative rebar configuration was used for all walls for consistency. The design of the wall footings was taken from the QuickRWall analysis of the walls as retaining structures. The loads considered for the floor design included the resulting loads from the wall design, the supporting soil under the structure, the weight of the pipes and equipment in the vault, the water weight for filled pipes, and dead and live loads according to building code requirements. Several critical sections were considered for the flood design, and each were analyzed for maximum shear and moments. The results of the analysis of all the critical sections were compared and the critical rebar section was determined. This rebar section was used throughout the floor for consistency, with the exception of the floor that is also the wall footing. A concrete support beam was needed to span the vault from the end of the tunnel to the adjacent internal corner of the vault to support the south wall of the concrete masonry unit (CMU) building. The loads on this beam include the typical roof loads, the weight of the CMU wall, and dead and live loads from the steel floor to be used on the upper level of the structure. The beam was analyzed using spSlab software and the critical rebar section was determined. The outside dimensions of the beam were determined by the necessary elevations of the supported roof section and by the necessary connections of the CMU building and the steel floor. The end of the beam near the tunnel will be supported by the thicker wall of the tunnel. The wall on the other end of the beam could not support the loads transferred by the beam, so a column had to be designed to create a strong enough support for the beam. The cross section of this column was designed using spColumn structural design software. Refer to Table 4.2 for the structural design software details.

Table 4.2: Structural Design Software Software Version Publisher Building Codes QuickRWall 2.01.0007 Integrated Engineering Software, Inc. IBC 2006 spSlab v3.60 StructurePoint, LLC ACI 318-11 spColumn v4.81 StructurePoint, LLC ACI 318-11

Tunnel

The existing tunnel was designed in 1969. It is designed conservatively and the structure has not had any problems to date. The extension of the tunnel will use the same design as the original based on details from the 1969 drawings created by the U.S. Department of Agriculture Soil Conservation Service.

4-2 11/6/2015

Page 9: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

4.2 Pipe Diversions Layout and Design

4.2.1 Castle Valley Special Service District 8-inch Pipe

The special service district has requested that the existing 8-inch pipe connected at the head of the tunnel be replaced with a 12-inch pipe based upon future demands of their system. The options of Fusible PVC, Polypropylene, HDPE, and Steel pipe were evaluated to replace the steel line. The evaluation criteria included stiffness, design life, thermal expansion, constructability, and cost. A summary of the criteria was presented to the Natural Resources Conservation Service (NRCS) and Water Resources for their recommendation. It was conveyed to FCE that steel pipes are the standard for use in dam tunnel applications. This 12-inch pipeline will connect to the main special service district pipeline in the vault and will be equipped with a new magnetic flow meter and control valve. Fusible PVC and polypropylene pipe are viable alternatives. The selection of steel pipe was based on the recommendation of Water Resources and NRCS.

4.2.2 Castle Valley Special Service District 12-inch Pipe

Currently, the special service district has one 12-inch line connected to the main outlet pipe. This pipe merges with the existing 8-inch pipe running through the tunnel in a separate vault and then transitions to a 24-inch pipeline. To simplify the operation of these two pipelines, they will connect in the new vault. There is not a current bypass filling pipe for the culinary lines; therefore, one will not be added. The pipe inside the vault will be steel and will have welded or flanged connections with a coating of fusion bonded epoxy. The wall thickness will match that of the main outlet pipe. The diameter of this outlet was not modeled under this project and will match that of the existing outlet. The pipe material outside the vault connecting the steel pipe to the existing pipeline will consist of 24-inch C905 PVC DR32.5. This pipe has a pressure rating of 125 psi and a minimum wall thickness of 0.794 inches. Ductile iron fittings with mechanical joints and thrust blocks will be used to make required bends.

4.2.3 PacifiCorp 24-inch Pipe

The pipeline will be configured with a 6-inch bypass filling pipe to match the existing layout. PacifiCorp specifically requested the Endress Hauser Promag Electromagnetic Flowmeter to meet required material standards. The pipe inside the vault will be welded and flanged fusion-bonded epoxy-coated steel. The wall thickness will match that of the main outlet pipe. The diameter of the PacifiCorp outlet was not modeled under this project and will match the size of the existing outlet. The majority of the pipeline that conveys water to the Hunter Power Plant is a 26-inch fiberglass pipe. The dam rehabilitation requires a section of the existing fiberglass pipe to be removed for

4-3 11/6/2015

Page 10: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

the plunge pool. C905 PVC pipe is being used between the steel pipe in the vault and the existing fiberglass pipe. PacifiCorp has requested that the C905 PVC pipe be DR18 instead of the DR32.5 needed for the anticipated pressure for mechanical strength and durability. The DR18 has a pressure rating of 235 psi and a minimal wall thickness of 1.433 inches. Ductile iron fittings with mechanical joints and thrust blocks will be used to make required bends. Specific fittings are required to make the connection between the C905 PVC pipe and the fiberglass line. These fittings will be provided by PacifiCorp. The fittings consist of a spigot x flanged fitting and a JCM style 304 adapter. PacifiCorp has indicated that the fiberglass pipe has to be connected to at an existing bell end and there needs to be a minimum distance of 40 feet upstream of the adapter to the nearest bend.

4.2.4 Ferron Canal and Reservoir Company (2) 36-inch Pipes

The pipelines will be configured with a 6-inch bypass filling pipe to match the existing layout. Where possible, the existing pipes, valves and fittings will be salvaged and reused. The pipes inside the vault will be welded and flanged fusion-bonded epoxy-coated steel. The wall thickness will match that of the main outlet pipe. The diameter of these outlets was not modeled under this project and will match that of the existing outlet. The piping for these two outlets was constructed in 2000. The owner would like the valves and fittings reused in the new design. Bid items will be included for the refurbishment of these parts as well as for furnishing and installing new parts. Currently the water is not metered and the owner at this point does not have the need to place meters in the vault. The pipes outside the vault connecting the steel pipes to the existing pipelines will be 36-inch C905 PVC DR32.5. This pipe has a pressure rating of 125 psi and a minimum wall thickness of 0.794 inches. Ductile iron fittings with mechanical joints and thrust blocks will be used to make required bends.

4.2.5 Ferron Canal and Reservoir Company 12-inch Pipe

This pipeline services the stock water needs of the canal company. The pipe inside the vault will be welded and flanged fusion-bonded epoxy-coated steel. The wall thickness will match that of the main outlet pipe. The diameter of these outlets was not modeled under this project and will match that of the existing outlet.

4.2.6 Millsite Golf Course 8-inch Pipe

The golf course line will not be affected by this project.

4.3 Discharge Valve Replacement

The controlling factor in sizing the discharge valve is typically that it should be able to drain 90% of the reservoir’s capacity within 30 days (as required by Dam Safety). Also, the

4-4 11/6/2015

Page 11: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

replacement valve should be capable of supplying the maximum demand of the owners. To determine this maximum demand, the sum of the maximum flows ever recorded in each of the three ditches downstream of the outlet works (North, South, and Molen Ditches) were identified. Flow data from June 2002 to June 2014 were searched and the maximum flow reading for each ditch was identified. The maximum flows are 112.6 cfs, 128.7 cfs, and 112.6 cfs for the North Ditch, South Ditch, and Molen Ditch, respectively. The maximum flow in each of the ditches did not occur at the same time, thus making this a very conservative estimate. The total of these flows equals 353.9 cfs. The discharge needed to drain 90% of the reservoir in 30 days is 347 cfs. The selected valve should be able to discharge a minimum of 354 cfs to meet the maximum demand. The following factors were considered in the selection of a control valve: type of discharge (jet, spray, etc.), size available, cavitation, energy dissipation (into air or submerged), discharge velocity, ease and cost of operation and maintenance, and capital cost. The size of the discharge plunge pool and the resilience of the erosion control measures are largely dependent on the velocity and type of discharge. High velocity discharges require more space to contain the discharge as well as a resilient plunge pool and erosion mechanism to dissipate energy. The valves considered include the following: jet flow gate, fixed cone valves (HB valve and ring jet), and plunger valve. Because of space constraints at the Millsite Dam discharge area, valves emitting high velocity jets (jet flow gate and ring jet valve), and the valve with large, hollow, expanding spray discharge (HB valve without a valve chamber), were eliminated from consideration unless improvements could overcome these limitations. The spray discharge can be mitigated by installing the HB valve in a valve chamber. The plunger valve discharges a jet that is the same size as the valve. The plunger valve and the HB valve installed in a valve chamber were the most favorable alternatives for this project and these two options were studied further. In addition to a hood to confine the spray from the HB valve, a separate valve chamber is needed. The HB valve is very noisy and it is common for the valve chamber to be very wet. For this reason, the HB valve has the additional expense of a separate chamber. The HB valve has more moving parts and therefore has a greater need for maintenance and greater chance of failure when compared to the plunger valve. The discharge coefficient for a plunger valve is 0.58 and that of a HB valve is 0.85. As a result, a larger plunger valve is required to discharge the same flow as a HB valve. For this reason, a plunger valve is slightly more expensive than a HB valve with the additional hood and valve chamber. The plunger valve has been selected because it is a simple system, requires low maintenance, and has a longer design life. Also, the plunger valve is capable of dissipating some energy within the valve before free discharge into the air or plunge pool. The plunger valve is not as noisy as the HB valve and can be installed inside the pipe vault, thus allowing all of the outlets to be operated from a single vault. A short stub of pipe with a diameter greater than the plunger valve size will be installed at the outlet side of the valve to convey the discharge outside the vault. This downstream pipe will be large enough to facilitate the flow of air in the pipe. At the request of the Ferron Canal and Reservoir Company, two plunger valves were selected. The large valve was sized at 36 inches and will serve as the main discharge valve. The small valve sized at 10 inches was selected to adjust the discharge downstream so accurate flows are

4-5 11/6/2015

Page 12: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

delivered to the North, South, and Molen Ditches. With the two plunger valves, 90% of the reservoir’s capacity can be drained in 27 days. The valves will be fitted with a hood and housed in the vault to protect them from freezing during the winter season. The hood sizes and lengths are as follows:

• 36-inch plunger valve – 54-inch diameter pipe with a length of 54 inches • 10-inch plunger valve – 18-inch diameter pipe with a length of 18 inches

The valve sizing and capacity information in this Outlet Works Design Report are based on hydraulic calculations prepared by Water Resources. More detailed information about those hydraulic calculations used to size the new discharge valves and calculate the reservoir evacuation time is included in the outlet works section of the Millsite Dam Rehabilitation Design Report prepared by Water Resources.

4.4 Plunge Pool

Due to the high velocity possessed by the water to be discharged by the two plunger valves, a plunge pool was selected to provide energy dissipation before the discharged water enters the canal that provides flows to the North, South, and Molen Ditches. The pool is sized to handle the flows from the normal operation of the discharge valves, as well as worst-case scenario when the valves are opened fully to drain the Millsite Reservoir in the case of an emergency. The spill out lengths anticipated from the discharge valves is from 5 to 45 feet. The floor of the plunge pool will be lowered to create a depression where the spill out enters the pool. The depression will ensure that there is water in that section of the structure at all times. Energy dissipation will be accomplished primarily by the pool of water in the depression. The existing plunge pool is part of the canal and it was observed that the wave action from energy dissipation ended at about 80 feet downstream of the discharge structure. The new plunge pool length will be approximately 100 feet. This length is sufficient to accommodate the discharge jet from the outlet valves, plus wave action resulting from the energy dissipation in the pool. The pool will be lined with heavyweight nonwoven geotextile fabric and well-graded riprap with a mean diameter of 18 inches. The geotextile used will meet the minimum property requirements shown in Table 4.3.

Table 4.3: Heavyweight Nonwoven Geotextile Fabric Properties Property Minimum Value Tensile Strength (Grab) 250 lbs California Bearing Ratio (CBR) Puncture 625 lbs Trapezoidal Tear 100 lbs Apparent Opening Size (AOS) No. 100 U.S. Standard Sieve

Water Flow Rate 85 gpm/ft2

4-6 11/6/2015

Page 13: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

The geotextile fabric will act as a soil filtration media. The riprap and geotextile when properly installed will provide the necessary erosion control needed to prolong the life of the plunge pool and reduce the frequency of maintenance.

4.5 Miscellaneous Design

4.5.1 Thrust Blocks

Thrust blocking will be placed at each horizontal and vertical bend of the buried pipe. The amount of thrust blocking required at each bend was calculated by the following equation:

Thrust Block Soil Bearing Area =2PAsin𝜃𝜃2

𝑞𝑞𝑎𝑎

Where:

P = Working Pressure (psi) A = Soil Bearing Area (in2) q = Allowable Soil Strength (lbs/ft2) 𝜃𝜃 = Bend Angle (degrees)

At full capacity, the reservoir produces 115 feet of static head or 49.8 psi. A conservative value of 2,000 psi was used for the allowable soil strength due to a lack of geotechnical data. An additional factor of safety of 2.0 was incorporated into the design. The specifications will require a 4,000 psi minimum concrete mix for the thrust blocking. A cursory evaluation was made on the vault thrust blocking design of the improvements made in 2000. The amount of steel used seemed adequate for the design and the thrust blocking has successfully performed for 14 years. Based on this evaluation, it was determined to use the same thrust blocking design.

4-7 11/6/2015

Page 14: Appendix I - FCE Outlet Design Report (DRAFT)

Draft, Subject to Revision Millsite Dam Outlet Works Design Report

5 Conclusion and General Conditions

As mentioned previously, the relocation of the outlet works is part of the proposed Millsite Dam Rehabilitation Project. The proposed outlet works relocation has been designed to comply with current Dam Safety standards. This will improve the state of the existing system and improve the efficiency and system operation and maintenance. This improvement project will be beneficial for the stockholders, community, and surrounding area. Aging water distribution utilities and related appurtenances will be replaced with new ones, and pipes sizes will be increased in some cases to meet growing demand. These developments will ensure that the system will be able to maintain its purpose of delivering water stored in the reservoir for use by current and future users. Design recommendations are based on data available and collected as described in this report. Actual subsurface conditions may vary and could require design changes. If conditions vary during construction, any significant changes or design issues will be presented to Dam Safety for review and approval.

5-1 11/6/2015

Page 15: Appendix I - FCE Outlet Design Report (DRAFT)

APPENDIX A

Hydraulic Model Data

Page 16: Appendix I - FCE Outlet Design Report (DRAFT)

Figure A-1: Hydraulic Model Schematic, Reservoir WSE @ 6219 Feet (Source: Bentley WaterCAD Hydraulic Model)

Page 17: Appendix I - FCE Outlet Design Report (DRAFT)

Figure A-2: Junction Table, Reservoir WSE @ 6219 Feet (Source: Bentley WaterCAD Hydraulic Model)

Figure A-3: Pipe Table, Reservoir WSE @ 6219 Feet (Source: Bentley WaterCAD Hydraulic Model)

Page 18: Appendix I - FCE Outlet Design Report (DRAFT)

Figure A-4: Hydraulic Model Schematic, Reservoir WSE @ 6121.62 Feet (Source: Bentley WaterCAD Hydraulic Model)

Page 19: Appendix I - FCE Outlet Design Report (DRAFT)

Figure A-5: Junction Table, Reservoir WSE @ 6121.62 Feet (Source: Bentley WaterCAD Hydraulic Model)

Figure A-6: Pipe Table, Reservoir WSE @ 6121.62 Feet (Source: Bentley WaterCAD Hydraulic Model)

Page 20: Appendix I - FCE Outlet Design Report (DRAFT)

APPENDIX B

Structural Design Data

Page 21: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Millsite Outlet VaultRoof Loads

Dead Loads for RoofRoof Snow Load Calculation (From ASCE 7 pg. 90‐91) ASCE 7 = ASCE Standard Minimum Design Loads for Buildings and Other Structures

Terrain Category C C for open terrain with scattered obstructions (pg 28‐29)Exposure: Partial

Snow Exposure (Ce) 1.0 Table 7‐2 (pg 90) 1.0 for Terrain of C and Partial ExposureThermal Factor (Ct) 1.1 Table 7‐3 (pg 91) 1.2 for unheated structures

Snow Load Import (Is) 1.2 Table 7‐4 (pg 91) 1.2 for water treatment facilities and fireflow storage facilities

Snow load Calculation (From Utah Snow Load Calculation)Base Snow Load (Po) 43 psf Table 1608.1.2 (a) ‐ http://le.utah.gov/~code/TITLE15A/htm/15A03_010700.htm

Change in Snow Load (S) 63 psf Table 1608.1.2 (a) ‐ http://www.rules.utah.gov/publicat/code/r156/r156‐56.htmAo 6 Elev./1,000 Base Ground Snow Elev (Table 1608.1.2)A 6.12 Elev./1,000 Elevation at site (ft/1000)

Ground Snow Load (Pg) 43.7 psf

Roof Snow Load (Pf) 40.3 psf Pf = 0.7 Ce Ct Is Pg

Factored Snow Load 52.4 psf 1.3 * snow load (1.3 Sanitary Coefficient from ACI350 for crack control in slabs)Snow Load for SpSlab Input

Soil Load on RoofSoil Density 124.3 psfSoil Depth 0 ft

Factored Soil Load 0 psf 1.3*soil load on roof

Steel RoofSteel Load 49 pcf

in ACI 318‐05 Table 9.5(c) pg.115‐assumes fy=60ksi with drop panels12 in

1.00 ftFactored Steel Load 63.7 psf 1.3*concrete load from roof

Total Dead without Snow 63.7 psfTotal Dead with Snow 116.1 psf total dead load on roof

Dead Load without Steel 52.4 psf

Live Loads for RoofLive Loads

Live Load 20.0 psf IBC table 1607.1 pg.285‐6 Ordinary Flat RoofFactored Live Load 26.0 psf

Total Live Load 26.0 psf Total live load for ADOSS

Factored Loading Conditions1 w=1.4D+1.7L 206.8 psf Condition #1

Seismic Importance (I) 1.25 no units 1.25 for water treatment facilities and fireflow storage facilitiesMapped Accel (Ss) 0.39 %g

Franson Civil Engineers

Page 22: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Site Coeff (Fa) 1.6 no unitsSms=Ss*Fa 0.6 %g Mapped Accel*Site Coeff.

Sds=2/3Sms 0.4 %gV=0.3(Sds) W I 22.2 psf? (Equation 9.14.5.2 ASCE 7.0 pg 192)

E=1.1V 24.4 psf?2 w=0.75(1.4D+1.7L+1.7E) 186.2 psf Condition #2

3 w=0.9D+1.3L 138.3 psf Condition #3

4 w=1.4D 89.2 psf Condition #4

5 w=1.2D+1.6L+0.5(Snow) 144.3 psf Condition #5

6 w=1.2D+1.6(Snow)+0.5L 173.4 psf Condition #6

7 w=1.2D+0.5L+0.5(Snow) 115.7 psf Condition #7

8 w=1.2D+1.0E+0.5(Lunf)+0.2(Snow) 121.3 psf Condition #8

9 w=0.9D+1.0E 81.7 psf Condition #9

Max Loading 206.8 psf Controlling Condition‐Check against SpSlab Dead Load for SpSlab 17.0 psf If dead load is negative, omit from SpSlab. Add this value to roof soil load.

Franson Civil Engineers

Page 23: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

SpSlab default Loading Conditions

Franson Civil Engineers

Page 24: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Self Dead Live Snow Wind Earthquake63.7 26.0 52.4 1.6 24.4

U1 1.4 1.4 0 0 0 0 89.2U2 1.2 1.2 1.6 0.5 0 0 144.3U3 1.2 1.2 1 1.6 0 0 186.4U4 1.2 1.2 0 1.6 0.8 0 161.6U5 1.2 1.2 0 1.6 ‐0.8 0 159.1U6 1.2 1.2 1 0.5 1.6 0 131.2U7 1.2 1.2 1 0.5 ‐1.6 0 126.2U8 0.9 0.9 0 0 1.6 0 59.8U9 0.9 0.9 0 0 ‐1.6 0 54.8U10 1.2 1.2 1 0.2 0 1 137.3U11 1.2 1.2 1 0.2 0 ‐1 88.5U12 0.9 0.9 0 0 0 1 81.7U13 0.9 0.9 0 0 0 ‐1 32.9

186.4 Max SPSlab no dead load included206.8 Max Hand Calcs all loadings, including dead load.

20.5 psf difference is the dead load17 psf unfactor the dead load for insertion into SpSlab

Franson Civil Engineers

Page 25: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Wall 2 DesignReinforced Concrete Tank - Valve vault design

(Based on design in PCA Publication ‐ Rectangular Concrete Tanks)Use this spreadsheet for only one loading condition at a time, either:

(1) Tank is full of water with no external soil load; or(2) Tank is empty with only soil as an external load

If number (1) is used, then there are no surcharge loads to be considered, surcharge only appliesto external soil load conditions.

Soil (‐)/Water (+) Unit Weight 124 pcf Water unit weight is 62.4 pcfLateral Pressure coefficient (Ka at rest) 0.39 If water then use 1.0, otherwise Ko for soilConcrete Strength (f'c) 5,000 psiSteel Tensile Strength (fy) 60,000 psiSanitary Coefficient (1.3 or 1.0) 1.0 Use 1.3 for water retaining structures only, not valve vaults

Vault Dimensionsa ‐ Height (floor to top of wall) 12.916667 ftb ‐ Long Side (span, middle support) 19.333333 ftc ‐ Short Side (span, middle support) 19.333333 ft

b/a (long wall) 1.50c/a (short wall) 1.50

Dead Loads for RoofRoof Snow Load Calculation (From ASCE 7 pg. 90‐91) ASCE 7 = ASCE Standard Minimum Design Loads for Buildings and Other Structures

Terrain Category C C for open terrain with scattered obstructions (pg 28‐29)Exposure: Partial

Snow Exposure (Ce) 1.0 Table 7‐2 (pg 90) 1.0 for Terrain of C and Partial ExposureThermal Factor (Ct) 1.1 Table 7‐3 (pg 91) 1.2 for unheated structures

Snow Load Import (Is) 1.2 Table 7‐4 (pg 91) 1.2 for water treatment facilities and fireflow storage facilities

Snow load Calculation (From Utah Snow Load Calculation)Base Snow Load (Po) 43 psf Table 1608.1.2 (a) ‐ http://le.utah.gov/~code/TITLE15A/htm/15A03_010700.htm

Change in Snow Load (S) 63 psf Table 1608.1.2 (a) ‐ http://www.rules.utah.gov/publicat/code/r156/r156‐56.htmAo 6 Elev./1,000 Base Ground Snow Elev (Table 1608.1.2)A 6.12 Elev./1,000 Elevation at site (ft/1000)

Ground Snow Load (Pg) 43.7 psf

Roof Snow Load (Pf) 40.3 psf Pf = 0.7 Ce Ct Is Pg

Factored Snow Load 52.4 psf 1.3 * snow load (1.3 Sanitary Coefficient from ACI350 for crack control in slabs)

Soil or water load height (floor to top of wall max) 11.0 ftSoil surcharge load height (above top of wall) 0.0 ftExtra soil surcharge (Snow or other load) 532.0 psf

q tri = Ka W a 532.0q rect = Ka W a 207.5

(a) Design for Shear ForcesUse Shear coefficients found on first page of load cases in Chapter 2

Case 3 (pg 2-17) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (pg 2‐23) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 8 (pg 2‐47) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 9 (pg 2‐53) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

Shear Coefficients (Cs)

Case 3 or 4 (Triangular Load) Case 8 or 9 (Rectangular Load‐surcharge)

For b/a (long wall) 1.50 For b/a (long wall) 1.50

Bottom ‐ Mid 0.4 Bottom ‐ Mid 0.66Side Max 0.26 Side Max 0.95Side Mid 0.26 Side Mid 0.54

For c/a (short wall) 1.50 For c/a (short wall) 1.50

Bottom ‐ Mid 0.4 Bottom ‐ Mid 0.66Side Max 0.26 Side Max 0.95Side Mid 0.26 Side Mid 0.54

(1) Check shear at bottom of the wallLong Wall

V = Cs x q x afor both rectangular and triangular loadsShear Triangular Load Shear Rectangular LoadBottom Middle 2,748 lb Bottom Middle 1,769 lbSide Maximum 1,786 lb Side Maximum 2,546 lbSide Middle 1,786 lb Side Middle 1,447 lb

Total ShearBottom Middle 4,517.23 lbSide Maximum 4,332.45 lbSide Middle 3,233.67 lb

Vu = 1.7 x Vmax 7,679 lb

Franson Civil Engineers

Page 26: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Allowable Shear ForceWall Thickness 10 inchesd =thickness ‐ 2" cover ‐1/2 bar thickness

7.6875 inches

Shear Capacity Vc = 0.85 x 2 x (f'c)^0.5 x12 x d11,089 lbs Thickness okay

Short WallV = Cs x q x afor both rectangular and triangular loadsShear Triangular Load Shear Rectangular LoadBottom Middle 2,748 lb Bottom Middle 1,769 lbSide Maximum 1,786 lb Side Maximum 2,546 lbSide Middle 1,786 lb Side Middle 1,447 lb

Total ShearBottom Middle 4,517.23 lbSide Maximum 4,332.45 lbSide Middle 3,233.67 lb

Vu = 1.7 x Vmax 7,679 lb

Allowable Shear ForceWall Thickness 10 inchesd =thickness ‐ 2" cover ‐1/2 bar thickness

7.6875 inches

Shear Capacity Vc = 0.85 x 2 x (f'c)^0.5 x12 x d11,089 lbs Thickness okay

(2) Check shear at side edge of long wall

V = Cs x q x afor both rectangular and triangular loadsShear Triangular Load Shear Rectangular Load

Side Maximum 1,786 lb Side Maximum 2,546 lb

Total ShearSide Maximum 4,332 lb

Vu = 1.7 x Vmax 7,365 lb

Since the long wall is subject to simultaneous tensile force due to shear in the short side wall,the allowable shear is given by:

ǿVc =0.85 x 2 (1 + Nu/500 Ag) (f'c)^0.5 b dwhere Nu = tension in long wall due to shear in the short wall

Shear in short side wall:

V = Cs x q x afor both rectangular and triangular loads (short wall)Shear Triangular Load Shear Rectangular Load

Side Maximum 1,786 lb Side Maximum 2,546 lb

Total ShearSide Maximum 4,332 lb

Nu = ‐1.7 x Vmax ‐7,365 lb

Ag = 120 in2

ǿVc =  9,728 lb Thickness okay

(b) Design for Vertical Bending Moments (determine vertical steel)For rectangular tanks, use factors found in Chapter 3 for b/a and c/a.  For square tanks, use factors from Chapter 2 b/a = c/a.

For square tanks use Chapter 2Case 3 (starts on pg 2-17) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 2‐23) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 8  (starts on pg 2‐47) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 9 (starts on pg 2‐53) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

For rectangular tanks use Chapter 3Case 3 (starts on pg 3-25) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 3‐35) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 7 (starts on pg 3‐65) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 8 (starts on pg 3‐75) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

Vertical Design Bending Moment

M x or z = M Coef. X q a2/1000Exterior Soil (‐1), Interior Water (1) ‐1

Franson Civil Engineers

Page 27: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

qtri a2/1000 =  ‐0.77 in‐kips qrect a2/1000 =  ‐0.42 in‐kips

Mu = 1.3 x 1.7 x Mx

(only use 1.3 if sanitary structure, otherwise use 1[input at beginning of spreadsheet])

Mu tri = ‐1.31 in‐kips Mu rect = ‐0.71 in‐kips

Triangular Loads (Case 3 or 4)Long Wall Short WallMax Mx (pos and neg) Max Mz (pos and neg)

pos 15 pos 21neg ‐61 neg ‐44

Rectangular Loads (Case 7 or 8 (rect tank), 8 or 9 (square tank))Long Wall Short WallMax Mx (pos and neg) Max Mz (pos and neg)

pos 25 pos 81neg ‐124 neg ‐181

Exterior (+) and Interior (‐) Face LoadsLong Wall Short WallMux =  167.66 in‐kips Muz =  185.59 in‐kipsMux =  ‐37.35 in‐kips Muz =  ‐84.77 in‐kips

Exterior Face Long WallMu/(ǿ f'c b d2) = 0.0525

w = 0.0543 from Table A‐1 0.0523 0.0525 0.05320.2645

As = w b d (f'c/fy) 0.417 in2/ft Calculated As Requirement 0.0540 0.0543 0.0550As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.556 in2/ft ACI 10.5.2 5 Bar SizeAs min = 0.417 in2/ft Area of Steel Required 0.417 in2/ft

17#5@17 in O.C.

Exterior Face Short Wall 0.433 in2/ftMu/(ǿ f'c b d2) = 0.0582 Steel okay

w = 0.0603 from Table A‐1 0.0579 0.0582 0.05880.2846

As = w b d (f'c/fy) 0.4634 in2/ft Calculated As Requirement 0.0600 0.0603 0.0610As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.618 in2/ft ACI 10.5.2As min = 0.463 in2/ft Area of Steel Required 0.463 in2/ft

15Interior Face Long Wall #5@15 in O.C.Mu/(ǿ f'c b d2) = 0.0117 0.491 in2/ft

w = 0.0118 from Table A‐1 Steel okay 0.0109 0.0117 0.01190.8040

As = w b d (f'c/fy) 0.091 in2/ft Calculated As Requirement 0.0110 0.0118 0.0120As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.121 in2/ft ACI 10.5.2As min = 0.121 in2/ft Area of Steel Required 0.121 in2/ft

60#5@60 in O.C.

Interior Face Short Wall 0.123 in2/ftMu/(ǿ f'c b d2) = 0.0266 Steel okay

w = 0.0270 from Table A‐1 0.0256 0.0266 0.02660.9644

As = w b d (f'c/fy) 0.2073 in2/ft Calculated As Requirement 0.0260 0.0270 0.0270As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.276 in2/ft ACI 10.5.2As min = 0.276 in2/ft Area of Steel Required 0.276 in2/ft

26#5@26 in O.C.

(c) Design for Horizontal Bending Moments (determine horizontal steel) 0.283 in2/ftFor rectangular tanks, use factors found in Chapter 3 for b/a and c/a.   Steel okayFor square tanks, use factors from Chapter 2 b/a = c/a.

For square tanks use Chapter 2Case 3 (starts on pg 2-17) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 2‐23) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 8  (starts on pg 2‐47) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 9 (starts on pg 2‐53) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

For rectangular tanks use Chapter 3Case 3 (starts on pg 3-25) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 3‐35) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 7 (starts on pg 3‐65) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 8 (starts on pg 3‐75) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

Horizontal Design Bending Moment

M y = M Coef. X q a2/1000Exterior Soil (‐1), Interior Water (1) ‐1

Franson Civil Engineers

Page 28: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

qtri a2/1000 =  ‐0.772 in‐kips qrect a2/1000 =  ‐0.415 in‐kips

Mu = 1.3 x 1.7 x Mx

(only use 1.3 if sanitary structure, otherwise use 1[input at beginning of spreadsheet])

Mu tri = ‐1.313 in‐kips Mu rect = ‐0.706 in‐kips

Triangular Loads (Case 3 or 4)Long Wall Short WallMax My (pos and neg) Max My (pos and neg)

pos 21 pos 21neg ‐44 neg ‐44

Rectangular Loads (Case 7 or 8 (rect tank), 8 or 9 (square tank))Long Wall Short WallMax My (pos and neg) Max My (pos and neg)

pos 81 pos 81neg ‐181 neg ‐181

Exterior (+) and Interior (‐) Face LoadsLong Wall Short WallMuy =  185.59 in‐kips Muy =  185.59 in‐kipsMuy =  ‐84.77 in‐kips Muy =  ‐84.77 in‐kips

Exterior Face Long WallMu/(ǿ f'c b d2) = 0.0582

w = 0.0603 from Table A‐1 0.0579 0.0582 0.05880.2846

As = w b d (f'c/fy) 0.463 in2/ft Calculated As Requirement 0.0600 0.0603 0.0610As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.618 in2/ft ACI 10.5.2As min = 0.463 in2/ft Area of Steel Required 0.463 in2/ft

15#5@15 in O.C.

Exterior Face Short Wall 0.491 in2/ftMu/(ǿ f'c b d2) = 0.0582 Steel okay

w = 0.0603 from Table A‐1 0.0579 0.0582 0.05880.2846

As = w b d (f'c/fy) 0.4634 in2/ft Calculated As Requirement 0.0600 0.0603 0.0610As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.618 in2/ft ACI 10.5.2As min = 0.463 in2/ft Area of Steel Required 0.463 in2/ft

15Interior Face Long Wall #5@15 in O.C.Mu/(ǿ f'c b d2) = 0.0266 0.491 in2/ft

w = 0.0270 from Table A‐1 Steel okay 0.0256 0.0266 0.02660.9644

As = w b d (f'c/fy) 0.207 in2/ft Calculated As Requirement 0.0260 0.0270 0.0270As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.276 in2/ft ACI 10.5.2As min = 0.276 in2/ft Area of Steel Required 0.276 in2/ft

26#5@26 in O.C.

Interior Face Short Wall 0.283 in2/ftMu/(ǿ f'c b d2) = 0.0266 Steel okay

w = 0.0270 from Table A‐1 0.0256 0.0266 0.02660.9644

As = w b d (f'c/fy) 0.2073 in2/ft Calculated As Requirement 0.0260 0.0270 0.0270As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.276 in2/ft ACI 10.5.2As min = 0.276 in2/ft Area of Steel Required 0.276 in2/ft

26#5@26 in O.C.

Steel Required for Direct Tension in Long Wall (Only for water load on inside of structure) 0.283 in2/ftThis is added to horizontal steel if required Steel okay

Is this analysis for water inside of structure? (1 = yes, 0 = no) 0Factored Tension (Nu) = 1.65 X Nu 0 lbRequired Steel for tension = Nu/(0.9 fy) 0.000 in2/ft

Franson Civil Engineers

Page 29: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Concrete f'c = 5000 psiRebar Fy = 60000 psiUnit Weight = 150 lb/ft³10 in

7.33 ft

5.5 ft1 ft

12 in

14 ft 13

ft

36 in

1 ft

1 ft

#4 @ 10 in (S&T)#6 @ 10 in#4 @ 10 in (S&T)#4 @ 10 in#7 @ 10 in (lapped dowels)

Heel Bars: #4 @ 7 inToe Bars: #6 @ 12 inFooting S/T Bars: #4 @ 12 in

36 in

#4 @ 10 in (S&T)#6 @ 10 in#4 @ 10 in (S&T)#4 @ 10 in

Design Detail

Check SummaryRatio Check Provided Required Combination

----- Stability Checks -----1.291 Overturning 1.16 1.50 0.6D + 1.0H0.342 Bearing Pressure 3000 psf 1026 psf 1.0D + 1.0L + 0.6H0.765 Bearing Eccentricity 11.22 in 14.67 in 1.0D + 1.0L + 0.6H

----- Toe Checks -----0.352 Shear 10.98 k/ft 3.86 k/ft 1.4D0.720 Moment 16.57 ft·k/ft 11.92 ft·k/ft 1.2D + 1.6L + 1.6H0.108 Min Strain 0.0370 0.0040 1.2D + 1.6L + 1.6H0.000 Min Steel 0.04 in² 0 in² 1.2D + 1.6L + 1.6H0.632 Development 19 in 12 in 1.2D + 1.6L + 1.6H0.667 S&T Max Spacing 12 in 18 in 1.2D + 1.6L + 1.6H0.648 S&T Min Rho 0.0028 0.0018 1.2D + 1.6L + 1.6H

----- Heel Checks -----0.152 Shear 12.41 k/ft 1.89 k/ft 1.4D0.055 Moment 14.73 ft·k/ft 0.81 ft·k/ft 1.2D + 1.6L + 1.6H0.073 Min Strain 0.0550 0.0040 1.2D + 1.6L + 1.6H0.000 Min Steel 0.03 in² 0 in² 1.2D + 1.6L + 1.6H0.162 Development 74 in 12 in 1.2D + 1.6L + 1.6H0.667 S&T Max Spacing 12 in 18 in 1.2D + 1.6L + 1.6H0.648 S&T Min Rho 0.0028 0.0018 1.2D + 1.6L + 1.6H

----- Stem Checks -----0.664 Moment 23.13 ft·k/ft 15.36 ft·k/ft 1.2D + 1.6L + 1.6H0.399 Shear 9.63 k/ft 3.84 k/ft 1.2D + 1.6L + 1.6H0.151 Max Steel 0.0265 0.0040 1.2D + 1.6L + 1.6H0.000 Min Steel 0 in²/in 0 in²/in 1.2D + 1.6L + 1.6H0.778 Base Development 9 in 7 in 1.2D + 1.6L + 1.6H0.804 Lap Splice Length 36 in 28.96 in 1.2D + 1.6L + 1.6H0.000 Lap Splice Spacing 0 in 5.79 in 1.2D + 1.6L + 1.6H0.500 Horz Bar Rho 0.0040 0.0020 1.2D + 1.6L + 1.6H0.556 Horz Bar Spacing 10 in 18 in 1.2D + 1.6L + 1.6H

Criteria

Building Code IBC 2006Concrete Load Combs IBC 2003/06 (Str)Masonry Load Combs MSJC 02/05 (ASD)Stability Load Combs ASCE 7-10 (ASD)Restrained Against Sliding YesNeglect Bearing At Heel YesUse Vert. Comp. for OT NoUse Vert. Comp. for Sliding NoUse Vert. Comp. for Bearing YesUse Surcharge for Sliding & OT YesUse Surcharge for Bearing YesNeglect Soil Over Toe NoNeglect Backfill Wt. for Coulomb NoFactor Soil Weight As Dead YesUse Passive Force for OT YesAssume Pressure To Top YesExtend Backfill Pressure To Key Bottom NoUse Toe Passive Pressure for Bearing NoRequired F.S. for OT 1.50Required F.S. for Sliding 1.50Has Different Safety Factors for Seismic NoAllowable Bearing Pressure 3000 psfReq'd Bearing Location Middle thirdWall Friction Angle 25°Friction Coefficent 0.35Soil Reaction Modulus 172800 lb/ft³

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 1 of 24 Thursday 11/05/15 3:03 PM

Page 30: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Loads

12 ft

1 ft

13 ft

12 ft

1 ft

γ = 100 lb/ft³φ = 30°c = 0 psf

1 ft

γ = 100 lb/ft³φ = 30°c = 0 psf

DL=0.29 k/ft, LL=0.05 k/ft Loading Options/AssumptionsPassive pressure neglects top 0 ft of soil.

Load Combinations

IBC 2003/06 (Str) 1.2D + 1.6L + 1.6H 1.2D + 0.5L 0.9D + 1.6H 1.4D 1.2D

Backfill Pressure

12 ft

1 ft

13 ft

12 ft

1 ft

γ = 100 lb/ft³φ = 30°c = 0 psf -433.33 psf

13 ft

234.7 lb/in

13 ft

4.33

ft

-400 psf

200 lb/in

4 ft

Rankine Active Earth Pressure Theory

Ka tan² 45° φ2 - tan ² 45° 30°

2 - 0.3333 = = =

σa γ H Ka 2 c Ka - 100 lb ft³ / 13 ft 0.3333 2 0 psf 0.3333 - 433.3 psf = = = αP α 0° 0° resultant force angle with horizontal = = =

Lateral Earth Pressure

σa γ H Ka 2 c Ka - 100 lb ft³ / 12 ft 0.3333 2 0 psf 0.3333 - 400 psf = = = αP α 0° 0° resultant force angle with horizontal = = =

Lateral Earth Pressure (stem only)

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 2 of 24 Thursday 11/05/15 3:03 PM

Page 31: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Passive Pressure1

ft

γ = 100 lb/ft³φ = 30°c = 0 psf

300 psf 1 ft 12.5 lb/in

0.33 ft

Rankine Passive Earth Pressure Theory

Kp tan² 45° φ2 + tan ² 45° 30°

2 + 3.0 = = =

σp γ H Kp 2 c Kp + 100 lb ft³ / 1 ft 3.0 2 0 psf 3.0 + 300 psf = = =

Lateral Earth Pressure

Wall/Soil Weights

91.67 lb/in

135.4 lb/in 100 lb/in

0 lb/in

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 3 of 24 Thursday 11/05/15 3:03 PM

Page 32: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Bearing Pressure

1026 psf

136.7 psf

355.3 lb/in

2.73 ft

e = 11.22 in

124.4 lb/in

F μ R 0.350 355.3 lb in / 124.4 lb in / = = = Friction

Bearing Pressure CalculationContributing Forces

Vert Force ...offset Horz Force ...offset OT MomentBackfill Pressure -0 lb/in - -234.72 lb/in 4.33 ft 146467 in·lb/ftAxial Dead Load -24.08 lb/in 5.92 ft 0 lb/in - -20519 in·lb/ftAxial Live Load -4.17 lb/in 5.92 ft 0 lb/in - -3550 in·lb/ftFooting Weight -91.67 lb/in 3.67 ft 0 lb/in - -48400 in·lb/ftStem Weight -135.42 lb/in 5.92 ft 0 lb/in - -115375 in·lb/ftBackfill Weight -100 lb/in 6.83 ft 0 lb/in - -98400 in·lb/ftSoil over toe Weight -0 lb/in - 0 lb/in - -0 in·lb/ft

-355.33 lb/in -139777.33 in·lb/ft139777.33 in·lb ft / -

355.33 lb in / - 2.73 ft =

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 4 of 24 Thursday 11/05/15 3:03 PM

Page 33: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Overturning CheckOverturning Moments

Force Distance MomentBackfill pressure (horz) 140.8 lb/in 4.33 ft 87880 in·lb/ft

Total: 87880 in·lb/ftResisting Moments

Force Distance MomentPassive pressure @ toe 7.5 lb/in 0.33 ft 360 in·lb/ftAxial dead load -24.08 lb/in 5.92 ft 20519 in·lb/ftFooting Weight -91.67 lb/in 3.67 ft 48400 in·lb/ftStem Weight -135.42 lb/in 5.92 ft 115375 in·lb/ftBackfill Weight -100 lb/in 6.83 ft 98400 in·lb/ftSoil over toe Weight -0 lb/in 2.75 ft 0 in·lb/ft

Total: 283054 in·lb/ft

F.S. RMOTM 283054 in·lb ft /

87880 in·lb ft / 3.221 > 1.50 OK = = =

Sliding CheckCheck not performed; restrained against sliding.

Bearing Capacity CheckBearing pressure < allowable (1026 psf < 3000 psf) - OKBearing resultant eccentricity < allowable (11.22 in < 14.67 in) - OK

Wall Top Displacement(based on unfactored service loads)

Deflection due to stem flexural displacement 0.131 inDeflection due to rotation from settlement 0.11 inTotal deflection at top of wall (positive towards toe) 0.24 in

Stability Checks [1.0D + 1.0L + 0.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 5 of 24 Thursday 11/05/15 3:03 PM

Page 34: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Overturning CheckOverturning Moments

Force Distance MomentBackfill pressure (horz) 234.7 lb/in 4.33 ft 146467 in·lb/ft

Total: 146467 in·lb/ftResisting Moments

Force Distance MomentPassive pressure @ toe 12.5 lb/in 0.33 ft 600 in·lb/ftAxial dead load -14.45 lb/in 5.92 ft 12311 in·lb/ftFooting Weight -55 lb/in 3.67 ft 29040 in·lb/ftStem Weight -81.25 lb/in 5.92 ft 69225 in·lb/ftBackfill Weight -60 lb/in 6.83 ft 59040 in·lb/ftSoil over toe Weight -0 lb/in 2.75 ft 0 in·lb/ft

Total: 170216 in·lb/ft

F.S. RMOTM 170216 in·lb ft /

146467 in·lb ft / 1.162 < 1.50 FAILS = = =

Sliding CheckCheck not performed; restrained against sliding.

Bearing Capacity CheckBearing pressure < allowable (608.5 psf < 3000 psf) - OKBearing resultant eccentricity < allowable (11.22 in < 14.67 in) - OK

Wall Top Displacement(based on unfactored service loads)

Deflection due to stem flexural displacement 0.131 inDeflection due to rotation from settlement 0.11 inTotal deflection at top of wall (positive towards toe) 0.24 in

Stability Checks [0.6D + 1.0H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 6 of 24 Thursday 11/05/15 3:03 PM

Page 35: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

13

11.7

10.4

9.1

7.8

6.5

5.2

3.9

2.6

1.3

0-25 -19.17 -13.33 -7.5 -1.67 4.17 10Moment (ft·k/ft)

Offset (ft)

Moment

a As fy 0.85 F'c 0.06 in² in / 60000 psi

0.85 5000 psi 0.85 in = = =

φMn φ As fy d a 2 / - 0.90 0.06 in² in / 60000 psi 7.56 in 0.85 in 2 / - 23.13 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 0 ft from base [Negative bending]

a As fy 0.85 F'c 0.02 in² in / 60000 psi

0.85 5000 psi 0.28 in = = =

φMn φ As fy d a 2 / - 0.90 0.02 in² in / 60000 psi 7.75 in 0.28 in 2 / - 8.22 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 0 ft from base [Positive bending]

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

φMn φ As fy d a 2 / - 0.90 0.04 in² in / 60000 psi 7.63 in 0.62 in 2 / - 17.38 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 3 ft from base [Negative bending]

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

φMn φ As fy d a 2 / - 0.90 0.04 in² in / 60000 psi 7.63 in 0.62 in 2 / - 17.38 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 11.73 ft from base [Negative bending]

a As fy 0.85 F'c 0.02 in² in / 60000 psi

0.85 5000 psi 0.28 in = = =

φMn φ As fy d a 2 / - 0.90 0.02 in² in / 60000 psi 7.75 in 0.28 in 2 / - 8.22 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 12 ft from base [Positive bending]

a As fy 0.85 F'c 0 in² in / 60000 psi

0.85 5000 psi 0 in = = =

φMn φ As fy d a 2 / - 0.90 0 in² in / 60000 psi 7.63 in 0 in 2 / - 0 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 13 ft from base [Negative bending]

a As fy 0.85 F'c 0 in² in / 60000 psi

0.85 5000 psi 0 in = = =

φMn φ As fy d a 2 / - 0.90 0 in² in / 60000 psi 7.75 in 0 in 2 / - 0 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 13 ft from base [Positive bending]

Stem Flexural Capacity

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 7 of 24 Thursday 11/05/15 3:03 PM

Page 36: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

13

11.7

10.4

9.1

7.8

6.5

5.2

3.9

2.6

1.3

0-10 -6.67 -3.33 0 3.33 6.67 10Shear (k/ft)

Offset (ft)

Shear

Vc 2 F'c d 2 5000 psi 7.56 in 12.83 k ft / = = = φVn φ Vc 0.750 12.83 k ft / 9.63 k ft / = = =

Shear Capacity (ACI 318-05 11.1.1, 11.3.1) @ 0 ft from base [Positive shear]

Vc 2 F'c d 2 5000 psi 7.56 in 12.83 k ft / = = = φVn φ Vc 0.750 12.83 k ft / 9.63 k ft / = = =

Shear Capacity (ACI 318-05 11.1.1, 11.3.1) @ 0 ft from base [Negative shear]

Vc 2 F'c d 2 5000 psi 7.63 in 12.94 k ft / = = = φVn φ Vc 0.750 12.94 k ft / 9.71 k ft / = = =

Shear Capacity (ACI 318-05 11.1.1, 11.3.1) @ 13 ft from base [Positive shear]

Vc 2 F'c d 2 5000 psi 7.63 in 12.94 k ft / = = = φVn φ Vc 0.750 12.94 k ft / 9.71 k ft / = = =

Shear Capacity (ACI 318-05 11.1.1, 11.3.1) @ 13 ft from base [Negative shear]

Stem Shear Capacity

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 8 of 24 Thursday 11/05/15 3:03 PM

Page 37: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

ψe 1.0 uncoated hooked bars = λ 1.0 normal weight concrete =

ldh 0.02 ψe λfyF'c

db 0.02 1.0 1.0 60000 psi5000 psi

0.75 in 12.73 in = = =

Factoring ldh by the 0.7 multiplier of 12.5.3 a : ldh 8.91 in = 8 db 8 0.75 in 6.0 minimum limit, does not control = =

Main vertical stem bars (bottom end) - Development Length Calculation (ACI 318-05 12.2.3, 12.5)

ψt 1.0 bars are not horizontal = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 10 in 2 / 5 in = = cover db 2 / + 2 in 0.75 in 2 / + 2.38 in = = cb 2.38 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 2.38 in 0.0 +

0.75 in 3.1667 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 0.80 1.0 2.5 0.75 in 15.27 in = = =

Main vertical stem bars (top end) - Development Length Calculation (ACI 318-05 12.2.3, 12.5)

ψt 1.0 bars are not horizontal = ψe 1.0 bar not epoxy coated = ψs 1.0 bars are #7 or larger = λ 1.0 normal weight concrete = s 2 / 10 in 2 / 5 in = = cover db 2 / + 2 in 0.88 in 2 / + 2.44 in = = cb 2.44 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 2.44 in 0.0 +

0.88 in 2.7857 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 1.0 1.0 2.5 0.88 in 22.27 in = = =

Dowels for vertical stem bars (top end) - Development Length Calculation (ACI 318-05 12.2.3, 12.5)

ψe 1.0 uncoated hooked bars = λ 1.0 normal weight concrete =

ldh 0.02 ψe λfyF'c

db 0.02 1.0 1.0 60000 psi5000 psi

0.5 in 8.49 in = = =

Factoring ldh by the 0.7 multiplier of 12.5.3 a : ldh 5.94 in = 8 db 8 0.5 in 4.0 minimum limit, does not control = = 6 inch minimum controls

2nd curtain vertical bars (bottom end) - Development Length Calculation (ACI 318-05 12.2.3, 12.5)

Stem Development/Lap Length Calculations

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 9 of 24 Thursday 11/05/15 3:03 PM

Page 38: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

ψt 1.0 bars are not horizontal = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 10 in 2 / 5 in = = cover db 2 / + 2 in 0.5 in 2 / + 2.25 in = = cb 2.25 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 2.25 in 0.0 +

0.5 in 4.50 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 0.80 1.0 2.5 0.5 in 10.18 in = = =

12 inch minimum controls

2nd curtain vertical bars (top end) - Development Length Calculation (ACI 318-05 12.2.3, 12.5)

Stem Development/Lap Length Calculations (continued)

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 10 of 24 Thursday 11/05/15 3:03 PM

Page 39: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Design moment Mu for toe need not exceed moment at stem base:Mtoe 11.92 ft·k ft < Mstem / 15.36 ft·k ft / = = Mu 11.92 ft·k ft stem moment does not control / =

Controlling Moment

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

φMn φ As fy d a 2 / - 0.90 0.04 in² in / 60000 psi 8.63 in 0.52 in 2 / - 16.57 ft·k ft / = = = φMn 16.57 ft·k ft ≥ Mu / 11.92 ft·k ft / = =

Flexure Check (ACI 318-05 10.2)

Vc 2 F'c d 2 5000 psi 8.63 in 14.64 k ft / = = = φVn φ Vc 0.750 14.64 k ft / 10.98 k ft / = = = φVn 10.98 k ft ≥ Vu / 3.38 k ft / = =

Shear Check (ACI 318-05 11.1.1, 11.3.1)

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

εt 0.003 da β1 / 1 - 0.003 8.63 in

0.52 in 0.80 / 1 - 0.0370 = = =

εt 0.0370 ≥ 0.004 =

Minimum Strain Check (ACI 318-05 10.3.5)

φMn 16.57 ft·k ft ≥ 4 3 / Mu / 4 3 / 11.92 ft·k ft / 15.9 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1)

ρST_provASTt sST 0.4 in² in /

12 in 12 in 0.0028 = = =

ρST_min0.0018 60000

fy 0.0018 60000

60000 psi 0.0018 = = =

ρST_min 0.0018 = ρST_prov 0.0028 ≥ ρST_min 0.0018 = = 18 inch limit governssST_max 18 in = sST 12 in ≤ sST_max 18 in = =

Shrinkage and Temperature Steel (ACI 318-05 7.12.2)

MuφMn

11.92 ft·k ft / 16.57 ft·k ft / 0.7198 ratio to represent excess reinforcement = =

ψt 1.0 12 inches or less cast below 3.00 inches - = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 12 in 2 / 6 in = = cover db 2 / + 3 in 0.75 in 2 / + 3.38 in = = cb 3.38 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 3.38 in 0.0 +

0.75 in 4.50 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 0.80 1.0 2.5 0.75 in 15.27 in = = =

Factoring ld by the excess reinforcement ratio 0.7198 per 12.2.5: ld 10.99 in = 12 inch minimum controlsld_prov 19 in ≥ ld 12 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

Toe Unfactored Loads

12 in #6 @ 12 in

Unfactored Loads

150 psf

1026 psf359.1 psf

Toe Factored Loads

12 in #6 @ 12 in

1.2D + 1.6L + 1.6H

180 psf (Self-wt)

1236 psf432.6 psf

11.92 ft·k/ft

3.6 k/ft

Toe Checks [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 11 of 24 Thursday 11/05/15 3:03 PM

Page 40: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Design moment Mu for heel need not exceed moment at stem base:Mheel 0.81 ft·k ft < Mstem / 15.36 ft·k ft / = = Mu 0.81 ft·k ft stem moment does not control / =

Controlling Moment

a As fy 0.85 F'c 0.03 in² in / 60000 psi

0.85 5000 psi 0.4 in = = =

φMn φ As fy d a 2 / - 0.90 0.03 in² in / 60000 psi 9.75 in 0.4 in 2 / - 14.73 ft·k ft / = = = φMn 14.73 ft·k ft ≥ Mu / 0.81 ft·k ft / = =

Flexure Check (ACI 318-05 10.2)

Vc 2 F'c d 2 5000 psi 9.75 in 16.55 k ft / = = = φVn φ Vc 0.750 16.55 k ft / 12.41 k ft / = = = φVn 12.41 k ft ≥ Vu / 1.62 k ft / = =

Shear Check (ACI 318-05 11.1.1, 11.3.1)

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.03 in² in / 60000 psi

0.85 5000 psi 0.4 in = = =

εt 0.003 da β1 / 1 - 0.003 9.75 in

0.4 in 0.80 / 1 - 0.0550 = = =

εt 0.0550 ≥ 0.004 =

Minimum Strain Check (ACI 318-05 10.3.5)

φMn 14.73 ft·k ft ≥ 4 3 / Mu / 4 3 / 0.81 ft·k ft / 1.08 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1)

ρST_provASTt sST 0.4 in² in /

12 in 12 in 0.0028 = = =

ρST_min0.0018 60000

fy 0.0018 60000

60000 psi 0.0018 = = =

ρST_min 0.0018 = ρST_prov 0.0028 ≥ ρST_min 0.0018 = = 18 inch limit governssST_max 18 in = sST 12 in ≤ sST_max 18 in = =

Shrinkage and Temperature Steel (ACI 318-05 7.12.2)

MuφMn

0.81 ft·k ft / 14.73 ft·k ft / 0.0550 ratio to represent excess reinforcement = =

ψt 1.0 12 inches or less cast below 9.50 inches - = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 7 in 2 / 3.5 in = = cover db 2 / + 2 in 0.5 in 2 / + 2.25 in = = cb 2.25 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 2.25 in 0.0 +

0.5 in 4.50 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 0.80 1.0 2.5 0.5 in 10.18 in = = =

Factoring ld by the excess reinforcement ratio 0.0550 per 12.2.5: ld 0.56 in = 12 inch minimum controlsld_prov 74 in ≥ ld 12 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

Heel Unfactored Loads12 in

#4 @ 7 in

Unfactored Loads

150 psf (Concrete self-wt)1200 psf (Soil weight)

(neglect bearing pressure)

Heel Factored Loads

12 in

#4 @ 7 in

1.2D + 1.6L + 1.6H

180 psf (Concrete self-wt)1440 psf (Soil weight)

(neglect bearing pressure)1.62 k/ft

Heel Checks [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 12 of 24 Thursday 11/05/15 3:03 PM

Page 41: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Stem Internal Forces

-640 psf3.84 k/ft

-15.36 ft·k/ft

Stem Internal Forces

13

11.38

9.75

8.13

6.5

4.88

3.25

1.63

0-16 -12 -8 -4 0Moment (ft·k/ft)

Moment

Stem Internal Forces

13

11.38

9.75

8.13

6.5

4.88

3.25

1.63

00 1 2 3 4Shear (k/ft)

Shear

Stem Joint Force TransferLocation Force@ stem base 3.84 k/ft

Stem Internal Forces

-640 psf

Stem Forces [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 13 of 24 Thursday 11/05/15 3:03 PM

Page 42: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

13

11.7

10.4

9.1

7.8

6.5

5.2

3.9

2.6

1.3

0-25 -19.17 -13.33 -7.5 -1.67 4.17 10Moment (ft·k/ft)

Offset (ft)

Moment

φMn 23.13 ft·k ft ≥ Mu / 15.36 ft·k ft / = = Check (ACI 318-05 Ch 10) @ 0 ft from base

φMn 17.38 ft·k ft ≥ Mu / 6.44 ft·k ft / = = Check (ACI 318-05 Ch 10) @ 3 ft from base

φMn 17.38 ft·k ft ≥ Mu / 6.44 ft·k ft / = = Check (ACI 318-05 Ch 10) @ 3.02 ft from base

φMn 17.38 ft·k ft ≥ Mu / 0 ft·k ft / = = Check (ACI 318-05 Ch 10) @ 11.73 ft from base

φMn 16.14 ft·k ft ≥ Mu / 0 ft·k ft / = =

Check (ACI 318-05 Ch 10) @ 11.82 ft from base

Stem Moment Checks [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 14 of 24 Thursday 11/05/15 3:03 PM

Page 43: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

13

11.7

10.4

9.1

7.8

6.5

5.2

3.9

2.6

1.3

0-10 -6.67 -3.33 0 3.33 6.67 10Shear (k/ft)

Offset (ft)

Shear

φVn 9.63 k ft ≥ Vu / 3.84 k ft / = =

Shear Check (ACI 318-05 Ch 11.1.1) @ 0 ft from base

Stem Shear Checks [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 15 of 24 Thursday 11/05/15 3:03 PM

Page 44: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

φMn 23.13 ft·k ft ≥ 4 3 / Mu / 4 3 / 15.36 ft·k ft / 20.48 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1) @ 0 ft from base [Stem in negative flexure]

φMn 17.38 ft·k ft ≥ 4 3 / Mu / 4 3 / 6.44 ft·k ft / 8.58 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1) @ 3 ft from base [Stem in negative flexure]

φMn 0 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / 0 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1) @ 13 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.06 in² in / 60000 psi

0.85 5000 psi 0.85 in = = =

εt 0.003 da β1 / 1 - 0.003 7.56 in

0.85 in 0.80 / 1 - 0.0184 = = =

εt 0.0184 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 0 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

εt 0.003 da β1 / 1 - 0.003 7.63 in

0.62 in 0.80 / 1 - 0.0265 = = =

εt 0.0265 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 3 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

εt 0.003 da β1 / 1 - 0.003 7.63 in

0.62 in 0.80 / 1 - 0.0265 = = =

εt 0.0265 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 13 ft from base [Stem in negative flexure]

ρhAs_horz shorz /

t 0.4 in² 10 in / 10 in 0.0040 = = =

ρh_min 0.0020 bars No. 5 or less, not less than 60 ksi = ρh 0.0040 ≥ ρh_min 0.0020 = = 3 twall 3 10 in 30 in = = 18 inch limit governssmax 18 in = shorz 10 in ≤ shorz_max 18 in = =

Wall Horizontal Steel (ACI 318-05 14.3.3, 14.3.5)

Stem Miscellaneous Checks [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 16 of 24 Thursday 11/05/15 3:03 PM

Page 45: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

MuφMn

15.36 ft·k ft / 23.13 ft·k ft / 0.6641 ratio to represent excess reinforcement = =

ψe 1.0 uncoated hooked bars = λ 1.0 normal weight concrete =

ldh 0.02 ψe λfyF'c

db 0.02 1.0 1.0 60000 psi5000 psi

0.88 in 14.85 in = = =

Factoring ldh by the 0.7 multiplier of 12.5.3 a : ldh 10.39 in = Factoring ldh by the excess reinforcement ratio 0.6641 per 12.5.3 d : ldh 6.9 in = 8 db 8 0.88 in 7.0 = = 8db minimum controlsldh_prov 9 in ≥ ldh 7 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

ψt 1.0 bars are not horizontal = ψe 1.0 bar not epoxy coated = ψs 1.0 bars are #7 or larger = λ 1.0 normal weight concrete = s 2 / 10 in 2 / 5 in = = cover db 2 / + 2 in 0.88 in 2 / + 2.44 in = = cb 2.44 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 2.44 in 0.0 +

0.88 in 2.7857 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 1.0 1.0 2.5 0.88 in 22.27 in = = =

llap 1.3 ld 1.3 22.27 in 28.96 in = = = llap_prov 36 in ≥ llap 28.96 in = = 1 5 / llap 1 5 / 28.96 in 5.7912 ≤ 6.0 = = strans 0 in ≤ 1 5 / llap 1 5 / 28.96 in 5.7912 = = =

Lap Splice Checks (ACI 318-05 12.14.2.3, 12.15.1, 12.15.2) - #6 lap with #7, from 0 ft to 3 ft (from stem base)

Stem Miscellaneous Checks [1.2D + 1.6L + 1.6H] (continued)

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 17 of 24 Thursday 11/05/15 3:03 PM

Page 46: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Design moment Mu for toe need not exceed moment at stem base:Mtoe 13.65 ft·k ft ≥ Mstem / 0 ft·k ft / - = = Mu 0 ft·k ft stem base moment controls / - =

Controlling Moment

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

φMn φ As fy d a 2 / - 0.90 0.04 in² in / 60000 psi 8.63 in 0.52 in 2 / - 16.57 ft·k ft / = = = φMn 16.57 ft·k ft ≥ Mu / 0 ft·k ft / - = =

Flexure Check (ACI 318-05 10.2)

Vc 2 F'c d 2 5000 psi 8.63 in 14.64 k ft / = = = φVn φ Vc 0.750 14.64 k ft / 10.98 k ft / = = = φVn 10.98 k ft ≥ Vu / 3.86 k ft / = =

Shear Check (ACI 318-05 11.1.1, 11.3.1)

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

εt 0.003 da β1 / 1 - 0.003 8.63 in

0.52 in 0.80 / 1 - 0.0370 = = =

εt 0.0370 ≥ 0.004 =

Minimum Strain Check (ACI 318-05 10.3.5)

φMn 16.57 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / - 0 ft·k ft / - = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1)

ρST_provASTt sST 0.4 in² in /

12 in 12 in 0.0028 = = =

ρST_min0.0018 60000

fy 0.0018 60000

60000 psi 0.0018 = = =

ρST_min 0.0018 = ρST_prov 0.0028 ≥ ρST_min 0.0018 = = 18 inch limit governssST_max 18 in = sST 12 in ≤ sST_max 18 in = =

Shrinkage and Temperature Steel (ACI 318-05 7.12.2)

MuφMn

0 ft·k ft / - 16.57 ft·k ft / 0.0 ratio to represent excess reinforcement - = =

ψt 1.0 12 inches or less cast below 3.00 inches - = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 12 in 2 / 6 in = = cover db 2 / + 3 in 0.75 in 2 / + 3.38 in = = cb 3.38 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 3.38 in 0.0 +

0.75 in 4.50 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 0.80 1.0 2.5 0.75 in 15.27 in = = =

Factoring ld by the excess reinforcement ratio 0.0000 - per 12.2.5: ld 0 in - = 12 inch minimum controlsld_prov 19 in ≥ ld 12 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

Toe Unfactored Loads

12 in #6 @ 12 in

Unfactored Loads

150 psf

1026 psf359.1 psf

Toe Factored Loads

12 in #6 @ 12 in

1.4D

210 psf (Self-wt)

1420 psf496.8 psf

4.12 k/ft

Toe Checks [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 18 of 24 Thursday 11/05/15 3:03 PM

Page 47: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Design moment Mu for heel need not exceed moment at stem base:Mheel 0.95 ft·k ft ≥ Mstem / 0 ft·k ft / - = = Mu 0 ft·k ft stem base moment controls / - =

Controlling Moment

a As fy 0.85 F'c 0.03 in² in / 60000 psi

0.85 5000 psi 0.4 in = = =

φMn φ As fy d a 2 / - 0.90 0.03 in² in / 60000 psi 9.75 in 0.4 in 2 / - 14.73 ft·k ft / = = = φMn 14.73 ft·k ft ≥ Mu / 0 ft·k ft / - = =

Flexure Check (ACI 318-05 10.2)

Vc 2 F'c d 2 5000 psi 9.75 in 16.55 k ft / = = = φVn φ Vc 0.750 16.55 k ft / 12.41 k ft / = = = φVn 12.41 k ft ≥ Vu / 1.89 k ft / = =

Shear Check (ACI 318-05 11.1.1, 11.3.1)

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.03 in² in / 60000 psi

0.85 5000 psi 0.4 in = = =

εt 0.003 da β1 / 1 - 0.003 9.75 in

0.4 in 0.80 / 1 - 0.0550 = = =

εt 0.0550 ≥ 0.004 =

Minimum Strain Check (ACI 318-05 10.3.5)

φMn 14.73 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / - 0 ft·k ft / - = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1)

ρST_provASTt sST 0.4 in² in /

12 in 12 in 0.0028 = = =

ρST_min0.0018 60000

fy 0.0018 60000

60000 psi 0.0018 = = =

ρST_min 0.0018 = ρST_prov 0.0028 ≥ ρST_min 0.0018 = = 18 inch limit governssST_max 18 in = sST 12 in ≤ sST_max 18 in = =

Shrinkage and Temperature Steel (ACI 318-05 7.12.2)

MuφMn

0 ft·k ft / - 14.73 ft·k ft / 0.0 ratio to represent excess reinforcement - = =

ψt 1.0 12 inches or less cast below 9.50 inches - = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 7 in 2 / 3.5 in = = cover db 2 / + 2 in 0.5 in 2 / + 2.25 in = = cb 2.25 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 2.25 in 0.0 +

0.5 in 4.50 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 0.80 1.0 2.5 0.5 in 10.18 in = = =

Factoring ld by the excess reinforcement ratio 0.0000 - per 12.2.5: ld 0 in - = 12 inch minimum controlsld_prov 74 in ≥ ld 12 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

Heel Unfactored Loads12 in

#4 @ 7 in

Unfactored Loads

150 psf (Concrete self-wt)1200 psf (Soil weight)

(neglect bearing pressure)

Heel Factored Loads

12 in

#4 @ 7 in

1.4D

210 psf (Concrete self-wt)1680 psf (Soil weight)

(neglect bearing pressure)1.89 k/ft

Heel Checks [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 19 of 24 Thursday 11/05/15 3:03 PM

Page 48: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Stem Internal Forces

0 k/ft

-0 ft·k/ft

Stem Internal ForcesMoment

Stem Internal ForcesShear

Stem Joint Force TransferLocation Force@ stem base 0 k/ft

Stem Internal Forces

Stem Forces [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 20 of 24 Thursday 11/05/15 3:03 PM

Page 49: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

13

11.7

10.4

9.1

7.8

6.5

5.2

3.9

2.6

1.3

0-25 -19.17 -13.33 -7.5 -1.67 4.17 10Moment (ft·k/ft)

Offset (ft)

MomentStem Moment Checks [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 21 of 24 Thursday 11/05/15 3:03 PM

Page 50: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

13

11.7

10.4

9.1

7.8

6.5

5.2

3.9

2.6

1.3

0-10 -6.67 -3.33 0 3.33 6.67 10Shear (k/ft)

Offset (ft)

ShearStem Shear Checks [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 22 of 24 Thursday 11/05/15 3:03 PM

Page 51: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

φMn 23.13 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / 0 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1) @ 0 ft from base [Stem in negative flexure]

φMn 17.38 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / 0 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1) @ 3 ft from base [Stem in negative flexure]

φMn 0 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / 0 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1) @ 13 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.06 in² in / 60000 psi

0.85 5000 psi 0.85 in = = =

εt 0.003 da β1 / 1 - 0.003 7.56 in

0.85 in 0.80 / 1 - 0.0184 = = =

εt 0.0184 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 0 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

εt 0.003 da β1 / 1 - 0.003 7.63 in

0.62 in 0.80 / 1 - 0.0265 = = =

εt 0.0265 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 3 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

εt 0.003 da β1 / 1 - 0.003 7.63 in

0.62 in 0.80 / 1 - 0.0265 = = =

εt 0.0265 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 13 ft from base [Stem in negative flexure]

ρhAs_horz shorz /

t 0.4 in² 10 in / 10 in 0.0040 = = =

ρh_min 0.0020 bars No. 5 or less, not less than 60 ksi = ρh 0.0040 ≥ ρh_min 0.0020 = = 3 twall 3 10 in 30 in = = 18 inch limit governssmax 18 in = shorz 10 in ≤ shorz_max 18 in = =

Wall Horizontal Steel (ACI 318-05 14.3.3, 14.3.5)

Stem Miscellaneous Checks [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 23 of 24 Thursday 11/05/15 3:03 PM

Page 52: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

MuφMn

0 ft·k ft / 23.13 ft·k ft / 0.0 ratio to represent excess reinforcement = =

ψe 1.0 uncoated hooked bars = λ 1.0 normal weight concrete =

ldh 0.02 ψe λfyF'c

db 0.02 1.0 1.0 60000 psi5000 psi

0.88 in 14.85 in = = =

Factoring ldh by the 0.7 multiplier of 12.5.3 a : ldh 10.39 in = Factoring ldh by the excess reinforcement ratio 0.0000 per 12.5.3 d : ldh 0 in = 8 db 8 0.88 in 7.0 = = 8db minimum controlsldh_prov 9 in ≥ ldh 7 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

ψt 1.0 bars are not horizontal = ψe 1.0 bar not epoxy coated = ψs 1.0 bars are #7 or larger = λ 1.0 normal weight concrete = s 2 / 10 in 2 / 5 in = = cover db 2 / + 2 in 0.88 in 2 / + 2.44 in = = cb 2.44 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 2.44 in 0.0 +

0.88 in 2.7857 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 1.0 1.0 2.5 0.88 in 22.27 in = = =

llap 1.3 ld 1.3 22.27 in 28.96 in = = = llap_prov 36 in ≥ llap 28.96 in = = 1 5 / llap 1 5 / 28.96 in 5.7912 ≤ 6.0 = = strans 0 in ≤ 1 5 / llap 1 5 / 28.96 in 5.7912 = = =

Lap Splice Checks (ACI 318-05 12.14.2.3, 12.15.1, 12.15.2) - #6 lap with #7, from 0 ft to 3 ft (from stem base)

Stem Miscellaneous Checks [1.4D] (continued)

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documents\Q...\Millsite Wall 4.rwd Page 24 of 24 Thursday 11/05/15 3:03 PM

Page 53: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Wall 5 DesignReinforced Concrete Tank - Valve vault design

(Based on design in PCA Publication ‐ Rectangular Concrete Tanks)Use this spreadsheet for only one loading condition at a time, either:

(1) Tank is full of water with no external soil load; or(2) Tank is empty with only soil as an external load

If number (1) is used, then there are no surcharge loads to be considered, surcharge only appliesto external soil load conditions.

Soil (‐)/Water (+) Unit Weight 124 pcf Water unit weight is 62.4 pcfLateral Pressure coefficient (Ka at rest) 0.39 If water then use 1.0, otherwise Ko for soilConcrete Strength (f'c) 5,000 psiSteel Tensile Strength (fy) 60,000 psiSanitary Coefficient (1.3 or 1.0) 1.0 Use 1.3 for water retaining structures only, not valve vaults

Vault Dimensionsa ‐ Height (floor to top of wall) 12.916667 ftb ‐ Long Side (span, middle support) 18.166667 ftc ‐ Short Side (span, middle support) 11.916667 ft

b/a (long wall) 1.41c/a (short wall) 0.92

Dead Loads for RoofRoof Snow Load Calculation (From ASCE 7 pg. 90‐91) ASCE 7 = ASCE Standard Minimum Design Loads for Buildings and Other Structures

Terrain Category C C for open terrain with scattered obstructions (pg 28‐29)Exposure: Partial

Snow Exposure (Ce) 1.0 Table 7‐2 (pg 90) 1.0 for Terrain of C and Partial ExposureThermal Factor (Ct) 1.1 Table 7‐3 (pg 91) 1.2 for unheated structures

Snow Load Import (Is) 1.2 Table 7‐4 (pg 91) 1.2 for water treatment facilities and fireflow storage facilities

Snow load Calculation (From Utah Snow Load Calculation)Base Snow Load (Po) 43 psf Table 1608.1.2 (a) ‐ http://le.utah.gov/~code/TITLE15A/htm/15A03_010700.htm

Change in Snow Load (S) 63 psf Table 1608.1.2 (a) ‐ http://www.rules.utah.gov/publicat/code/r156/r156‐56.htmAo 6 Elev./1,000 Base Ground Snow Elev (Table 1608.1.2)A 6.12 Elev./1,000 Elevation at site (ft/1000)

Ground Snow Load (Pg) 43.7 psf

Roof Snow Load (Pf) 40.3 psf Pf = 0.7 Ce Ct Is Pg

Factored Snow Load 52.4 psf 1.3 * snow load (1.3 Sanitary Coefficient from ACI350 for crack control in slabs)

Soil or water load height (floor to top of wall max) 11.0 ftSoil surcharge load height (above top of wall) 0.0 ftExtra soil surcharge (Snow or other load) 532.0 psf

q tri = Ka W a 532.0q rect = Ka W a 207.5

(a) Design for Shear ForcesUse Shear coefficients found on first page of load cases in Chapter 2

Case 3 (pg 2-17) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (pg 2‐23) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 8 (pg 2‐47) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 9 (pg 2‐53) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

Shear Coefficients (Cs)

Case 3 or 4 (Triangular Load) Case 8 or 9 (Rectangular Load‐surcharge)

For b/a (long wall) 1.41 For b/a (long wall) 1.41

Bottom ‐ Mid 0.4 Bottom ‐ Mid 0.66Side Max 0.26 Side Max 0.95Side Mid 0.26 Side Mid 0.54

For c/a (short wall) 0.92 For c/a (short wall) 0.92

Bottom ‐ Mid 0.32 Bottom ‐ Mid 0.45Side Max 0.24 Side Max 0.58Side Mid 0.23 Side Mid 0.46

(1) Check shear at bottom of the wallLong Wall

V = Cs x q x afor both rectangular and triangular loadsShear Triangular Load Shear Rectangular LoadBottom Middle 2,748 lb Bottom Middle 1,769 lbSide Maximum 1,786 lb Side Maximum 2,546 lbSide Middle 1,786 lb Side Middle 1,447 lb

Total ShearBottom Middle 4,517.23 lbSide Maximum 4,332.45 lbSide Middle 3,233.67 lb

Vu = 1.7 x Vmax 7,679 lb

Franson Civil Engineers

Page 54: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Allowable Shear ForceWall Thickness 10 inchesd =thickness ‐ 2" cover ‐1/2 bar thickness

7.6875 inches

Shear Capacity Vc = 0.85 x 2 x (f'c)^0.5 x12 x d11,089 lbs Thickness okay

Short WallV = Cs x q x afor both rectangular and triangular loadsShear Triangular Load Shear Rectangular LoadBottom Middle 2,199 lb Bottom Middle 1,206 lbSide Maximum 1,649 lb Side Maximum 1,554 lbSide Middle 1,580 lb Side Middle 1,233 lb

Total ShearBottom Middle 3,404.75 lbSide Maximum 3,203.45 lbSide Middle 2,813.14 lb

Vu = 1.7 x Vmax 5,788 lb

Allowable Shear ForceWall Thickness 10 inchesd =thickness ‐ 2" cover ‐1/2 bar thickness

7.6875 inches

Shear Capacity Vc = 0.85 x 2 x (f'c)^0.5 x12 x d11,089 lbs Thickness okay

(2) Check shear at side edge of long wall

V = Cs x q x afor both rectangular and triangular loadsShear Triangular Load Shear Rectangular Load

Side Maximum 1,786 lb Side Maximum 2,546 lb

Total ShearSide Maximum 4,332 lb

Vu = 1.7 x Vmax 7,365 lb

Since the long wall is subject to simultaneous tensile force due to shear in the short side wall,the allowable shear is given by:

ǿVc =0.85 x 2 (1 + Nu/500 Ag) (f'c)^0.5 b dwhere Nu = tension in long wall due to shear in the short wall

Shear in short side wall:

V = Cs x q x afor both rectangular and triangular loads (short wall)Shear Triangular Load Shear Rectangular Load

Side Maximum 1,649 lb Side Maximum 1,554 lb

Total ShearSide Maximum 3,203 lb

Nu = ‐1.7 x Vmax ‐5,446 lb

Ag = 120 in2

ǿVc =  10,083 lb Thickness okay

(b) Design for Vertical Bending Moments (determine vertical steel)For rectangular tanks, use factors found in Chapter 3 for b/a and c/a.  For square tanks, use factors from Chapter 2 b/a = c/a.

For square tanks use Chapter 2Case 3 (starts on pg 2-17) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 2‐23) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 8  (starts on pg 2‐47) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 9 (starts on pg 2‐53) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

For rectangular tanks use Chapter 3Case 3 (starts on pg 3-25) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 3‐35) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 7 (starts on pg 3‐65) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 8 (starts on pg 3‐75) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

Vertical Design Bending Moment

M x or z = M Coef. X q a2/1000Exterior Soil (‐1), Interior Water (1) ‐1

Franson Civil Engineers

Page 55: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

qtri a2/1000 =  ‐0.77 in‐kips qrect a2/1000 =  ‐0.42 in‐kips

Mu = 1.3 x 1.7 x Mx

(only use 1.3 if sanitary structure, otherwise use 1[input at beginning of spreadsheet])

Mu tri = ‐1.31 in‐kips Mu rect = ‐0.71 in‐kips

Triangular Loads (Case 3 or 4)Long Wall Short WallMax Mx (pos and neg) Max Mz (pos and neg)

pos 15 pos 10neg ‐67 neg ‐28

Rectangular Loads (Case 7 or 8 (rect tank), 8 or 9 (square tank))Long Wall Short WallMax Mx (pos and neg) Max Mz (pos and neg)

pos 48 pos 20neg ‐96 neg ‐52

Exterior (+) and Interior (‐) Face LoadsLong Wall Short WallMux =  155.77 in‐kips Muz =  73.49 in‐kipsMux =  ‐53.59 in‐kips Muz =  ‐27.25 in‐kips

Exterior Face Long WallMu/(ǿ f'c b d2) = 0.0488

w = 0.0503 from Table A‐1 0.0485 0.0488 0.04950.3109

As = w b d (f'c/fy) 0.387 in2/ft Calculated As Requirement 0.0500 0.0503 0.0510As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.516 in2/ft ACI 10.5.2 5 Bar SizeAs min = 0.387 in2/ft Area of Steel Required 0.387 in2/ft

19#5@19 in O.C.

Exterior Face Short Wall 0.388 in2/ftMu/(ǿ f'c b d2) = 0.0230 Steel okay

w = 0.0234 from Table A‐1 0.0226 0.0230 0.02360.4275

As = w b d (f'c/fy) 0.1801 in2/ft Calculated As Requirement 0.0230 0.0234 0.0240As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.240 in2/ft ACI 10.5.2As min = 0.240 in2/ft Area of Steel Required 0.240 in2/ft

30Interior Face Long Wall #5@30 in O.C.Mu/(ǿ f'c b d2) = 0.0168 0.245 in2/ft

w = 0.0170 from Table A‐1 Steel okay 0.0159 0.0168 0.01680.9927

As = w b d (f'c/fy) 0.131 in2/ft Calculated As Requirement 0.0160 0.0170 0.0170As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.174 in2/ft ACI 10.5.2As min = 0.174 in2/ft Area of Steel Required 0.174 in2/ft

42#5@42 in O.C.

Interior Face Short Wall 0.175 in2/ftMu/(ǿ f'c b d2) = 0.0085 Steel okay

w = 0.0085 from Table A‐1 0.0080 0.0085 0.00900.5402

As = w b d (f'c/fy) 0.0657 in2/ft Calculated As Requirement 0.0080 0.0085 0.0090As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.088 in2/ft ACI 10.5.2As min = 0.088 in2/ft Area of Steel Required 0.088 in2/ft

84#5@84 in O.C.

(c) Design for Horizontal Bending Moments (determine horizontal steel) 0.088 in2/ftFor rectangular tanks, use factors found in Chapter 3 for b/a and c/a.   Steel okayFor square tanks, use factors from Chapter 2 b/a = c/a.

For square tanks use Chapter 2Case 3 (starts on pg 2-17) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 2‐23) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 8  (starts on pg 2‐47) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 9 (starts on pg 2‐53) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

For rectangular tanks use Chapter 3Case 3 (starts on pg 3-25) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 3‐35) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 7 (starts on pg 3‐65) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 8 (starts on pg 3‐75) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

Horizontal Design Bending Moment

M y = M Coef. X q a2/1000Exterior Soil (‐1), Interior Water (1) ‐1

Franson Civil Engineers

Page 56: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

qtri a2/1000 =  ‐0.772 in‐kips qrect a2/1000 =  ‐0.415 in‐kips

Mu = 1.3 x 1.7 x Mx

(only use 1.3 if sanitary structure, otherwise use 1[input at beginning of spreadsheet])

Mu tri = ‐1.313 in‐kips Mu rect = ‐0.706 in‐kips

Triangular Loads (Case 3 or 4)Long Wall Short WallMax My (pos and neg) Max My (pos and neg)

pos 20 pos 10neg ‐36 neg ‐36

Rectangular Loads (Case 7 or 8 (rect tank), 8 or 9 (square tank))Long Wall Short WallMax My (pos and neg) Max My (pos and neg)

pos 90 pos 21neg ‐135 neg ‐135

Exterior (+) and Interior (‐) Face LoadsLong Wall Short WallMuy =  142.60 in‐kips Muy =  142.60 in‐kipsMuy =  ‐89.82 in‐kips Muy =  ‐27.96 in‐kips

Exterior Face Long WallMu/(ǿ f'c b d2) = 0.0447

w = 0.0459 from Table A‐1 0.0438 0.0447 0.04480.8855

As = w b d (f'c/fy) 0.353 in2/ft Calculated As Requirement 0.0450 0.0459 0.0460As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.470 in2/ft ACI 10.5.2As min = 0.353 in2/ft Area of Steel Required 0.353 in2/ft

20#5@20 in O.C.

Exterior Face Short Wall 0.368 in2/ftMu/(ǿ f'c b d2) = 0.0447 Steel okay

w = 0.0459 from Table A‐1 0.0438 0.0447 0.04480.8855

As = w b d (f'c/fy) 0.3527 in2/ft Calculated As Requirement 0.0450 0.0459 0.0460As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.470 in2/ft ACI 10.5.2As min = 0.353 in2/ft Area of Steel Required 0.353 in2/ft

20Interior Face Long Wall #5@20 in O.C.Mu/(ǿ f'c b d2) = 0.0281 0.368 in2/ft

w = 0.0286 from Table A‐1 Steel okay 0.0275 0.0281 0.02850.6445

As = w b d (f'c/fy) 0.220 in2/ft Calculated As Requirement 0.0280 0.0286 0.0290As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.294 in2/ft ACI 10.5.2As min = 0.294 in2/ft Area of Steel Required 0.294 in2/ft

25#5@25 in O.C.

Interior Face Short Wall 0.295 in2/ftMu/(ǿ f'c b d2) = 0.0088 Steel okay

w = 0.0088 from Table A‐1 0.0080 0.0088 0.00900.7615

As = w b d (f'c/fy) 0.0674 in2/ft Calculated As Requirement 0.0080 0.0088 0.0090As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.090 in2/ft ACI 10.5.2As min = 0.090 in2/ft Area of Steel Required 0.090 in2/ft

81#5@81 in O.C.

Steel Required for Direct Tension in Long Wall (Only for water load on inside of structure) 0.091 in2/ftThis is added to horizontal steel if required Steel okay

Is this analysis for water inside of structure? (1 = yes, 0 = no) 0Factored Tension (Nu) = 1.65 X Nu 0 lbRequired Steel for tension = Nu/(0.9 fy) 0.000 in2/ft

Franson Civil Engineers

Page 57: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Wall 8 DesignReinforced Concrete Tank - Valve vault design

(Based on design in PCA Publication ‐ Rectangular Concrete Tanks)Use this spreadsheet for only one loading condition at a time, either:

(1) Tank is full of water with no external soil load; or(2) Tank is empty with only soil as an external load

If number (1) is used, then there are no surcharge loads to be considered, surcharge only appliesto external soil load conditions.

Soil (‐)/Water (+) Unit Weight 124 pcf Water unit weight is 62.4 pcfLateral Pressure coefficient (Ka at rest) 0.39 If water then use 1.0, otherwise Ko for soilConcrete Strength (f'c) 5,000 psiSteel Tensile Strength (fy) 60,000 psiSanitary Coefficient (1.3 or 1.0) 1.0 Use 1.3 for water retaining structures only, not valve vaults

Vault Dimensionsa ‐ Height (floor to top of wall) 10.833333 ftb ‐ Long Side (span, middle support) 34.083333 ftc ‐ Short Side (span, middle support) 8.4166667 ft

b/a (long wall) 3.15 4c/a (short wall) 0.78 1

Dead Loads for RoofRoof Snow Load Calculation (From ASCE 7 pg. 90‐91) ASCE 7 = ASCE Standard Minimum Design Loads for Buildings and Other Structures

Terrain Category C C for open terrain with scattered obstructions (pg 28‐29)Exposure: Partial

Snow Exposure (Ce) 1.0 Table 7‐2 (pg 90) 1.0 for Terrain of C and Partial ExposureThermal Factor (Ct) 1.1 Table 7‐3 (pg 91) 1.2 for unheated structures

Snow Load Import (Is) 1.2 Table 7‐4 (pg 91) 1.2 for water treatment facilities and fireflow storage facilities

Snow load Calculation (From Utah Snow Load Calculation)Base Snow Load (Po) 43 psf Table 1608.1.2 (a) ‐ http://le.utah.gov/~code/TITLE15A/htm/15A03_010700.htm

Change in Snow Load (S) 63 psf Table 1608.1.2 (a) ‐ http://www.rules.utah.gov/publicat/code/r156/r156‐56.htmAo 6 Elev./1,000 Base Ground Snow Elev (Table 1608.1.2)A 6.12 Elev./1,000 Elevation at site (ft/1000)

Ground Snow Load (Pg) 43.7 psf

Roof Snow Load (Pf) 40.3 psf Pf = 0.7 Ce Ct Is Pg

Factored Snow Load 52.4 psf 1.3 * snow load (1.3 Sanitary Coefficient from ACI350 for crack control in slabs)

Soil or water load height (floor to top of wall max) 10.0 ftSoil surcharge load height (above top of wall) 0.0 ftExtra soil surcharge (Snow or other load) 532.0 psf

q tri = Ka W a 483.6q rect = Ka W a 207.5

(a) Design for Shear ForcesUse Shear coefficients found on first page of load cases in Chapter 2

Case 3 (pg 2-17) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (pg 2‐23) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 8 (pg 2‐47) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 9 (pg 2‐53) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

Shear Coefficients (Cs)

Case 3 or 4 (Triangular Load) Case 8 or 9 (Rectangular Load‐surcharge)

For b/a (long wall) 3.15 For b/a (long wall) 3.15

Bottom ‐ Mid 0.5 Bottom ‐ Mid 1.03Side Max 0.38 Side Max 1.68Side Mid 0.23 Side Mid 0.45

For c/a (short wall) 0.78 For c/a (short wall) 0.78

Bottom ‐ Mid 0.32 Bottom ‐ Mid 0.45Side Max 0.24 Side Max 0.58Side Mid 0.23 Side Mid 0.46

(1) Check shear at bottom of the wallLong Wall

V = Cs x q x afor both rectangular and triangular loadsShear Triangular Load Shear Rectangular LoadBottom Middle 2,620 lb Bottom Middle 2,315 lbSide Maximum 1,991 lb Side Maximum 3,776 lbSide Middle 1,205 lb Side Middle 1,011 lb

Total ShearBottom Middle 4,934.63 lbSide Maximum 5,766.96 lbSide Middle 2,216.44 lb

Vu = 1.7 x Vmax 8,389 lb

Franson Civil Engineers

Page 58: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Allowable Shear ForceWall Thickness 10 inchesd =thickness ‐ 2" cover ‐1/2 bar thickness

7.6875 inches

Shear Capacity Vc = 0.85 x 2 x (f'c)^0.5 x12 x d11,089 lbs Thickness okay

Short WallV = Cs x q x afor both rectangular and triangular loadsShear Triangular Load Shear Rectangular LoadBottom Middle 1,676 lb Bottom Middle 1,011 lbSide Maximum 1,257 lb Side Maximum 1,304 lbSide Middle 1,205 lb Side Middle 1,034 lb

Total ShearBottom Middle 2,687.95 lbSide Maximum 2,561.03 lbSide Middle 2,238.91 lb

Vu = 1.7 x Vmax 4,570 lb

Allowable Shear ForceWall Thickness 10 inchesd =thickness ‐ 2" cover ‐1/2 bar thickness

7.6875 inches

Shear Capacity Vc = 0.85 x 2 x (f'c)^0.5 x12 x d11,089 lbs Thickness okay

(2) Check shear at side edge of long wall

V = Cs x q x afor both rectangular and triangular loadsShear Triangular Load Shear Rectangular Load

Side Maximum 1,991 lb Side Maximum 3,776 lb

Total ShearSide Maximum 5,767 lb

Vu = 1.7 x Vmax 9,804 lb

Since the long wall is subject to simultaneous tensile force due to shear in the short side wall,the allowable shear is given by:

ǿVc =0.85 x 2 (1 + Nu/500 Ag) (f'c)^0.5 b dwhere Nu = tension in long wall due to shear in the short wall

Shear in short side wall:

V = Cs x q x afor both rectangular and triangular loads (short wall)Shear Triangular Load Shear Rectangular Load

Side Maximum 1,257 lb Side Maximum 1,304 lb

Total ShearSide Maximum 2,561 lb

Nu = ‐1.7 x Vmax ‐4,354 lb

Ag = 120 in2

ǿVc =  10,285 lb Thickness okay

(b) Design for Vertical Bending Moments (determine vertical steel)For rectangular tanks, use factors found in Chapter 3 for b/a and c/a.  For square tanks, use factors from Chapter 2 b/a = c/a.

For square tanks use Chapter 2Case 3 (starts on pg 2-17) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 2‐23) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 8  (starts on pg 2‐47) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 9 (starts on pg 2‐53) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

For rectangular tanks use Chapter 3Case 3 (starts on pg 3-25) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 3‐35) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 7 (starts on pg 3‐65) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 8 (starts on pg 3‐75) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

Vertical Design Bending Moment

M x or z = M Coef. X q a2/1000Exterior Soil (‐1), Interior Water (1) ‐1

Franson Civil Engineers

Page 59: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

qtri a2/1000 =  ‐0.58 in‐kips qrect a2/1000 =  ‐0.29 in‐kips

Mu = 1.3 x 1.7 x Mx

(only use 1.3 if sanitary structure, otherwise use 1[input at beginning of spreadsheet])

Mu tri = ‐0.99 in‐kips Mu rect = ‐0.50 in‐kips

Triangular Loads (Case 3 or 4)Long Wall Short WallMax Mx (pos and neg) Max Mz (pos and neg)

pos 7 pos 12neg ‐152 neg ‐19

Rectangular Loads (Case 7 or 8 (rect tank), 8 or 9 (square tank))Long Wall Short WallMax Mx (pos and neg) Max Mz (pos and neg)

pos 9 pos 18neg ‐433 neg ‐349

Exterior (+) and Interior (‐) Face LoadsLong Wall Short WallMux =  365.04 in‐kips Muz =  192.11 in‐kipsMux =  ‐11.38 in‐kips Muz =  ‐20.78 in‐kips

Exterior Face Long WallMu/(ǿ f'c b d2) = 0.1144

w = 0.1234 from Table A‐1 0.1141 0.1144 0.11490.3602

As = w b d (f'c/fy) 0.948 in2/ft Calculated As Requirement 0.1230 0.1234 0.1240As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 1.264 in2/ft ACI 10.5.2 6 Bar SizeAs min = 0.948 in2/ft Area of Steel Required 0.948 in2/ft

11#6@11 in O.C.

Exterior Face Short Wall 0.964 in2/ftMu/(ǿ f'c b d2) = 0.0602 Steel okay

w = 0.0625 from Table A‐1 0.0597 0.0602 0.06070.4977

As = w b d (f'c/fy) 0.4805 in2/ft Calculated As Requirement 0.0620 0.0625 0.0630As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.641 in2/ft ACI 10.5.2As min = 0.480 in2/ft Area of Steel Required 0.480 in2/ft

22Interior Face Long Wall #6@22 in O.C.Mu/(ǿ f'c b d2) = 0.0036 0.482 in2/ft

w = 0.0036 from Table A‐1 Steel okay 0.0030 0.0036 0.00400.5649

As = w b d (f'c/fy) 0.027 in2/ft Calculated As Requirement 0.0030 0.0036 0.0040As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.037 in2/ft ACI 10.5.2As min = 0.037 in2/ft Area of Steel Required 0.037 in2/ft

290#6@290 in O.C.

Interior Face Short Wall 0.037 in2/ftMu/(ǿ f'c b d2) = 0.0065 Steel okay

w = 0.0065 from Table A‐1 0.0060 0.0065 0.00700.5115

As = w b d (f'c/fy) 0.0501 in2/ft Calculated As Requirement 0.0060 0.0065 0.0070As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.067 in2/ft ACI 10.5.2As min = 0.067 in2/ft Area of Steel Required 0.067 in2/ft

158#6@158 in O.C.

(c) Design for Horizontal Bending Moments (determine horizontal steel) 0.067 in2/ftFor rectangular tanks, use factors found in Chapter 3 for b/a and c/a.   Steel okayFor square tanks, use factors from Chapter 2 b/a = c/a.

For square tanks use Chapter 2Case 3 (starts on pg 2-17) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 2‐23) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 8  (starts on pg 2‐47) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 9 (starts on pg 2‐53) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

For rectangular tanks use Chapter 3Case 3 (starts on pg 3-25) is Triangular Load (Soil and water) Free Top and Fixed Base (open top tanks)Case 4 (starts on pg 3‐35) is Triangular Load (Soil and water) Hinged Top and Free BaseCase 7 (starts on pg 3‐65) is Rectangular Load (Soil Surcharge) Free Top and Fixed BaseCase 8 (starts on pg 3‐75) is Rectangular Load (Soil Surcharge) Hinged Top and Fixed Base

Horizontal Design Bending Moment

M y = M Coef. X q a2/1000Exterior Soil (‐1), Interior Water (1) ‐1

Franson Civil Engineers

Page 60: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

qtri a2/1000 =  ‐0.580 in‐kips qrect a2/1000 =  ‐0.292 in‐kips

Mu = 1.3 x 1.7 x Mx

(only use 1.3 if sanitary structure, otherwise use 1[input at beginning of spreadsheet])

Mu tri = ‐0.987 in‐kips Mu rect = ‐0.497 in‐kips

Triangular Loads (Case 3 or 4)Long Wall Short WallMax My (pos and neg) Max My (pos and neg)

pos 17 pos 7neg ‐56 neg ‐56

Rectangular Loads (Case 7 or 8 (rect tank), 8 or 9 (square tank))Long Wall Short WallMax My (pos and neg) Max My (pos and neg)

pos 61 pos 8neg ‐227 neg ‐227

Exterior (+) and Interior (‐) Face LoadsLong Wall Short WallMuy =  168.01 in‐kips Muy =  168.01 in‐kipsMuy =  ‐47.07 in‐kips Muy =  ‐10.88 in‐kips

Exterior Face Long WallMu/(ǿ f'c b d2) = 0.0526

w = 0.0544 from Table A‐1 0.0523 0.0526 0.05320.3841

As = w b d (f'c/fy) 0.418 in2/ft Calculated As Requirement 0.0540 0.0544 0.0550As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.557 in2/ft ACI 10.5.2As min = 0.418 in2/ft Area of Steel Required 0.418 in2/ft

25#6@25 in O.C.

Exterior Face Short Wall 0.424 in2/ftMu/(ǿ f'c b d2) = 0.0526 Steel okay

w = 0.0544 from Table A‐1 0.0523 0.0526 0.05320.3841

As = w b d (f'c/fy) 0.4181 in2/ft Calculated As Requirement 0.0540 0.0544 0.0550As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.557 in2/ft ACI 10.5.2As min = 0.418 in2/ft Area of Steel Required 0.418 in2/ft

25Interior Face Long Wall #6@25 in O.C.Mu/(ǿ f'c b d2) = 0.0148 0.424 in2/ft

w = 0.0149 from Table A‐1 Steel okay 0.0139 0.0148 0.01490.8504

As = w b d (f'c/fy) 0.114 in2/ft Calculated As Requirement 0.0140 0.0149 0.0150As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.152 in2/ft ACI 10.5.2As min = 0.152 in2/ft Area of Steel Required 0.152 in2/ft

69#6@69 in O.C.

Interior Face Short Wall 0.154 in2/ftMu/(ǿ f'c b d2) = 0.0034 Steel okay

w = 0.0034 from Table A‐1 0.0030 0.0034 0.00400.4092

As = w b d (f'c/fy) 0.0262 in2/ft Calculated As Requirement 0.0030 0.0034 0.0040As min = 0.326 in2/ft ACI 10.5.14/3 req'd As = 0.035 in2/ft ACI 10.5.2As min = 0.035 in2/ft Area of Steel Required 0.035 in2/ft

303#6@303 in O.C.

Steel Required for Direct Tension in Long Wall (Only for water load on inside of structure) 0.035 in2/ftThis is added to horizontal steel if required Steel okay

Is this analysis for water inside of structure? (1 = yes, 0 = no) 0Factored Tension (Nu) = 1.65 X Nu 0 lbRequired Steel for tension = Nu/(0.9 fy) 0.000 in2/ft

Franson Civil Engineers

Page 61: Appendix I - FCE Outlet Design Report (DRAFT)

spSlab v3.60 © StructurePoint 11-05-2015, 03:55:28 PM15 day trial license. Expires: Nov 20, 2015 at 15:46:09. Locking Code: 4-2BAFB. User: Franson, Franson-American Fork \\Franson\users\vhogge\My Documents\SpSlab\Millsite Beam.slb Page 1

oooooo o o oo oo oo oo ooooo oooooo oo oo ooooo oo oo o oo oo oo oo o oo oo oo oo oo ooo oo oooooo oooooo ooooo oo oo ooo oo oo oo oo oo oo oooooo oo oo oo oo oo oo o oo oo oo oo oo o oo oo oo oo ooooo oo oooooo ooo ooooo o ooooo (TM) ================================================================================================= spSlab v3.60 (TM) A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams, One-way and Two-way Slab Systems Copyright © 2003-2013, STRUCTUREPOINT, LLC All rights reserved ================================================================================================= Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spSlab computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spSlab program. Although STRUCTUREPOINT has endeavored to produce spSlab error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spSlab program. ==================================================================================================================[2] DESIGN RESULTS================================================================================================================== Top Reinforcement================= Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Zone Width Mmax Xmax AsMin AsMax AsReq SpProv Bars ---- ------- -------- ---------- -------- -------- -------- -------- -------- ------- 1 Left 1.50 0.00 0.500 0.000 19.794 0.000 0.000 --- Midspan 1.50 0.00 9.000 0.000 19.794 0.000 0.000 --- Right 1.50 0.00 17.500 0.000 19.794 0.000 0.000 ---

Top Bar Details=============== Units: Length (ft) _____________Left______________ ___Continuous__ _____________Right_____________ Span Bars Length Bars Length Bars Length Bars Length Bars Length ---- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 1 --- --- --- --- ---

Bottom Reinforcement==================== Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Width Mmax Xmax AsMin AsMax AsReq SpProv Bars ---- -------- ---------- -------- -------- -------- -------- -------- ------- 1 1.50 99.56 8.750 1.750 19.770 0.429 3.000 6-#5 *3 NOTES: *3 - Design governed by minimum reinforcement.

Bottom Bar Details================== Units: Start (ft), Length (ft) _______Long Bars_______ ______Short Bars_______ Span Bars Start Length Bars Start Length ---- ------- ------- ------- ------- ------- ------- 1 6-#5 0.00 18.00 ---

Flexural Capacity================= Units: x (ft), As (in^2), PhiMn (k-ft) Span x AsTop AsBot PhiMn- PhiMn+ ---- --------- ----- ----- ------------ ------------ 1 0.000 0.00 1.86 0.00 426.52 0.500 0.00 1.86 0.00 426.52 6.450 0.00 1.86 0.00 426.52 9.000 0.00 1.86 0.00 426.52 11.550 0.00 1.86 0.00 426.52 17.500 0.00 1.86 0.00 426.52 18.000 0.00 1.86 0.00 426.52

Slab Shear Capacity=================== Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu

Page 62: Appendix I - FCE Outlet Design Report (DRAFT)

spSlab v3.60 © StructurePoint 11-05-2015, 03:55:28 PM15 day trial license. Expires: Nov 20, 2015 at 15:46:09. Locking Code: 4-2BAFB. User: Franson, Franson-American Fork \\Franson\users\vhogge\My Documents\SpSlab\Millsite Beam.slb Page 2

---- -------- -------- -------- ------------ ------------ ------------ 1 18.00 51.69 1.000 98.68 22.34 17.50

Deflections=========== Section properties ------------------ Units: Ig, Icr, Ie (in^4), Mcr, Mmax (k-ft) ________________Load Level_______________ ________Ie,avg_________ _________Dead_______ ______Dead+Live_____ Span Dead Dead+Live Zone Ig Icr Mcr Mmax Ie Mmax Ie ---- ----------- ----------- ------- ----------- ----------- ------- -------- ----------- -------- ----------- 1 236196 236196 Midspan 236196 27083 386.61 74.00 236196 82.28 236196 Maximum Instantaneous Deflections --------------------------------- Units: D (in) Span Ddead Dlive Dtotal ---- -------- -------- -------- 1 0.004 0.000 0.005 Maximum Long-term Deflections ----------------------------- Time dependant factor for sustained loads = 2.000 Units: D (in) Span Dsust Lambda Dcs Dcs+lu Dcs+l Dtotal ---- -------- ------ -------- -------- -------- -------- 1 0.004 2.000 0.009 0.009 0.009 0.013 Material Takeoff================ Reinforcement in the Direction of Analysis ------------------------------------------ Top Bars: 0.0 lb <=> 0.00 lb/ft <=> 0.000 lb/ft^2 Bottom Bars: 112.6 lb <=> 6.26 lb/ft <=> 4.172 lb/ft^2 Stirrups: 0.0 lb <=> 0.00 lb/ft <=> 0.000 lb/ft^2 Total Steel: 112.6 lb <=> 6.26 lb/ft <=> 4.172 lb/ft^2 Concrete: 121.5 ft^3 <=> 6.75 ft^3/ft <=> 4.500 ft^3/ft^2

Page 63: Appendix I - FCE Outlet Design Report (DRAFT)

STRUCTUREPOINT - spColumn v4.81 (TM) Page 1 15 day trial license. Locking Code: 4-2BAFB. User: Franson, Franson 11/06/15 \\Franson\users\vhogge\My Documents\SpColumn\Millsite.col 08:30 AM

oooooo o oo oo oo ooooo oooooo oo ooooo oo oo oo o oooooooooo o ooooo oo o oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo ooooo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oooooo oo oo oo oo oo oo oo oo oo oo oo o oo oo oo oo oo oo oo o oo oo oo oo oo oo oo ooooo oo oooooo ooooo ooo ooooo o oo oo oo oo oo (TM)

========================================================================================================== spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved ==========================================================================================================

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 64: Appendix I - FCE Outlet Design Report (DRAFT)

STRUCTUREPOINT - spColumn v4.81 (TM) Page 2 15 day trial license. Locking Code: 4-2BAFB. User: Franson, Franson 11/06/15 \\Franson\users\vhogge\My Documents\SpColumn\Millsite.col 08:30 AM

General Information: ==================== File Name: \\Franson\users\vhogge\My Documents\SpColumn\Millsite.col Project: Millsite Outlet Vault Column: Wall Corner Engineer: VH Code: ACI 318-11 Units: English

Run Option: Design Slenderness: Considered Run Axis: X-axis Column Type: Structural

Material Properties: ==================== f'c = 5 ksi fy = 60 ksi Ec = 4030.51 ksi Es = 29000 ksi Ultimate strain = 0.003 in/in Beta1 = 0.8

Section: ======== Rectangular: Width = 19 in Depth = 19 in

Gross section area, Ag = 361 in^2 Ix = 10860.1 in^4 Iy = 10860.1 in^4 rx = 5.48483 in ry = 5.48483 in Xo = 0 in Yo = 0 in

Reinforcement: ============== Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) ---- --------- ----------- ---- --------- ----------- ---- --------- ----------- # 3 0.38 0.11 # 4 0.50 0.20 # 5 0.63 0.31 # 6 0.75 0.44 # 7 0.88 0.60 # 8 1.00 0.79 # 9 1.13 1.00 # 10 1.27 1.27 # 11 1.41 1.56 # 14 1.69 2.25 # 18 2.26 4.00

Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 3.61 in^2, Asmax = 0.08 * Ag = 28.88 in^2

Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65

Layout: Rectangular Pattern: All Sides Equal (Cover to transverse reinforcement) Total steel area: As = 4.80 in^2 at rho = 1.33% Minimum clear spacing = 5.81 in

8 #7 Cover = 2 in

Service Loads: ============== Load Axial Load Mx @ Top Mx @ Bot My @ Top My @ Bot No. Case kip k-ft k-ft k-ft k-ft --- ---- ------------ ------------ ------------ ------------ ------------ 1 Dead 25.04 -2.60 0.00 0.00 0.00 Live 0.00 0.00 0.00 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 EQ 0.00 0.00 0.00 0.00 0.00 Snow 0.00 0.00 0.00 0.00 0.00

Sustained Load Factors: ======================= Load Factor Case (%) ---- ------------ Dead 100 Live 0 Wind 0 EQ 0 Snow 0

Load Combinations: ================== U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake + 1.600*Snow U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake + 0.500*Snow U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake + 0.000*Snow U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake + 1.600*Snow

Page 65: Appendix I - FCE Outlet Design Report (DRAFT)

STRUCTUREPOINT - spColumn v4.81 (TM) Page 3 15 day trial license. Locking Code: 4-2BAFB. User: Franson, Franson 11/06/15 \\Franson\users\vhogge\My Documents\SpColumn\Millsite.col 08:30 AM

U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake + 0.500*Snow U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake + 0.000*Snow U10 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake + 0.200*Snow U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake + 0.000*Snow U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake + 0.200*Snow U13 = 0.900*Dead + 0.000*Live + 0.000*Wind - 1.000*EarthQuake + 0.000*Snow

Slenderness: ============ Sway Criteria: -------------- X-axis: Nonsway column.

Height Width Depth I f'c Ec Column Axis ft in in in^4 ksi ksi ------ ---- -------- ---------- ---------- ------------ -------- ------------ Design X 9 19 19 10860.1 5 4030.51 Above X (no column specified...) Below X (no column specified...)

X-Beams Length Width Depth I f'c Ec Location ft in in in^4 ksi ksi ----------- -------- ---------- ---------- ------------ -------- ------------ Above Left (no beam specified...) Above Right (no beam specified...) Below Left (no beam specified...) Below Right (no beam specified...)

Effective Length Factors: ------------------------- Axis Psi(top) Psi(bot) k(Nonsway) k(Sway) klu/r ---- ------------ ------------ ------------ ------------ ------------ X 999.000 999.000 1.000 (N/A) 19.68

Moment Magnification Factors: ============================= Stiffness reduction factor, phi(K) = 0.75 Cracked-section coefficients: cI(beams) = 0.35; cI(columns) = 0.7

0.2*Ec*Ig + Es*Ise (X-axis) = 1.34e+007 kip-in^2

X-axis ------------------- At Ends ------------------ ------------------ Along Length ----------------- Ld/Comb SumPu(kip) Pc(kip) SumPc(kip) Betads Deltas Pu(kip) k'lu/r Pc(kip) Betad Cm Delta ------- ---------- ---------- ---------- ------ ------ ---------- ------ ---------- ------ ------ ------ 1 U1 (N/A) (N/A) (N/A) (N/A) (N/A) 35.06 (N/A) 5683.77 1.000 (N/A) (N/A) * U2 (N/A) (N/A) (N/A) (N/A) (N/A) 30.05 (N/A) 5683.77 1.000 (N/A) (N/A) * U3 (N/A) (N/A) (N/A) (N/A) (N/A) 30.05 (N/A) 5683.77 1.000 (N/A) (N/A) * U4 (N/A) (N/A) (N/A) (N/A) (N/A) 30.05 (N/A) 5683.77 1.000 (N/A) (N/A) * U5 (N/A) (N/A) (N/A) (N/A) (N/A) 30.05 (N/A) 5683.77 1.000 (N/A) (N/A) * U6 (N/A) (N/A) (N/A) (N/A) (N/A) 22.54 (N/A) 5683.77 1.000 (N/A) (N/A) * U7 (N/A) (N/A) (N/A) (N/A) (N/A) 30.05 (N/A) 5683.77 1.000 (N/A) (N/A) * U8 (N/A) (N/A) (N/A) (N/A) (N/A) 30.05 (N/A) 5683.77 1.000 (N/A) (N/A) * U9 (N/A) (N/A) (N/A) (N/A) (N/A) 22.54 (N/A) 5683.77 1.000 (N/A) (N/A) * U10 (N/A) (N/A) (N/A) (N/A) (N/A) 30.05 (N/A) 5683.77 1.000 (N/A) (N/A) * U11 (N/A) (N/A) (N/A) (N/A) (N/A) 22.54 (N/A) 5683.77 1.000 (N/A) (N/A) * U12 (N/A) (N/A) (N/A) (N/A) (N/A) 30.05 (N/A) 5683.77 1.000 (N/A) (N/A) * U13 (N/A) (N/A) (N/A) (N/A) (N/A) 22.54 (N/A) 5683.77 1.000 (N/A) (N/A) *

* Slenderness need not be considered.

Factored Moments due to First-Order and Second-Order Effects: ============================================================= Minimum eccentricity, Ex,min = 1.17 in

NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom X-axis -------------- 1st Order ------------- --------- 2nd Order -------- - Ratio - Load Mns Ms Mu Mmin Mi Mc 2nd/1st Combo k-ft k-ft k-ft k-ft k-ft k-ft ------- ------------ ------------ ------------ ------------ --------------- ------------ --------- 1 U1 -3.64 (N/A) -3.64 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A) 1 U2 -3.12 (N/A) -3.12 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A) 1 U3 -3.12 (N/A) -3.12 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A) 1 U4 -3.12 (N/A) -3.12 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A)

Page 66: Appendix I - FCE Outlet Design Report (DRAFT)

STRUCTUREPOINT - spColumn v4.81 (TM) Page 4 15 day trial license. Locking Code: 4-2BAFB. User: Franson, Franson 11/06/15 \\Franson\users\vhogge\My Documents\SpColumn\Millsite.col 08:30 AM

1 U5 -3.12 (N/A) -3.12 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A) 1 U6 -2.34 (N/A) -2.34 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A) 1 U7 -3.12 (N/A) -3.12 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A) 1 U8 -3.12 (N/A) -3.12 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A) 1 U9 -2.34 (N/A) -2.34 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A) 1 U10 -3.12 (N/A) -3.12 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A) 1 U11 -2.34 (N/A) -2.34 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A) 1 U12 -3.12 (N/A) -3.12 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A) 1 U13 -2.34 (N/A) -2.34 (N/A) M2= (N/A) (N/A) (N/A) 0.00 (N/A) 0.00 (N/A) M1= (N/A) (N/A) (N/A)

Factored Loads and Moments with Corresponding Capacities: ========================================================= Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load Pu Mux PhiMnx PhiMn/Mu NA depth Dt depth eps_t Phi No. Combo kip k-ft k-ft in in --- ------ ------------ ------------ ------------ -------- -------- -------- -------- ------ 1 1 U1 35.06 -3.64 -187.66 51.556 3.14 16.19 0.01248 0.900 2 35.06 0.00 187.66 999.999 3.14 16.19 0.01248 0.900 3 1 U2 30.05 -3.12 -184.81 59.235 3.09 16.19 0.01273 0.900 4 30.05 0.00 184.81 999.999 3.09 16.19 0.01273 0.900 5 1 U3 30.05 -3.12 -184.81 59.235 3.09 16.19 0.01273 0.900 6 30.05 0.00 184.81 999.999 3.09 16.19 0.01273 0.900 7 1 U4 30.05 -3.12 -184.81 59.235 3.09 16.19 0.01273 0.900 8 30.05 0.00 184.81 999.999 3.09 16.19 0.01273 0.900 9 1 U5 30.05 -3.12 -184.81 59.235 3.09 16.19 0.01273 0.900 10 30.05 0.00 184.81 999.999 3.09 16.19 0.01273 0.900 11 1 U6 22.54 -2.34 -180.48 77.129 3.01 16.19 0.01312 0.900 12 22.54 0.00 180.48 999.999 3.01 16.19 0.01312 0.900 13 1 U7 30.05 -3.12 -184.81 59.235 3.09 16.19 0.01273 0.900 14 30.05 0.00 184.81 999.999 3.09 16.19 0.01273 0.900 15 1 U8 30.05 -3.12 -184.81 59.235 3.09 16.19 0.01273 0.900 16 30.05 0.00 184.81 999.999 3.09 16.19 0.01273 0.900 17 1 U9 22.54 -2.34 -180.48 77.129 3.01 16.19 0.01312 0.900 18 22.54 0.00 180.48 999.999 3.01 16.19 0.01312 0.900 19 1 U10 30.05 -3.12 -184.81 59.235 3.09 16.19 0.01273 0.900 20 30.05 0.00 184.81 999.999 3.09 16.19 0.01273 0.900 21 1 U11 22.54 -2.34 -180.48 77.129 3.01 16.19 0.01312 0.900 22 22.54 0.00 180.48 999.999 3.01 16.19 0.01312 0.900 23 1 U12 30.05 -3.12 -184.81 59.235 3.09 16.19 0.01273 0.900 24 30.05 0.00 184.81 999.999 3.09 16.19 0.01273 0.900 25 1 U13 22.54 -2.34 -180.48 77.129 3.01 16.19 0.01312 0.900 26 22.54 0.00 180.48 999.999 3.01 16.19 0.01312 0.900

*** End of output ***

Page 67: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Pipe Water Water Total TotalDia. Weight Volume Weight Weight Length Weightinches lbs/ft ft^3/ft lbs/ft lbs/ft ft lbs

54 200 15.9 992 1192 10 1192436 130 7.1 441 571 10 571124 100 3.1 196 296 10 296012 50 0.8 49 99 10 990

Pipe Water Water Total Total Valve MeterDia. Weight Volume Weight Weight Length Weight Weight Weightinches lbs/ft ft^3/ft lbs/ft lbs/ft ft lbs Valve lbs Meter lbs

Mainline Section 1 54 200 15.9 992 1192 5 5962 ‐ ‐ ‐ ‐Mainline Section 2 54 200 15.9 992 1192 12 14309 ‐ ‐ ‐ ‐Mainline Section 3 36 130 7.1 441 571 14 7995 ‐ ‐ ‐ ‐Mainline Section 4 36 130 7.1 441 571 12 6853 1/2Plunger 3250 ‐ ‐Mainline Section 5 36 130 7.1 441 571 5 2855 1/2Plunger 3250 ‐ ‐South Lateral 1 24 100 3.1 196 296 19 5625 BFV 975 Mag 97512" Bypass 1 12 50 0.8 49 99 16 1584 BFV 225 Mag 225South Lateral 2 36 130 7.1 441 571 19 10851 BFV 2500 ‐ ‐12" Bypass 2 12 50 0.8 49 99 16 1584 BFV 225 ‐ ‐South Lateral 3 36 130 7.1 441 571 19 10851 BFV 2500 ‐ ‐12" Bypass 3 12 50 0.8 49 99 15 1485 Plunger 450 ‐ ‐North Lateral 24 100 3.1 196 296 27 7993 BFV 975 Mag 975

Concrete Weight 77947 lbs 14350 lbs 2175 lbsWeight Thrust TotalSupported Weight Weight 94472 lbslbs lbs lbs 47 tons

Support/Thrust #1 18500 18086 36586.1 1016.3Support/Thrust #2 24095 18086 42181.1 1171.7Support/Thrust #3 17780 26038 43818.3 1217.2Support/Plunge Valve 11400 0 11400 456

Franson Civil Engineers

Page 68: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Floor Section AnalysisSelf Wall Pipe Valve Support Total Shear Delta Moment

Section 1 Load Load Load Load Load LoadFoot lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft0 0 0 0 0 0 01 ‐150 500 349.6 349.6 174.8 174.82 ‐150 ‐2225 497 ‐1878.29 ‐1528.69 ‐589.544 ‐414.7443 ‐150 494 343.826 ‐1184.86 ‐1356.77 ‐1771.524 ‐150 491 340.939 ‐843.922 ‐1014.39 ‐2785.915 ‐150 488 338.052 ‐505.87 ‐674.896 ‐3460.816 ‐150 485 335.165 ‐170.705 ‐338.288 ‐3799.097 ‐150 482 332.278 161.573 ‐4.566 ‐3803.668 ‐150 ‐456 479 ‐126.609 34.964 98.2685 ‐3705.399 ‐150 ‐456 477 ‐129.496 ‐94.532 ‐29.784 ‐3735.1710 ‐150 ‐456 474 ‐132.383 ‐226.915 ‐160.724 ‐3895.911 ‐150 ‐456 471 ‐135.27 ‐362.185 ‐294.55 ‐4190.4512 ‐150 ‐456 468 ‐138.157 ‐500.342 ‐431.264 ‐4621.7113 ‐150 465 314.956 ‐185.386 ‐342.864 ‐4964.5814 ‐150 462 312.069 126.683 ‐29.3515 ‐4993.9315 ‐150 459 309.182 435.865 281.274 ‐4712.6516 ‐150 456 306.295 742.16 589.0125 ‐4123.6417 ‐150 453 303.408 1045.568 893.864 ‐3229.7818 ‐150 451 300.521 1346.089 1195.829 ‐2033.9519 ‐150 448 297.634 1643.723 1494.906 ‐539.04120 ‐150 ‐2225 445 ‐1930.25 ‐286.53 678.5965 139.55521 ‐150 442 291.86 5.33 ‐140.6 ‐1.045

‐9880 9885Delta

2.887

Franson Civil Engineers

Page 69: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Self Wall Pipe Valve Support Total Shear Delta MomentSection 2 Load Load Load Load Load Load

Foot lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft0 0 0 0 0 0 01 ‐150 740 590 590 295 2952 ‐150 ‐2225 732 ‐1643 ‐1053 ‐231.5 63.53 ‐150 724 574 ‐479 ‐766 ‐702.54 ‐150 716 566 87 ‐196 ‐898.55 ‐150 708 558 645 366 ‐532.56 ‐150 ‐1220 700 ‐670 ‐25 310 ‐222.57 ‐150 ‐1220 692 ‐678 ‐703 ‐364 ‐586.58 ‐150 ‐1220 684 ‐686 ‐1389 ‐1046 ‐1632.59 ‐150 ‐1220 676 ‐694 ‐2083 ‐1736 ‐3368.510 ‐150 ‐1220 668 ‐702 ‐2785 ‐2434 ‐5802.511 ‐150 ‐1220 660 ‐710 ‐3495 ‐3140 ‐8942.512 ‐150 652 502 ‐2993 ‐3244 ‐12186.513 ‐150 644 494 ‐2499 ‐2746 ‐14932.514 ‐150 636 486 ‐2013 ‐2256 ‐17188.515 ‐150 628 478 ‐1535 ‐1774 ‐18962.516 ‐150 620 470 ‐1065 ‐1300 ‐20262.517 ‐150 612 462 ‐603 ‐834 ‐21096.518 ‐150 604 454 ‐149 ‐376 ‐21472.519 ‐150 596 446 297 74 ‐21398.520 ‐150 588 438 735 516 ‐20882.521 ‐150 580 430 1165 950 ‐19932.522 ‐150 572 422 1587 1376 ‐18556.523 ‐150 564 414 2001 1794 ‐16762.524 ‐150 556 406 2407 2204 ‐14558.525 ‐150 548 398 2805 2606 ‐11952.526 ‐150 540 390 3195 3000 ‐8952.527 ‐150 532 382 3577 3386 ‐5566.528 ‐150 524 374 3951 3764 ‐1802.529 ‐150 ‐4670 516 ‐4304 ‐353 1799 ‐3.530 ‐150 508 358 5 ‐174 ‐177.5

‐18715 18720Delta

8

Franson Civil Engineers

Page 70: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Self Wall Pipe Valve Support Total Shear Delta MomentSection 3 Load Load Load Load Load Load

Foot lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft0 0 0 0 0 0 01 ‐150 708 558 558 279 2792 ‐150 706 556.4 1114.4 836.2 1115.23 ‐150 ‐1020 705 ‐465.2 649.2 881.8 19974 ‐150 ‐1020 703 ‐466.8 182.4 415.8 2412.85 ‐150 ‐1020 702 ‐468.4 ‐286 ‐51.8 23616 ‐150 ‐1020 700 ‐470 ‐756 ‐521 18407 ‐150 ‐1020 698 ‐471.6 ‐1227.6 ‐991.8 848.28 ‐150 ‐1020 697 ‐473.2 ‐1700.8 ‐1464.2 ‐6169 ‐150 695 545.2 ‐1155.6 ‐1428.2 ‐2044.210 ‐150 694 543.6 ‐612 ‐883.8 ‐292811 ‐150 692 542 ‐70 ‐341 ‐326912 ‐150 690 540.4 470.4 200.2 ‐3068.813 ‐150 689 538.8 1009.2 739.8 ‐232914 ‐150 687 537.2 1546.4 1277.8 ‐1051.215 ‐150 686 535.6 2082 1814.2 76316 ‐150 ‐1180 684 ‐646 1436 1759 252217 ‐150 ‐1180 682 ‐647.6 788.4 1112.2 3634.218 ‐150 ‐1180 681 ‐649.2 139.2 463.8 409819 ‐150 ‐1180 679 ‐650.8 ‐511.6 ‐186.2 3911.820 ‐150 ‐1180 678 ‐652.4 ‐1164 ‐837.8 307421 ‐150 ‐1180 676 ‐654 ‐1818 ‐1491 158322 ‐150 674 524.4 ‐1293.6 ‐1555.8 27.223 ‐150 673 522.8 ‐770.8 ‐1032.2 ‐100524 ‐150 671 521.2 ‐249.6 ‐510.2 ‐1515.225 ‐150 670 519.6 270 10.2 ‐150526 ‐150 668 518 788 529 ‐97627 ‐150 666 516.4 1304.4 1046.2 70.228 ‐150 665 514.8 1819.2 1561.8 163229 ‐150 ‐1220 663 ‐706.8 1112.4 1465.8 3097.830 ‐150 ‐1220 662 ‐708.4 404 758.2 385631 ‐150 ‐1220 660 ‐710 ‐306 49 390532 ‐150 ‐1220 658 ‐711.6 ‐1017.6 ‐661.8 3243.233 ‐150 ‐1220 657 ‐713.2 ‐1730.8 ‐1374.2 186934 ‐150 ‐1220 655 ‐714.8 ‐2445.6 ‐2088.2 ‐219.235 ‐150 654 503.6 ‐1942 ‐2193.8 ‐241336 ‐150 652 502 ‐1440 ‐1691 ‐410437 ‐150 650 500.4 ‐939.6 ‐1189.8 ‐5293.838 ‐150 649 498.8 ‐440.8 ‐690.2 ‐598439 ‐150 647 497.2 56.4 ‐192.2 ‐6176.240 ‐150 646 495.6 552 304.2 ‐587241 ‐150 ‐456 644 38 590 571 ‐530142 ‐150 ‐456 642 36.4 626.4 608.2 ‐4692.843 ‐150 ‐456 641 34.8 661.2 643.8 ‐404944 ‐150 ‐456 639 33.2 694.4 677.8 ‐3371.245 ‐150 ‐456 638 31.6 726 710.2 ‐266146 ‐150 636 486 1212 969 ‐169247 ‐150 634 484.4 1696.4 1454.2 ‐237.848 ‐150 ‐2700 633 ‐2217.2 ‐520.8 587.8 35049 ‐150 631 481.2 ‐39.6 ‐280.2 69.8

‐32850 32810Delta

1.6708

Franson Civil Engineers

Page 71: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Self Wall Pipe Valve Support Total Shear Delta MomentSection 4 Load Load Load Load Load Load

Foot lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft lbs/ft0 0 0 0 0 0 01 ‐150 198 48 48 24 242 ‐150 ‐2225 201 ‐2174.2 ‐2126.2 ‐1039.1 ‐1015.13 ‐150 204 53.6 ‐2072.6 ‐2099.4 ‐3114.54 ‐150 206 56.4 ‐2016.2 ‐2044.4 ‐5158.95 ‐150 209 59.2 ‐1957 ‐1986.6 ‐7145.56 ‐150 212 62 ‐1895 ‐1926 ‐9071.57 ‐150 215 64.8 ‐1830.2 ‐1862.6 ‐10934.18 ‐150 218 67.6 ‐1762.6 ‐1796.4 ‐12730.59 ‐150 220 70.4 ‐1692.2 ‐1727.4 ‐14457.910 ‐150 223 73.2 ‐1619 ‐1655.6 ‐16113.511 ‐150 226 76 ‐1543 ‐1581 ‐17694.512 ‐150 229 78.8 ‐1464.2 ‐1503.6 ‐19198.113 ‐150 232 81.6 ‐1382.6 ‐1423.4 ‐20621.514 ‐150 234 84.4 ‐1298.2 ‐1340.4 ‐21961.915 ‐150 237 87.2 ‐1211 ‐1254.6 ‐23216.516 ‐150 240 90 ‐1121 ‐1166 ‐24382.517 ‐150 243 92.8 ‐1028.2 ‐1074.6 ‐25457.118 ‐150 246 95.6 ‐932.6 ‐980.4 ‐26437.519 ‐150 248 98.4 ‐834.2 ‐883.4 ‐27320.920 ‐150 251 101.2 ‐733 ‐783.6 ‐28104.521 ‐150 254 104 ‐629 ‐681 ‐28785.522 ‐150 257 106.8 ‐522.2 ‐575.6 ‐29361.123 ‐150 260 109.6 ‐412.6 ‐467.4 ‐29828.524 ‐150 262 112.4 ‐300.2 ‐356.4 ‐30184.925 ‐150 265 115.2 ‐185 ‐242.6 ‐30427.526 ‐150 268 118 ‐67 ‐126 ‐30553.527 ‐150 271 120.8 53.8 ‐6.6 ‐30560.128 ‐150 274 123.6 177.4 115.6 ‐30444.529 ‐150 276 126.4 303.8 240.6 ‐30203.930 ‐150 279 129.2 433 368.4 ‐29835.531 ‐150 282 132 565 499 ‐29336.532 ‐150 285 134.8 699.8 632.4 ‐28704.133 ‐150 288 137.6 837.4 768.6 ‐27935.534 ‐150 290 140.4 977.8 907.6 ‐27027.935 ‐150 293 143.2 1121 1049.4 ‐25978.536 ‐150 296 146 1267 1194 ‐24784.537 ‐150 299 148.8 1415.8 1341.4 ‐23443.138 ‐150 302 151.6 1567.4 1491.6 ‐21951.539 ‐150 304 154.4 1721.8 1644.6 ‐20306.940 ‐150 307 157.2 1879 1800.4 ‐18506.541 ‐150 310 160 2039 1959 ‐16547.542 ‐150 313 162.8 2201.8 2120.4 ‐14427.143 ‐150 316 165.6 2367.4 2284.6 ‐12142.544 ‐150 318 168.4 2535.8 2451.6 ‐9690.945 ‐150 321 171.2 2707 2621.4 ‐7069.546 ‐150 324 174 2881 2794 ‐4275.547 ‐150 327 176.8 3057.8 2969.4 ‐1306.148 ‐150 ‐3425 330 ‐3245.4 ‐187.6 1435.1 12949 ‐150 332 182.4 ‐5.2 ‐96.4 32.6

‐13000 12995Delta

‐2.8198

Franson Civil Engineers

Page 72: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Self Wall Pipe Valve Support Total Shear Delta MomentSection 5 Load Load Load Load Load Load

Foot lbs lbs lbs lbs lbs lbs lbs ft‐lbs ft‐lbs0 0 0 0 0 0 01 ‐150 426 276 276 138 1382 ‐150 ‐4770 429 ‐4491.3 ‐4215.3 ‐1969.65 ‐1831.653 ‐150 431 281.4 ‐3933.9 ‐4074.6 ‐5906.254 ‐150 434 284.1 ‐3649.8 ‐3791.85 ‐9698.15 ‐150 437 286.8 ‐3363 ‐3506.4 ‐13204.56 ‐150 440 289.5 ‐3073.5 ‐3218.25 ‐16422.87 ‐150 442 292.2 ‐2781.3 ‐2927.4 ‐19350.28 ‐150 445 294.9 ‐2486.4 ‐2633.85 ‐219849 ‐150 448 297.6 ‐2188.8 ‐2337.6 ‐24321.610 ‐150 450 300.3 ‐1888.5 ‐2038.65 ‐26360.311 ‐150 453 303 ‐1585.5 ‐1737 ‐28097.312 ‐150 456 305.7 ‐1279.8 ‐1432.65 ‐29529.913 ‐150 458 308.4 ‐971.4 ‐1125.6 ‐30655.514 ‐150 461 311.1 ‐660.3 ‐815.85 ‐31471.415 ‐150 464 313.8 ‐346.5 ‐503.4 ‐31974.816 ‐150 467 316.5 ‐30 ‐188.25 ‐3216317 ‐150 469 319.2 289.2 129.6 ‐32033.418 ‐150 472 321.9 611.1 450.15 ‐31583.319 ‐150 475 324.6 935.7 773.4 ‐30809.920 ‐150 477 327.3 1263 1099.35 ‐29710.521 ‐150 480 330 1593 1428 ‐28282.522 ‐150 483 332.7 1925.7 1759.35 ‐26523.223 ‐150 485 335.4 2261.1 2093.4 ‐24429.824 ‐150 488 338.1 2599.2 2430.15 ‐21999.625 ‐150 491 340.8 2940 2769.6 ‐1923026 ‐150 ‐1180 494 ‐836.5 2103.5 2521.75 ‐16708.327 ‐150 ‐1180 496 ‐833.8 1269.7 1686.6 ‐15021.728 ‐150 ‐1180 499 ‐831.1 438.6 854.15 ‐14167.529 ‐150 ‐1180 502 ‐828.4 ‐389.8 24.4 ‐14143.130 ‐150 ‐1180 504 ‐825.7 ‐1215.5 ‐802.65 ‐14945.831 ‐150 ‐1180 507 ‐823 ‐2038.5 ‐1627 ‐16572.832 ‐150 510 359.7 ‐1678.8 ‐1858.65 ‐18431.433 ‐150 512 362.4 ‐1316.4 ‐1497.6 ‐1992934 ‐150 515 365.1 ‐951.3 ‐1133.85 ‐21062.935 ‐150 518 367.8 ‐583.5 ‐767.4 ‐21830.336 ‐150 521 370.5 ‐213 ‐398.25 ‐22228.537 ‐150 523 373.2 160.2 ‐26.4 ‐22254.938 ‐150 526 375.9 536.1 348.15 ‐21906.839 ‐150 529 378.6 914.7 725.4 ‐21181.440 ‐150 531 381.3 1296 1105.35 ‐2007641 ‐150 534 384 1680 1488 ‐1858842 ‐150 537 386.7 2066.7 1873.35 ‐16714.743 ‐150 539 389.4 2456.1 2261.4 ‐14453.344 ‐150 542 392.1 2848.2 2652.15 ‐11801.145 ‐150 545 394.8 3243 3045.6 ‐8755.546 ‐150 548 397.5 3640.5 3441.75 ‐5313.7547 ‐150 550 400.2 4040.7 3840.6 ‐1473.1548 ‐150 ‐4850 553 ‐4447.1 ‐406.4 1817.15 34449 ‐150 556 405.6 ‐0.8 ‐203.6 140.4

‐24050 24049Delta

‐2.7 Max 4040.7 Max 4098426 Min ‐4215.3 Min ‐32163

Franson Civil Engineers

Page 73: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Section 1

‐2000

‐1500

‐1000

‐500

0

500

1000

1500

2000

0 5 10 15 20 25

Shear

‐6000

‐5000

‐4000

‐3000

‐2000

‐1000

0

1000

0 5 10 15 20 25

Moment

Franson Civil Engineers

Page 74: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Section 2

‐4000

‐3000

‐2000

‐1000

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35

Shear

‐25000

‐20000

‐15000

‐10000

‐5000

0

5000

0 5 10 15 20 25 30 35

Moment

Franson Civil Engineers

Page 75: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Section 3

‐3000‐2500‐2000‐1500‐1000‐500

0500

1000150020002500

0 10 20 30 40 50 60

Shear

‐8000

‐6000

‐4000

‐2000

0

2000

4000

6000

0 10 20 30 40 50 60

Moment

Franson Civil Engineers

Page 76: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Section 4

‐3000

‐2000

‐1000

0

1000

2000

3000

4000

0 10 20 30 40 50 60

Shear

‐35000

‐30000

‐25000

‐20000

‐15000

‐10000

‐5000

0

5000

0 10 20 30 40 50 60

Moment

Franson Civil Engineers

Page 77: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Section 5

‐5000

‐4000

‐3000

‐2000

‐1000

01000

2000

3000

4000

5000

0 10 20 30 40 50 60

Shear

‐35000

‐30000

‐25000

‐20000

‐15000

‐10000

‐5000

0

5000

0 10 20 30 40 50 60

Moment

Franson Civil Engineers

Page 78: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

Floor DesignFloor Slab Top Rebar Vmax Mmax

Concrete Strength (f'c) 5,000 psi Max 4040.7 lbs Max 4098 ft‐lbsSteel Tensile Strength (fy) 60,000 psi Min ‐4215.3 lbs Min ‐32163 ft‐lbs

Concrete Thickness 12 inchesBar Thickness 0.75 inches 49.176 in‐kips

d =thickness ‐ 2" cover ‐1/2 bar thickness 9.25 inches ‐385.956 in‐kipsTotal Shear

Vmax 4,300 lbVu = 1.7 x Vmax 7,310 lb

Allowable Shear ForceShear Capacity Vc = 0.85 x 2 x (f'c)^0.5 x12 x d 13,343 lbs

Thickness okay

Exterior (+) and Interior (‐) Face LoadsMmax 396.00 in‐kips 33000Mux =  673.20 in‐kips

Exterior Face Long WallMu/(ǿ f'c b d2) = 0.1457

w = 0.1610 from Table A‐1 0.1457 0.1457 0.14650.0031

As = w b d (f'c/fy) 1.489 in2/ft Calculated As Requirement 0.1610 0.1610 0.1620As min = 0.392 in2/ft ACI 10.5.14/3 req'd As = 1.986 in2/ft ACI 10.5.2 6 Bar SizeAs min = 1.489 in2/ft Area of Steel Required 1.489 in2/ft

7#6@7 in O.C.

1.515 in2/ftSteel okay

Floor Slab Bottom RebarConcrete Strength (f'c) 5,000 psi

Steel Tensile Strength (fy) 60,000 psiConcrete Thickness 12 inches

Bar Thickness 0.375 inchesd =thickness ‐ 2" cover ‐1/2 bar thickness 9.625 inches

Total ShearVmax 4,300 lb

Vu = 1.7 x Vmax 7,310 lbAllowable Shear Force

Shear Capacity Vc = 0.85 x 2 x (f'c)^0.5 x12 x d 13,884 lbsThickness okay

Exterior (+) and Interior (‐) Face LoadsMmax 48.00 in‐kips 4000Mux =  81.60 in‐kips

Exterior Face Long WallMu/(ǿ f'c b d2) = 0.0177

w = 0.0179 from Table A‐1 0.0168 0.0177 0.0178

Franson Civil Engineers

Page 79: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Vault

0.8609As = w b d (f'c/fy) 0.165 in2/ft Calculated As Requirement 0.0170 0.0179 0.0180

As min = 0.392 in2/ft ACI 10.5.14/3 req'd As = 0.220 in2/ft ACI 10.5.2 3 Bar SizeAs min = 0.220 in2/ft Area of Steel Required 0.220 in2/ft

12#3@12 in O.C.

0.884 in2/ftSteel okay

Franson Civil Engineers

Page 80: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Concrete f'c = 5000 psiRebar Fy = 60000 psiUnit Weight = 150 lb/ft³10 in

8.83 ft

4 ft 4 ft

16 in

17.8

3 ft

16.5

ft

48 in

5.33

ft

1 ft

#4 @ 10 in (S&T)#6 @ 10 in#4 @ 10 in (S&T)#4 @ 10 in#9 @ 10 in (lapped dowels)

Heel Bars: #6 @ 12 inToe Bars: #6 @ 12 inFooting S/T Bars: #4 @ 12 in

48 in

#4 @ 10 in (S&T)#6 @ 10 in#4 @ 10 in (S&T)#4 @ 10 in

Design Detail

Check SummaryRatio Check Provided Required Combination

----- Stability Checks -----0.867 Overturning 1.73 1.50 0.6D + 1.0H0.846 Bearing Pressure 3000 psf 2537 psf 1.0D + 1.0L + 0.6H0.873 Bearing Eccentricity 15.42 in 17.67 in 1.0D + 1.0L + 0.6H

----- Toe Checks -----0.394 Shear 16.07 k/ft 6.33 k/ft 1.4D0.621 Moment 24.49 ft·k/ft 15.2 ft·k/ft 1.2D + 1.6L + 1.6H0.072 Min Strain 0.0555 0.0040 1.2D + 1.6L + 1.6H0.000 Min Steel 0.04 in² 0 in² 1.2D + 1.6L + 1.6H0.218 Development 55 in 12 in 1.2D + 1.6L + 1.6H0.667 S&T Max Spacing 12 in 18 in 1.2D + 1.6L + 1.6H0.864 S&T Min Rho 0.0021 0.0018 1.2D + 1.6L + 1.6H

----- Heel Checks -----0.565 Shear 17.34 k/ft 9.8 k/ft 1.4D0.635 Moment 26.47 ft·k/ft 16.8 ft·k/ft 1.2D + 1.6L + 1.6H0.066 Min Strain 0.0602 0.0040 1.2D + 1.6L + 1.6H0.000 Min Steel 0.04 in² 0 in² 1.2D + 1.6L + 1.6H0.225 Development 56 in 12.6 in 1.2D + 1.6L + 1.6H0.667 S&T Max Spacing 12 in 18 in 1.2D + 1.6L + 1.6H0.864 S&T Min Rho 0.0021 0.0018 1.2D + 1.6L + 1.6H

----- Stem Checks -----0.911 Moment 36.34 ft·k/ft 33.1 ft·k/ft 1.2D + 1.6L + 1.6H0.677 Shear 9.46 k/ft 6.41 k/ft 1.2D + 1.6L + 1.6H0.151 Max Steel 0.0265 0.0040 1.2D + 1.6L + 1.6H0.613 Min Steel 0.04 in²/in 0.03 in²/in 1.2D + 1.6L + 1.6H0.939 Base Development 13 in 12.2 in 1.2D + 1.6L + 1.6H0.855 Lap Splice Length 48 in 41.06 in 1.2D + 1.6L + 1.6H0.000 Lap Splice Spacing 0 in 6 in 1.2D + 1.6L + 1.6H0.500 Horz Bar Rho 0.0040 0.0020 1.2D + 1.6L + 1.6H0.556 Horz Bar Spacing 10 in 18 in 1.2D + 1.6L + 1.6H

Criteria

Building Code IBC 2006Concrete Load Combs IBC 2003/06 (Str)Masonry Load Combs MSJC 02/05 (ASD)Stability Load Combs ASCE 7-10 (ASD)Restrained Against Sliding YesNeglect Bearing At Heel YesUse Vert. Comp. for OT NoUse Vert. Comp. for Sliding NoUse Vert. Comp. for Bearing YesUse Surcharge for Sliding & OT YesUse Surcharge for Bearing YesNeglect Soil Over Toe NoNeglect Backfill Wt. for Coulomb NoFactor Soil Weight As Dead YesUse Passive Force for OT YesAssume Pressure To Top YesExtend Backfill Pressure To Key Bottom NoUse Toe Passive Pressure for Bearing NoRequired F.S. for OT 1.50Required F.S. for Sliding 1.50Has Different Safety Factors for Seismic NoAllowable Bearing Pressure 3000 psfReq'd Bearing Location Middle thirdWall Friction Angle 25°Friction Coefficent 0.35Soil Reaction Modulus 172800 lb/ft³

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 1 of 24 Thursday 11/05/15 3:04 PM

Page 81: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Loads

15.5

ft

5.33

ft

16.8

3 ft

11.5

ft1

ft

γ = 100 lb/ft³φ = 30°c = 0 psf

5.33

ft

γ = 100 lb/ft³φ = 30°c = 0 psf

DL=0.29 k/ft, LL=0.05 k/ft Loading Options/AssumptionsPassive pressure neglects top 0 ft of soil.

Load Combinations

IBC 2003/06 (Str) 1.2D + 1.6L + 1.6H 1.2D + 0.5L 0.9D + 1.6H 1.4D 1.2D

Backfill Pressure

15.5

ft

5.33

ft

16.8

3 ft

11.5

ft1

ft

γ = 100 lb/ft³φ = 30°c = 0 psf -561.11 psf

16.8

3 ft

393.6 lb/in16.8

3 ft

5.61

ft

-516.67 psf

333.7 lb/in

5.17

ftRankine Active Earth Pressure Theory

Ka tan² 45° φ2 - tan ² 45° 30°

2 - 0.3333 = = =

σa γ H Ka 2 c Ka - 100 lb ft³ / 16.83 ft 0.3333 2 0 psf 0.3333 - 561.1 psf = = = αP α 0° 0° resultant force angle with horizontal = = =

Lateral Earth Pressure

σa γ H Ka 2 c Ka - 100 lb ft³ / 15.5 ft 0.3333 2 0 psf 0.3333 - 516.7 psf = = = αP α 0° 0° resultant force angle with horizontal = = =

Lateral Earth Pressure (stem only)

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 2 of 24 Thursday 11/05/15 3:04 PM

Page 82: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Passive Pressure

5.33

ft

γ = 100 lb/ft³φ = 30°c = 0 psf

1599 psf 5.33

ft

355.1 lb/in

1.78 ft

Rankine Passive Earth Pressure Theory

Kp tan² 45° φ2 + tan ² 45° 30°

2 + 3.0 = = =

σp γ H Kp 2 c Kp + 100 lb ft³ / 5.33 ft 3.0 2 0 psf 3.0 + 1599 psf = = =

Lateral Earth Pressure

Wall/Soil Weights

147.2 lb/in

171.9 lb/in 516.7 lb/in

133.2 lb/in

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 3 of 24 Thursday 11/05/15 3:04 PM

Page 83: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Bearing Pressure

2537 psf

172.1 psf

997.2 lb/in

3.13 ft

e = 15.42 in

349 lb/in

F μ R 0.350 997.2 lb in / 349 lb in / = = = Friction

Bearing Pressure CalculationContributing Forces

Vert Force ...offset Horz Force ...offset OT MomentBackfill Pressure -0 lb/in - -393.56 lb/in 5.61 ft 317994 in·lb/ftAxial Dead Load -24.08 lb/in 4.42 ft 0 lb/in - -15317 in·lb/ftAxial Live Load -4.17 lb/in 4.42 ft 0 lb/in - -2650 in·lb/ftFooting Weight -147.22 lb/in 4.42 ft 0 lb/in - -93633.33 in·lb/ftStem Weight -171.88 lb/in 4.42 ft 0 lb/in - -109312.5 in·lb/ftBackfill Weight -516.67 lb/in 6.83 ft 0 lb/in - -508400 in·lb/ftSoil over toe Weight -133.22 lb/in 2 ft 0 lb/in - -38368 in·lb/ft

-997.24 lb/in -449686.7 in·lb/ft449686.7 in·lb ft / -

997.24 lb in / - 3.13 ft =

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 4 of 24 Thursday 11/05/15 3:04 PM

Page 84: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Overturning CheckOverturning Moments

Force Distance MomentBackfill pressure (horz) 236.1 lb/in 5.61 ft 190796 in·lb/ft

Total: 190796 in·lb/ftResisting Moments

Force Distance MomentPassive pressure @ toe 213.1 lb/in 1.78 ft 54511 in·lb/ftAxial dead load -24.08 lb/in 4.42 ft 15317 in·lb/ftFooting Weight -147.22 lb/in 4.42 ft 93633 in·lb/ftStem Weight -171.88 lb/in 4.42 ft 109313 in·lb/ftBackfill Weight -516.67 lb/in 6.83 ft 508400 in·lb/ftSoil over toe Weight -133.22 lb/in 2 ft 38368 in·lb/ft

Total: 819542 in·lb/ft

F.S. RMOTM 819542 in·lb ft /

190796 in·lb ft / 4.295 > 1.50 OK = = =

Sliding CheckCheck not performed; restrained against sliding.

Bearing Capacity CheckBearing pressure < allowable (2537 psf < 3000 psf) - OKBearing resultant eccentricity < allowable (15.42 in < 17.67 in) - OK

Wall Top Displacement(based on unfactored service loads)

Deflection due to stem flexural displacement 0.461 inDeflection due to rotation from settlement 0.307 inTotal deflection at top of wall (positive towards toe) 0.767 in

Stability Checks [1.0D + 1.0L + 0.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 5 of 24 Thursday 11/05/15 3:04 PM

Page 85: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Overturning CheckOverturning Moments

Force Distance MomentBackfill pressure (horz) 393.6 lb/in 5.61 ft 317994 in·lb/ft

Total: 317994 in·lb/ftResisting Moments

Force Distance MomentPassive pressure @ toe 355.1 lb/in 1.78 ft 90852 in·lb/ftAxial dead load -14.45 lb/in 4.42 ft 9190 in·lb/ftFooting Weight -88.33 lb/in 4.42 ft 56180 in·lb/ftStem Weight -103.13 lb/in 4.42 ft 65588 in·lb/ftBackfill Weight -310 lb/in 6.83 ft 305040 in·lb/ftSoil over toe Weight -79.93 lb/in 2 ft 23021 in·lb/ft

Total: 549870 in·lb/ft

F.S. RMOTM 549870 in·lb ft /

317994 in·lb ft / 1.729 > 1.50 OK = = =

Sliding CheckCheck not performed; restrained against sliding.

Bearing Capacity CheckBearing pressure < allowable (1516 psf < 3000 psf) - OKBearing resultant eccentricity < allowable (15.42 in < 17.67 in) - OK

Wall Top Displacement(based on unfactored service loads)

Deflection due to stem flexural displacement 0.461 inDeflection due to rotation from settlement 0.307 inTotal deflection at top of wall (positive towards toe) 0.767 in

Stability Checks [0.6D + 1.0H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 6 of 24 Thursday 11/05/15 3:04 PM

Page 86: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

16.5

14.85

13.2

11.55

9.9

8.25

6.6

4.95

3.3

1.65

0-40 -31.67 -23.33 -15 -6.67 1.67 10Moment (ft·k/ft)

Offset (ft)

Moment

a As fy 0.85 F'c 0.1 in² in / 60000 psi

0.85 5000 psi 1.41 in = = =

φMn φ As fy d a 2 / - 0.90 0.1 in² in / 60000 psi 7.44 in 1.41 in 2 / - 36.34 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 0 ft from base [Negative bending]

a As fy 0.85 F'c 0.02 in² in / 60000 psi

0.85 5000 psi 0.28 in = = =

φMn φ As fy d a 2 / - 0.90 0.02 in² in / 60000 psi 7.75 in 0.28 in 2 / - 8.22 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 0 ft from base [Positive bending]

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

φMn φ As fy d a 2 / - 0.90 0.04 in² in / 60000 psi 7.63 in 0.62 in 2 / - 17.38 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 4 ft from base [Negative bending]

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

φMn φ As fy d a 2 / - 0.90 0.04 in² in / 60000 psi 7.63 in 0.62 in 2 / - 17.38 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 15.23 ft from base [Negative bending]

a As fy 0.85 F'c 0.02 in² in / 60000 psi

0.85 5000 psi 0.28 in = = =

φMn φ As fy d a 2 / - 0.90 0.02 in² in / 60000 psi 7.75 in 0.28 in 2 / - 8.22 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 15.5 ft from base [Positive bending]

a As fy 0.85 F'c 0 in² in / 60000 psi

0.85 5000 psi 0 in = = =

φMn φ As fy d a 2 / - 0.90 0 in² in / 60000 psi 7.63 in 0 in 2 / - 0 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 16.5 ft from base [Negative bending]

a As fy 0.85 F'c 0 in² in / 60000 psi

0.85 5000 psi 0 in = = =

φMn φ As fy d a 2 / - 0.90 0 in² in / 60000 psi 7.75 in 0 in 2 / - 0 ft·k ft / = = =

Capacity (ACI 318-05 10.2) @ 16.5 ft from base [Positive bending]

Stem Flexural Capacity

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 7 of 24 Thursday 11/05/15 3:04 PM

Page 87: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

16.5

14.85

13.2

11.55

9.9

8.25

6.6

4.95

3.3

1.65

0-10 -6.67 -3.33 0 3.33 6.67 10Shear (k/ft)

Offset (ft)

Shear

Vc 2 F'c d 2 5000 psi 7.44 in 12.62 k ft / = = = φVn φ Vc 0.750 12.62 k ft / 9.46 k ft / = = =

Shear Capacity (ACI 318-05 11.1.1, 11.3.1) @ 0 ft from base [Positive shear]

Vc 2 F'c d 2 5000 psi 7.44 in 12.62 k ft / = = = φVn φ Vc 0.750 12.62 k ft / 9.46 k ft / = = =

Shear Capacity (ACI 318-05 11.1.1, 11.3.1) @ 0 ft from base [Negative shear]

Vc 2 F'c d 2 5000 psi 7.63 in 12.94 k ft / = = = φVn φ Vc 0.750 12.94 k ft / 9.71 k ft / = = =

Shear Capacity (ACI 318-05 11.1.1, 11.3.1) @ 16.5 ft from base [Positive shear]

Vc 2 F'c d 2 5000 psi 7.63 in 12.94 k ft / = = = φVn φ Vc 0.750 12.94 k ft / 9.71 k ft / = = =

Shear Capacity (ACI 318-05 11.1.1, 11.3.1) @ 16.5 ft from base [Negative shear]

Stem Shear Capacity

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 8 of 24 Thursday 11/05/15 3:04 PM

Page 88: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

ψe 1.0 uncoated hooked bars = λ 1.0 normal weight concrete =

ldh 0.02 ψe λfyF'c

db 0.02 1.0 1.0 60000 psi5000 psi

0.75 in 12.73 in = = =

Factoring ldh by the 0.7 multiplier of 12.5.3 a : ldh 8.91 in = 8 db 8 0.75 in 6.0 minimum limit, does not control = =

Main vertical stem bars (bottom end) - Development Length Calculation (ACI 318-05 12.2.3, 12.5)

ψt 1.0 bars are not horizontal = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 10 in 2 / 5 in = = cover db 2 / + 2 in 0.75 in 2 / + 2.38 in = = cb 2.38 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 2.38 in 0.0 +

0.75 in 3.1667 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 0.80 1.0 2.5 0.75 in 15.27 in = = =

Main vertical stem bars (top end) - Development Length Calculation (ACI 318-05 12.2.3, 12.5)

ψt 1.0 bars are not horizontal = ψe 1.0 bar not epoxy coated = ψs 1.0 bars are #7 or larger = λ 1.0 normal weight concrete = s 2 / 10 in 2 / 5 in = = cover db 2 / + 2 in 1.13 in 2 / + 2.56 in = = cb 2.56 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement =

ld3.40

fyF'c

ψt ψe ψs λ cb Ktr +

db

db 3.40

60000 psi5000 psi

1.0 1.0 1.0 1.0 2.56 in 0.0 +

1.13 in

1.13 in 31.58 in = = =

Dowels for vertical stem bars (top end) - Development Length Calculation (ACI 318-05 12.2.3, 12.5)

ψe 1.0 uncoated hooked bars = λ 1.0 normal weight concrete =

ldh 0.02 ψe λfyF'c

db 0.02 1.0 1.0 60000 psi5000 psi

0.5 in 8.49 in = = =

Factoring ldh by the 0.7 multiplier of 12.5.3 a : ldh 5.94 in = 8 db 8 0.5 in 4.0 minimum limit, does not control = = 6 inch minimum controls

2nd curtain vertical bars (bottom end) - Development Length Calculation (ACI 318-05 12.2.3, 12.5)

Stem Development/Lap Length Calculations

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 9 of 24 Thursday 11/05/15 3:04 PM

Page 89: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

ψt 1.0 bars are not horizontal = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 10 in 2 / 5 in = = cover db 2 / + 2 in 0.5 in 2 / + 2.25 in = = cb 2.25 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 2.25 in 0.0 +

0.5 in 4.50 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 0.80 1.0 2.5 0.5 in 10.18 in = = =

12 inch minimum controls

2nd curtain vertical bars (top end) - Development Length Calculation (ACI 318-05 12.2.3, 12.5)

Stem Development/Lap Length Calculations (continued)

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 10 of 24 Thursday 11/05/15 3:04 PM

Page 90: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Design moment Mu for toe need not exceed moment at stem base:Mtoe 15.2 ft·k ft < Mstem / 33.1 ft·k ft / = = Mu 15.2 ft·k ft stem moment does not control / =

Controlling Moment

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

φMn φ As fy d a 2 / - 0.90 0.04 in² in / 60000 psi 12.63 in 0.52 in 2 / - 24.49 ft·k ft / = = = φMn 24.49 ft·k ft ≥ Mu / 15.2 ft·k ft / = =

Flexure Check (ACI 318-05 10.2)

Vc 2 F'c d 2 5000 psi 12.63 in 21.43 k ft / = = = φVn φ Vc 0.750 21.43 k ft / 16.07 k ft / = = = φVn 16.07 k ft ≥ Vu / 5.47 k ft / = =

Shear Check (ACI 318-05 11.1.1, 11.3.1)

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

εt 0.003 da β1 / 1 - 0.003 12.63 in

0.52 in 0.80 / 1 - 0.0555 = = =

εt 0.0555 ≥ 0.004 =

Minimum Strain Check (ACI 318-05 10.3.5)

φMn 24.49 ft·k ft ≥ 4 3 / Mu / 4 3 / 15.2 ft·k ft / 20.27 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1)

ρST_provASTt sST 0.4 in² in /

16 in 12 in 0.0021 = = =

ρST_min0.0018 60000

fy 0.0018 60000

60000 psi 0.0018 = = =

ρST_min 0.0018 = ρST_prov 0.0021 ≥ ρST_min 0.0018 = = 18 inch limit governssST_max 18 in = sST 12 in ≤ sST_max 18 in = =

Shrinkage and Temperature Steel (ACI 318-05 7.12.2)

MuφMn

15.2 ft·k ft / 24.49 ft·k ft / 0.6209 ratio to represent excess reinforcement = =

ψt 1.0 12 inches or less cast below 3.00 inches - = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 12 in 2 / 6 in = = cover db 2 / + 3 in 0.75 in 2 / + 3.38 in = = cb 3.38 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 3.38 in 0.0 +

0.75 in 4.50 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 0.80 1.0 2.5 0.75 in 15.27 in = = =

Factoring ld by the excess reinforcement ratio 0.6209 per 12.2.5: ld 9.48 in = 12 inch minimum controlsld_prov 55 in ≥ ld 12 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

Toe Unfactored Loads

16 in #6 @ 12 in

Unfactored Loads

200 psf (Self-wt)399.7 psf (Soil)

2537 psf 1466 psf

Toe Factored Loads

16 in #6 @ 12 in

1.2D + 1.6L + 1.6H

240 psf (Self-wt)479.6 psf (Soil)

3049 psf 1762 psf3049 psf

1762 psf

6.74 k/ft

Toe Checks [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 11 of 24 Thursday 11/05/15 3:04 PM

Page 91: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Design moment Mu for heel need not exceed moment at stem base:Mheel 16.8 ft·k ft < Mstem / 33.1 ft·k ft / = = Mu 16.8 ft·k ft stem moment does not control / =

Controlling Moment

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

φMn φ As fy d a 2 / - 0.90 0.04 in² in / 60000 psi 13.63 in 0.52 in 2 / - 26.47 ft·k ft / = = = φMn 26.47 ft·k ft ≥ Mu / 16.8 ft·k ft / = =

Flexure Check (ACI 318-05 10.2)

Vc 2 F'c d 2 5000 psi 13.63 in 23.12 k ft / = = = φVn φ Vc 0.750 23.12 k ft / 17.34 k ft / = = = φVn 17.34 k ft ≥ Vu / 8.4 k ft / = =

Shear Check (ACI 318-05 11.1.1, 11.3.1)

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

εt 0.003 da β1 / 1 - 0.003 13.63 in

0.52 in 0.80 / 1 - 0.0602 = = =

εt 0.0602 ≥ 0.004 =

Minimum Strain Check (ACI 318-05 10.3.5)

φMn 26.47 ft·k ft ≥ 4 3 / Mu / 4 3 / 16.8 ft·k ft / 22.4 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1)

ρST_provASTt sST 0.4 in² in /

16 in 12 in 0.0021 = = =

ρST_min0.0018 60000

fy 0.0018 60000

60000 psi 0.0018 = = =

ρST_min 0.0018 = ρST_prov 0.0021 ≥ ρST_min 0.0018 = = 18 inch limit governssST_max 18 in = sST 12 in ≤ sST_max 18 in = =

Shrinkage and Temperature Steel (ACI 318-05 7.12.2)

MuφMn

16.8 ft·k ft / 26.47 ft·k ft / 0.6348 ratio to represent excess reinforcement = =

ψt 1.30 more than 12 inches cast below 13.25 inches - = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 12 in 2 / 6 in = = cover db 2 / + 2 in 0.75 in 2 / + 2.38 in = = cb 2.38 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 2.38 in 0.0 +

0.75 in 3.1667 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.30 1.0 0.80 1.0 2.5 0.75 in 19.86 in = = =

Factoring ld by the excess reinforcement ratio 0.6348 per 12.2.5: ld 12.6 in = ld_prov 56 in ≥ ld 12.6 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

Heel Unfactored Loads

16 in

#6 @ 12 in

Unfactored Loads

200 psf (Concrete self-wt)1550 psf (Soil weight)

(neglect bearing pressure)

Heel Factored Loads

16 in

#6 @ 12 in

1.2D + 1.6L + 1.6H

240 psf (Concrete self-wt)1860 psf (Soil weight)

(neglect bearing pressure)8.4 k/ft

Heel Checks [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 12 of 24 Thursday 11/05/15 3:04 PM

Page 92: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Stem Internal Forces

-826.67 psf6.41 k/ft

-33.1 ft·k/ft

Stem Internal Forces

16.5

14.44

12.38

10.31

8.25

6.19

4.13

2.06

0-40 -30 -20 -10 0Moment (ft·k/ft)

Moment

Stem Internal Forces

16.5

14.44

12.38

10.31

8.25

6.19

4.13

2.06

00 1.75 3.5 5.25 7Shear (k/ft)

Shear

Stem Joint Force TransferLocation Force@ stem base 6.41 k/ft

Stem Internal Forces

-826.67 psf

Stem Forces [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 13 of 24 Thursday 11/05/15 3:04 PM

Page 93: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

16.5

14.85

13.2

11.55

9.9

8.25

6.6

4.95

3.3

1.65

0-40 -31.67 -23.33 -15 -6.67 1.67 10Moment (ft·k/ft)

Offset (ft)

Moment

φMn 36.34 ft·k ft ≥ Mu / 33.1 ft·k ft / = = Check (ACI 318-05 Ch 10) @ 0 ft from base

φMn 17.38 ft·k ft ≥ Mu / 13.52 ft·k ft / = = Check (ACI 318-05 Ch 10) @ 4 ft from base

φMn 17.38 ft·k ft ≥ Mu / 0 ft·k ft / = = Check (ACI 318-05 Ch 10) @ 15.23 ft from base

φMn 15.93 ft·k ft ≥ Mu / 0 ft·k ft / = =

Check (ACI 318-05 Ch 10) @ 15.33 ft from base

Stem Moment Checks [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 14 of 24 Thursday 11/05/15 3:04 PM

Page 94: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

16.5

14.85

13.2

11.55

9.9

8.25

6.6

4.95

3.3

1.65

0-10 -6.67 -3.33 0 3.33 6.67 10Shear (k/ft)

Offset (ft)

Shear

φVn 9.46 k ft ≥ Vu / 6.41 k ft / = =

Shear Check (ACI 318-05 Ch 11.1.1) @ 0 ft from base

Stem Shear Checks [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 15 of 24 Thursday 11/05/15 3:04 PM

Page 95: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

φMn 36.34 ft·k ft < 4 3 / Mu / 4 3 / 33.1 ft·k ft / 44.13 ft·k ft / = = =

As_min3 F'c

fyd 3 5000 psi

60000 psi 7.44 in 0.03 in² in / = = =

200 d fy / 200 7.44 in 60000 psi / 0.02 in² in / = = As 0.1 in² in ≥ As_min / 0.03 in² in / = =

Minimum Steel Check (ACI 318-05 10.5.1) @ 0 ft from base [Stem in negative flexure]

φMn 17.38 ft·k ft < 4 3 / Mu / 4 3 / 13.52 ft·k ft / 18.03 ft·k ft / = = =

As_min3 F'c

fyd 3 5000 psi

60000 psi 7.63 in 0.03 in² in / = = =

200 d fy / 200 7.63 in 60000 psi / 0.03 in² in / = = As 0.04 in² in ≥ As_min / 0.03 in² in / = =

Minimum Steel Check (ACI 318-05 10.5.1) @ 4 ft from base [Stem in negative flexure]

φMn 0 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / 0 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1) @ 16.5 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.1 in² in / 60000 psi

0.85 5000 psi 1.41 in = = =

εt 0.003 da β1 / 1 - 0.003 7.44 in

1.41 in 0.80 / 1 - 0.0096 = = =

εt 0.0096 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 0 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

εt 0.003 da β1 / 1 - 0.003 7.63 in

0.62 in 0.80 / 1 - 0.0265 = = =

εt 0.0265 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 4 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

εt 0.003 da β1 / 1 - 0.003 7.63 in

0.62 in 0.80 / 1 - 0.0265 = = =

εt 0.0265 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 16.5 ft from base [Stem in negative flexure]

Stem Miscellaneous Checks [1.2D + 1.6L + 1.6H]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 16 of 24 Thursday 11/05/15 3:04 PM

Page 96: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

ρhAs_horz shorz /

t 0.4 in² 10 in / 10 in 0.0040 = = =

ρh_min 0.0020 bars No. 5 or less, not less than 60 ksi = ρh 0.0040 ≥ ρh_min 0.0020 = = 3 twall 3 10 in 30 in = = 18 inch limit governssmax 18 in = shorz 10 in ≤ shorz_max 18 in = =

Wall Horizontal Steel (ACI 318-05 14.3.3, 14.3.5)

MuφMn

33.1 ft·k ft / 36.34 ft·k ft / 0.9108 ratio to represent excess reinforcement = =

ψe 1.0 uncoated hooked bars = λ 1.0 normal weight concrete =

ldh 0.02 ψe λfyF'c

db 0.02 1.0 1.0 60000 psi5000 psi

1.13 in 19.14 in = = =

Factoring ldh by the 0.7 multiplier of 12.5.3 a : ldh 13.4 in = Factoring ldh by the excess reinforcement ratio 0.9108 per 12.5.3 d : ldh 12.2 in = 8 db 8 1.13 in 9.0240 minimum limit, does not control = = ldh_prov 13 in ≥ ldh 12.2 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

ψt 1.0 bars are not horizontal = ψe 1.0 bar not epoxy coated = ψs 1.0 bars are #7 or larger = λ 1.0 normal weight concrete = s 2 / 10 in 2 / 5 in = = cover db 2 / + 2 in 1.13 in 2 / + 2.56 in = = cb 2.56 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement =

ld3.40

fyF'c

ψt ψe ψs λ cb Ktr +

db

db 3.40

60000 psi5000 psi

1.0 1.0 1.0 1.0 2.56 in 0.0 +

1.13 in

1.13 in 31.58 in = = =

llap 1.3 ld 1.3 31.58 in 41.06 in = = = llap_prov 48 in ≥ llap 41.06 in = = 1 5 / llap 1 5 / 41.06 in 8.2111 > 6.0 = = strans 0 in ≤ 6.0 =

Lap Splice Checks (ACI 318-05 12.14.2.3, 12.15.1, 12.15.2) - #6 lap with #9, from 0 ft to 4 ft (from stem base)

Stem Miscellaneous Checks [1.2D + 1.6L + 1.6H] (continued)

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 17 of 24 Thursday 11/05/15 3:04 PM

Page 97: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Design moment Mu for toe need not exceed moment at stem base:Mtoe 17.6 ft·k ft ≥ Mstem / 0 ft·k ft / - = = Mu 0 ft·k ft stem base moment controls / - =

Controlling Moment

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

φMn φ As fy d a 2 / - 0.90 0.04 in² in / 60000 psi 12.63 in 0.52 in 2 / - 24.49 ft·k ft / = = = φMn 24.49 ft·k ft ≥ Mu / 0 ft·k ft / - = =

Flexure Check (ACI 318-05 10.2)

Vc 2 F'c d 2 5000 psi 12.63 in 21.43 k ft / = = = φVn φ Vc 0.750 21.43 k ft / 16.07 k ft / = = = φVn 16.07 k ft ≥ Vu / 6.33 k ft / = =

Shear Check (ACI 318-05 11.1.1, 11.3.1)

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

εt 0.003 da β1 / 1 - 0.003 12.63 in

0.52 in 0.80 / 1 - 0.0555 = = =

εt 0.0555 ≥ 0.004 =

Minimum Strain Check (ACI 318-05 10.3.5)

φMn 24.49 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / - 0 ft·k ft / - = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1)

ρST_provASTt sST 0.4 in² in /

16 in 12 in 0.0021 = = =

ρST_min0.0018 60000

fy 0.0018 60000

60000 psi 0.0018 = = =

ρST_min 0.0018 = ρST_prov 0.0021 ≥ ρST_min 0.0018 = = 18 inch limit governssST_max 18 in = sST 12 in ≤ sST_max 18 in = =

Shrinkage and Temperature Steel (ACI 318-05 7.12.2)

MuφMn

0 ft·k ft / - 24.49 ft·k ft / 0.0 ratio to represent excess reinforcement - = =

ψt 1.0 12 inches or less cast below 3.00 inches - = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 12 in 2 / 6 in = = cover db 2 / + 3 in 0.75 in 2 / + 3.38 in = = cb 3.38 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 3.38 in 0.0 +

0.75 in 4.50 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.0 1.0 0.80 1.0 2.5 0.75 in 15.27 in = = =

Factoring ld by the excess reinforcement ratio 0.0000 - per 12.2.5: ld 0 in - = 12 inch minimum controlsld_prov 55 in ≥ ld 12 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

Toe Unfactored Loads

16 in #6 @ 12 in

Unfactored Loads

200 psf (Self-wt)399.7 psf (Soil)

2537 psf 1466 psf

Toe Factored Loads

16 in #6 @ 12 in

1.4D

280 psf (Self-wt)559.5 psf (Soil)

3537 psf 2044 psf

7.81 k/ft

Toe Checks [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 18 of 24 Thursday 11/05/15 3:04 PM

Page 98: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Design moment Mu for heel need not exceed moment at stem base:Mheel 19.6 ft·k ft ≥ Mstem / 0 ft·k ft / - = = Mu 0 ft·k ft stem base moment controls / - =

Controlling Moment

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

φMn φ As fy d a 2 / - 0.90 0.04 in² in / 60000 psi 13.63 in 0.52 in 2 / - 26.47 ft·k ft / = = = φMn 26.47 ft·k ft ≥ Mu / 0 ft·k ft / - = =

Flexure Check (ACI 318-05 10.2)

Vc 2 F'c d 2 5000 psi 13.63 in 23.12 k ft / = = = φVn φ Vc 0.750 23.12 k ft / 17.34 k ft / = = = φVn 17.34 k ft ≥ Vu / 9.8 k ft / = =

Shear Check (ACI 318-05 11.1.1, 11.3.1)

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.52 in = = =

εt 0.003 da β1 / 1 - 0.003 13.63 in

0.52 in 0.80 / 1 - 0.0602 = = =

εt 0.0602 ≥ 0.004 =

Minimum Strain Check (ACI 318-05 10.3.5)

φMn 26.47 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / - 0 ft·k ft / - = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1)

ρST_provASTt sST 0.4 in² in /

16 in 12 in 0.0021 = = =

ρST_min0.0018 60000

fy 0.0018 60000

60000 psi 0.0018 = = =

ρST_min 0.0018 = ρST_prov 0.0021 ≥ ρST_min 0.0018 = = 18 inch limit governssST_max 18 in = sST 12 in ≤ sST_max 18 in = =

Shrinkage and Temperature Steel (ACI 318-05 7.12.2)

MuφMn

0 ft·k ft / - 26.47 ft·k ft / 0.0 ratio to represent excess reinforcement - = =

ψt 1.30 more than 12 inches cast below 13.25 inches - = ψe 1.0 bar not epoxy coated = ψs 0.80 bars are #6 or smaller = λ 1.0 normal weight concrete = s 2 / 12 in 2 / 6 in = = cover db 2 / + 2 in 0.75 in 2 / + 2.38 in = = cb 2.38 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement = cb Ktr +

db 2.38 in 0.0 +

0.75 in 3.1667 = =

ld3.40

fyF'c

ψt ψe ψs λ 2.5 db 3.

4060000 psi5000 psi

1.30 1.0 0.80 1.0 2.5 0.75 in 19.86 in = = =

Factoring ld by the excess reinforcement ratio 0.0000 - per 12.2.5: ld 0 in - = 12 inch minimum controlsld_prov 56 in ≥ ld 12 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

Heel Unfactored Loads

16 in

#6 @ 12 in

Unfactored Loads

200 psf (Concrete self-wt)1550 psf (Soil weight)

(neglect bearing pressure)

Heel Factored Loads

16 in

#6 @ 12 in

1.4D

280 psf (Concrete self-wt)2170 psf (Soil weight)

(neglect bearing pressure)

19.6 ft·k/ft

9.8 k/ft

Heel Checks [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 19 of 24 Thursday 11/05/15 3:04 PM

Page 99: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

Stem Internal Forces

0 k/ft

-0 ft·k/ft

Stem Internal ForcesMoment

Stem Internal ForcesShear

Stem Joint Force TransferLocation Force@ stem base 0 k/ft

Stem Internal Forces

Stem Forces [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 20 of 24 Thursday 11/05/15 3:04 PM

Page 100: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

16.5

14.85

13.2

11.55

9.9

8.25

6.6

4.95

3.3

1.65

0-40 -31.67 -23.33 -15 -6.67 1.67 10Moment (ft·k/ft)

Offset (ft)

MomentStem Moment Checks [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 21 of 24 Thursday 11/05/15 3:04 PM

Page 101: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

16.5

14.85

13.2

11.55

9.9

8.25

6.6

4.95

3.3

1.65

0-10 -6.67 -3.33 0 3.33 6.67 10Shear (k/ft)

Offset (ft)

ShearStem Shear Checks [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 22 of 24 Thursday 11/05/15 3:04 PM

Page 102: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

φMn 36.34 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / 0 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1) @ 0 ft from base [Stem in negative flexure]

φMn 17.38 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / 0 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1) @ 4 ft from base [Stem in negative flexure]

φMn 0 ft·k ft ≥ 4 3 / Mu / 4 3 / 0 ft·k ft / 0 ft·k ft / = = = Check is waived per ACI 10.5.3

Minimum Steel Check (ACI 318-05 10.5.1) @ 16.5 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.1 in² in / 60000 psi

0.85 5000 psi 1.41 in = = =

εt 0.003 da β1 / 1 - 0.003 7.44 in

1.41 in 0.80 / 1 - 0.0096 = = =

εt 0.0096 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 0 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

εt 0.003 da β1 / 1 - 0.003 7.63 in

0.62 in 0.80 / 1 - 0.0265 = = =

εt 0.0265 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 4 ft from base [Stem in negative flexure]

β1 0.85 0.05 F'c 4000 - 1000 - 0.85 0.05 5000 psi 4000 -

1000 - 0.80 = = =

a As fy 0.85 F'c 0.04 in² in / 60000 psi

0.85 5000 psi 0.62 in = = =

εt 0.003 da β1 / 1 - 0.003 7.63 in

0.62 in 0.80 / 1 - 0.0265 = = =

εt 0.0265 ≥ 0.004 =

Maximum Steel Check (ACI 318-05 10.3.5) @ 16.5 ft from base [Stem in negative flexure]

ρhAs_horz shorz /

t 0.4 in² 10 in / 10 in 0.0040 = = =

ρh_min 0.0020 bars No. 5 or less, not less than 60 ksi = ρh 0.0040 ≥ ρh_min 0.0020 = = 3 twall 3 10 in 30 in = = 18 inch limit governssmax 18 in = shorz 10 in ≤ shorz_max 18 in = =

Wall Horizontal Steel (ACI 318-05 14.3.3, 14.3.5)

Stem Miscellaneous Checks [1.4D]

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 23 of 24 Thursday 11/05/15 3:04 PM

Page 103: Appendix I - FCE Outlet Design Report (DRAFT)

Kevin FransonFRANSON CIVIL ENGINEERS

Millsite Vault Walls

MuφMn

0 ft·k ft / 36.34 ft·k ft / 0.0 ratio to represent excess reinforcement = =

ψe 1.0 uncoated hooked bars = λ 1.0 normal weight concrete =

ldh 0.02 ψe λfyF'c

db 0.02 1.0 1.0 60000 psi5000 psi

1.13 in 19.14 in = = =

Factoring ldh by the 0.7 multiplier of 12.5.3 a : ldh 13.4 in = Factoring ldh by the excess reinforcement ratio 0.0000 per 12.5.3 d : ldh 0 in = 8 db 8 1.13 in 9.0240 = = 8db minimum controlsldh_prov 13 in ≥ ldh 9.02 in = =

Development Check (ACI 318-05 12.12, 12.2.3)

ψt 1.0 bars are not horizontal = ψe 1.0 bar not epoxy coated = ψs 1.0 bars are #7 or larger = λ 1.0 normal weight concrete = s 2 / 10 in 2 / 5 in = = cover db 2 / + 2 in 1.13 in 2 / + 2.56 in = = cb 2.56 in lesser of half spacing, ctr to surface = Ktr 0.0 no transverse reinforcement =

ld3.40

fyF'c

ψt ψe ψs λ cb Ktr +

db

db 3.40

60000 psi5000 psi

1.0 1.0 1.0 1.0 2.56 in 0.0 +

1.13 in

1.13 in 31.58 in = = =

llap 1.3 ld 1.3 31.58 in 41.06 in = = = llap_prov 48 in ≥ llap 41.06 in = = 1 5 / llap 1 5 / 41.06 in 8.2111 > 6.0 = = strans 0 in ≤ 6.0 =

Lap Splice Checks (ACI 318-05 12.14.2.3, 12.15.1, 12.15.2) - #6 lap with #9, from 0 ft to 4 ft (from stem base)

Stem Miscellaneous Checks [1.4D] (continued)

QuickRWall 4.0 (iesweb.com) \\Franson\users\vhogge\My Documen...\Millsite Wingwalls.rwd Page 24 of 24 Thursday 11/05/15 3:04 PM

Page 104: Appendix I - FCE Outlet Design Report (DRAFT)

APPENDIX C

Miscellaneous Information

Page 105: Appendix I - FCE Outlet Design Report (DRAFT)

Static upstream pressure (feetWC)

Capacity in CFS

VAG-Armaturen GmbH is not liable for the correctness or completeness of the shown sizing result without knowledge of the hydraulic system in detail.This calculation doesn’t displace a pressure surge calculation for your hydraulic system.

In case of any question about the sizing result, please get in touch with your contact person at VAG-Armaturen GmbH.

RIKO Control Valve - Capacity Diagramm

Project Name: Millsite Dam Outlet Work

Project Note:

Project Date: 7/28/2014

User Name: Scipp

Pressure rate, PN: Class 150 (PN10)

Nominal Valve Diameter, DN: 12"

SZ 10-30%

System properties Bottom Outlet

Maximum Static upstream pressure: 110,00 feetWC

Minimum Static upstream pressure: 100,00 feetWC

Pipe diameter upstream side: 16"

Zeta value pipe upstream side: 0,00

Maximum Flowrate Control Valve: 21,84 CFS

System properties

vnarteh
Text Box
The 10" plunger valve used in the Millsite Dam Rehabilitation design has a lower capacity and spill out length than the 12" plunger valve shown here. This detail has been included for reference purposes only.
Page 106: Appendix I - FCE Outlet Design Report (DRAFT)

Spill out length (feet)

height above water level (feet)

VAG-Armaturen GmbH is not liable for the correctness or completeness of the shown sizing result without knowledge of the hydraulic system in detail.This calculation doesn’t displace a pressure surge calculation for your hydraulic system.

In case of any question about the sizing result, please get in touch with your contact person at VAG-Armaturen GmbH.

RIKO control valve - Spill out length P0=110,0 (feetWC)

Project Name: Millsite Dam Outlet Work

Project Note:

Project Date: 7/28/2014

User Name: Scipp

Pressure rate, PN: Class 150 (PN10)

Nominal Valve Diameter, DN: 12"

SZ 10-30%

System properties Bottom Outlet

Maximum Static upstream pressure: 110,00 feetWC

Minimum Static upstream pressure: 100,00 feetWC

Pipe diameter upstream side: 16"

Zeta value pipe upstream side: 0,00

Maximum Flowrate Control Valve: 21,84 CFS

System properties

vnarteh
Text Box
The 10" plunger valve used in the Millsite Dam Rehabilitation design has a lower capacity and spill out length than the 12" plunger valve shown here. This detail has been included for reference purposes only.
Page 107: Appendix I - FCE Outlet Design Report (DRAFT)

Static upstream pressure (feetWC)

Capacity in CFS

VAG-Armaturen GmbH is not liable for the correctness or completeness of the shown sizing result without knowledge of the hydraulic system in detail.This calculation doesn’t displace a pressure surge calculation for your hydraulic system.

In case of any question about the sizing result, please get in touch with your contact person at VAG-Armaturen GmbH.

RIKO Control Valve - Capacity Diagramm

Project Name: Millsite Dam

Project Note: K=2,27 for upstreamside pipeline

Project Date: 8/15/2014

User Name: Scipp

Pressure rate, PN: Class 150 (PN10)

Nominal Valve Diameter, DN: 36"

E

System properties Bottom Outlet

Maximum Static upstream pressure: 115,00 feetWC

Minimum Static upstream pressure: 100,00 feetWC

Pipe diameter upstream side: 56"

Zeta value pipe upstream side: 2,27

Maximum Flowrate Control Valve: 309,60 CFS

System properties

Page 108: Appendix I - FCE Outlet Design Report (DRAFT)

Spill out length (feet)

height above water level (feet)

VAG-Armaturen GmbH is not liable for the correctness or completeness of the shown sizing result without knowledge of the hydraulic system in detail.This calculation doesn’t displace a pressure surge calculation for your hydraulic system.

In case of any question about the sizing result, please get in touch with your contact person at VAG-Armaturen GmbH.

RIKO control valve - Spill out length P0=115,0 (feetWC)

Project Name: Millsite Dam

Project Note: K=2,27 for upstreamside pipeline

Project Date: 8/15/2014

User Name: Scipp

Pressure rate, PN: Class 150 (PN10)

Nominal Valve Diameter, DN: 36"

E

System properties Bottom Outlet

Maximum Static upstream pressure: 115,00 feetWC

Minimum Static upstream pressure: 100,00 feetWC

Pipe diameter upstream side: 56"

Zeta value pipe upstream side: 2,27

Maximum Flowrate Control Valve: 309,60 CFS

System properties

Page 109: Appendix I - FCE Outlet Design Report (DRAFT)

Bottom Slope, S 0.0154Roughness, n 0.035 (stony, cobbles, pools, and eddy current)

Bottom Width, b 10 ftSide Slope Factor, z 1.667

Water Depth, y 0.98 ftCross‐Sectional Area, A 11.35 ft^2

Wetted Perimeter, P 13.79 ft Flow, Q 52.6 cfs Operating Discharge is 52.6 cfs (Source: Irrigation Company)

Velocity, V 4.64 ft/sec

Bottom Slope, S 0.0154Roughness, n 0.035 (stony, cobbles, pools, and eddy current)

Bottom Width, b 10 ftSide Slope Factor, z 1.667

Water Depth, y 2.43 ftCross‐Sectional Area, A 34.20 ft^2

Wetted Perimeter, P 19.46 ft Flow, Q 263 cfs Required Canal Discharge is 263 cfs (Source: Irrigation Company)

Velocity, V 7.69 ft/sec

Bottom Slope, S 0.0154Roughness, n 0.035 (stony, cobbles, pools, and eddy current)

Bottom Width, b 10 ftSide Slope Factor, z 1.667

Water Depth, y 2.83 ftCross‐Sectional Area, A 41.63 ft^2

Wetted Perimeter, P 21.00 ft Flow, Q 346.9 cfs Maximum Valve Discharge is 346.9 cfs (Source: Dam Safety Design)

Velocity, V 8.33 ft/sec

SIZING OF DISCHARGE CHANNEL

Page 110: Appendix I - FCE Outlet Design Report (DRAFT)
Page 111: Appendix I - FCE Outlet Design Report (DRAFT)
Page 112: Appendix I - FCE Outlet Design Report (DRAFT)
Page 113: Appendix I - FCE Outlet Design Report (DRAFT)
Page 114: Appendix I - FCE Outlet Design Report (DRAFT)

Millsite Outlet Works Extension

Thrust Block Analysis

7/2/2014

Design Inputs:

Static Pressure(P) = 50 psi

Allowable Soil Strength = 2000 psf

Additional Safety Factor = 2.5

Design Outputs:

Diameter Thrust Block Thickness = 3 ft

(in) 90 45 22.5 11.25 Required Volume (cuyd)

8 50 3.1 4.4 2.4 1.2 0.6 0.3 0.5 0.3 0.1 0.1

10 79 4.9 6.9 3.8 1.9 1.0 0.5 0.8 0.4 0.2 0.1

12 113 7.1 10.0 5.4 2.8 1.4 0.8 1.1 0.6 0.3 0.2

24 452 28.3 40.0 21.6 11.0 5.5 3.1 4.4 2.4 1.2 0.6

36 1018 63.6 90.0 48.7 24.8 12.5 7.1 10.0 5.4 2.8 1.4

42 1385 86.6 122.5 66.3 33.8 17.0 9.6 13.6 7.4 3.8 1.9

54 2290 143.1 202.4 109.6 55.8 28.1 15.9 22.5 12.2 6.2 3.1

D1 D2 Area Diff

Thrust Block

Soil Bearing

Area

(in) (in) (in2) (ft

2)

8 12 63 3.9

12 24 339 21.2

42 54 905 56.5

40 42 129 8.1

36 42 368 23.0

Reducers

Thrust Block Soil Bearing Area (ft2)

Tees, Deadends,

Valves

Bend Angle (Degrees)Pipe Area

(in2)

Thrust Block Soil Bearing Area =2PAsin

𝜃2

𝑞𝑎

Page 115: Appendix I - FCE Outlet Design Report (DRAFT)

Thrust Block DesignVault Piping

Pipe Properties

Static Pressure = 50 lb/in2

Flow = 400 ft3/sPenstock Diameter = 54 in

Penstock Area = 15.89625 ft2

Velocity = 25.16 ft/sBend Angle = 90.0 °

Fluid Properties

Density (ρ) = 1.94 lbs*s2/ft4

Gravity (g) = 32.174 ft/s2

Resultant Pressure ForcesFx = 133980 lb Engineering Fluid Mechanics, Crowe Eldger Roberson, p221Fy = 133980 lb Engineering Fluid Mechanics, Crowe Eldger Roberson, p221FR = 189476 lb

Px = 59 lb/in2

Py = 59 lb/in2

PR = 83 lb/in2

Required ConcreteFriction Coefficient = 0.5 ACI 318 11.6.4.3

Concrete Weight = 120 lb/ft3 Low estimate

Weight to Resist = 378952 lbVolume to Resist = 3158 ft3

Volume to Resist = 117.0 yds w/o steel