35
Appendix B1 - Reports of UME July 31 st , 2003 Appendix B1 Reports of UME

Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Appendix B1 - Reports of UME July 31st, 2003

Appendix B1

Repor ts of UME

Page 2: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 2/35

Appendix B1 - Reports of UME July 31st, 2003

MEASUREMENT REPORTOF

NATIONAL METROLOGY INSTITUTEOF TURKEY, UME

EUROMET SUPPLEMENTARYCOMPARISON

SURFACE TEXTUR E

Project No. 600

UME Dimensional LaboratoryTel: 0 (262) 646 63 55 / 235

Fax: 0 (262) 646 59 14

Contact: Dr. Tanfer Yandayan [email protected]

Murat Aksulu [email protected]

Okhan �������������

[email protected]

Page 3: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 3/35

Appendix B1 - Reports of UME July 31st, 2003

Contents

1. Description of the Measurement Method and Instrument ......................................................4

2. Results and Measurement Conditions.....................................................................................5

3. Uncertainty Budgets of Measurements...................................................................................9

3.1 Step height standard with a nominal height of 200 nm - Identification (for D)..................10

3.2 Step height standard with a nominal height of 1500 nm - Identification (for D) ................11

3.3 Step height standard with a nominal height of 8000 nm - Identification (for D) ................12

3.4 Step height standard with a nominal height of 200 nm - Identification (for Pt) .................13

3.5 Step height standard with a nominal height of 1500 nm - Identification (for Pt) ...............14

3.6 Step height standard with a nominal height of 8000 nm - Identification (for Pt) ...............15

3.7 Geometric standard Rub (P114A) - Identification (for Rz, Ra, Rmax) ...............................16

3.8 Geometric standard PTB (7070) -Identification (for Rz, Ra, Rmax)...................................17

3.9 Geometric standard PTB (8194) -Identification (for Rz, Ra, Rmax)...................................18

3.10 Roughness standard SFRN 150 (1,006) - Identif ication (for Rz, Ra, Rmax) ....................19

3.11 Roughness standard Fine (629f) - Identif ication (for Rz, Ra, Rmax) ...............................20

3.12 Roughness standard Coarse (633g) - Identif ication (for Rz, Ra, Rmax) ...........................21

3.13 Roughness standard Very coarse (686sg) - Identification (for Rz, Ra, Rmax) ..................22

3.14 Geometric standard Rub (114A) - Identification (for RSm) ..............................................23

3.15 Geometric standard PTB (7070) - Identification (for RSm)..............................................24

3.16 Geometric standard PTB (8194) - Identification (for RSm)..............................................25

3.17 Roughness standard SFRN 150 (1.006) - Identif ication (for Rk, Rpk, Rvk) .....................26

3.18 Roughness standard Fine (629f) - Identif ication (for Rk, Rpk, Rvk) ................................27

3.19 Roughness standard Coarse (633g) - Identif ication (for Rk, Rpk, Rvk)............................28

3.20 Roughness standard Very coarse (686sg) - Identification (for Rk, Rpk, Rvk)...................29

3.21 Roughness standard SFRN 150 (1.006) - Fine (629f) – Coarse (633g) – Very coarse (686sg)- Identification (for Mr 1, Mr2)...................................................................................................30

APPENDIX 1 ������������� ����������������������������������������������� ����"!�# $ !�%�# $ !�&�#(')� ��� *+�������-,

.............31

APPENDIX 2 Detail Explanations of All Uncertainty Calculations in EXCEL Sheets (see thefile “ UME-Uncertainty.xls” )

Page 4: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 4/35

Appendix B1 - Reports of UME July 31st, 2003

1. Description of the Measurement Method and Instrument

Type of instrument: Stylus instrument - Mahr Perthometer Concept (pick up is FRW-250, driveunit is PRK, xy table is PKT electronic)

Kind of operation: Moving stylus. A comercial column is not used. Instead, drive unit is locatedon a table with adjustable height to reduce vibration.

Conditions data collection: Stylus tip radius 2 µm, stylus tip angle 90°, vertical measurementrange ± 25 µm

Conditions of evaluation:Measurements are performed according to the datum of PRK drive unit.No skid is used.

Characterisation of instrument noise and deviation of ideal behaviour: A PTB calibratedoptical flat is used. The optical flat is set on the x-y table and different regions of the optical flatsurface are measured.

Rougness value on flat glass plate with lateral movement Rzo = 0.033 µm (Certificated Rzvalue of the optical flat is about 5 nm.)Rougness value on flat glass plate without lateral movement Rzo = 19 nmWaviness value on flat glass plate with lateral movement Wt = 30 nmVertical resolution = Measuring range / 60000 step = 0,42 nmHorizontal resolution = Standart tracing length / up to 16000 point

Environment characterisation: No vibration isolation is used. Temperature of the laboratory is20±0,3°C.

Page 5: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Eur

omet

Pro

ject

600

– C

ompa

riso

n o

f Su

rfac

e Rou

ghne

ss S

tand

ards

5/

35

App

endi

x B

1 -

Rep

orts

of

UM

EJu

ly 3

1st, 2

003

2. R

esul

ts a

nd M

easu

rem

ent

Con

diti

ons

Dep

thst

anda

rd

P

tD

lam

bda-

cla

mbd

a-s

Spe

edF

orce

Sam

pl-

dist

E

N 8

06

mm

µmm

m/s

mN

µm

R1

0,2

µm

valu

e/µm

0,31

60,

282

-2,

670,

10,

90,

1

std.

dev

./nm

3,6

9,3

-2,

670,

10,

90,

1

U/n

m (

k=2)

40,9

20,2

R3

1,5

µm

valu

e/µm

1,40

51,

364

-2,

670,

10,

90,

1

std.

dev

./nm

6,8

10,0

-2,

670,

10,

90,

1

U/n

m (

k=2)

45,2

22,0

R6

8 µ

mva

lue/

µm8,

399

8,36

3

-

2,67

0,1

0,9

0,1

std.

dev

./nm

11,8

10,8

-2,

670,

10,

90,

1

U/n

m (

k=2)

105,

525

,9

Geo

m.

Sta

ndar

d

R

aR

zR

max

RS

m

Rub

P11

4A/5

28-

RS

5va

lue/

µm0,

505

1,59

31,

599

49,7

23

0,

252,

50,

10,

90,

2

std.

dev

./nm

1,2

4,9

7,1

75,4

0,25

2,5

0,1

0,9

0,2

U/n

m (

k=2)

48,6

48,6

48,6

984,

3

PT

B70

70/P

GN

10va

lue/

µm2,

978

9,73

09,

914

198,

617

2,50

8,33

0,5

0,9

0,5

std.

dev

./nm

11,9

46,8

49,1

21,1

2,50

8,33

0,5

0,9

0,5

U/n

m (

k=2)

142,

314

2,3

142,

339

20,4

PT

B81

94/P

GN

3va

lue/

µm0,

901

3,09

63,

113

119,

149

0,80

2,67

0,5

0,9

0,35

std.

dev

./nm

6,4

48,7

48,5

29,0

0,80

2,67

0,5

0,9

0,35

U/n

m (

k=2)

113,

911

3,9

113,

923

35,5

Page 6: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Eur

omet

Pro

ject

600

– C

ompa

riso

n o

f Su

rfac

e Rou

ghne

ss S

tand

ards

6/

35

App

endi

x B

1 -

Rep

orts

of

UM

EJu

ly 3

1st, 2

003

Rou

ghn.

Sta

ndar

d

R

aR

zR

max

Rk*

Rpk

*R

vk*

Mr1

/%*

Mr2

/%*

lam

bda-

cla

mbd

a-s

Spe

edF

orce

Sam

pl-

dist

m

mµm

mm

/sm

Nµm

Ver

yco

arse

686s

gva

lue/

µm2,

346

14,3

0015

,534

8,13

71,

231

3,11

06,

948

92,8

502,

508,

330,

50,

90,

5

std.

dev

./nm

32,5

258,

128

,929

7,5

125,

813

0,3

1,23

50,

807

8,

330,

50,

90,

5

U/n

m (

k=2)

497,

649

7,6

497,

663

4,4

634,

463

4,4

0,30

64,

085

Coa

rse

633g

valu

e/µm

1,53

37,

608

9,04

14,

464

0,73

92,

529

6,19

681

,968

0,80

2,67

0,5

0,9

0,35

std.

dev

./nm

8,2

197,

812

3,0

99,8

52,1

53,2

0,41

30,

469

2,

670,

50,

90,

35

U/n

m (

k=2)

399,

739

9,7

399,

752

352

352

30,

428

5,65

6

Fin

e62

9fva

lue/

µm0,

147

1,25

51,

421

0,44

90,

137

0,29

88,

982

88,1

580,

802,

670,

50,

90,

35

std.

dev

./nm

2,9

40,7

51,5

11,8

5,7

7,6

0,86

00,

654

2,

670,

50,

90,

35

U/n

m (

k=2)

98,1

98,1

98,1

136,

013

6,0

136,

00,

979,

521

SF

RN

150

1.00

6va

lue/

µm0,

024

0,13

80,

175

0,06

90,

029

0,03

612

,606

83,2

320,

252,

500,

10,

90,

1

std.

dev

./nm

1,6

6,1

13,0

12,6

3,1

6,0

0,78

44,

394

2,

500,

10,

90,

1

U/n

m (

k=2)

42,8

42,8

42,8

72,4

72,4

72,4

6,61

843

,697

Dat

a fil

es

R

aR

qR

pR

vR

tR

skR

zR

max

Rpk

Rk

Rvk

Mr1

/%M

r2/%

IS

O 4

287

DIN

476

8IS

O 1

3565

-2

file

150

5va

lue/

µm0,

190,

230,

520,

781,

47-0

,28

1,30

1,47

0,14

0,65

0,25

7,43

89,9

2

file

210

01va

lue/

µm0,

090,

110,

240,

240,

630,

000,

480,

570,

070,

280,

1011

,56

87,8

1

file

370

80va

lue/

µm0,

430,

490,

760,

741,

520,

011,

51,

52-

--

--

*) IS

O13

565-

1

Page 7: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Eur

omet

Pro

ject

600

– C

ompa

riso

n o

f Su

rfac

e Rou

ghne

ss S

tand

ards

7/

35

App

endi

x B

1 -

Rep

orts

of

UM

EJu

ly 3

1st, 2

003

EX

TR

AM

EA

SU

RE

ME

NT

S

Rou

ghn

stan

dard

Ra

Rz

Rm

axR

k*R

pk*

Rvk

*M

r1/%

*M

r2/%

*la

mbd

a-c

lam

bda-

sS

peed

For

ceS

ampl

-di

st

m

mµm

mm

/sm

Nµm

Ver

yco

arse

686s

gva

lue/

µm2,

368

14,7

9115

,915

8,28

51,

232

3,26

97,

126

93,1

262,

50Lc

/Ls=

MA

X0,

50,

90,

5

std.

dev

./nm

29,7

302,

250

,922

3,9

102,

421

7,2

1,00

30,

505

Lc

/Ls=

MA

X

U/n

m (

k=2)

497,

649

7,6

497,

663

4,4

634,

463

4,4

0,30

64,

085

Lc

/Ls=

MA

X

Coa

rse

633g

valu

e/µm

1,53

87,

717

9,08

24,

482

0,73

32,

537

6,24

381

,963

0,80

Lc/L

s=M

AX

0,5

0,9

0,35

std.

dev

./nm

10,1

148,

812

4,1

45,0

22,5

37,9

0,17

20,

278

Lc

/Ls=

MA

X

U/n

m (

k=2)

399,

739

9,7

399,

752

3,0

523,

052

3,0

0,42

85,

656

Lc

/Ls=

MA

X

Fin

e62

9fva

lue/

µm0,

148

1,27

71,

451

0,45

70,

136

0,29

28,

593

88,2

350,

80Lc

/Ls=

MA

X0,

50,

90,

35

std.

dev

./nm

2,5

46,4

81,2

8,6

5,6

9,0

0,47

90,

354

Lc

/Ls=

MA

X

U/n

m (

k=2)

98,1

98,1

98,1

136,

013

6,0

136,

00,

970

9,52

1

Lc/L

s=M

AX

Page 8: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,
Page 9: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 9/35

Appendix B1 - Reports of UME July 31st, 2003

3. Uncertainty Budgets of Measurements

Page 10: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 10/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.1 Step height standard with a nominal height of 200 nm - Identification (for D)

Equation used:

�� �� � ��� ��� � ����

� ++

+

=

∑ ∑= =

+−=� ���

�� ��� ����� ��

��������

� ����

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference groove (Measured value of reference standard)b : Reproducibility of tracing of the reference groovezm : Profile of test standard (Measured value of test standard)zref : Profile of reference plane (Wt value determined using optical flat)zn : Background noise (Rz value determined using optical flat)AF : Alingnment error due to roughness and flatness error on the test depth standardno : Number of profile points of upper profile sections which is used to fit an upper straight linenu : Number of profile points of lower profile section which is used to fit a circle at the bottom of the groovezkoi : z coordinate of ith point of upper profile sectionszkui : z coordinate of ith point of lower profile section

Combined uncertainty equation:

( ) ( ) � � � !� � � ""� � � ""

� ########### $&%(')$&%&*)+-,).).).)//0)')')' .//1) 23 4 56789 6;:9 29 26

78 +++++

++++

+=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 0.0040 0.154 nm 200Ptmy 9870 nm 2 nm R 0.0040 0.005 nm 200

b 10 nm 10 nm N 0.0040 0.040 nm 100zm 282 nm 5 nm N 0.1414 0.707 nm 4zref 30 nm 15 nm R 0.1414 1.225 nm 200zn 33 nm 16.50 nm R 0.1414 1.347 nm 200AF 10 nm 5 nm R 1.4142 4.083 nm 200

RES 0.42 nm 0.21 nm R 1.0000 0.121 nm 200REP 9 nm 9 nm N 1.0000 9.000 nm 49

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: ResolutionREP: Repeatibili ty(Please see the Excel sheet)

Combined standard uncertainty: uc(D) = 10.1 nm

Effective degrees of freedom: veff (D) = 76.6

Expanded uncertainty: U(D) = 20.2 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)

Date: ... 11.01.2002 ................ Signature:..................................................................

Page 11: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 11/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.2 Step height standard with a nominal height of 1500 nm - Identification (for D)

Equation used:

�� �� � ��� ��� � ����

� ++

+

=

∑ ∑= =

+−=� ���

�� ��� ����� ��

��������

� ����

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference groove (Measured value of reference standard)b : Reproducibilit y of tracing of the reference groovezm : Profile of test standard (Measured value of test standard)zref : Profile of reference plane (Wt value determined using optical flat)zn : Background noise (Rz value determined using optical flat)AF : Alingnment error due to roughness and flatness error on the test depth standardno : Number of profile points of upper profile sections which is used to fit an upper straight linenu : Number of profile points of lower profile section which is used to fit a circle at the bottom of the groovezkoi : z coordinate of i th point of upper profile sectionszkui : z coordinate of i th point of lower profile section

Combined uncertainty equation:

( ) ( ) � � � !� � � ""� � � ""

� ########### $&%(')$&%&*)+-,).).).)//0)')')' .//1) 23 4 56789 6;:9 29 26

78 +++++

++++

+=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 0.020 0.743 nm 200Ptmy 9870 nm 2 nm R 0.020 0.023 nm 200

b 10 nm 10 nm N 0.020 0.195 nm 100zm 1364 nm 5 nm N 0.141 0.707 nm 4zref 30 nm 15 nm R 0.141 1.225 nm 200zn 33 nm 16.50 nm R 0.141 1.347 nm 200AF 10 nm 5 nm R 1.414 4.083 nm 200

RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200REP 10 nm 10 nm N 1.000 10.000 nm 49

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: ResolutionREP: Repeatibili ty(Please see the Excel sheet)

Combined standard uncertainty: uc(D) = 11.0 nm

Effective degrees of freedom: veff (D) = 71.6

Expanded uncertainty: U(D) = 22.0 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)...................................................Date: .................. 11.01.2002 .............. Signature:..................................................................

Page 12: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 12/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.3 Step height standard with a nominal height of 8000 nm - Identification (for D)

Equation used:

�� �� � ��� ��� � ����

� ++

+

=

∑ ∑= =

+−=� ���

�� ��� ����� ��

��������

� ����

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference groove (Measured value of reference standard)b : Reproducibility of tracing of the reference groovezm : Profile of test standard (Measured value of test standard)zref : Profile of reference plane (Wt value determined using optical flat)zn : Background noise (Rz value determined using optical flat)AF : Alingnment error due to roughness and flatness error on the test depth standardno : Number of profile points of upper profile sections which is used to fit an upper straight linenu : Number of profile points of lower profile section which is used to fit a circle at the bottom of the groovezkoi : z coordinate of ith point of upper profile sectionszkui : z coordinate of ith point of lower profile section

Combined uncertainty equation:

( ) ( ) � � � !� � � ""� � � ""

� ########### $&%(')$&%&*)+-,).).).)//0)')')' .//1) 23 4 56789 6;:9 29 26

78 +++++

++++

+=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 0.120 4.554 nm 200Ptmy 9870 nm 2 nm R 0.120 0.138 nm 200

b 10 nm 10 nm N 0.120 1.198 nm 100zm 8363 nm 5 nm N 0.141 0.707 nm 4zref 30 nm 15 nm R 0.141 1.225 nm 200zn 33 nm 16.50 nm R 0.141 1.347 nm 200AF 10 nm 5 nm R 1.414 4.083 nm 200

RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200REP 11 nm 11 nm N 1.000 11.000 nm 49

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: ResolutionREP: Repeatibili ty(Please see the Excel sheet)

Combined standard uncertainty: uc(D) = 12.9 nm

Effective degrees of freedom: veff (D) = 92.9

Expanded uncertainty: U(D) = 25.9 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: .................. 11.01.2002 ............ Signature:..................................................................

Page 13: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 13/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.4 Step height standard with a nominal height of 200 nm - Identification (for Pt)

Equation used:

�� ���� ��� �� �� ��� �

�� ++

+

=

Pt = zko - zku + 2 AF

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference groove (Measured value of reference standard)b : Reproducibilit y of tracing of the reference groovezm : Profile of test standard (Measured value of test standard)zref : Profile of reference plane (Wt value determined using optical flat)zn : Background noise (Rz value determined using optical flat)AF : Alingnment error due to roughness and flatness error on the test depth standardzko : Highest z-value at the top of the profilezku : Lowest z-value at the bottom of the profile

Combined uncertainty equation:

( ) ( ) ����������������������� ����������

� ����������������������������� ��� �� !"# "$# �# �"# ++++++++=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 0.045 1.721 nm 200Ptmy 9870 nm 2 nm R 0.045 0.052 nm 200

b 10 nm 10 nm N 0.045 0.453 nm 100zm 316 nm 5 nm N 1.414 7.071 nm 4zref 30 nm 15 nm R 1.414 12.247 nm 200zn 33 nm 16.50 nm R 1.414 13.472 nm 200AF 10 nm 5 nm R 1.414 4.083 nm 200

RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200REP 4 nm 4 nm N 1.000 4.000 nm 49

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: ResolutionREP: Repeatibili ty(Please see the Excel sheet)

Combined standard uncertainty: uc(Pt) = 20.4 nm

Effective degrees of freedom: veff (Pt) = 381.1

Expanded uncertainty: U(Pt) = 40.9 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: .................. 11.01.2002 .............. Signature:..................................................................

Page 14: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 14/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.5 Step height standard with a nominal height of 1500 nm - Identification (for Pt)

Equation used:

�� �� � ��� ��� � ����

� ++

+

=

Pt = zko - zku + 2 AF

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference groove (Measured value of reference standard)b : Reproducibility of tracing of the reference groovezm : Profile of test standard (Measured value of test standard)zref : Profile of reference plane (Wt value determined using optical flat)zn : Background noise (Rz value determined using optical flat)AF : Alingnment error due to roughness and flatness error on the test depth standardzko : Highest z-value at the top of the profilezku : Lowest z-value at the bottom of the profile

Combined uncertainty equation:

( ) ( ) ����������������������� ����������

� ����������������������������� ��� �� � !" !$#" �" �!" ++++++++=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 0.201 7.650 nm 200Ptmy 9870 nm 2 nm R 0.201 0.233 nm 200

b 10 nm 10 nm N 0.201 2.013 nm 100zm 1405 nm 5 nm N 1.414 7.071 nm 4zref 30 nm 15 nm R 1.414 12.247 nm 200zn 33 nm 16.50 nm R 1.414 13.472 nm 200AF 10 nm 5 nm R 1.414 4.083 nm 200

RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200REP 7 nm 7 nm N 1.000 7.000 nm 49

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: ResolutionREP: Repeatibili ty(Please see the Excel sheet)

Combined standard uncertainty: uc(Pt) = 22.6 nm

Effective degrees of freedom: veff (Pt) = 510.2

Expanded uncertainty: U(Pt) = 45.2 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................Date: .................. 11.01.2002 ............ Signature:..................................................................

Page 15: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 15/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.6 Step height standard with a nominal height of 8000 nm - Identification (for Pt)

Equation used:

�� �� � ��� ��� � ����

� ++

+

=

Pt = zko - zku + 2 AF

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference groove (Measured value of reference standard)b : Reproducibility of tracing of the reference groovezm : Profile of test standard (Measured value of test standard)zref : Profile of reference plane (Wt value determined using optical flat)zn : Background noise (Rz value determined using optical flat)AF : Alingnment error due to roughness and flatness error on the test depth standardzko : Highest z-value at the top of the profilezku : Lowest z-value at the bottom of the profile

Combined uncertainty equation:

( ) ( ) ����������������������� ����������

� ����������������������������� ��� �� � !" !$#" �" �!" ++++++++=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 1.203 45.731 nm 200Ptmy 9870 nm 2 nm R 1.203 1.390 nm 200

b 10 nm 10 nm N 1.203 12.034 nm 100zm 8399 nm 5 nm N 1.414 7.071 nm 4zref 30 nm 15 nm R 1.414 12.247 nm 200zn 33 nm 16.50 nm R 1.414 13.472 nm 200AF 10 nm 5 nm R 1.414 4.083 nm 200

RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200REP 12 nm 12 nm N 1.000 12.000 nm 49

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: ResolutionREP: Repeatibili ty(Please see the Excel sheet)

Combined standard uncertainty: uc(Pt) = 52.7 nm

Effective degrees of freedom: veff (Pt) = 648.8

Expanded uncertainty: U(Pt) = 105.5 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: ........... 11.01.2002 ............... Signature:..................................................................

Page 16: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 16/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.7 Geometric standard Rub (P114A) - Identification (for Rz, Ra, Rmax)

Equation used:

�� ���� ���� � ���

� ++

+

=

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference grooveb : Reproducibilit y of tracing of the reference groovezs : Unknown systematic deviation. zs = a = RzPTB - RzUME

zn : Background noiseRz : Measured Rz parameter carried out on the test standardRzk : Calibrated Rz parameter

Combined uncertainty equation:

( ) ���������������� ��������� �������������������

��� ���� ���� �� ����� ++++++=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 0.161 6.133 nm 200Ptmy 9870 nm 2 nm R 0.161 0.186 nm 200

b 10 nm 10 nm N 0.161 1.614 nm 100zs 36.1 nm 36.1 nm R 1.000 20.842 nm 200zn 33 nm 16.50 nm R 1.000 9.526 nm 200Rz 1593 nm 5 nm N 1.000 5.000 nm 35RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution(Please see the Excel sheet)

Combined standard uncertainty: uc(Rz) = 24.3 nm

Effective degrees of freedom: veff (Rz) = 345.2

Expanded uncertainty: U(Rz) = 48.6 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: .............. 11.01.2002 .............. Signature:..................................................................

Page 17: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 17/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.8 Geometric standard PTB (7070) -Identification (for Rz, Ra, Rmax)

Equation used:

�� ���� ���� � ���

� ++

+

=

Combined uncertainty equation:

( ) ���������������� ��������� �������������������

��� ���� � �� �� ���"! ++++++=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 0.986 37.461 nm 200Ptmy 9870 nm 2 nm R 0.986 1.138 nm 200

b 10 nm 10 nm N 0.986 9.858 nm 100zs 69.7 nm 69.7 nm R 1.000 40.241 nm 200zn 33 nm 16.50 nm R 1.000 9.526 nm 200Rz 9730 nm 43 nm N 1.000 43.000 nm 35RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution(Please see the Excel sheet)

Combined standard uncertainty: uc(Rz) = 71.1 nm

Effective degrees of freedom: veff (Rz) = 212.1

Expanded uncertainty: U(Rz) = 142.3 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: ........... 11.01.2002 .............. Signature:..................................................................

Page 18: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 18/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.9 Geometric standard PTB (8194) -Identification (for Rz, Ra, Rmax)

Equation used:

�� ���� ���� � ���

� ++

+

=

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference grooveb : Reproducibility of tracing of the reference groovezs : Unknown systematic deviation. zs = a = RzPTB - RzUME

zn : Background noiseRz : Measured Rz parameter carried out on the test standardRzk : Calibrated Rz parameter

Combined uncertainty equation:

( ) ���������������� ��������� �������������������

��� ���� � �� �� ���"! ++++++=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 0.314 11.9 nm 200Ptmy 9870 nm 2 nm R 0.314 0.4 nm 200

b 10 nm 10 nm N 0.314 3.1 nm 100zs 41.3 nm 41.3 nm R 1.000 23.8 nm 200zn 33 nm 16.50 nm R 1.000 9.5 nm 200Rz 3096 nm 49 nm N 1.000 49.0 nm 35RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution(Please see the Excel sheet)

Combined standard uncertainty: uc(Rz) = 56.7 nm

Effective degrees of freedom: veff (Rz) = 62.0

Expanded uncertainty: U(Rz) = 113.9 nm with a coverage factor k=2.01

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: .............. 11.01.2002 ............ Signature:..................................................................

Page 19: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 19/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.10 Roughness standard SFRN 150 (1,006) - Identification (for Rz, Ra, Rmax)

Equation used:

�� ���� ���� � ���

� ++

+

=

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference grooveb : Reproducibility of tracing of the reference groovezs : Unknown systematic deviation. zs = a = RzPTB - RzUME

zn : Background noiseRz : Measured Rz parameter carried out on the test standardRzk : Calibrated Rz parameter

Combined uncertainty equation:

( ) ���������������� ��������� �������������������

��� ���� � �� �� ���"! ++++++=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 0.014 0.531 nm 200Ptmy 9870 nm 2 nm R 0.014 0.016 nm 200

b 10 nm 10 nm N 0.014 0.140 nm 100zs 31.5 nm 31.5 nm R 1.000 18.187 nm 200zn 33 nm 16.50 nm R 1.000 9.526 nm 200Rz 138 nm 6 nm N 1.000 6.000 nm 35RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution(Please see the Excel sheet)

Combined standard uncertainty: uc(Rz) = 21.4 nm

Effective degrees of freedom: veff (Rz) = 335.3

Expanded uncertainty: U(Rz) = 42.8 nm with a coverage factor k=2

Laboratory: National Metrology Institute of Turkey (UME)................................................................................................................

Date: ........... 11.01.2002 ............. Signature:..................................................................

Page 20: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 20/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.11 Roughness standard Fine (629f) - Identification (for Rz, Ra, Rmax)

Equation used:

�� ���� ���� � ���

� ++

+

=

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference grooveb : Reproducibilit y of tracing of the reference groovezs : Unknown systematic deviation. zs = a = RzPTB - RzUME

zn : Background noiseRz : Measured Rz parameter carried out on the test standardRzk : Calibrated Rz parameter

Combined uncertainty equation:

( ) ���������������� ��������� �������������������

��� ���� � �� �� ���"! ++++++=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 0.127 4.832 nm 200Ptmy 9870 nm 2 nm R 0.127 0.147 nm 200

b 10 nm 10 nm N 0.127 1.272 nm 100zs 35 nm 35 nm R 1.000 20.207 nm 200zn 33 nm 16.50 nm R 1.000 9.526 nm 200Rz 1255 nm 43.1 nm N 1.000 43.100 nm 35RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution(Please see the Excel sheet)

Combined standard uncertainty: uc(Rz) = 48.8 nm

Effective degrees of freedom: veff (Rz) = 57.0

Expanded uncertainty: U(Rz) = 98.1 nm with a coverage factor k=2.01

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: ......... 11.01.2002 ........... Signature:..................................................................

Page 21: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 21/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.12 Roughness standard Coarse (633g) - Identification (for Rz, Ra, Rmax)

Equation used:

�� ���� ���� � ���

� ++

+

=

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference grooveb : Reproducibility of tracing of the reference groovezs : Unknown systematic deviation. zs = a = RzPTB - RzUME

zn : Background noiseRz : Measured Rz parameter carried out on the test standardRzk : Calibrated Rz parameter

Combined uncertainty equation:

( ) ���������������� ���������

������������ � � � ���� ���� �� �����

++++++=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 0.771 29.291 nm 200Ptmy 9870 nm 2 nm R 0.771 0.890 nm 200

b 10 nm 10 nm N 0.771 7.708 nm 100zs 61 nm 61 nm R 1.000 35.218 nm 200zn 33 nm 16.50 nm R 1.000 9.526 nm 200Rz 7608 nm 192.1 nm N 1.000 192.100 nm 35RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution(Please see the Excel sheet)

Combined standard uncertainty: uc(Rz) = 197.9 nm

Effective degrees of freedom: veff (Rz) = 39.4

Expanded uncertainty: U(Rz) = 399.7 nm with a coverage factor k=2.02

Laboratory: National Metrology Institute of Turkey (UME)................................................................................................................

Date: ................. 11.01.2002 ............ Signature:..................................................................

Page 22: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 22/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.13 Roughness standard Very coarse (686sg) - Identification (for Rz, Ra, Rmax)

Equation used:

�� ���� ���� � ���

� ++

+

=

Ptn : Depth of the reference setting standard known from PTB certificatePtmy : Locus dependent fraction of measured reference grooveb : Reproducibilit y of tracing of the reference groovezs : Unknown systematic deviation. zs = a = RzPTB - RzUME

zn : Background noiseRz : Measured Rz parameter carried out on the test standardRzk : Calibrated Rz parameter

Combined uncertainty equation:

( ) ���������������� ���������

������������ � � � ���� ���� �� �����

++++++=

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ptn 9870 nm 76 nm N 1.449 55.1 nm 200Ptmy 9870 nm 2 nm R 1.449 1.7 nm 200

B 10 nm 10 nm N 1.449 14.5 nm 100zs 100 nm 100 nm R 1.000 57.7 nm 200zn 33 nm 16.50 nm R 1.000 9.5 nm 200Rz 14300 nm 233.7 nm N 1.000 233.7 nm 35RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution(Please see the Excel sheet)

Combined standard uncertainty: uc(Rz) = 247.6 nm

Effective degrees of freedom: veff (Rz) = 44.0

Expanded uncertainty: U(Rz) = 497.6 nm with a coverage factor k=2.01

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: ........... 11.01.2002 ........... Signature:..................................................................

Page 23: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 23/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.14 Geometric standard Rub (114A) - Identification (for RSm)

Equation used:

( ) ����� ���������� ���

����������++++=

Ac : Accuracy of HP laseraL : Repeatibil ity of measurements on the reference standard using laser.ap : Repeatibil ity of measurements on the reference standard using Perthometer.a : The difference between the laser and Perthometer measurement results. (PSmL - PSmp)PSmL : Mean of the measured lengths of the profile elements using laser on the reference standardPSmp : Mean of the measured lengths of the profile elements using Perthometer on the reference standardRSmg : Mean of the measured lengths of the profile elements using Perthometer on the test standard

Note 1: We assume that the ratio RSmg/PSmL is constant.Note 2: RSmg is not corrected with the value ”a”. Instead, the value “a” is taken into account in theuncertainty budget.

Combined uncertainty equation:

( ) � � � � � � � �������� ����������������������� ���

����������� �����

+++++=

quantityXi

Estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ac 0.12 nm 0.12 nm N 0.420 0.05 nm 400aL 1341 nm 1341 nm N 0.420 76.6 nm 53ap 510.7 nm 510.7 nm N 0.420 214.4 nm 8a 1768 nm 1768 nm R 0.420 428.6 nm 200

RSmg 49723 nm 75 nm N 1.000 75 nm 11RES 110 nm 55 nm R 1.000 31.8 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution(Please see the Excel sheet)

Combined standard uncertainty: uc(Rz) = 492.1 nm

Effective degrees of freedom: veff (Rz) = 134.4

Expanded uncertainty: U(Rz) = 984.3 nm with a coverage factor k=2

Laboratory: National Metrology Institute of Turkey (UME)................................................................................................................

Date: ............ 11.01.2002 ............ Signature:..................................................................

Page 24: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 24/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.15 Geometric standard PTB (7070) - Identification (for RSm)

Equation used:

( ) ����� ���������� ���

����������++++=

Ac : Accuracy of HP laseraL : Repeatibil ity of measurements on the reference standard using laser.ap : Repeatibil ity of measurements on the reference standard using Perthometer.a : The difference between the laser and Perthometer measurement results. (PSmL - PSmp)PSmL : Mean of the measured lengths of the profile elements using laser on the reference standardPSmp : Mean of the measured lengths of the profile elements using Perthometer on the reference standardRSmg : Mean of the measured lengths of the profile elements using Perthometer on the test standard

Note 1: We assume that the ratio RSmg/PSmL is constant.Note 2: RSmg is not corrected with the value ”a”. Instead, the value “a” is taken into account in theuncertainty budget.

Combined uncertainty equation:

( ) � � � � � � � �������� ����������������������� ���

����������� �����

+++++=

quantityXi

Estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ac 0.12 nm 0.12 nm N 1.677 0.2 nm 400aL 1341 nm 1341 nm N 1.677 306.1 nm 53ap 510.7 nm 510.7 nm N 1.677 856.6 nm 8a 1768 nm 1768 nm R 1.677 1712.1 nm 200

RSmg 198617 nm 21 nm N 1.000 21.0 nm 11RES 1000 nm 500 nm R 1.000 288.7 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution(Please see the Excel sheet)

Combined standard uncertainty: uc(Rz) = 1960.2 nm

Effective degrees of freedom: veff (Rz) = 133.7

Expanded uncertainty: U(Rz) = 3920.4 nm with a coverage factor k=2

Laboratory: National Metrology Institute of Turkey (UME)................................................................................................................

Date: ............... 11.01.2002 ............ Signature:..................................................................

Page 25: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 25/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.16 Geometric standard PTB (8194) - Identification (for RSm)

Equation used:

( ) ����� ���������� ���

����������++++=

Ac : Accuracy of HP laseraL : Repeatibil ity of measurements on the reference standard using laser.ap : Repeatibil ity of measurements on the reference standard using Perthometer.a : The difference between the laser and Perthometer measurement results. (PSmL - PSmp)PSmL : Mean of the measured lengths of the profile elements using laser on the reference standardPSmp : Mean of the measured lengths of the profile elements using Perthometer on the reference standardRSmg : Mean of the measured lengths of the profile elements using Perthometer on the test standard

Note 1: We assume that the ratio RSmg/PSmL is constant.Note 2: RSmg is not corrected with the value ”a”. Instead, the value “a” is taken into account in theuncertainty budget.

Combined uncertainty equation:

( ) � � � � � � � �������� ����������������������� ���

����������� �����

+++++=

quantityXi

Estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

Ac 0.12 nm 0.12 nm N 1.006 0.12 nm 400aL 1341 nm 1341 nm N 1.006 183.6 nm 53ap 510.7 nm 510.7 nm N 1.006 513.8 nm 8a 1768 nm 1768 nm R 1.006 1027.1 nm 200

RSmg 119149 nm 29 nm N 1.000 29.0 nm 11RES 350 nm 175 nm R 1.000 101.0 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: Resolution(Please see the Excel sheet)

Combined standard uncertainty: uc(Rz) = 1167.8 nm

Effective degrees of freedom: veff (Rz) = 130.0

Expanded uncertainty: U(Rz) = 2335.5 nm with a coverage factor k=2

Laboratory: National Metrology Institute of Turkey (UME)................................................................................................................

Date: ........... 11.01.2002 ........... Signature:..................................................................

Page 26: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 26/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.17 Roughness standard SFRN 150 (1.006) - Identification (for Rk, Rpk, Rvk)

Equation used:

���

����

−=

∑∑

∑∑∑

==

=== �

� �

� �

� �

� �

� ���

���

���

������

zi : Profile height of ith point in the central region of material ratio curveMri : Material ratio of ith point in the central region of material ratio curveN : Number of points which are used to calculate the secant in the central region of material ratio curve using

least square method.

Combined uncertainty equation:

� � ������������ �������� ��� ������ "!�#��� $$ ++=

Note 1: Please see Appendix 1 for detail explanation of above equationNote 2: Uncertainty calculations for zk are given in Excel sheets in Appendix 2

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

zk 138 nm 41.8 nm N 0.853 36.209 nm 286Mr 50 % 10 % N 0.059 nm 0.006 nm 200RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: ResolutionNote: Uncertainty of Mr are not calculated. The effect of the uncertainty of Mr is very small . The difference between the combined uncertaintiesfor u(Mr)=0 and u(Mr)=100% is less than 1%. u(Mr) is estimated to be 10%.(Please see the Excel sheet)

Combined standard uncertainty: uc(Rk) = 36.2 nm

Effective degrees of freedom: veff (Rk) = 16055.3

Expanded uncertainty: U(Rk) = 72.4 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: ......... 11.01.2002 ............ Signature:..................................................................

Page 27: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 27/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.18 Roughness standard Fine (629f) - Identification (for Rk, Rpk, Rvk)

Equation used:

���

����

−=

∑∑

∑∑∑

==

=== �

� �

� �

� �

� �

� ���

���

���

������

zi : Profile height of i th point in the central region of material ratio curveMri : Material ratio of i th point in the central region of material ratio curveN : Number of points which are used to calculate the secant in the central region of material ratio curve using

least square method.

Combined uncertainty equation:

� � �������� �������� ��� ������ "!�#��� $$ ++=

Note 1: Please see Appendix 1 for detail explanation of above equationNote 2: Uncertainty calculations for zk are given in Excel sheets in Appendix 2

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

zk 1255 nm 79.7136 nm N 0.853 68.012 nm 20.5Mr 50 % 10 % N 0.383 nm 0.038 nm 200RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: ResolutionNote: Uncertainty of Mr are not calculated. The effect of the uncertainty of Mr is very small . The difference between the combined uncertaintiesfor u(Mr)=0 and u(Mr)=100% is less than 1%. u(Mr) is estimated to be 10%.(Please see the Excel sheet)

Combined standard uncertainty: uc(Rk) = 68.0 nm

Effective degrees of freedom: veff (Rk) = 1150.8

Expanded uncertainty: U(Rk) = 136.0 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: .... 11.01.2002 ........... Signature:..................................................................

Page 28: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 28/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.19 Roughness standard Coarse (633g) - Identification (for Rk, Rpk, Rvk)

Equation used:

���

����

−=

∑∑

∑∑∑

==

=== �

� �

� �

� �

� �

� ���

���

���

������

zi : Profile height of i th point in the central region of material ratio curveMri : Material ratio of i th point in the central region of material ratio curveN : Number of points which are used to calculate the secant in the central region of material ratio curve using

least square method.

Combined uncertainty equation:

� � ���������� �������� ��� ����� !#" $ � %% ++=

Note 1: Please see Appendix 1 for detail explanation of above equationNote 2: Uncertainty calculations for zk are given in Excel sheets in Appendix 2

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

zk 7608 nm 306.5 nm N 0.853 261.5 nm 11.4Mr 50 % 10 % N 3.809 nm 0.381 nm 200RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: ResolutionNote: Uncertainty of Mr are not calculated. The effect of the uncertainty of Mr is very small . The difference between the combined uncertaintiesfor u(Mr)=0 and u(Mr)=100% is less than 1%. u(Mr) is estimated to be 10%.(Please see the Excel sheet)

Combined standard uncertainty: uc(Rk) = 261.5 nm

Effective degrees of freedom: veff (Rk) = 640.0

Expanded uncertainty: U(Rk) = 523.0 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: .......... 11.01.2002 ........... Signature:..................................................................

Page 29: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 29/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.20 Roughness standard Very coarse (686sg) - Identification (for Rk, Rpk, Rvk)

Equation used:

���

����

−=

∑∑

∑∑∑

==

=== �

� �

� �

� �

� �

� ���

���

���

������

zi : Profile height of i th point in the central region of material ratio curveMri : Material ratio of i th point in the central region of material ratio curveN : Number of points which are used to calculate the secant in the central region of material ratio curve using

least square method.

Combined uncertainty equation:

� � ���������� �������� ��� ������� ��!��� "" ++=

Note 1: Please see Appendix 1 for detail explanation of above equationNote 2: Uncertainty calculations for zk are given in Excel sheets in Appendix 2

quantityXi

estimatexi

uncertaintyu(xi)

probabilit ydistribution

sensitivitycoefficient

ci

uncertaintycontribution

ui(d)

degrees offreedom

vi

zk 14300 nm 371.8 nm N 0.853 317.2 nm 11.3Mr 50 % 10 % N 6.943 nm 0.694 nm 200RES 0.42 nm 0.21 nm R 1.000 0.121 nm 200

N = normal; R = rectangular; T = triangular; U = U-shaped.RES: ResolutionNote: Uncertainty of Mr are not calculated. The effect of the uncertainty of Mr is very small . The difference between the combined uncertaintiesfor u(Mr)=0 and u(Mr)=100% is less than 1%. u(Mr) is estimated to be 10%.(Please see the Excel sheet)

Combined standard uncertainty: uc(Rk) = 317.2 nm

Effective degrees of freedom: veff (Rk) = 634.4

Expanded uncertainty: U(Rk) = 634.4 nm with a coverage factor k=2

Laboratory: ..National Metrology Institute of Turkey. (UME)................................................................................................................

Date: ........ 11.01.2002 .......... Signature:..................................................................

Page 30: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 30/35

Appendix B1 - Reports of UME July 31st, 2003

A4 - Uncertainty of measurement3.21 Roughness standard SFRN 150 (1.006) - Fine (629f) – Coarse (633g) – Very coarse(686sg) - Identification (for Mr1, Mr2)

Uncertainty of Mr1 and Mr2 was not calculated. Instead, we assume that the relative uncertainty of Rk with respect toRz is valid for Mr1 and Mr2 parameters.

StandardRz

(nm)U(Rk)(nm)k=2 �

��

�� �� Mr1

(%)U(Mr1)

(%)k=2

Mr2

(%)U(Mr2)

(%)k=2

SFRN 150 (1.006) 138 72.4 0.525 12.606 6.618 83.232 43.697Fine (629f) 1255 136.0 0.108 8.982 0.970 88.158 9.521Coarse (633g) 7608 523.0 0.069 6.196 0.428 81.968 5.656Very coarse (686sg) 14300 634.4 0.044 6.948 0.306 92.850 4.085

Laboratory: National Metrology Institute of Turkey (UME)................................................................................................................

Date: ............. 11.01.2002 ............ Signature:..................................................................

Page 31: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 31/35

Appendix B1 - Reports of UME July 31st, 2003

APPENDIX 1A Model For

������������� �������������������� �����������Rk, Rpk, Rvk Parameters

The following uncertainty calculation is performed for Rk parameter. It can also be applied forRpk and Rvk parameters.

According to ISO 13565-2, a line (secant) is fitted to the central region of material ratio curve inorder to obtain Rk, Rpk and Rvk parameters. The length in horizontal projection of the secant is 40%. The gradient of the secant is the smallest of the gradients of all secants which have the leng inhorizontal projection th in horizontal projection 40 % .

!"

#$�%

$�&'%

$)('%

*�+�, -�./ 01/ /2'/ 3'/ 4'/

*5 6 7 8

5 6 7 8

9

Assumptions:

1) The secant AB which is fitted to the central region is on the center of the whole curve. Sothe abscissae of the middle point of the secant is MrM = 50 % (MrA = 30 % and MrB = 70%)

2) z ordinate of middle point M of the secant is

3) Vertical measuring range of the probe MFW-250 is ± 25 µm. This renge is sampled by60000 steps. So it is assumed that at least 100 points can be used to do sampling inhorizontal axis in calculation of Rk for almost all range of standards given. Therefore 100points are used to calculate the least square best fit line.

There are N points between A and B points. 1st order polinomial (the secant) is following:

21* cMrcz += (1)

:; <

= <>

??@ +≅

Page 32: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 32/35

Appendix B1 - Reports of UME July 31st, 2003

From the similarity of the triangles CED and AFB, following equation can be written:

zA* : Starting point of secant

zB* : End point of secant

When we substitute Eq(1) into Eq(2) we obtain:

If we can determine c1, Rk can be found as well as with its uncertainty. The secant can bedetermined (i.e. c1 and c2 in Eq.1) using “ least square method”. The main formula for least squaremethod is written as following:

zi*:Ordinate of i th point of fitted polynomial

zi : Ordinate of i th point of the central region of material ratio curveF : Sum of the square of the differences

There are two unknowns c1 and c2 in Eq.1 . For “F” be minimum, derivetives of F with respect toc1 and c2 must be zero. Thus,

�� =

∂∂��

⇒ 0)(21

21 =−+∑=

i

N

iii MrzcMrc (5)

%40%100

**BAk zzR −= (2)

1cRk = (3)

∑=

−=N

iii zzF

1

2* )(

(4)

��������

���� ���� � ���� ���� ��� +−+=

������

����� ��� ���������� ��� −+−=

Page 33: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 33/35

Appendix B1 - Reports of UME July 31st, 2003

If we obtain c2 from Eq.6 and substitute into Eq.5, we obtain:

After a simple arrangement we obtain:

Combined uncertainty of Rk :

������ ��

���

�� ��� ����

� ��� �������

��

∂∂+

∂∂= ∑∑

== (8)

........)(1

1Mr

)(1

1Mr

)( 22

2

2

11

2

12

12

2

2

11

2

11

2 +

−+

−=

∑∑

∑∑

==

=

==

= zu

MrN

Mr

MrN

zu

MrN

Mr

MrN

RuN

ii

N

ii

N

ii

N

ii

N

ii

N

ii

k

...........)(1

12Mr2

11z

........ 12

2

22

11

2

1 1111

22

11

2

11

+

−−

+

∑∑

∑ ∑∑∑∑∑∑

==

= ======Mru

MrN

Mr

MrzN

MrzMrN

MrN

MrzN

N

ii

N

ii

N

i

N

iii

N

iii

N

ii

N

ii

N

ii

N

ii

...........)(1

12Mr2

11z

........ 22

2

22

11

2

1 1112

22

11

2

12

+

−−

+

∑∑

∑ ∑∑∑∑∑∑

==

= ======Mru

MrN

Mr

MrzN

MrzMrN

MrN

MrzN

N

ii

N

ii

N

i

N

iii

N

iii

N

ii

N

ii

N

ii

N

ii

. (9)

� =

∂∂� �

⇒ 0)(2

121 =−+∑

=

N

iii zcMrc

(6)

���

����� �

−==

∑∑

∑∑∑

==

=== �� �

�� �

�� �

�� �

�� ��

� ���

��

����

���

�� (7)

����� ���

� =−

−+ ∑∑∑ ∑∑

=== ==

!" ""

!" "

!"

!" "

!" "" #%$&#%$#%$'&(#%$'

Page 34: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 34/35

Appendix B1 - Reports of UME July 31st, 2003

Above coeff icients are calculated for 4 different roughness standard by using a QBASICcomputer program. The coeff icients for N = 101 points are following:

Standard∑

=

∂∂

!" "

�&��

∑=

∂∂

!" "

�&���

∑=

∂∂

!" "

�#%$�

∑=

∂∂

!" "

�#%$�

��

686sg 0.728 0.00944 48.202 41.40633g 0.728 0.00944 14.507 3.75629f 0.728 0.00944 0.147 0.0003841.006 0.728 0.00944 0.00347 0.000000214Note: 4th order coefficients are used for calculation of effective degrees of freedom.

Verifying whether the extreme point of “F ” function is a minimum or not

Second derivatives of F function:

∑=

=∂∂=

�� ��� ��� � � �

�� ��� Always positive

� � �� � � �����

=∂∂= Always positive

� � ����� =

∂∂= ����

Discriminant:

( ) ������� ������ ������ ����−= Always negative

Because ��! ""# is positive, the point is real minimum.

Page 35: Appendix B1 Reports of UME - National Physical Laboratoryresource.npl.co.uk/euromet/length/projects/reports/600-surf-texture/... · 2, 50 8, 33 0, 5 0, 9 0, 5 s t d. d e v./ n m 11,

Euromet Project 600 – Comparison of Surface Roughness Standards 35/35

Appendix B1 - Reports of UME July 31st, 2003

UME

(Only part of the comment related to changes of the uncertainty)1) We calibrated our roughness instrument by using PTB calibrated depth setting standard withsix grooves. We used only the deepest groove (Pt = 9870 and D = 9820 nm ). The relativeuncertainty is % 0.305 . Our uncertainty for R6 groove (D = 8363 nm) of the depth standard EN806 is 25.6 nm, our relative uncertainty is % 0.306 (Section 3.1–3.3, P:8–10 in UME ReportAppendix B1 in Draft A) . As can be seen, our relative uncertainty in the comparison is equal tothe uncertainty of our reference standard. This is caused by an error in the uncertainty model usedfor D parameter. In the model, z values of measured profile were being averaged according to theassumption of randomly distributed z-values. We applied this for the uncertainty of referencestandards as well as for our measurements on the sample. But Dr. Koenders explained that theuncertainty of our reference standard was systematic not random. So we can not apply averagingfor the uncertainty of reference standard. The corrected uncertainty equations and the budgets forD parameters can be seen in the attachment. According to the equations in the attachment,uncertainties for D parameters were recalculated. The results are as following:

Groove R1 (D = 282 nm), U(D) = 20.2 nm (k = 2)Groove R3 (D = 1364 nm), U(D) = 24.4 nm (k = 2)Groove R6 (D = 8363 nm), U(D) = 70.8 nm (k = 2)

2) We calculated the uncertainty only for Rz parameter (Section 3.7–3.13, P:14–20 in UMEReport Appendix B1 in Draft A) . And we used this calculated absolute uncertainty for Ra andRz1max in order to be on a safe side, because background noise level is high in our laboratory(Rzo = 33nm). But our uncertainties for Ra parameters seem very large when compared to othercountries in the comparison. So we think that two uncertainty contributions should be changed inthe budget. One of them is the systematic deviation (the difference between UME and PTB) andthe other is standard deviation of the parameter on the surface. The systematic deviation may becalculated for Ra instead of Rz. Standard deviation of Ra may be used instead of Rz on thesurface. The corrected model equation, the uncertainty equation and the budget can be seen in theattachment. According to the equations in the attachment, uncertainties for Ra parameters werecalculated. The results are as following:

Geometric Standard P114A (Ra = 505 nm), U(Ra) = 20.0 nm (k = 2)Geometric Standard 7070 (Ra = 2978 nm), U(Ra) = 46.0 nm (k = 2)Geometric Standard 8194 (Ra = 901 nm), U(Ra) = 25.2 nm (k = 2)Roughness Standard 686sg (Ra = 2346 nm), U(Ra) = 73.4 nm (k = 2)Roughness Standard 633g (Ra = 1533 nm), U(Ra) = 30.8 nm (k = 2)Roughness Standard 629f (Ra = 147 nm), U(Ra) = 20.0 nm (k = 2)Roughness Standard 1.006 (Ra = 24 nm), U(Ra) = 19.4 nm (k = 2)