33
“Named” numbres Ngày 25 tháng 11 năm 2011 () “Named” numbres Ngày 25 tháng 11 năm 2011 1/7

“Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

“Named” numbres

Ngày 25 tháng 11 năm 2011

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 2: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.

2 1,3,5,7,9 . . . the odd integers.3 2,3,5,7,11,13, . . .

the prime numbers.4 1,1,2,3,5,8,13, . . . Fibonacci numbers.5(n

k)

binomials.6 1

n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 3: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.2 1,3,5,7,9 . . . the odd integers.

3 2,3,5,7,11,13, . . .

the prime numbers.4 1,1,2,3,5,8,13, . . . Fibonacci numbers.5(n

k)

binomials.6 1

n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 4: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.2 1,3,5,7,9 . . . the odd integers.3 2,3,5,7,11,13, . . .

the prime numbers.

4 1,1,2,3,5,8,13, . . . Fibonacci numbers.5(n

k)

binomials.6 1

n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 5: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.2 1,3,5,7,9 . . . the odd integers.3 2,3,5,7,11,13, . . .

the prime numbers.

4 1,1,2,3,5,8,13, . . . Fibonacci numbers.5(n

k)

binomials.6 1

n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 6: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.2 1,3,5,7,9 . . . the odd integers.3 2,3,5,7,11,13, . . . the prime numbers.4 1,1,2,3,5,8,13, . . .

Fibonacci numbers.

5(n

k)

binomials.6 1

n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 7: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.2 1,3,5,7,9 . . . the odd integers.3 2,3,5,7,11,13, . . . the prime numbers.4 1,1,2,3,5,8,13, . . .

Fibonacci numbers.

5(n

k)

binomials.6 1

n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 8: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.2 1,3,5,7,9 . . . the odd integers.3 2,3,5,7,11,13, . . . the prime numbers.4 1,1,2,3,5,8,13, . . . Fibonacci numbers.5(n

k)

binomials.

6 1n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 9: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.2 1,3,5,7,9 . . . the odd integers.3 2,3,5,7,11,13, . . . the prime numbers.4 1,1,2,3,5,8,13, . . . Fibonacci numbers.5(n

k)

binomials.

6 1n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 10: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.2 1,3,5,7,9 . . . the odd integers.3 2,3,5,7,11,13, . . . the prime numbers.4 1,1,2,3,5,8,13, . . . Fibonacci numbers.5(n

k)

binomials.6 1

n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 11: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.2 1,3,5,7,9 . . . the odd integers.3 2,3,5,7,11,13, . . . the prime numbers.4 1,1,2,3,5,8,13, . . . Fibonacci numbers.5(n

k)

binomials.6 1

n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 12: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.2 1,3,5,7,9 . . . the odd integers.3 2,3,5,7,11,13, . . . the prime numbers.4 1,1,2,3,5,8,13, . . . Fibonacci numbers.5(n

k)

binomials.6 1

n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 13: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Fibonacci, Catalan, Stirling, Euler, Bernoulli

Many sequences are “famous.”1 1,2,3,4, . . . the integers.2 1,3,5,7,9 . . . the odd integers.3 2,3,5,7,11,13, . . . the prime numbers.4 1,1,2,3,5,8,13, . . . Fibonacci numbers.5(n

k)

binomials.6 1

n+1

(2nn)

the Catalan numbers.

The reason they are “named” is because they appear in many forms inmathematics and other sciences.

() “Named” numbres Ngày 25 tháng 11 năm 2011 1 / 7

Page 14: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Stirling Numbers

Stirling Numbers are named after the Scottish mathematician JamesStirling who introduced them in the 18th century. There are two kinds ofStirling numbers (with various notation):

Stirling numbers of the first kind:[

nk

]= c(n, k)

Stirling numbers of the second kind:{

nk

}= S(n, k)

Both numbers describe combinatorial counting that lead to a“triangular” recurrence relation similar to the binomial coefficients.

() “Named” numbres Ngày 25 tháng 11 năm 2011 2 / 7

Page 15: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Stirling numbers of the second kind:

QuestionIn how many ways can you partition the set {a,b, c,d ,e} into twonon-empty subsets?

AnswerWe can just list the subsets:{{a}, {,b, c,d ,e}}, {{b}, {a, c,d ,e}} . . . , {{a,b}, {c,d ,e}}, . . .{{d ,e}, {,a,b, c}}. For a total of:

5 + 10 = 15 different partitions.

Definition

{nk

}The Stirling number of the second kind is the number of ways to

partition an n-set into k non-empty subsets.

() “Named” numbres Ngày 25 tháng 11 năm 2011 3 / 7

Page 16: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Stirling numbers of the second kind:

QuestionIn how many ways can you partition the set {a,b, c,d ,e} into twonon-empty subsets?

AnswerWe can just list the subsets:{{a}, {,b, c,d ,e}}, {{b}, {a, c,d ,e}} . . . , {{a,b}, {c,d ,e}}, . . .{{d ,e}, {,a,b, c}}. For a total of:

5 + 10 = 15 different partitions.

Definition

{nk

}The Stirling number of the second kind is the number of ways to

partition an n-set into k non-empty subsets.

() “Named” numbres Ngày 25 tháng 11 năm 2011 3 / 7

Page 17: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Stirling numbers of the second kind:

QuestionIn how many ways can you partition the set {a,b, c,d ,e} into twonon-empty subsets?

AnswerWe can just list the subsets:{{a}, {,b, c,d ,e}}, {{b}, {a, c,d ,e}} . . . , {{a,b}, {c,d ,e}}, . . .{{d ,e}, {,a,b, c}}. For a total of:

5 + 10 = 15 different partitions.

Definition

{nk

}The Stirling number of the second kind is the number of ways to

partition an n-set into k non-empty subsets.

() “Named” numbres Ngày 25 tháng 11 năm 2011 3 / 7

Page 18: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Stirling numbers of the second kind:

QuestionIn how many ways can you partition the set {a,b, c,d ,e} into twonon-empty subsets?

AnswerWe can just list the subsets:{{a}, {,b, c,d ,e}}, {{b}, {a, c,d ,e}} . . . , {{a,b}, {c,d ,e}}, . . .{{d ,e}, {,a,b, c}}. For a total of: 5 + 10 = 15 different partitions.

Definition

{nk

}The Stirling number of the second kind is the number of ways to

partition an n-set into k non-empty subsets.

() “Named” numbres Ngày 25 tháng 11 năm 2011 3 / 7

Page 19: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

From the example we can derive a recurrence relation for thesenumbers:

Let B be an n−set. We can divide the patitions into two sets A:partitions that include a fixed singleton {x0} and B: the rest.

Clearly, there are S(n − 1, k − 1) distinct partitions in A.

As for the set B for every partition B \ {x0} into k subset we can add x0to any one of the k parttions yielding:{

nk

}= k

{n − 1

k

}+

{n − 1k − 1

}

This “triangular” relation is very similar to Pascal’s identity forbinomials.

() “Named” numbres Ngày 25 tháng 11 năm 2011 4 / 7

Page 20: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

From the example we can derive a recurrence relation for thesenumbers:

Let B be an n−set. We can divide the patitions into two sets A:partitions that include a fixed singleton {x0} and B: the rest.

Clearly, there are S(n − 1, k − 1) distinct partitions in A.

As for the set B for every partition B \ {x0} into k subset we can add x0to any one of the k parttions yielding:{

nk

}= k

{n − 1

k

}+

{n − 1k − 1

}

This “triangular” relation is very similar to Pascal’s identity forbinomials.

() “Named” numbres Ngày 25 tháng 11 năm 2011 4 / 7

Page 21: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

From the example we can derive a recurrence relation for thesenumbers:

Let B be an n−set. We can divide the patitions into two sets A:partitions that include a fixed singleton {x0} and B: the rest.

Clearly, there are S(n − 1, k − 1) distinct partitions in A.

As for the set B for every partition B \ {x0} into k subset we can add x0to any one of the k parttions yielding:{

nk

}= k

{n − 1

k

}+

{n − 1k − 1

}

This “triangular” relation is very similar to Pascal’s identity forbinomials.

() “Named” numbres Ngày 25 tháng 11 năm 2011 4 / 7

Page 22: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

From the example we can derive a recurrence relation for thesenumbers:

Let B be an n−set. We can divide the patitions into two sets A:partitions that include a fixed singleton {x0} and B: the rest.

Clearly, there are S(n − 1, k − 1) distinct partitions in A.

As for the set B for every partition B \ {x0} into k subset we can add x0to any one of the k parttions yielding:{

nk

}= k

{n − 1

k

}+

{n − 1k − 1

}

This “triangular” relation is very similar to Pascal’s identity forbinomials.

() “Named” numbres Ngày 25 tháng 11 năm 2011 4 / 7

Page 23: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

From the example we can derive a recurrence relation for thesenumbers:

Let B be an n−set. We can divide the patitions into two sets A:partitions that include a fixed singleton {x0} and B: the rest.

Clearly, there are S(n − 1, k − 1) distinct partitions in A.

As for the set B for every partition B \ {x0} into k subset we can add x0to any one of the k parttions yielding:{

nk

}= k

{n − 1

k

}+

{n − 1k − 1

}

This “triangular” relation is very similar to Pascal’s identity forbinomials.

() “Named” numbres Ngày 25 tháng 11 năm 2011 4 / 7

Page 24: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

An application

The polynomials of degree n form a vector space over the field R, andso do the polynomials {1, x , x(x − 1), x(x − 1)(x − 2) . . .}. A commonnotation for x(x − 1) . . . (x − j + 1) is x j

This means that the polynomials xk can be expressed as linearcombination of these polynomials:

xk =k∑

i=0aix i

What are the coefficients ai ?

() “Named” numbres Ngày 25 tháng 11 năm 2011 5 / 7

Page 25: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

An application

The polynomials of degree n form a vector space over the field R, andso do the polynomials {1, x , x(x − 1), x(x − 1)(x − 2) . . .}. A commonnotation for x(x − 1) . . . (x − j + 1) is x j

This means that the polynomials xk can be expressed as linearcombination of these polynomials:

xk =k∑

i=0aix i

What are the coefficients ai ?

() “Named” numbres Ngày 25 tháng 11 năm 2011 5 / 7

Page 26: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Claim:

xn =n∑

k=0

{nk

}xk

Chứng minh.

1 a. x · xk = xk+1 + kxk .2

x · xn−1 = xn−1∑k=0

{n − 1

k

}xk =

n−1∑k=0

{n − 1

k

}(xk+1 + kxk) =

n−1∑k=0

{n − 1

k

}kxk +

{n − 1k − 1

}xk =

n∑k=0

{nk

}xk

Follows from the triangular relation.

() “Named” numbres Ngày 25 tháng 11 năm 2011 6 / 7

Page 27: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Claim:

xn =n∑

k=0

{nk

}xk

Chứng minh.1 a. x · xk = xk+1 + kxk .

2

x · xn−1 = xn−1∑k=0

{n − 1

k

}xk =

n−1∑k=0

{n − 1

k

}(xk+1 + kxk) =

n−1∑k=0

{n − 1

k

}kxk +

{n − 1k − 1

}xk =

n∑k=0

{nk

}xk

Follows from the triangular relation.

() “Named” numbres Ngày 25 tháng 11 năm 2011 6 / 7

Page 28: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

Claim:

xn =n∑

k=0

{nk

}xk

Chứng minh.1 a. x · xk = xk+1 + kxk .2

x · xn−1 = xn−1∑k=0

{n − 1

k

}xk =

n−1∑k=0

{n − 1

k

}(xk+1 + kxk) =

n−1∑k=0

{n − 1

k

}kxk +

{n − 1k − 1

}xk =

n∑k=0

{nk

}xk

Follows from the triangular relation.

() “Named” numbres Ngày 25 tháng 11 năm 2011 6 / 7

Page 29: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

The Stirling numbers of the first kind are defined by a closely relatedrelation:It counts in how many ways you can arrange n objects into k disjointcycles. So for example, the partitions {[1,3][2,5,4]} and {[1,3][2,4,5]}are distinct but {[3,1], [5,4,2]} is the same as the first partition.

We leave it to you to show that:

1 [nk

]= (n − 1)

[n − 1

k

]+

[n − 1k − 1

]2 Let xn = x(x + 1) . . . (x + n − 1)

3 xn =n∑

k=0xk

4n∑

k=0

[nk

]= n!

() “Named” numbres Ngày 25 tháng 11 năm 2011 7 / 7

Page 30: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

The Stirling numbers of the first kind are defined by a closely relatedrelation:It counts in how many ways you can arrange n objects into k disjointcycles. So for example, the partitions {[1,3][2,5,4]} and {[1,3][2,4,5]}are distinct but {[3,1], [5,4,2]} is the same as the first partition.

We leave it to you to show that:1 [

nk

]= (n − 1)

[n − 1

k

]+

[n − 1k − 1

]

2 Let xn = x(x + 1) . . . (x + n − 1)

3 xn =n∑

k=0xk

4n∑

k=0

[nk

]= n!

() “Named” numbres Ngày 25 tháng 11 năm 2011 7 / 7

Page 31: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

The Stirling numbers of the first kind are defined by a closely relatedrelation:It counts in how many ways you can arrange n objects into k disjointcycles. So for example, the partitions {[1,3][2,5,4]} and {[1,3][2,4,5]}are distinct but {[3,1], [5,4,2]} is the same as the first partition.

We leave it to you to show that:1 [

nk

]= (n − 1)

[n − 1

k

]+

[n − 1k − 1

]2 Let xn = x(x + 1) . . . (x + n − 1)

3 xn =n∑

k=0xk

4n∑

k=0

[nk

]= n!

() “Named” numbres Ngày 25 tháng 11 năm 2011 7 / 7

Page 32: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

The Stirling numbers of the first kind are defined by a closely relatedrelation:It counts in how many ways you can arrange n objects into k disjointcycles. So for example, the partitions {[1,3][2,5,4]} and {[1,3][2,4,5]}are distinct but {[3,1], [5,4,2]} is the same as the first partition.

We leave it to you to show that:1 [

nk

]= (n − 1)

[n − 1

k

]+

[n − 1k − 1

]2 Let xn = x(x + 1) . . . (x + n − 1)

3 xn =n∑

k=0xk

4n∑

k=0

[nk

]= n!

() “Named” numbres Ngày 25 tháng 11 năm 2011 7 / 7

Page 33: “Named” numbres - University of Washingtonfaculty.washington.edu/moishe/hanoi-2011... · 4 1;1;2;3;5;8;13;::: Fibonacci numbers. 5 n k binomials. 6 1 n+1 2n n the Catalan numbers

The Stirling numbers of the first kind are defined by a closely relatedrelation:It counts in how many ways you can arrange n objects into k disjointcycles. So for example, the partitions {[1,3][2,5,4]} and {[1,3][2,4,5]}are distinct but {[3,1], [5,4,2]} is the same as the first partition.

We leave it to you to show that:1 [

nk

]= (n − 1)

[n − 1

k

]+

[n − 1k − 1

]2 Let xn = x(x + 1) . . . (x + n − 1)

3 xn =n∑

k=0xk

4n∑

k=0

[nk

]= n!

() “Named” numbres Ngày 25 tháng 11 năm 2011 7 / 7