43
8/8/2019 APIC17J1 Revision 3 http://slidepdf.com/reader/full/apic17j1-revision-3 1/43  Thermoplastic Polymers for OFF-SHORE Flexible Pipes

APIC17J1 Revision 3

Embed Size (px)

Citation preview

Page 1: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 1/43

 

Thermoplastic Polymers for OFF-SHORE

Flexible Pipes

Page 2: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 2/43

RILSAN

, the unique polyamide from ATOFINA, today looks back at a service history of 30

years in the petrol industry. After 14 years of research in a program launched in 1958 by the

French Institut de Petrole, PA11 was chosen as the best material out of several hundred

tested. The combined qualities of flexibility, excellent impact resistance even at low

temperatures, high resistance to ageing and good compatibility to products common to the

petrol industry environment have made RILSAN

an unequaled standard.

For even higher demands, especially when the temperature or combined high temperature

and high water content requirements are too severe, ATOFINA proposes its unique KYNAR 

 

off-shore grade. KYNAR 

is a thermoplastic fluoropolymer resin initially developped by

ATOFINA. Its outstanding thermomechanical properties combined with exceptional chemical

and ageing resistance made it possible for KYNAR 

to meet the highest demands.

This document is intended to provide detailed technical information on the properties of 

ATOFINAs thermoplastic polymers for flexible pipe use. The scope of the technical details is

defined in the “ Specification for Unbonded Flexible Pipe ” - API Specification API 17Jeffective since March 1

st1997.

The diffusion of this document is controlled, that is, the document is available to costumers of 

ATOFINA, the flexible pipe manufacturers, and their costumers; the petrol industry.

The data given in this document based on trials carried out in our Research Centres and data

selected from litterature are given to the best of our knowledge and do not contribute or

Page 3: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 3/43

Contents page

1. API 17J - Property Requirements for Extruded Polymer materials 4

1.1  Mechanical/physical properties 4

1.2 Thermal properties 4 1.3  Permeation characteristics, compatibility and ageing 5 

1.4  Fluid permeability 5

1.5  Blistering resistance 5 

1.6  Fluid compatibility 5

1.7  Ageing tests 6

BESNO P40 TLX and BESNO P40 TLXOS 7 

2. Mechanical/physical properties 8

2.1 Density 8

2.2 Hardness 8

2.3 Compression strength 8

2.4 Abrasion resistance 8

2.5 Flexural test according to ISO 178-93 8

2.6 Flexural test according to ASTM D790 8

2.7 Impact test according to ISO 179 (type II) 8

2.8 Impact test according to ISO 179-93 CA 8

2.9 Tensile creep 92.10 Stress relaxation 12

2.11 Fatigue 13

2.12 Tensile tests according to ISO 527-93 BA 14

2.13 Tensile tests according to ASTM D638 type II 14

2.14 Poisson ratio 14

2.15 Compression test 17

2.16 Creep in compression mode 18

3. Thermal properties 20

3.1 Thermal conductivity 20

3.2 Thermal expansion 20

3.3 Heat deflection temperature ASTM D648 20

3.4 Softening point ASTM D1525 20

3.5 Heat capacity 20

3.6 Glass transition temperature 20

3.7 Dynamic mechanical analysis 213.8 Differential Scanning Calorimetry (DSC) 22

4. Ageing behaviour, compatibility and permeation 23

4.1 Lifetime models and end-of-life criteria based on polyamide hydrolysis 23

4.2 Evolution of properties during ageing 25

4 3 C tibilit ith ff h fl id d 28

Page 4: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 4/43

1. API 17J - PROPERTY REQUIREMENTS FOR EXTRUDED POLYMER 

MATERIALS

The API specification 17 J “ Specification for unbonded flexible pipe ” was edited in december 

1996 and is effective since 1st of march 1997. The intention of this specification is the

harmonization of current practice in the off-shore industry with the particular aim of obtaining high

safety standards and a common reference basis for all suppliers to the off-shore industry.

The API specification 17 J contains a specific chapter 6.1.2 dealing with polymer materials.

ATOFINA, a supplier of polymer materials to the off-shore industry, is adressing the specified

 properties in this given document.

1.1 MECHANICAL/PHYSICAL PROPERTIES

Internal pressure sheath : A, Intermediate sheath / Anti-Wear layer : B,

Outer sheath : C

A B C Test Procedure Comments

Resistance to creep X X X ASTM D2990 due to temperature

and pressure

Yield strength/elongation X X X ASTM D638

(ISO 527 93.1 BA)

Ultimate strenth/elongation X X X ASTM D638Stress relaxation properties X ASTM E328

Modulus of elsticity X X X ASTM D790

(ISO 178 :39)

Hardness X ASTM D2240

(ISO 2039/2 et 868)

Compression strenth X ASTM 695

Impact strength X ASTM D25

(ISO 179 type1 et

ISO 179 :93CA6

at design minimum

temperatures

Abrasion resistance X ASTM D4060

(ISO 9352 :1995F)

or ASTM D1044

Density X X X ASTM D792 ASTM D1505

Fatigue X X X ASTM D671 dynamic applications

only

  Notch sensitivity X ASTM D256

1.2 THERMAL PROPERTIES

Internal pressure sheath : A, Intermediate sheath / Anti-Wear layer : B,

Outer sheath : C

A B C Test Procedure Comments

Coefficient of thermal conductivity X X X ASTM C177

Page 5: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 5/43

 

1.3 PERMEATION CHARACTERISTICS, COMPATIBILITY AND AGING

A B C Test Procedure Comments

Fluid permeability X X X details in API 17J CH4, CO2, H2S and

methanolBlistering resistance X details in API 17J at design conditions

Fluid compatibility X X X details in API 17J

Aging tests X X X details in API 17J

Environmental stress cracking X X X ASTM D1693

weathering resistance X Effectiveness of UV

stabilizer 

Water absorption X X ASTM D570 Insulation material

only

For the characteristics listed in the last table API 17J recommends the following test requirements. 

1.4 FLUID PERMEABILITY

a) The sample shall be taken from an extruded polymer sheath.

 b) The thickness is 1 mm as a minimum.

c) The diameter is 70 mm as a minimum.

d) Sufficient tests at different temperatures to allow for linear interpolation should be performed.e) Sufficient tests at different pressures to allow for linear interpolation should be performed. 

1.5 BLISTERING RESISTANCE

a) Fluid mixtures - Use gas components of specified environment as documented in the test

 procedure..

 b) Soak time - Use sufficient to ensure stauration.

c) Test cycles - If available, use expected number of decompressions, or else use 20 cycles as aminimum.

d) Decompression rate - If available, use expected decompression rate, or else use as a minimum

70 bar per minute.

e) Thickness - Internal pressure sheath wall thickness as a minimum.

f) Temperature - Use the expected decompression temperature.

g) Pressure - Use design pressure as a minimum.

h) Procedure - After each depressurization the sample shall be examined at a magnification of × 

20 for signs of blistering, swelling and slitting. No blister formation or slitting shall be observed.

1.6 FLUID COMPATIBILITY

All components shall be evaluated in the environments to which the polymer is exposed. Tests shall

be based on the design conditions of temperature pressure and strain As a minimum tensile

Page 6: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 6/43

 

1.7 AGEING TESTS

Polymer aging models shall be based on testing and experience and shall predict the aging or 

deterioration of the polymer under the influence of environmental and load conditions that have

 benn identified to be relevant through testing. As a minimum, polymer aging models for PA-11

shall consider temperature, water cut and pH. For PVDF materials the assessment of aging shall

include the effect of temperature, chemicel environment and mechanical load. Special attention

should be given to deplastification, fluid absorption and changes of dimensions. Creep, cyclic strain

and relaxation shall be investigated on aged and unaged samples. The aging models may include

accumulated damage concepts based on blocks of time or operational cycles of 

temperature/pressure under different exposure conditions. Aging may be determined by change in

either specific mechanical properties or in specified physico-chemical characteristics whichincludes reduction in the plasticizer content of the material.

Page 7: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 7/43

 

BESNO P40 TLX

BESNO P40 TLX OS

DATA

BESNO P40 TLX and BESNO P40 TLX OS are both plasticized PA11 grades

destinated for off-shore flexible pipe use. Their respective compositions are strictly the

same as well as their properties. Th difference between the two grades lies in different

granules’ conditioning for shipment.

In general and in case it is not specifically stated, experiments were conducted on

extruded sheet material. Such extruded sheet gives similar experimental results as the

extruded flexible pipe. 

Page 8: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 8/43

2. MECHANICAL/PHYSICAL PROPERTIES

2.1 DENSITY

ASTM D792 1.05

2.2 HARDNESS

ISO 2039/2 (R SCALE) 75

ISO 868 (D SCALE) 63

2.3 COMPRESSION STRENGTH

ASTM D695 (23°C) 50 MPa

2.4 ABRASION RESISTANCE

ISO 9352 : 1995(F)

(loss in weight after 1000 rev under 500g

load with H18 abrasive wheel) 22 mg

2.5 FLEXURAL TESTS ACCORDING TO ISO 178 : 93

Temperature °C -40 -20 23 80Flexural modulus

(dry material)

MPa 1950 1350 320 165

Flexural modulus

(after conditionning 15

days 23°C 50% R.H.)

MPa 2050 1150 280 160

2.6 FLEXURAL TESTS ACCORDING TO ASTM D790

Temperature °C 23 80

Flexural modulus

(dry material)

MPa 330 170

2.7 IMPACT TESTS ACCORDING TO ISO 179 (type 1)

Temperature °C -40 23

Unnotched KJ.m-2

N.B. N.B.

  Notched KJ.m-2

8 N.B.

Page 9: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 9/43

2.9 TENSILE CREEP - TRACTION MODE

Tensile creep tests according to ASTM D2990 were performed under 2 MPa at different temperatures

rangeing from 23°C to 80°C. Tensile specimens were of ISO R 527 injected type and a MTS 810

servohydraulic machine is used. From the different curves a creep master curve was constructed by applying

the time temperature superposition principle. The creep modulus can then be modeled by a linear function ona log-log scale.

Creep curves at 2 MPa for different temperatures - strain data

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 10 100 1000 10000 100000

TIME (s)

   S   T   R   A   I   N   (  m  m   /  m  m   )

23°C 30°C 40°C 50°C 60°C 80°C 100°C

 

Master plot at 2 MPa obtained using the time - temperature shifting principle scaled to 23°C

00.0020.0040.0060.0080.01

0.0120.0140.016

1 100 10000 1000000 1E+08 1E+10 1E+12 1E+14

   S   T   R   A   I   N

   (  m  m   /  m  m   )

Page 10: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 10/43

Plot of the shifting factor αΤ used to obtain the maste plot

01

234

567

89

10

0.0025 0.0027 0.0029 0.0031 0.0033 0.0035

1/T K-1

   l  o  g   (  a   T   )

 

Creep curves at 2 MPa for different temperatures - stress data

100

1000

1 10 100 1000 10000 100000

TIME (s)

   M   O   D   U   L   U   S   (   M   P  a   )

23°C 30°C 40°C 50°C 60°C 80°C 100°C

Page 11: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 11/43

Tensile creep master curve constructed for 23°C

100

1000

1 100 10000 1000000 1E+08 1E+10 1E+12 1E+14

TIME (s)

   M   O   D   U   L   U   S   (   M   P  a   )

23°C 30°C 40°C 50°C 60°C 80°C 100°C

 

All these creep studies have been done on ISO R 527 injection molded samples for purpose

of simplicity but we have checked that there is merely no difference in the creep behaviour 

 between injection molded or extruded samples.

Tensile creep curves under 5 Mpa at 23°C, 50°C and 80°C for both injection molded and

extruded specimen

Page 12: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 12/43

2.10  STRESS RELAXATION

Stress relaxation measurements were performed according to ASTM standard E 328.86, but

using ISO R 527 tensile specimens. The imposed strain was 1%. A stress relaxation master 

curve was built using time - temperature superposition principle.The stress relaxation modulus is seen to decrease linearly in time in a log - log plot.

Stress relaxation curves for different temperatures at 1% strain

100

1000

1 10 100 1000 10000 100000

Time(sec)

   M   O   D   U   L   U   S   (   M

   P  a   )

23°C 30°C 40°C

50°C 60°C Puissance (23°C)

Puissance (30°C) Puissance (40°C) Puissance (50°C)

Puissance (60°C)

 

Master plot : Evolution of E Modulus during stress relaxation under 1% strain at 23°C

100

1000

1 100 10000 1000000 1E+08 1E+10 1E+12

   M   O   D   U   L   U

   S   (   M   P  a   )

Page 13: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 13/43

Comparison between the creep master plot and the stress relaxation master plot at 23°C

100

1000

1 100 10000 1000000 1E+08 1E+10 1E+12 1E+14

TIME (s)

   M   O   D   U   L   U   S   (   M   P  a   )

CREEP

STRESS RELAXATION

 

2.11 FATIGUE

Measured according to NF T51-120 in replacement to the norm ASTM D671. We chose this

standard which measures fatigue at constant deformation in contrast to the ASTM standard

which measures at constant stress. To our knowledge the constant amplitude mode is more

representative to the actual situation in a flexible riser. Furthermore, the constant stress

mode would result in a considerable increase of deformation during the fatigue experiment

due to stress relaxation of the material.

FATIGUE TEST OF BESNOP40TLX WITH AN END OF LIFE

CRITERIA OF 20% REDUCTION OF THE INITIAL STRESS

4.00

5.00

6.00

7.00

8.00

9.00

10.00

L   S   T   R   E   S   S   (   M

   P  a   )

Page 14: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 14/43

2.12 TENSILE TESTS ISO 527 93.1BASamples injection moulded 

TEMPERATURE Yield strength Elongation at

yield

Ultimate strength Elongation at

 break MPa % MPa %

-60°C 93.4 10 65.5 75

-40°C 77.3 11 60.8 90

-20°C 49.1 21 59.2 202

0°C 36.4 33.2 56.8 231

23°C - - 48.8 263

40°C - - 43.8 260

60°C - - 37.3 260

80°C - - 34 262

100°C - - 31.9 282

120°C - - 32.7 323

2.13 TENSILE TESTS ASTM D638 type IISamples cut from extruded sheaths 

TEMPERATURE Yield strength Elongation at

yield

Ultimate strength Elongation at

 break 

MPa % MPa %

-40°C 64 16 33 128

-20°C 46 30 > 39 > 230

0°C 36 40 > 39 > 230

20°C 26 44 > 27 > 23040°C 20 46 > 26 > 230

60°C 20 46 > 26 > 230

80°C 13 44 > 17 > 230

100°C 11 42 > 15 > 230

120°C 9 38 > 13 > 230

Apparatus limited in size to reach maximum elongation

2.14 POISSON RATIO

Temperature (°C) -40 23 100

Poisson ratio 0 385 0 47 0 45

Page 15: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 15/43

Tensile test according ISO R 527-93 1BA

0

20

40

60

80

100

120

-60°C

-40°C-20°C

0°C

20°C

40°C

60°C80°C

120°C

Page 16: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 16/43

Tensile tests according ASTMD 638 type II

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

   S   t  r  e  s  s   (   M   P  a   )

-40°C

-20°C

0°C

20°C

40°C

60°C

80°C

100°C

120°C

Page 17: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 17/43

Page 18: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 18/43

2.16 CREEP IN COMPRESSION MODE 

Creep tests in compression were done on 10*10*5 mm specimen machined in an extruded

  pipe. The compression is applied along the thickness on an MTS 810 servohydraulic

machine.

Creep in compression mode of BESNO P40 TLX under 10 MPa

0

2

4

6

8

10

12

1 10 100 1000 10000 100000

Time(s)

   S   t  r  a   i  n   (   %   )

20°C 30°C 40°C 60°C 80°C

Page 19: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 19/43

 

Creep in compression mode of BESNO P40 TLX under 15 MPa

0

5

10

15

20

25

1 10 100 1000 10000 100000

Time(s)

   S

   t  r  a   i  n   (   %   )

23°c 30°c 40°c 60°c 80°c 100°c

Page 20: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 20/43

 

3 THERMAL PROPERTIES

3.1 THERMAL CONDUCTIVITY

Temperature (°C) 39 61 82 102 122 142 163 182 202 223

K (W/m°K) 0.21 0.21 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.25

3.2 THERMAL EXPANSION

ASTM E 821from -30°C to +50°C 11x10-5 °K -1 

from +50°C to +120°C 23x10-5 °K -1

3.3 HEAT DISTORSION TEMPERATURE

ASTM D648

ISO 75 (0.46 Mpa) 130 °C

ISO 75 (1.85 Mpa) 45 °C

3.4 SOFTENING POINT

ASTM D1525

under 1daN 170 °Cunder 5 daN 140 °C

3.5 HEAT CAPACITY

Measured by D.S.C.

Temperature (°C) 20 50 80 120 160 200 230 260

cal/g.°C 0.40 0.50 0.56 0.6 0.63 0.66 0.66 0.67

 

Page 21: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 21/43

3.7 DYNAMIC MECHANICAL ANALYSIS (full curve)

Measurement in a 3-point bending flexural mode at 10 rad/s

1.00E+07

1.00E+08

1.00E+09

1.00E+10

    -        1        4        0

    -        1        2        0

    -        1        0        0

    -        8        0

    -        6        0

    -        4        0

    -        2        0 0

        2        0

        4        0

        6        0

        8        0

        1        0        0

        1        2        0

        1        4        0

        1        6        0

        1        8        0

Temperature(°C)

   S   T   O   R   A   G   E   M   O   D   U   L   U   S   E

   '   (   P  a   ) ,   L   O   S   S

   M   O   D   U   L   U   S   E   '   '   (   P  a   )

E'

E''

 

The DMA curve obtained is characteristic for semicristalline polymers. Essentially four 

different relaxational transitions can be detected.

The γ  transition at the lowest temperature (-130°C) is commonly attributed to localizedmotion of methylene segments. The intermittent low temperature relaxation, denominated

β- relaxation, is attributed to localized motion of H-bonded groups like the amide functions

and its amplitude varies depending on water content.

The α-relaxation around -10°C is also called the glass transition. It implies large segmental

motion of the polymer chains enabling diffusion processes to take place .

Finally the last transition with an onset at 140°C is linked to the melting of the cristalline

 phase.

For a textbook on the comprehensive analysis of DMA data refer to “ Anelastic anddielectric effects in polymer solids ” by N.G. McCrum, B.E. Read, G. Williams Dover 

Publication New York 1991.

Page 22: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 22/43

3.8 DSC CURVE OF BESNO P40 TLX

The DSC curve is obtained on a PERKIN ELMER DSC 7 calorimeter at a heating rate of 

20°C/min. On the thermogram, one can easily observe the melting zone and the melting

 peak that gives the melting temperature.

25

30

35

40

45

50

-80 -40 0 40 80 120 160 200 240

Temperature(°C)

   H  e  a

   t   F   l  o  w   (  m   W   )

Heating rate : 20°C/min

Page 23: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 23/43

4. AGEING BEHAVIOUR, COMPATIBILITY AND PERMEATION

4.1 LIFETIME MODELS AND FAILURE CRITERIA BASED ON

POLYAMIDE HYDROLYSIS

From a point of view of material evolution due to ageing the following effects have been

demonstrated in plasticized PA11 :

- molecular weight loss due to a hydrolysis reaction in the presence of water 

- plasticizer loss

- absorption of oil components, gases and moisture

- annealing which leads to a higher crystalline content.

Hydrolysis has been reckognized as the most important ageing phenomenon in PA11. The process is well understood due to intense recent research. The kinetics of molecular weight

loss are known in detail and can rather well be correlated with material performance [1 2 3

4].

The importance and the complexity of the PA11 ageing behaviour have resulted in a

combined industry effort. The main result of the industry working group is a document

which states specifically the end-of-life criteria and typical lifetime curves for environmentsof different acidity. The reference of this document is

API Technical Bulletin 17 RUG.

The reference ageing criterion defined is based on average molecular weight as expressed in

Corrected Inherent Viscosity (CIV). Guidelines how to measure CIV are given in detail in

API TB 17 RUG and refer to standards ASTM D2857-95 and ISO 307:1994. However,

special procedures not outlined in the ASTM or ISO standards apply.

The failure criterion for PA11 in flexible pipes has been determined as CIV = 1,05 dl/g. The

initial acceptance criterion has been defined as 1,20 dl/g which includes a safety factor.

For further information, in particular lifetime estimations and Arrhenius curves based on

above acceptance and failure criteria, the reader should refer to API TB 17 RUG.

Special attention is drawn to the necessity of appropriate procedures for ageing

experiments. The oxygen content in long term ageing experiments must be tightlycontrolled and kept below a minimum to avoid a significant increase in ageing severity.

Also the preparation of test samples and factors such as the weigth ratio testing medium /

samples are important parameters. For detailed information please refer to API TB 17 RUG.

Page 24: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 24/43

4. "Molecular weight distribution and mass changes during polyamide hydrolysis", G.

Serpe, N. Chaupart, J. Verdu, Polymer, Vol 39 n°6-7, 1375-1380, 1998

5. “Recommended practice for flexible pipe” API 17B, 2nd

edition 1998

6. “Specification for unbonded flexible pipe” API Specification 17J, revised edition 1997

7. “Progress towards a better understanding of the performances of Polyaminde 11 in

flexible pipe applications” S. Groves Proceedings of OMAE’01, n° 3570

8. "Improved thermoplastic materials for offshore flexible pipes", F. Dawans, J. Jarrin, T.

Lefevre, M. Pelisson, Communication OTC 5231, 1986.

9. “Lifetime prediction of PA11 and PVDF thermoplastics in oilfield service– a synthetic

approach” Patrick Dang, Yves Germain, Bernard Jacques, James Mason, Michael R.G.

Werth, American Chemical Society Rubber Division meeting in Dallas, 3/04/2000

10. "Durability of polyamide 11 for offshore flexible pipe applications", J. Jarrin, A.

Driancourt, R.Brunet, B. Pierre, Communication at MERL Oilfield engineering with polymers, London, October 1998.

11. "Ageing of polyamide 11 in acid solutions", G. Serpe, N. Chaupart, J. Verdu, Polymer,

Vol 38 n°8, 1911-1917, 1997

12. "Molecular weight distribution and mass changes during polyamide hydrolysis", G.

Serpe, N. Chaupart, J. Verdu, Polymer, Vol 39 n°6-7, 1375-1380, 1998

13. “Accelerated ageing of polyamide 11 : evidence of physical ageing playing a role in the

end-of-life criteria” H.J. Fell, M.H. Ottoy, Proceedings of Oilffield Engineering with

 polymers 2001, MERL Conference 28-29/11/2002-03-1814. “The Rilsan User Group and APUI TR 17RUG” S. Groves, K. Caveny, R. Thompson,

M. Ottoy, J. Rigaud, E. Oeren, J. Belcher, S. Buchner, B. Jacques, M. Werth, D.

Kranbuehl, J. Chang, OTC 14062 6 – 9 may 2002

15. “Polyamide 11 – a high tenacity thermoplastic, its material properties and the influence

of ageing in offshore conditions” M? Werth, G. Hochstetter, P. Dang, N. Chedozeau,

OMAE ’02 –28570 , June 23 – 28 2002 Oslo

16. API TB 17 RUG

Page 25: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 25/43

4.2 EVOLUTION OF PROPERTIES DURING AGEING

Tensile properties

For demonstration purposes the evolution of tensile properties in an accelerated ageing

experiment at 120°C in diluted sulfuric acid (pH = 4) are given.ISO R527 samples with 3 mm thickness are machined out of extruded sheath and tesile tests

 performed at 23°C and 50 mm/min traction speed.

The data presented shows a limited performance reduction for samples aged for “ and 10

days. However, after 19 days a considerable reduction in elongation is observed. The

material can be considered brittle and not fit for purpose.

Such rather steep transitions between slightly affected aged material and a strong drop in

tensile properties is characteristic of polyamide 11 behaviour upon ageing.Moreover, the ageing performance and CIV are well correlated ; after 19 days the CIV =

0,97 dl/g.

BESNO P 40TL Influence du vieillissement H2SO4/120°C Traction 50mm/min 23°C

Haltère ISO R257 épaisseur 3mm usinée dans tube Coflexip

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180 200

Allongement rupture (%)

   C  o  n   t  r  a   i  n   t  e   (   M   P  a   )

non vieilli

3 jours

10 jours

19 jours

29 jours

40 jours

Ecart-type en pointillés

 

Fracture toughness

A pertinent property for the flexible application is fracture toughness, in particular at lower 

temperatures This method is very sensitive for material changes due to ageing effects

Page 26: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 26/43

 

BESNO P40TL Traction 23°C et 50mm/min

0

20

40

60

80

100

120

140

160

180

200

0.0 0.5 1.0 1.5 2.0 2.5

Viscosité corrigée ISO (dl/g)

   A   l   l  o  n  g  e  m  e  n   t  r  u  p   t  u  r  e

   (   %   )

H2SO4/120°C pH=4 Haltères ISO R527 épaisseur 3mm

Eau/140°C Haltères 53448A Visco cœur 

Eau/140°C Haltères DIN53448A Visco peau

 

Comparison of K1c values obatined on compact test specimen and

charpy bars aged in H2SO4 pH 4 at 120°C and water at 140°C

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5

CIV (dl/g)

   K   1  c   (   M   P  a .√  m   )

CT tensile H2SO4/120°C

CT tensile water/140°C

bars charpy water/140°C

Page 27: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 27/43

Fatigue experiments

Fatigue experiments have been performed on strips cut from aged pressure sheath in the

extrusion direction and thus including the interior extrusion band on the specimen and also

on strips cut from smooth bore pipes. The specimens are aged to different levels, some cut

from retrived pipes presenting a viscosity gradient. The imposed starting strain is 4 %corresponding to 12.5 MPa. The fatigue cycles are stress controlled and oscillate at 1 Hz

(maximum frequency without self heating) between 10 and 100 % of imposed maximum

stress.

The bars indicate viscosity gradients over the sheath thickness.

The fatigue experiments demonstrate good performance for sheath material above CIV =

1,0 dl/g.

Literature on fracture mechanics with references on methodology :

- ISO task group working on the compact test K 1C method : ISO/TC61/SC2 n° 572, ISO/DIS

13586-2,1998 : Determination of Fracture Toughness (Gc and Kc) Linear Fracture Mechanics (LEFM) Approach 

- J.G. Williams testing Protocol, march 1990, Mech. Eng. Dept. Imperial College, London- ASTM E 399-81 Standatd test method for plane strain Fracture Toughness of metallic

materials

- J.G. Williams, M.J. Cawood, Polym. Testing, 9, 15 (1990)

- J.G. Williams “Fracture Mechanics of Polymers” Ellis Horwood Ltd. Chichester (1984)

ISO/TC61 N5015 Pl ti T t th d f T i T i F ti C k P ti

Tensile fatigue : samples cut from pipe and sheath

aged in benzoic acid at 120°C

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

CIV (dl/g)

   N  u  m   b  e  r

  o   f  c  y  c   l  e  s   t  o  r  u  p   t  u  r  e

pipe 864N

sheath 864N

no break

Page 28: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 28/43

4.3  COMPATIBILITY

The compatibility of RILSAN® offshore grades BESNO P40 TLX, BESNO P40 TLO,

BESNO P40 TL is specified in detail in a separate document :

RILSAN® Polyamide 11 in Oil & Gas

OFF-SHORE Applications Reference © 2001/11/08.

This document gives comprehensive information on ageing of polyamide 11 in all offshore

environments. Furthermore, information is given relative to diverse injection fluids used in

combination with thermoplastic umbilicals.

Reference

“A more realistic method for predicting the compatibility of thermoplastic hoses when usedin subsea umbilical systems” J.D. Stables, I.R. Dodge, D. MacRaild OTC 7272 1993

4.4 PERMEATION CHARACTERISTICS

Permeability of gases

Gas permeabilities were measured at the Institut de Pétrole (IFP) France following the“time-lag” method.

Circular samples were cut from extruded sheath. The dimensions were 2 mm thickness and

70 mm diameter.

Details are described in the confidential report n° 52 735, octobre 1999 issued by IFP.

Fluid Conditions Permeation value /

10-8

cm3.cm/cm

2.s.bar 

CH4 40°C, 100 bars

60°C, 100 bars

80°C, 100 bars

100°C, 100 bars

0,4. 

0,8 

4

CO2 40°C, 100 bars

60°C, 100 bars

80°C, 100 bars

1,5

4,5

10

H2O 70°C

50 to 100 bars

200 - 700

H2S 80°C, 40 bars 51

The data correlates well with data published elsewhere.

Page 29: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 29/43

Permeability of PA11 to methanol

Temperature in °C 4 23 40 50

PA11 unplastizised 6 18

PA11 plastizised 13.5 40 115 190

units : g mm/m2 day atm

The activation energies for the unplasticized and plasticized grades are respectively 39.4 kJ

mol-1 and 43.1 kJ mol-1.

0°C10°C20°C30°C40°C50°C1

10

100

1000

1/Temperature

   P  e  r  m  e  a   b   i   l   i   t  y   (  g  m  m   /  m   2   d  a  y  a   t  m   ) BESNO TL

BESNO P40 TL

 Litterature

17. “Permeability of methane, carbin dioxide and water in PA11 and PVDF for flexible

 pipes” T.R. Andersen, J.I. Skar, C. Hansteen, Eurocorr Congress 99, n°410

18. “High pressure permeation of gases in semicrystalline polymers : measurement method

and experimental data” B. Flaconneche, M.H. Klopffer, C. Taravel-Condat, Proceedingsof Oilffield Engineering with polymers 2001, MERL Conference 28-29/11/2002-03-18

19. "Improved thermoplastic materials for offshore flexible pipes", F. Dawans, J. Jarrin, T.

Lefevre, M. Pelisson, Communication OTC 5231, 1986.

Page 30: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 30/43

4.5 BLISTERING RESISTANCE

A blistering resistance study was performed at Institut Français du Pétrole (Solaize France).

Material tested : BESNOP40TLX, samples taken from extruded pipe (8 mm thickness)

Conditions :

Sample size 35× 45 × 8 mm

Test medium 85 % CH4 + 15 % CO2

Test temperature 90°C

Test pressure 1000 bar 

Soak time > 30 h

Decompression rate explosive , > 70 bars/min

Conclusion :

  No blister and no slitting have been observed after 20 cycles of compression – 

decompression, the RILSAN® BESNOP40TLX saturated by Diesel type II is qualified at

90°C / 1000 bar toward blistering according to the IFP’s test procedure issued from the API

17 J specification.

4 6 WEATHERING RESISTANCE

Page 31: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 31/43

4.6 WEATHERING RESISTANCE

The UV resistance is measured under accelerated conditions on a standardized machine

XENOTEST 1200 according to the RENAULT standard n° 1380.

Conditions :

Xenon lamps with filters eliminating radiation with wave lengths inferior to 300 nm.Intermittent exposure -è equal periods of light and darkness.

During a 20 minute cycle the specimens are exposed to 3 minutes of distillated water spray

and 17 minutes of exposure without spraying. The relative humidity of the cabinet during

 period without spray is approximately 65%.

Black panel temperature in the measurement cabinet :

65°C ± 2°C before spraying

45°C ± 2°C after spraying.The specimens are dumbells according to ISO/NFT 51034 cut from a film of 1 mm

thickness. Tensile tests are carried out at 50 mm/minute.

time (h) 0 500 1000 1400 2000

EB (%) 380 330 275 85 33

EB / EB0 1 0.87 0.72 0.22 0.09

MB (MPa) 72 61 47 34 25

YI 6 14 16 13 13

UV ageing : loss of elongation at break

050

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500

time (h)

   E   B   (   %   )

4 7 WATER ABSORPTION

Page 32: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 32/43

4.7 WATER ABSORPTION

ASTM D570 0.8% (23°C 50%R.H.)

1.6% (23°C saturation)

Water Absorption of BESNO P40 TLX at different temperatures - cinetics

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400 1600 1800 2000

rac t / L (min^0.5/cm)

   A   b  s   (   %   ) 23°C

80°C

60°C

100°C

 

Page 33: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 33/43

© ATOFINA Technical Polymers division - document with controlled diffusion - ATO-API version version 3.0 26/08/02 33

 

TENSILE CREEP OF RILSAN BESNOP40TLX UNDER 2 MPa

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

1 10 100 1000 10000 100000

TIME (s)

   S

   T   R   A   I   N   (  m  m   /  m  m   )

23°C 30°C 40°C 50°C 60°C 80°C 100°C 

Page 34: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 34/43

© ATOFINA Technical Polymers division - document with controlled diffusion - ATO-API version version 3.0 26/08/02 34

 

CREEP MASTER CURVE OF BESNOP40TLX UNDER 2 MPa

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

1 100 10000 1000000 100000000 1E+10 1E+12 1E+14

TIME (s)

23°C 30°C 40°C 50°C 60°C 80°C 100°C modele 

Page 35: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 35/43

© ATOFINA Technical Polymers division - document with controlled diffusion - ATO-API version version 3.0 26/08/02 35

 

TENSILE CREEP OF RILSAN BESNO P40 TLX UNDER 2 MPa

100

1000

1 10 100 1000 10000 100000

TIME (s)

23°C 30°C 40°C 50°C 60°C 80°C 100°C 

Page 36: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 36/43

© ATOFINA Technical Polymers division - document with controlled diffusion - ATO-API version version 3.0 26/08/02 36

 

TENSILE CREEP MASTER CURVE OF RILSAN BESNOP40TLXUNDER 2 MPa

100

1000

1 100 10000 1000000 100000000 1E+10 1E+12 1E+14

TIME (s)

   M   O   D   U   L   U   S   (   M   P  a   )

23°C 30°C 40°C 50°C 60°C 80°C 100°C

 

Page 37: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 37/43

© ATOFINA Technical Polymers division - document with controlled diffusion - ATO-API version version 3.0 26/08/02 37

SHIFT FACTOR FOR THE CREEP MASTER CURVE

OF BESNO P40 TLX

0

2

4

6

8

10

12

0,0025 0,0026 0,0027 0,0028 0,0029 0,003 0,0031 0,0032 0,0033 0,0034 0,0035

1/T K-1

 

Page 38: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 38/43

© ATOFINA Technical Polymers division - document with controlled diffusion - ATO-API version version 3.0 26/08/02 38

BESNO P40 TLX - COMPRESSION CREEP UNDER 10 MPa

0

2

4

6

8

10

12

1 10 100 1000 10000 100000

Time(s)

23°c - 10 MPa 40°c -10 MPa 60°c- 10 MPa 80°c -10 MPa 30°c-10 MPa 23°c - 10 MPa

 

Page 39: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 39/43

© ATOFINA Technical Polymers division - document with controlled diffusion - ATO-API version version 3.0 26/08/02 39

CREEP COMPRESSION OF BESNO P40 TLX UNDER 10 MPa

0

2

4

6

8

10

12

1 10 100 1000 10000 100000 1000000

Time(s)

   S   t  r  a   i  n   (   %   )

23°C 30°C 40°C 60°C 80°C

 

Page 40: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 40/43

© ATOFINA Technical Polymers division - document with controlled diffusion - ATO-API version version 3.0 26/08/02 40

BESNO P40 TLX - CREEP IN COMPRESSION UNDER 15 MPa

0

5

10

15

20

25

1 10 100 1000 10000 100000

Time(s)

23°c 30°c 40°c 60°c 80°c 100°c 

Page 41: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 41/43

© ATOFINA Technical Polymers division - document with controlled diffusion - ATO-API version version 3.0 26/08/02 41

COMPRESSION CREEP OF BESNOP40TLX UNDER 15MPa

0

5

10

15

20

25

1 10 100 1000 10000 100000 1000000

Time(s)

   S   t  r  a   i  n   (   %   )

23°C 30°C 40°C 60°C 80°C 100°C

 

Page 42: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 42/43

© ATOFINA Technical Polymers division - document with controlled diffusion - ATO-API version version 3.0 26/08/02 42

DYNAMIC MECHANICAL ANALYSIS OF BESNOP40TLX

(3 POINT BENDING FLEXURAL MODE AT 10rad/s)

1.00E+07

1.00E+08

1.00E+09

1.00E+10

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180

Temperature(°C)

   S   T   O   R   A   G   E   M   O   D   U

   L   U   S   E   '   (   P  a   ) ,

   L   O   S   S   M

   O   D   U   L   U   S

   E   '   '   (   P  a   )

E'

E''

 

Page 43: APIC17J1 Revision 3

8/8/2019 APIC17J1 Revision 3

http://slidepdf.com/reader/full/apic17j1-revision-3 43/43

© ATOFINA Technical Polymers division - document with controlled diffusion - ATO-API version version 3.0 26/08/02 43

DSC curve of BESNO P40 TLX

25

30

35

40

45

50

-80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 200 220 240

Temperature(°C)

   H  e  a   t   F   l  o  w   (  m   W   )

Heating rate : 20°C/min