39
Advanced Placement Chemistry Institute Texas A&M International University Laredo, Texas 3 – 6 AUG 15

AP Chemistry Program Notes 2015-TAMIU

Embed Size (px)

Citation preview

Page 1: AP Chemistry Program Notes 2015-TAMIU

Advanced Placement Chemistry Institute

Texas A&M International University

Laredo, Texas

3 – 6 AUG 15

Page 2: AP Chemistry Program Notes 2015-TAMIU

2

Table of Contents 3. AP Chemistry Institute Class Schedule 5. The Basics / Notes on New Exam 6. Learning Statements for the New AP Exam 7. AP Course Support 12. Access and Equity for AP Courses 13. AP Chemistry Concepts at a Glance 21. Science Practices of AP Chemistry 23. Exclusion Statements 25. Laboratory techniques to be mastered by students 26. Laboratory notebook procedures expected to be mastered by students 27. Laboratories from AP Chemistry, Guided-Inquiry Experiments: Applying the Science

Practices 29. Potential Textbooks for AP Chemistry 32. AP Audit 36. Guided Inquiry for Labs (for 2014 Exam) 38. Formative and Summative Assessments

Page 3: AP Chemistry Program Notes 2015-TAMIU

3

AP Chemistry Institute Class Schedule Monday, 3 AUG 15 8:00 – 8:30 Introductions / Overview of Institute 8:30 – 9:00 The AP Chemistry Exam / AP Course Support / Access and Equity 9:00 – 9:30 Organization of the new AP Chemistry curriculum 9:30 – 10:00 AP Examination – Multiple Choice (in pairs) 10:00 – 10:30 AP Examination – Multiple Choice (in pairs) / Break 10:30 – 11:00 AP Examination – Free Response (in pairs) 11:00 – 11:30 AP Examination – Free Response (in pairs) 11:30 – 12:00 Discussion of AP Exam 12:00 – 12:30 Lunch 12:30 – 1:00 Lunch 1:00 – 1:30 The Nature of Light / Photoelectron Spectroscopy 1:30 – 2:00 Radial Distribution Functions / Periodic Properties 2:00 – 2:30 Expectations of AP Laboratory 2:30 – 3:00 Lab Notebook / Reports 3:00 – 3:30 Lab Preparation / Break 3:30 – 4:00 What Makes Hard Water Hard? 4:00 – 4:30 What Makes Hard Water Hard? 4:30 – 5:00 What Makes Hard Water Hard? Homework: Prepare for lab: How Can We Determine the Percentage of H2O2 in a Drugstore

Bottle? Bring AP Syllabus (for AP Audit) (if available) Tuesday, 4 AUG 15 8:00 – 8:30 Chemical Bonding 8:30 – 9:00 Valence Bond Theory / Molecular Orbital Theory 9:00 – 9:30 AP Syllabus / Audit 9:30 – 10:00 AP Syllabus / Audit 10:00 – 10:30 Chemical Equations / Stoichiometry / Break 10:30 – 11:00 Solution Stoichiometry 11:00 – 11:30 Thermochemistry 11:30 – 12:00 Lab Techniques / Data Analysis 12:00 – 12:30 Lunch 12:30 – 1:00 Lunch 1:00 – 1:30 How Can We Determine the Percentage of H2O2 in a Drugstore Bottle? 1:30 – 2:00 How Can We Determine the Percentage of H2O2 in a Drugstore Bottle? 2:00 – 2:30 How Can We Determine the Percentage of H2O2 in a Drugstore Bottle? 2:30 – 3:00 Lab Reflection / Break 3:00 – 3:30 Gases / Maxwell-Boltzmann Distribution / Intermolecular Forces 3:30 – 4:00 Guided Inquiry Lab Discussion and Exercise 4:00 – 4:30 Guided Inquiry Lab Discussion and Exercise 4:30 – 5:00 Lab Sharing and Discussion Homework: Prepare for lab: Handwarmer Design Laboratory Bring labs and/or best practices to share and discuss. Create non-laboratory exercise using guided inquiry principles.

Page 4: AP Chemistry Program Notes 2015-TAMIU

4Wednesday, 5 AUG 15 8:00 – 8:30 Guided Inquiry Presentations 8:30 – 9:00 Guided Inquiry Presentations / Solid State Chemistry 9:00 – 9:30 Polymer Chemistry / Solutions 9:30 – 10:00 Formative and Summative Assessments 10:00 – 10:30 Break / Kinetics 10:30 – 11:00 Kinetics 11:00 – 11:30 Equilibrium 11:30 – 12:00 Acids / Bases 12:00 – 12:30 Lunch 12:30 – 1:00 Lunch 1:00 – 1:30 Handwarmer Design Laboratory 1:30 – 2:00 Handwarmer Design Laboratory 2:30 – 3:00 Handwarmer Design Laboratory 3:00 – 3:30 Lab Reflection / Break 3:30 – 4:00 Acids / Bases 4:00 – 4:30 Lab / Best Practice Sharing 4:30 – 5:00 Lab / Best Practice Sharing Homework: Prepare for lab: LeChâtelier’s Principle Lab Create formative assessment (topic to be assigned)

Maxwell-Boltzmann distribution Alloys Photoelectron Spectroscopy Arrhenius Equation Chromatography

Bring school schedule for 2015-2016 school year and/or last year’s AP Chemistry schedule. Thursday, 6 AUG 15 8:00 – 8:30 Formative Assessment Presentations 8:30 – 9:00 Buffers / Titrations / Solubility Equilibria 9:00 – 9:30 Questions and Answers 9:30 – 10:00 Questions and Answers 10:00 – 10:30 Break / Thermodynamics 10:30 – 11:00 Thermodynamics 11:00 – 11:30 Electrochemistry 11:30 – 12:00 Nuclear Chemistry 12:00 – 12:30 Lunch 12:30 – 1:00 Lunch 1:00 – 1:30 AP Schedule Planning 1:30 – 2:00 AP Schedule Planning / Break 2:00 – 2:30 LeChâtelier’s Principle Lab 2:30 – 3:00 LeChâtelier’s Principle Lab 3:00 – 3:30 LeChâtelier’s Principle Lab 3:30 – 4:00 Lab Reflection 4:00 – 4:30 Concluding Discussion 4:30 – 5:00 Evaluation

Page 5: AP Chemistry Program Notes 2015-TAMIU

5

The Basics A year of AP Chemistry in high school is meant to be equivalent to a year of college general chemistry. Students take a national exam in May to be eligible for college credit. A student’s score ranges from 1 to 5 - A score of 5 generally makes the students eligible for college credit for both semesters of

general chemistry. - A score of 3 or 4 generally makes the students eligible for college credit for the first semester

of general chemistry.

Notes on New Exam New practice exam was published in May 2013 Multiple choice questions will be reduced from 75 questions to 60 questions.

- 90 minutes - 50% of exam grade

Free response questions will represent all Big Ideas - 3 multi-part questions (10 points max. per question) - 4 single-part questions (4 points max. per question) - 105 minutes total - 50% of exam grade New Lab Manual - 16 minimum mandatory labs - 6 of which must be inquiry-based - “Advances in AP” website: advancesinap.collegeboard.org (Password required) - Consumable student edition to be available for purchase - Teaching edition is available as a PDF Date for test in Spring 2015: Monday, 4 MAY 15 8:00 a.m Date for test in Spring 2016: Monday, 2 MAY 16 8:00 a.m Test Fee: Fee $91 with high school keeping $9 for administrative costs - Reduction to $53 available for students with financial need Students are eligible for the AP Exam fee reduction on all AP Exams that they take in a given year if:

their family’s income is at or below 185 percent of the poverty level issued annually by the U.S. Department of Health and Human Services, or

they qualify as an "identified student" because they are: o in foster care or Head Start, or o homeless or migrant, or o living in households that receive SNAP/Food Stamps, TANF cash assistance, or the

Food Distribution on Indian Reservation benefits.

Page 6: AP Chemistry Program Notes 2015-TAMIU

6

Learning Statements for the New AP Exam Big Idea 1: The chemical elements are fundamental building material of matter, and all matter can be understood in terms of arrangement of atoms. These atoms retain their identity in chemical reactions. Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them. Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons. Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions. Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These two processes are in a dynamic competition, sensitive to initial conditions and external perturbations.

Enduring Understandings (25)

Big Ideas (6)

Learning Objectives (97)

Essential Knowledge (71) Science Practices (7/25)

Page 7: AP Chemistry Program Notes 2015-TAMIU

7

AP Course Support AP Website: apcentral.collegeboard.com Accessed: 26 MAY 15 Education Policy & Advocacy

Membership Testing College Guidance

K-12 Services

Higher Ed Services

Professional Development

Data, Reports & Research

Home News AP Course and Exams Course Home Pages Course Descriptions The Course Audit Teachers’ Resources Exam Calendar and Fees Exam Information Pre-AP Professional Development AP Teacher Community Featured Articles Become an AP Reader

AP Online Scores for Students

AP Course Audit 2015/2016

Be an AP Exam Reader

Explore AP AP Exam Dates Exam Fees & Fee Reductions Students & Parents Resources for AP Coordinators Building Your AP Program Information for Colleges & Universities Explore Pre-AP Spring Board Pre-AP Programs

Page 8: AP Chemistry Program Notes 2015-TAMIU

8

AP Chemistry Course Home Page Essential Course Resources

AP Chemistry Course and Exam Description, Effective Fall 2014. Course Overview (.pdf/3.15MB) | Full Course Description (.pdf/2.37MB)

AP Chemistry Lab Manual Resource Center Information, links, and resources relating to the AP Chemistry lab manual.

AP Chemistry Course Planning and Pacing Guides

AP Chemistry Course Planning and Pacing Guide (.pdf/1.53MB) Scott Balicki, Boston Latin School, MA

AP Chemistry Course Planning and Pacing Guide (.pdf/1.6MB) Jamie Benigna, The Roeper School, MI

AP Chemistry Course Planning and Pacing Guide (.pdf/1.6MB) Dale Jensen, Syracuse High School, UT

AP Chemistry Course Planning and Pacing Guide (.pdf/1.6MB) Armand Amoranto, Oceanside High School, CA

Other Core Resources o WebcastNew!: Exploring Atomic Structure Using Photoelectron Spectroscopy (PES) Data AP Chemistry Open Forum 2013 o AP Chemistry Frequently Asked Questions o AP Chemistry Development Committee o Inquiry Instruction in the AP Science Classroom o America's Lab Report o AP Vertical Teams Guide for Science o CB Science Standards for College Success

AP Exam Information and Resources

About the AP Chemistry Exam

Calculator Policies (.pdf/152KB) AP Course Audit Information Syllabus Development Guide, Sample Syllabi, and more. Classroom Resources

From the College Board o Curriculum Modules

Alternative Approaches to Teaching Traditional Topics (.pdf/3.6MB)

From Your AP Colleagues o Pedagogy

Improving Performance on the AP Chemistry Examination Reading Chemistry Outside of the Textbook Units in Thermochemical Calculations Approaches to Process and Content in Introductory Chemistry Teaching Tips for AP Chemistry

o Lab Activities and Resources Misconceptions and Issues in Quantum Theory After 100 Years: The Legacy of Marie Curie Ending Misconceptions About the Energy of Chemical Bonds Achieving Gender Equality in the Science Classroom Women Scientists of the Manhattan Project Milestones for Women in Science Rosalind Franklin: She's Worth Another Look

o Web Guides National Science Teachers Association Journal of Chemical Education

o Reviews of Teaching Resources There are currently more than 250 reviews of teaching resources, including web sites, software, and more, in the Teachers' Resources area. Each review describes the resource and suggests ways it might be used in the classroom. Additional resources can be found on the AP Chemistry Teacher Community.

Professional Development Background on Course and Exam Revisions

Consortium of Experts

Spring 2011 AP Chemistry Higher Ed Validation Study

Inquiry Instruction in the AP Science Classroom: An Approach to Teaching and Learning College Board Store

Page 9: AP Chemistry Program Notes 2015-TAMIU

9Southwestern Regional Office Serving Arkansas, New Mexico, Oklahoma, Texas 4330 Gaines Ranch Loop, Suite 200 Austin, TX 78735-6735 866-392-3017 E-mail: [email protected] Your Workshop Instructor Ed Tisko Department of Chemistry University of Nebraska at Omaha Omaha, NE 68182 402 554-3640 [email protected] www.unomaha.edu/tiskochem/ www.unomaha.edu/tiskochem/apchem Websites phet.colorado.edu www.chemeddl.org www.adriandingleschemistrypages.com www.chemmybear.com http://www.pogil.org/resources/references/chemistry http://www.gvsu.edu/targetinquiry/ http://www.chem.arizona.edu/chemt/Flash/photoelectron.html http://group.chem.iastate.edu/Greenbowe/sections/projectfolder/animationsindex.htm www.chemagic.com compoundchem.com apchemistrynmsi.wikispaces.com www.polleverywhere.com www.nearpod.com

Page 10: AP Chemistry Program Notes 2015-TAMIU

10

School Resources adapted from AP Chemistry Course Description 1. A separate operating and capital budget should be established with the understanding that the

per pupil expenditures for this course will be substantially higher than those for regular high school laboratory science courses. Adequate laboratory facilities should be provided so that each student has a work space where equipment and materials can be left overnight if necessary. Sufficient laboratory glassware for the anticipated enrollment and appropriate instruments (sensitive balances, spectrophotometers, and pH meters) should be provided.

2. Students in AP Chemistry should have access to computers with software appropriate for

processing laboratory data and writing reports. 3. A laboratory assistant should be provided in the form of a paid or unpaid aide. Parent

volunteers, if well organized, may be able to help fill such a role. 4. Flexible or modular scheduling must be implemented in order to meet the time requirements

identified in the course outline. Some schools are able to assign daily double periods so that laboratory and quantitative problem-solving skills may be fully developed. At the very least, a weekly extended laboratory period is needed.

It is not possible to complete high-quality AP laboratory work within standard 45- to 50-minute periods. At least six class periods or the equivalent per week should be scheduled for an AP Chemistry course. Of the total allocated time, a minimum of one double period per week or the equivalent, preferably in a single session, should be spent engaged in laboratory work. Time devoted to class and laboratory demonstrations should not be counted as part of the laboratory period. Resource Requirements

- The school ensures that each student has a college-level chemistry textbook (supplemented

when necessary to meet the curricular requirements) for individual use inside and outside of the classroom.

- The school ensures that students have access to scientific equipment and all necessary

materials to conduct safe, hands-on, college-level chemistry laboratory investigations. - The school ensures that students have access to a safe laboratory environment.

Teacher Preparation Time adapted from AP Chemistry Course Description Because of the nature of the AP Chemistry course, the teacher needs extra time to prepare for laboratory work. Therefore, adequate time must be allotted during the academic year for teacher planning and testing of laboratory experiments. In the first year of starting an AP Chemistry course, one month of summer time and one additional period each week are also necessary for course preparation work. In subsequent years, an AP Chemistry teacher routinely requires one extra period each week to devote to course preparation.

Page 11: AP Chemistry Program Notes 2015-TAMIU

11Suggestions for Course Management - make schedule and keep it - assign homework problems over breaks - form study groups - use full period for instruction - schedule AP Chem as first period class - have students present problem solutions to class - limit the number of the tests (2 or 3 chapters per test) Teacher Professional Development adapted from AP Chemistry Course Description AP Chemistry teachers need to stay abreast of current developments in teaching college chemistry. This is done through contacts with college faculty and with high school teacher colleagues. Schools should offer stipends and travel support to enable their teachers to attend workshops and conferences. An adequate budget should be established at the school to support professional development of the AP Chemistry teacher. The following are examples of such opportunities.

1. One- or two-week AP Summer Institutes (supported by the College Board) are offered in several locations.

2. One-day AP conferences are sponsored by College Board regional offices. At these, presentations are made by experienced AP or college-level teachers, many of whom have been AP Exam Readers or members of the Development Committee.

3. AP institutes covering several disciplines are offered as two- or three-day sessions during the school year. These are also organized by College Board regional offices and are held at hotels or universities.

Student Support - Student is responsible for learning. - Student must commit early to a working a rigorous academic environment. - Student must commit to learning material outside of the classroom. - Student must commit to homework or lab reports every night. Parental Support - Parents should encourage student to persevere with academic struggles. - Parents should assist student in meeting time and scheduling challenges. - Parents should encourage student to take the AP Chemistry exam. Grade Distribution for 2014 AP Chemistry Exam

Examination Grade Chemistry N % At

5 14,991 10.1 4 25,033 16.9 3 38,402 25.9 2 38,325 25.8 1 31,803 21.4

Number of Students 148,554 3 or Higher / % 78,426 52.8

Mean Grade 2.68 Standard Deviation 1.26

Page 12: AP Chemistry Program Notes 2015-TAMIU

12

Access and Equity for Advanced Placement Courses College Board statement on access and equity of AP courses The College Board and the Advanced Placement Program encourage teachers, AP Coordinators, and school administrators to make equitable access a guiding principle for their AP programs. The College Board is committed to the principle that all students deserve an opportunity to participate in rigorous and academically challenging courses and programs. All students who are willing to accept the challenge of a rigorous academic curriculum should be given consideration for admission to AP courses. The Board encourages the elimination of barriers that restrict access to AP courses for students from ethnic, racial, and socioeconomic groups that have been traditionally underrepresented in the AP Program. Schools should make every effort to ensure that their AP classes reflect the diversity of their student population. In a nutshell One previous year of chemistry, two years of algebra recommended All qualified students should be encouraged to take AP courses without construction of artificial barriers limiting access. It is better to admit a marginal, yet motivated student than to deny the student. 1. Exposure to course material will aid student when taking the college course 2. Exposure to high academic rigor helps with the transition to college and gives student

confidence 3. The student may do better than expected!

Page 13: AP Chemistry Program Notes 2015-TAMIU

13

AP Chemistry Concepts at a Glance pg. 105, Workshop Handbook and Resources

Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangement of atoms. These atoms retain their identity in chemical reactions. Enduring Understanding 1.A: All matter is made of atoms. There are a limited number of types of atoms; these are the elements. Essential Knowledge 1.A.1: Molecules are composed of specific combinations of atoms; different molecules are composed of combinations of different molecules and of combinations of the same elements in differing amounts and proportions. Essential Knowledge 1.A.2: Chemical analysis provides a method for determining the relative number of atoms in a substance, which can be used to identify the substance or determine its purity. Essential Knowledge 1.A.3: The mole is the fundamental unit for counting numbers of particles on the macroscopic level and allows quantitative connections to be drawn between laboratory experiments, which occur at the macroscopic level, and chemical processes, which occur at the atomic level. Enduring Understanding 1.B: The atoms of each element have unique structures arising from interactions between electrons and nuclei. Essential Knowledge 1.B.1: The atom is composed of negatively charged electrons, which can leave the atom, and a positively charged nucleus that is made of protons and neutrons. The attraction of the electrons to the nucleus is the basis of the structure of the atom. Coulomb’s law is qualitatively useful for understanding the structure of the atom. Essential Knowledge 1.B.2: The electronic structure of the atom can be described using an electron configuration that reflects the concept of electrons in quantized energy levels or shells; the energetics of the electrons in the atom can be understood by consideration of Coulomb’s law. Enduring Understanding 1.C: Elements display periodicity in their properties when the elements are organized according to increasing atomic number. This periodicity can be explained by the regular variations that occur in the electronic structures of atoms. Periodicity is a useful principle for understanding properties and predicting trends in properties. Its modern-day uses range from examining the composition of materials to generating ideas for designing new materials. Essential Knowledge 1.C.1: Many properties of atoms exhibit periodic trends that are reflective of the periodicity of electronic structure. Essential Knowledge 1.C.2 The currently accepted best model of the atom is based on the quantum mechanical model.

Page 14: AP Chemistry Program Notes 2015-TAMIU

14Enduring Understanding 1.D: Atoms are so small that they are difficult to study directly; atomic models are constructed to explain experimental data on collections of atoms. Essential Knowledge 1.D.1: As is the case with all scientific models, any model of the atom is subject to refinement and change in response to new experimental results. In that sense, an atomic model is not regarded as an exact description of the atom, but rather a theoretical construct that fits a set of experimental data. Essential Knowledge 1.D.2 An early model of the atom stated that all atoms of an element are identical. Mass spectroscopy data demonstrate evidence that contradicts this early model. Essential Knowledge 1.D.3: The interaction of electromagnetic waves of light with matter is a powerful means to probe the structure of atoms and molecules, and to measure their concentration. Enduring Understanding 1.E: Atoms are conserved in physical and chemical processes. Essential Knowledge 1.E.1: Physical and chemical processes can be depicted symbolically; when this is done, the illustration must conserve all atoms of all types. Essential Knowledge 1.E.2: Conservation of atoms makes it possible to compute the masses of substances involved in physical and chemical processes. Chemical processes result in the formation of new substances, and the amount of these depends on the number and the types and masses of elements in the reactants, as well as the efficiency of the transformation. Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them. Enduring Understanding 2.A: Matter can be described by its physical properties. The physical properties of a substance generally depend on the spacing between the particles (atoms, molecules, ions) that make up the substances and the forces of attractions among them. Essential Knowledge 2.A.1: The different properties of solids and liquids can be explained by differences in their structures, both at the particulate level and in their supramolecular structures. Essential Knowledge 2.A.2: The gaseous state can be effectively modeled with a mathematical equation relating various macroscopic properties. A gas has neither a definite volume nor a definite shape; because the effect of attractive forces are minimal, we usually assume that the particles move independently. Essential Knowledge 2.A.3: Solutions are homogeneous mixtures in which the physical properties are dependent on the concentration of the solute and the strengths of all interactions among the particles of the solutes and solvent.

Page 15: AP Chemistry Program Notes 2015-TAMIU

15Enduring Understanding 2.B: Forces of attraction between particles (including the noble gases and also different parts of some large molecules) are important in determining many macroscopic properties of a substance, including how the observable physical state changes with temperature. Essential Knowledge 2.B.1: London dispersion forces are attractive forces present between all atoms and molecules. London dispersion forces are often the strongest net intermolecular force between large molecules. Essential Knowledge 2.B.2: Dipole forces result from the attraction among the positive ends and negative ends of polar molecules. Hydrogen bonding is a strong type of dipole-dipole force. Essential Knowledge 2.B.3: Intermolecular forces play a key role in determining the properties of substances, including biological structures and interactions. Enduring Understanding 2.C: The strong electrostatic forces of attraction holding atoms together in a unit are called chemical bonds. Essential Knowledge 2.C.1: In covalent bonding, electrons are shared between the nuclei of two atoms to form a molecule or polyatomic ion. Electronegativity differences between the two atoms account for the distribution of the shared electrons and the polarity of the bond. Essential Knowledge 2.C.2: Ionic bonding results from the net attraction between oppositely charged ions, closely packed together in a crystal lattice. Essential Knowledge 2.C.3: Metallic bonding describes an array of positively charged metal cores surrounded by a sea of mobile valence electrons. Essential Knowledge 2.C.4: The localized electron bonding model describes and predicts molecular geometry using Lewis diagrams and the VSEPR model. Enduring Understanding 2.D: The type of bonding in the solid state can be deduced from the properties of the solid state. Essential Knowledge 2.D.1: Ionic solids have high melting points, are brittle, and conduct electricity only when molten or in solution. Essential Knowledge 2.D.2: Metallic solids are good conductors of heat and electricity, have a wide range of melting points and are shiny, malleable, ductile, and readily alloyed. Essential Knowledge 2.D.3: Covalent network solids generally have extremely high melting points, are hard, and are thermal insulators. Some conduct electricity. Essential Knowledge 2.D.4: Molecular solids with low molecular weight usually have low melting points and are not expected to conduct electricity as solids, in solution, or when molten.

Page 16: AP Chemistry Program Notes 2015-TAMIU

16Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons. Enduring Understanding 3.A: Chemical changes are represented by a balanced chemical equation that identifies the ratios with which reactants react and products form. Essential Knowledge 3.A.1: A chemical change may be represented by a molecular, ionic or net ionic equation. Essential Knowledge 3.A.2: Quantitative information can be derived from stoichiometic calculations that utilize the mole ratios from the balanced chemical reactions. The role of stoichiometry in real-world applications is important to note, so that it does not seem to be simply an exercise done only by chemists. Enduring Understanding 3.B: Chemical reactions can be classified by considering what the reactants are, what the products are, or how they change from one into the other. Classes of chemical reactions include synthesis, decomposition, acid-base and oxidation-reduction reactions. Essential Knowledge 3.B.1: Synthesis reactions are those in which atoms and/or molecules combine to form a new compound. Decomposition is the reverse of synthesis, a process whereby molecules are decomposed, often by the use of heat. Essential Knowledge 3.B.2: In a neutralization reaction, protons are transferred from an acid to a base. Essential Knowledge 3.B.3: In oxidation-reduction (redox) reactions, there is a net transfer of electrons. The species that loses electrons is oxidized, and the species that gains electrons is reduced. Enduring Understanding 3.C: Chemical and physical transformations may be observed in several ways and typically involve a change in energy. Essential Knowledge 3.C.1: Production of heat or light, formation of a gas, and formation of a precipitate and/or a color change are possible evidences that a chemical change has occurred. Essential Knowledge 3.C.2: New changes in energy for a chemical reaction can be endothermic or exothermic. Essential Knowledge 3.C.3: Electrochemistry shows the interconversion between chemical and electrical energy in galvanic and electrolytic cells.

Page 17: AP Chemistry Program Notes 2015-TAMIU

17Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions. Enduring Understanding 4.A: Reaction rates that depend on temperature and other environmental factors are determined by measuring changes in concentrations of reactants or products over time. Essential Knowledge 4.A.1: The rate of a reaction is influenced by the concentration or pressure of reactants, the phase of the reactants and products, and environmental factors such as temperature and solvent. Essential Knowledge 4.A.2: The rate law shows how the rate depends on reactant concentrations. Essential Knowledge 4.A.3: The magnitude and temperature dependence of the rate of reaction is contained quantitatively in the rate constant. Enduring Understanding 4.B: Elementary reactions are mediated by collisions between molecules. Only collisions having sufficient energy and proper relative orientation of reactants lead to products. Enduring Knowledge 4.B.1: Elementary reactions can be unimolecular or involve collisions between two or more molecules. Essential Knowledge 4.B.2: Not all collisions are successful. To get over the activation energy barrier, the colliding species need sufficient energy. Also, the orientation of the reactant molecules during the collision must allow for the rearrangement of reactant bonds to form product bonds. Essential Knowledge 4.B.3: A successful collision can be viewed as following a reaction path with an associated energy profile. Enduring Understanding 4.C: Many reactions proceed via a series of elementary reactions. Essential Knowledge 4.C.1: The mechanism of a multistep reaction consists of a series of elementary reactions that add up to the overall reaction. Essential Knowledge 4.C.2: In many reactions, the rate is set by the slowest elementary reaction, or rate-limiting step. Essential Knowledge 4.C.3: Reaction intermediates, which are formed during the reaction but not present in the overall reaction, play an important role in multistep reactions. Enduring Understanding 4.D: Reaction rates may be increased by the presence of a catalyst. Essential Knowledge 4.D.1: Catalysts function by lowering the activation energy of an elementary step in a reaction mechanism, and by providing a new and faster reaction mechanism. Essential Knowledge 4.D.2: Important classes in catalysis include acid-base catalyst, surface catalysis, and enzyme catalysis.

Page 18: AP Chemistry Program Notes 2015-TAMIU

18Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring understanding 5.A: Two systems with different temperatures that are in thermal contact will exchange energy. The quantity of thermal energy transferred from one system to another is called heat. Essential Knowledge 5.A.1: Temperature is a measure of the average kinetic energy of atoms and molecules. Essential Knowledge 5.A.2: The process of kinetic energy transfer at the particulate scale is referred to in this course as heat transfer, and the spontaneous direction of the transfer is always from a hot to a cold body. Enduring Understanding 5.B: Energy is neither created nor destroyed, but only transformed from one form to another. Essential Knowledge 5.B.1: Energy is transferred between systems either through heat transfer or through one system doing work on the other system. Essential Knowledge 5.B.2: When two systems are in contact with each other and are otherwise isolated, the energy that comes out of one system is equal to the energy that goes into the other system. The combined energy of the two systems remains fixed. Energy transfer can occur through either heat exchange or work. Essential Knowledge 5.B.3: Chemical systems undergo three main processes that change their energy: heating/cooling, phase transitions, and chemical reactions. Essential Knowledge 5.B.4: Calorimetry is an experimental technique that is used to measure the change in energy of a chemical system. Enduring Understanding 5.C: Breaking bonds requires energy, and making bonds releases energy. Essential Knowledge 5.C.1: Potential energy is associated with particular geometric arrangement of atoms or ions and the electrostatic interactions between them. Essential Knowledge 5.C.2: The net energy change during a reaction is the sum of the energy required to break the bonds in the reactant molecules and the energy released in forming the bonds of the product molecules. The net change in energy may be positive for endothermic reactions where energy is required, or negative for exothermic reactions where energy is released. Enduring Understanding 5.D: Electrostatic forces exist between molecules as well as between atoms or ions, and breaking the resultant intermolecular interactions requires energy. Essential Knowledge 5.D.1: Potential energy is associated with the interaction of molecules; as molecules draw near each other, they experience an attractive force. Essential Knowledge 5.D.2: At the particulate scale, chemical processes can be distinguished from physical processes because chemical bonds can be distinguished from intermolecular interactions.

Page 19: AP Chemistry Program Notes 2015-TAMIU

19Essential Knowledge 5.D.3: Noncovalent and intermolecular interactions play important roles in many biological and polymer systems. Enduring Understanding 5.E: Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.1: Entropy is a measure of the dispersal of matter and energy. Essential Knowledge 5.E.2: Some physical or chemical processes involve both a decrease in the internal energy of the components (H < 0) under consideration and an increase in the entropy of those components (S > 0). These processes are necessarily “thermodynamically favored” (G < 0). Essential Knowledge 5.E.3: If a chemical or physical process is not driven by both entropy and enthalpy changes, then the Gibbs free energy change can be used to determine whether the process is thermodynamically favored. Essential Knowledge 5.E.4: External sources of energy can be used to drive change in cases where the Gibbs free energy change is positive. Essential Knowledge 5.E.5: A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control).

Page 20: AP Chemistry Program Notes 2015-TAMIU

20Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These two processes are in a dynamic competition, sensitive to initial conditions and external perturbations. Enduring Understanding 6.A: Chemical equilibrium is a dynamic, reversible state in which rates of opposing processes are equal. Essential Knowledge 6.A.1: In many classes of reactions, it is important to consider both the forward and reverse reaction. Essential Knowledge 6.A.2: The current state of a system undergoing a reversible reaction can be characterized by the extent to which reactants have been converted to products. The relative quantitites of reaction components are quantitatively described by the reaction quotient, Q. Essential Knowledge 6.A.3: When a system is at equilibrium, all macroscopic variables, such as concentrations, partial pressure, and temperature, do not change over time. Equilibrium results from an equality between the rates of the forward and reverse reactions, at which point Q = K. Essential Knowledge 6.A.4: The magnitude of the equilibrium constant, K, can be used to determine whether the equilibrium lies toward the reactant side or product side. Enduring Understanding 6.B: Systems at equilibrium are responsive to external perturbations, with the response leading to a change in the composition of the system. Essential Knowledge 6.B.1: Systems at equilibrium respond to disturbances by partially countering the effect of the disturbance (LeChâtelier’s principle). Essential Knowledge 6.B.2: A disturbance to a system at equilibrium causes Q to differ from K, thereby taking the system out of the original equilibrium state. The system responds by bringing Q back into agreement with K, thereby establishing a new equilibrium state. Enduring Understanding 6.C: Chemical equilibrium plays an important role in acid-base chemistry and in solubility. Essential Knowledge 6.C.1: Chemical equilibrium reasoning can be used to describe the proton-transfer reactions of acid-base chemistry. Essential Knowledge 6.C.2: The pH is an important characteristic of aqueous solutions that can be controlled with buffers. Comparing pH to pKa allows one to determine the protonation state of a molecule with a labile proton. Essential Knowledge 6.C.3: The solubility of a substance can be understood in terms of chemical equilibrium. Enduring Understanding 6.D: The equilibrium constant is related to temperature and the difference in Gibbs free energy between reactants and products. Essential Knowledge 6.D.1: When the difference in Gibbs free energy between reactants and products (G) is much larger than the thermal energy (RT), the equilibrium constant is either very small (for G > 0) or very large (for G < 0). When G is comparable to the thermal energy (RT), the equilibrium constant is near 1.

Page 21: AP Chemistry Program Notes 2015-TAMIU

21

Science Practices of AP Chemistry Science Practice 1: The student can use representations and models to communicate scientific

phenomena and solve scientific problems. 1.1 The student can create representations and models of natural or man-made phenomena and

systems in the domain. 1.2 The student can describe representations and models of natural or man-made phenomena

and system in the domain. 1.3 The student can refine representations and models of natural or man-made phenomena and

systems in the domain. 1.4 The student can use representations and models to analyze situations or solve problems

qualitatively and quantitatively. 1.5 The student can re-express key elements of natural phenomena across multiple

representations in the domain. Science Practice 2: The student can use mathematics appropriately. 2.1 The student can justify the selection of a mathematical routine to solve problems. 2.2 The student can apply mathematical routines to quantities that describe natural phenomena. 2.3 The student can estimate numerically quantities that describe natural phenomena. Science Practice 3: The student can engage in scientific questioning to extend thinking or to guide

investigations within the context of the AP course. 3.1 The student can pose scientific questions. 3.2 The student can refine scientific questions. 3.3 The student can evaluate scientific questions.

Page 22: AP Chemistry Program Notes 2015-TAMIU

22Science Practice 4: The student can plan and implement data collection strategies in relation to a

particular scientific question. [Note: Data can be collected from many different sources, e.g., investigations, scientific observations, the finding of others, historic reconstruction, and/or archived data.]

4.1 The student can justify the selection of the kind of data needed to answer a particular

scientific question. 4.2 The student can design a plan for collecting data to answer a particular scientific question. 4.3 The student can collect data to answer a particular scientific question. 4.4 The student can evaluate sources of data to answer a particular scientific question. Science Practice 5: The student can perform data analysis and evaluation of evidence. 5.1 The student can analyze data to identify patterns or relationships. 5.2 The student can refine observations and measurements based on data analysis. 5.3 The student can evaluate the evidence provided by data sets in relation to a particular

scientific question. Science Practice 6: The student can work with scientific explanations and theories. 6.1 The student can justify claims with evidence. 6.2 The student can construct explanations of phenomena based on evidence produced through

scientific practices. 6.3 The student can articulate the reasons that scientific explanations and theories are refined or

replaced. 6.4 The student can make claims and predictions about natural phenomena based on scientific

theories and models. 6.5 The student can evaluate alternative scientific explanations. Science Practice 7: The student is able to connect and relate knowledge across various scales,

concepts, and representations in and across domains. 7.1 The student can connect phenomena and models across spatial and temporal time scales. 7.2 The student can connect concepts in and across domain(s) to generalize or extrapolate in

and/or across enduring understandings and/or big ideas.

Page 23: AP Chemistry Program Notes 2015-TAMIU

23

Exclusion Statements Essential Knowledge 1.C.1 Memorization of exceptions to the Aufbau principle is beyond the scope of this course and the AP Exam. Essential Knowledge 1.C.2 Assignment of quantum numbers to electrons is beyond the scope of this course and the AP Exam. Essential Knowledge 2.A.2 Phase diagrams are beyond the scope of this course and the AP Exam. Essential Knowledge 2.A.3 Colligative properties are beyond the scope of this course and the AP Exam. Calculations of molality, percent by mass, and percent by volume are beyond the scope of this course and the AP Exam. Essential Knowledge 2.C.2 Knowledge of specific types of crystal structures is beyond the scope of this course and the AP Exam. Essential Knowledge 2.C.4 The use of formal charge to explain why certain molecules do not obey the octet rule is beyond the scope of this course and the AP Exam. Learning how to defend Lewis structures based on assumptions about the limitations of the models is beyond the scope of this course and the AP Exam. An understanding of the derivation and depiction of these [hybridized] orbitals is beyond the scope of this course and the AP Exam. Other aspects of molecular orbital theory, such as recall or filling of molecular orbital diagrams, are not part of this course and the AP Exam. [MO theory describes a wider variety of covalent bonding than Lewis diagrams and VSEPR models. MO diagrams are a useful qualitative tool showing the correlation between atomic and molecular orbitals.] Essential Knowledge 3.B.2 Lewis acid-base concepts are beyond the scope of this course and the AP Exam.

Page 24: AP Chemistry Program Notes 2015-TAMIU

24Essential Knowledge 3.B.3 Language of reducing agent and oxidizing agent is beyond the scope of this course and the AP Exam. Labeling an electrode as positive or negative is beyond the scope of this course and the AP Exam. The Nernst equation is beyond the scope of this course and the AP Exam. Essential Knowledge 4.B.3 Calculations involving the Arrhenius equation are beyond the scope of this course and the AP Exam. Essential Knowledge 4.C.3 Collection of data pertaining to [the evidence in support of one reaction mechanism over an alternative mechanism] is beyond the scope of this course and the AP Exam. Essential Knowledge 6.C.1 Numerical computation of the concentration of each species present in the titration curve for polyprotic acids is beyond the scope of this course and the AP Exam. Essential Knowledge 6.C.2 Computing the change in pH resulting from the addition of an acid or base to a buffer is beyond the scope of this course and the AP Exam. The production of the Henderson-Hasselbalch equation by algebraic manipulation of the relevant equilibrium constant expression is beyond the scope of this course and the AP Exam. Essential Knowledge 6.C.3 Memorization of other “solubility rules” is beyond the scope of this course and the AP Exam. [All sodium, potassium, ammonium and nitrate salts are soluble in water.] Computations of solubility as a function of pH are beyond the scope of this course and the AP Exam. Computations of solubility in such solutions are beyond the scope of this course and the AP Exam. [The solubility of a salt will be pH sensitive when one of the ions is an acid or a base.]

Page 25: AP Chemistry Program Notes 2015-TAMIU

25

Laboratory techniques expected to be mastered by students in the general chemistry sequence. Properly reading and use of thermometer Properly rinsing glassware Using and reading buret Using pipet Using a graduated cylinder/Measuring volume by difference Weighting from weighting bottle/Weighting by difference Using volumetric flasks Constructing and using calibration curves Constructing a meaningful graph Using spreadsheet to make graph Properly lighting and adjusting a Bunsen burner Proper heating of liquids in beakers and test tubes Proper heating of solids in crucibles Transfer mother liquor and precipitate to filter funnel Use gravity filtration Use vacuum filtration Use TLC or column chromatography Perform titration Properly drying reagents Weighting an imprecise amount of reagent accurately Standardization of reagents Perform quantitative analysis on unknown Proper use of statistics - mean, standard deviation, relative standard deviation, Q-test, confidence limits, relative error Using a qualitative analysis scheme Perform a selective precipitation of ions Use of a spectrophotometer Use of a pH meter Use of pH paper Use of a voltmeter Perform serial dilution

Page 26: AP Chemistry Program Notes 2015-TAMIU

26

Laboratory notebook procedures expected to be mastered by students in the general chemistry sequence.

The lab report is intended to communicate in a concise fashion the purpose, method and results of an experiment in sufficient detail to be reproduced by the reader. Therefore, the report must be organized and coherent. An organized and coherent report starts with an organized and coherent notebook.

Use a laboratory notebook with carbon or carbonless copies. Write your room and lab drawer number on the cover. Make all notebook entries in indelible ink. Leave room for a table of contents on the first page. The notebook will be kept in chronological order. There are to be no blank pages (or blank spaces) in the notebook. In preparing for each laboratory session, the notebook must be set up properly. Sections to be completed before entering lab: Title, Objective, Safety, Pre-lab and Procedure Sections to be completed during lab: Data and Observations Sections to be completed after lab: Calculations, Results and Conclusions NOTEBOOK FORMAT Headings; The top of each notebook page includes: Student Name (and Partner’s Name) Title of experiment Date lab work is done Page No. Title Objective/Purpose Safety

Hazards of reagents used or procedures performed. May need to obtain MSDS for information.

Procedure Required equipment Reagents used Brief explanation of the lab procedure

Data and Observations Data tables are to be prepared before lab; however, no data are recorded before or after the lab session. Title the table, including the name of the experiment and special experimental conditions. Leave space for observations, unanticipated data and calculated results. Data are to be written in pen once in the lab notebook. Pay attention to units and significant figures when recording data. No data are to be recorded on scrap paper or other paper to be recorded in the notebook later. The instructor will confiscate scrap papers with writing. Using data from paper scraps will result in the deduction of points from the notebook grade.

Calculations Sample calculations of all calculations done in the experiment must be shown, with attention to units and significant figures. All graphs done need to be put into the laboratory notebook.

Results and Conclusions All conclusions must be based on the data recorded. The conclusion may be suggested by the objective. If the lab had multiple parts, the conclusion may be a pattern you recognized or skill you identified. Use chemical reasoning to explain good results or bad results.

Page 27: AP Chemistry Program Notes 2015-TAMIU

27

Laboratories from AP Chemistry, Guided-Inquiry Experiments: Applying the Science Practices 1. What is the Relationship Between the Concentration of Solution and the Amount of Transmitted

Light Through the Solution? Beer’s law with food coloring with spectrophotometer

2. How Can Color Be Used to Determine the Mass Percent of Copper in Brass?

Dissolve brass with nitric acid, determine copper(II) concentration spectrophotometrically 3. What Makes Hard Water Hard?

Gravimetric determination of polyvalent ions in water via precipitation with carbonate 4. How Much Acid Is in Fruit Juices and Soft Drinks?

Titration of juice or soda with NaOH to find citric and phosphoric acid amounts 5. Sticky Question: How Do You Separate Molecules That Are Attracted to One Another? Using paper chromatography to separate components of food dyes 6. What’s in That Bottle?

Using physical and chemical properties to distinguish solids from each other

7. Using the Principle That Each Substance Has Unique Properties to Purify a Mixture: An Experiment Applying Green Chemistry to Purification

Decompose mixture of NaHCO3/Na2CO3 to find mass ratio of mixture 8. How Can We Determine the Actual Percentage of H2O2 in a Drugstore Bottle of Hydrogen

Peroxide? A redox titration of H2O2 with KMnO4

9. Can the Individual Components of Quick Ache Relief Be Used to Resolve Consumer

Complaints? Separate aspirin/acetaminophen mixture using water/ethyl acetate extraction with separatory

funnel 10. How Long Will That Marble Statue Last? Find rate law of decomposition of marble/limestone and HCl by measuring volume of CO2

evolved

Page 28: AP Chemistry Program Notes 2015-TAMIU

2811. What Is the Rate Law of the Fading of Crystal Violet Using Beer’s Law?

Find the rate law of the reaction of crystal violet with base using spectrophotometer to monitor concentration

12. The Hand Warmer Design Challenge: Where Does the Heat Come From? Measuring the heat of solvation of various solids using coffee cup calorimeter and determine best material for a hand warmer

13. Can We Make the Colors of the Rainbow? An Application of LeChâtelier’s Principle. Several equilibria are examined to investigate LeChâtelier’s Principle Bromothymol blue with acid and base Formation of FeSCN2+ ion Formation of Cu(NH3)4

2+ ion Cu(H2O)6

2+ CuCl42-

Co(H2O)62+ CoCl4

2-

Methyl red with carbonated water 14. How Do the Structure and the Initial Concentration of an Acid and a Base Influence the pH of

the Resultant Solution During a Titration? Determine titration curves of various mixtures of acids and bases using pH meter 15. To What Extent Do Common Household Products Have Buffering Activity? Determine and use titration curves to examine buffering ability of common household

products 16. The Preparation and Testing of an Effective Buffer: How Do Components Influence a Buffer’s

pH and Capacity Create a buffer system to given specifications

Page 29: AP Chemistry Program Notes 2015-TAMIU

29

Potential Textbooks for AP Chemistry (adapted from a list from the Journal of Chemical Education {the list is no longer maintained}) Texts in Arial font are from AP Central website. American Chemical Society Chemistry: A General Chemistry Project of the American Chemical Society, 1st Edition W. H. Freeman (2004) 820 pp. Reviewed in Chemical and Engineering News 2004 82(29) 31 American Chemical Society Chemistry in Context, 7th Edition McGraw-Hill (2009) 608 pp. Atkins, Peter W. and Loretta Jones Chemical Principles: The Quest for Insight, 5th Edition W. H. Freeman (2010) 1024 pp. Averill, Bruce and Eldredge, Patricia Chemistry Principles, Patterns, and Applications, 1st Edition Pearson/Benjamin Cummings (2007) 1132 pp. Brady, James E., and Fred Senese. Chemistry: The Study of Matter and Its Changes., 5th ed. John Wiley & Sons. (2008) 1011 pp. Brown, Theodore, Eugene LeMay, Jr., Bruce Bursten, Catherine Murphy, and Patrick Woodward Chemistry: The Central Science, 12th Edition Pearson/Prentice Hall (2012) 1232 pp. Previous edition reviewed in Journal of Chemical Education, 1997 74 378 Burdge, Julia Chemistry, 2nd Edition McGraw-Hill (2011) 1088 pp. Burdge, Julia and Jason Overby Chemistry: Atoms First, 1st Edition McGraw-Hill (2012) 1128 pp.

Chang, Raymond, and Kenneth Goldsby. Chemistry, AP Edition. McGraw-Hill. (2012) Chang, Raymond Chemistry, 10th Edition McGraw-Hill (2010) 1152 pp. Chang, Raymond and Jason Overby General Chemistry: The Essential Concepts, 6th Edition McGraw-Hill (2011) 832 pp. First edition reviewed in Journal of Chemical Education 1996 73(10) A240

Page 30: AP Chemistry Program Notes 2015-TAMIU

30Ebbing, Darrel D. and Steven D. Gammon General Chemistry, Enhanced Edition, 9th Edition Cengage (2011) 1152 pp. Gilbert, Thomas R., Rein V. Kirss, Natalie Foster, and Geoffrey Davies Chemistry: The Science in Context, 3rd Edition W.W. Norton (2010) 1085 pp. Hill, John W., Ralph H. Petrucci, Terry W McCreary, and Scott W. Perry General Chemistry, 4th Edition Pearson/Prentice Hall (2005) 1200 pp. Hnatow, John, and Ketan Trivedi. Chemistry In a Flash. Paperless Publishing Inc.

Jesperson, Neil D., James Brady, and Alison Hyslop Chemistry: Matter and Its Changes, 6th Edition John Wiley (2012) 1224 pp. Kelter, Paul B., Mike Mosher, and Andrew Scott Chemistry: The Practical Science, Media Enhanced Edition, 1st Edition Cengage (2009) 1088 pp. Kotz, John C., Paul M. Treichel, and John R. Townsend Chemistry and Chemical Reactivity, Enhanced Edition, 8th Edition Cengage (2012) 1296 pp. Third edition reviewed in Journal of Chemical Education, 1997 74 378 Masterton, William L. and Cecile N. Hurley Chemistry: Principles and Reactions, 7th Edition Cengage (2012) 736 pp. Previous edition reviewed in New Scientist,1993 139(1892) 49 McMurry, John and Robert C. Fay Chemistry, 6th Edition Pearson/Prentice Hall (2012) 1216 pp. McMurry, John E. and Robert C. Fay General Chemistry: Atoms First, 1st Edition Pearson/Prentice Hall (2010) 1056 pp. McQuarrie, Donald, Peter A. Rock, and Ethan Gallogly General Chemistry, 4th Edition University Science Books (2010) 1117 pp. Moog, Richard S. and John J. Farrell Chemistry: A Guided Inquiry, 4th Edition John Wiley (2008) 408 pp.

Page 31: AP Chemistry Program Notes 2015-TAMIU

31Moore, John W., Conrad L. Stanitski and Peter J. Jurs Chemistry: The Molecular Science, 4th Edition Cengage (2011) 1264 pp. Oxtoby, D. W., H. P. Gillis and Alan Campion Principles of Modern Chemistry, 7th Edition Cengage (2012) 1120 pp. Petrucci, Ralph H., William S. Harwood, and Geoffrey Herring General Chemistry: Principles and Modern Applications, 10th Edition Pearson/Prentice Hall (2011) 1424 pp. Previous edition reviewed in Journal of Chemical Education 1997 75(5) 695 Reger, Daniel L., Scott R. Goode, and David W. Ball Chemistry: Principles and Practice, 3rd Edition Cengage (2010) 1120 pp. Silberberg, Martin Chemistry: The Molecular Nature of Matter and Change, 6th Edition McGraw-Hill (2012) 1232 pp. Spencer, James N., George M. Bodner and Lyman H. Rickard Chemistry: Structure and Dynamics, 5th Edition John Wiley (2011) 880 pp. Tro, Nivaldo J. Chemistry: A Molecular Approach, 2nd Edition Pearson/Prentice Hall (2011) 1232 pp. Whitten, Kenneth W., Raymond E. Davis, Larry M. Peck, and George G. Stanley Chemistry, 9th Edition Cengage (2010) 1184 pp. Previous edition reviewed in Journal of Chemical Education 1997 74(5) 695 Zumdahl, Steven S. and Susan A. Zumdahl Chemistry, 8th Edition Cengage (2010) 1184 pp. Reviewed in Journal of Chemical Education 2009 86(11) 1272 Zumdahl, Steven S. and Susan A. Zumdahl Chemistry: An Atoms First Approach, 1st Edition Cengage (2012) 1152 pp. Reviewed in Journal of Chemical Education 2009 86(11) 1272

Page 32: AP Chemistry Program Notes 2015-TAMIU

32

AP Audit (pg. 67 Workshop Handbook and Resources) Requirements To request authorization to label a course "AP," complete the following two steps:

1. Complete and submit an AP Course Audit form, on which the teacher and principal attest that their course includes or exceeds the following curricular requirements delineated by college and university faculty.

2. Submit an electronic copy of the course syllabus that demonstrates inclusion or

improvement on the curricular requirements (see Syllabus Development Guide).

Scoring Components An approved syllabus must include the following scoring components. Scoring Component 1: Students and teachers use a recently published (within the last 10

years) college-level chemistry textbook Decision Rule: The syllabus must cite the title, author, and publication date of a

college-level textbook. The primary course textbook must be published within the last 10 years.

Important Considerations Books in electronic form (e.g., DVD, downloadable versions) of a college-level textbook can be used. A printed textbook is not required. If the text cited in the syllabus is not included within the example textbook list, the textbook must be college-level and provide adequate coverage of AP Chemistry to meet this requirement. If a publication date is not cited and an edition is, then professional judgment can be used to determine whether the component is met. If the reviewer does not know the publication date, they are not required to look it up. If it is clearly stated that the teacher uses a book published within the last 10 years, but the students have older editions, the requirement is met.

Page 33: AP Chemistry Program Notes 2015-TAMIU

33Scoring Component 2: The course is structured around the enduring understandings within the

big ideas as described in the AP Chemistry Curriculum Framework Decision Rule: The syllabus must demonstrate how the course plan is structured

around the enduring understandings in each of the big ideas as described in the AP Chemistry Curriculum Framework. While all six big ideas need to be explicit, each of the enduring understandings does not need to be specifically listed.

Important Considerations The six big ideas need to be explicitly mentioned, described, stated, or listed in the syllabus. If there is reference to all six big ideas anywhere in the syllabus, then it can be inferred that the course is structured around the Curriculum Framework.

Scoring Component 3a: The course provides students with opportunities outside the laboratory

environment to meet the learning objectives within Big Idea 1: Structure of matter

Decision Rule: The syllabus must briefly describe at least one assignment or activity

outside the laboratory environment designed to meet one learning objective within Big Idea 1.

Scoring Component 3b: The course provides students with opportunities outside the laboratory

environment to meet the learning objectives within Big Idea 2: Properties of matter – characteristics, states and forces of attraction

Decision Rule: The syllabus must briefly describe at least one assignment or activity

outside the laboratory environment designed to meet one learning objective within Big Idea 2.

Scoring Component 3c: The course provides students with opportunities outside the laboratory

environment to meet the learning objectives within Big Idea 3: Chemical reactions

Decision Rule: The syllabus must briefly describe at least one assignment or activity

outside the laboratory environment designed to meet one learning objective within Big Idea 3.

Scoring Component 3d: The course provides students with opportunities outside the laboratory

environment to meet the learning objectives within Big Idea 4: Rates of chemical reactions

Decision Rule: The syllabus must briefly describe at least one assignment or activity

outside the laboratory environment designed to meet one learning objective within Big Idea 4.

Page 34: AP Chemistry Program Notes 2015-TAMIU

34Scoring Component 3e: The course provides students with opportunities outside the laboratory

environment to meet the learning objectives within Big Idea 5: Thermodynamics

Decision Rule: The syllabus must briefly describe at least one assignment or activity

outside the laboratory environment designed to meet one learning objective within Big Idea 5.

Scoring Component 3f: The course provides students with opportunities outside the laboratory

environment to meet the learning objectives within Big Idea 6: Equilibrium

Decision Rule: The syllabus must briefly describe at least one assignment or activity

outside the laboratory environment designed to meet one learning objective within Big Idea 6.

Scoring Component 4: The course provides students with opportunities to connect their

knowledge of chemistry and science to major societal or technological components (e.g., concerns, technological advances, innovations) to help them become scientifically literate citizens

Decision Rule: The syllabus must describe at least one assignment or activity

requiring students to connect their knowledge of chemistry and science to issues that have a societal or technological component.

Scoring Component 5a: Students are provided the opportunity to engage in investigative

laboratory work integrated throughout the course for a minimum of 25 percent of instructional time.

Decision Rule: The syllabus must include an explicit statement that at least 25

percent of instructional time is spent in hands-on laboratory experiences integrated throughout the course. Virtual labs do not count towards the 25 percent of instructional time.

Scoring Component 5b: Students are provided the opportunity to engage in a minimum of 16

hands-on laboratory experiments integrated throughout the course while using basic laboratory equipment to support the learning objectives listed within the AP Chemistry Curriculum Framework

Decision Rule: The syllabus must include and describe a minimum of 16 hands-on

laboratory investigations that use basic laboratory equipment. Molecular modeling may count for one of the 16 hands-on labs.

Important Considerations Sixteen labs need to be explicitly identified (counted) to meet this requirement.

Page 35: AP Chemistry Program Notes 2015-TAMIU

35Scoring Component 6: The laboratory investigations used throughout the course allow

students to apply the seven science practices defined in the AP Chemistry Curriculum Framework. At a minimum, six of the required 16 labs are conducted in a guided-inquiry format

Decision Rules: The syllabus must list all laboratory investigations and their

associated science practices.

A minimum of six investigations must be identified as guided inquiry. Important Considerations If the syllabus lists the AP Chemistry Guided Inquiry Experiments: Applying the Science Practices as the source, evidence is sufficient without the need for an explicit indication of the science practices for each lab. Conducting labs from this lab manual sufficiently addresses the science practices necessary to meet the decision rule.

Scoring Component 7: The course provides opportunities for students to develop, record and

maintain evidence of their verbal, written and graphic communications skills through laboratory reports, summaries of literature or scientific investigations, and oral, written and graphic representations

Decision Rules: The syllabus must include the components of the written lab reports

required of students for all the laboratory investigations engaged in throughout the course.

The syllabus must include an explicit statement that students are

required to maintain a lab notebook or portfolio (hard-copy or electronic) that includes all of their lab reports.

Possible Responses from Reviewer for Each Scoring Component Yes (Scoring component is demonstrated) No Evidence - no feedback given Insufficient Evidence - very terse feedback given Needs Resources - feedback is one of seven responses from a drop-down menu - chemistry reviewers are discouraged from using this option

Page 36: AP Chemistry Program Notes 2015-TAMIU

36

Guided Inquiry for Labs (for 2014 Exam) (pg. 53 Workshop Handbook and Resources) Herron’s model of inquiry (1971) Herron, M.D. (1971). The nature of scientific enquiry. School Review, 79(2), 171- 212

1. Confirmation Questions to be answered given by instructor Procedure to be used given by instructor Solution to problem as extension of procedure given by instructor 2. Structured Inquiry Questions to be answered given by instructor Procedure to be used given by instructor Solution to problem generated by student’s data and observations 3. Guided Inquiry Questions to be answered given by instructor Procedure to be generated by student based on question to be answered Solution to problem generated by student’s data and observations 4. Open Inquiry Questions to be answered generated by student Procedure to be generated by student based on question to be answered Solution to problem generated by student’s data and observations

Page 37: AP Chemistry Program Notes 2015-TAMIU

37National Research Council (2000) Inquiry and the National Science Education Standards: A Guide for Teaching and Learning (2000) Five essential features of inquiry instruction

1. Learner engages in scientifically oriented questions. a. Learner poses a question. b. Learner selects among questions, poses new questions. c. Learner sharpens or clarifies question provided by teacher, materials or other source. d. Learner engages in question provided by teacher, material or other source.

2. Learner gives priority to evidence in responding to questions. a. Learner determines what constitutes evidence and collects it. b. Learner directed to collect certain data. c. Learner given data and asked to analyze. d. Learner given data and told how to analyze.

3. Learner formulates explanations from evidence. a. Learner formulates explanation after summarizing evidence. b. Learner guided in process of formulating explanations from evidence. c. Learner given possible ways to use evidence to formulate explanation. d. Learner provided with evidence and how to use evidence to formulate explanation.

4. Learner connects explanations to scientific knowledge. a. Learner independently examines other resources and forms the links to explanations b. Learner directed toward areas and sources of scientific knowledge. c. Learner given possible connections.

5. Learner communicates and justifies explanations. a. Learner forms reasonable and logical argument to communicate explanations. b. Learner coached in development of communication. c. Learner provided broad guidelines to use/sharpen communication. d. Learner given steps and procedures for communication.

With

in e

ach

feat

ure

of in

quir

y in

stru

ctio

n.

Lea

rner

Sel

f-D

irec

ted

----

-- T

each

er D

irec

ted

a. -

----

---

d.

Page 38: AP Chemistry Program Notes 2015-TAMIU

38

Formative and Summative Assessments Definitions Summative – high-stakes assessment that attempts to summarize the level of knowledge that a

student has for a particular set of a pedagogical goals Formative – assessment that seeks to assist the student in understanding a particular set of

pedagogical goals Examples of Formative Assessments Index Card Summaries / Questions

Periodically, distribute index cards and ask students to write on both sides, with these instructions: Side 1-list a big idea that you understand as a summary, Side 2-Identify a topic you don’t understand and construct a question

Hand Signals Ask students to display a designated hand signal to indicate their understanding of a specific concept

One-Minute Essay

A one-minute essay question is a focused question with a specific goal to answered quickly

Analogy Prompt Periodically, present students with an analogy prompt: This concept is like this analogy because …..

Web or Concept Map

Students make graphical representations of the connections between key concepts or key words

Misconception Check

Present students with common or predictable misconceptions about a designated concept, principle or process. Ask them to explain why they agree or disagree

Student Conference

One-on-one conversation with students to check their level of understanding

Three-Minute Pause

Provide students with time to reflect on material just presented and allow them to make connections with previous mastered material. Have students share the results of the their reflections

Observation Observe students working to check on learning process Self-Assessment Students attempt meta-cognition by thinking about the process of the their own

learning Exit Card Written student responses to questions are submitted on index cards Portfolio Check Check the progress on a student’s portfolio Quiz Assess students understanding with multiple choice, true/false, short answer,

matching and/or extended response questions Journal Entry Students record their understanding (or misunderstanding) of a particular

concept Choral Response On cue, students respond together the answer to a question A-B-C Summaries

Each student is the class is assigned a letter of the alphabet to find a word starting with the letter that relates to the topic being discussed

Debriefing Reflection immediately after an activity Idea Spinner Instructor creates spinner with four quadrants; Predict, Explain, Summarize

and Evaluate. After material is presented, student spin spinner and answers based on word on which spinner landed

Page 39: AP Chemistry Program Notes 2015-TAMIU

39

Inside-Outside Circle

Inside and outside circles of students quiz each other and then rotate

Numbered Heads Together

Each member of a small group has a number. Once small group solves problem, student with selected number presents solution to class

One-Sentence Summary

Students are asked to write short summary to topic presented that answers the “who,what, where, when, how and why” of a topic

One-Word Summary

Select a word that best summarizes a particular topic

Think-Pair-Share Students think about a problem individually, then pair with a partner, after which they present their solution to the class

Ticket to Leave Closing activity where students respond in writing or verbally to short assignments

Entry Card Student enter classroom with question about reading or assignment Newspaper Students finds current event in a periodical that relates to topic being presented Homework(!) 1.) Use an index card to summarize formative techniques that you’ve used successfully 2.) Create a formative assessment (of a style assigned by the instructor) to assess understanding.

Anticipate good student responses and poor student’s responses.