33
“Crystallization” in Large Fading Networks Veniamin Morgenshtern joint work with Helmut B¨ olcskei 1

“Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

“Crystallization” in Large Fading Networks

Veniamin Morgenshternjoint work with Helmut Bolcskei

1

Page 2: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

An Interference Network with Relays

K Relay Terminals

Source 2

Source 1

Source M

Destination M Destination 1

Destination 2

• Relays have no traffic requirements

• No direct links between sourcesand destinations

• Single-antenna transceivers

• No cooperation between sourcesand between destinations

• Zone free of relays around eachsource and destination

• Bounded area

2

Page 3: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Cut-Set Upper Bound on Network Capacity

Source 2

Source 1

Source M

Destination M

Destination 1

Destination 2

Sc

S• Max-flow min-cut theorem∑i∈S,j ∈Sc

R(i,j) ≤ I(X(S);Y(Sc)|X(Sc)

)

yields (for largeK)

C ≤ M

2log(K) +O(1)

• This bound is achieved withcooperation in a MIMO system

3

Page 4: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Motivation

Question: Can we achieve the cut set bound without cooperation?

Yes: [Bolcskei, Nabar 2004] show a protocol that

• ForM fixed andK →∞ realizes distributed orthogonalization

• C = (M/2) log(K) +O(1)

4

Page 5: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

System and Channel Model

.

.

.

...

...

...

Destination terminals

Source terminals Relay terminals

First hop Second hop

S1

S2

SM

R1

R2

RK

D1

D2

DM

hk,m fm,k

Pm,kEk,m

s1

s2

sM

r1

r2

rK

t1

t2

tK

y1

y2

yM

5

Page 6: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

System and Channel Model Cont’d

• rk =∑Mm=1Ek,mhk,msm + zk

• ym =∑Kk=1Pm,kfm,ktk + wm

• E ≤ Ek,m ≤ E, P ≤ Pm,k ≤ P ∀k,m

• hk,m, fm,k ∼ CN (0, 1), i.i.d.

• zk, wm ∼ CN (0, σ2), i.i.d.

• Gaussian codebooks are used

• E[|sm|2] ≤ 1/M, E[|tm|2] ≤ Prel/K

6

Page 7: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Protocol 1 (P1) from [Bolcskei, Nabar ’04]

...

S1

S2

SM

Source

terminals

Destination

terminals

.

.

.

D1

D2

DM

Relay terminals

First hop Second hop

...

...

...

...

...

...

...

...

• K relay terminals arepartitioned intoMgroups of equal size

⇒ K/M relays in eachgroup

• Each group is assignedto one S-D pair

• Each relay knowsphases of its assignedbackward and forwardchannels

7

Page 8: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Smart Scattering

...

S1

S2

SM

.

.

.

D1

D2

DM

h1

h2

hM fM

f2

f1

MF MF

Scalingh!

1 = e"j arg(h1) f!

1 = e"j arg(f1)

Distributed multi-stream separation through smart scatterersperforming matched-filtering

8

Page 9: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Capacity Scaling for largeK and fixedM• For fixedM andK → ∞, lower bound approaches upper bound and

the network capacity converges (w.p.1) to

C =M

2log(K) +O(1)

• Asymptotically inK cooperation between destination terminals isnot needed to achieve network capacity

Questions:

• Is distributed orthogonalization possible if bothM,K →∞?

• If so, howK should scale withM?

9

Page 10: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

[VM et al., 2005]: K should grow asM3

ForM,K →∞, the per S-D pair capacity scales as

CP1 =1

2log

(1 + Θ

(K

M3

))

Question: Is there protocol which requires less relays to realizedistributed orthogonalization?

10

Page 11: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

First...

Proof Techniques

11

Page 12: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

I-O relation of Sm→ Dm link

Independent decoding. I-O relation of Sm → Dm link is written as

ym = sm

K∑k=1

am,mk︸ ︷︷ ︸effective channel gain (gm)

+∑m6=m

sm

K∑k=1

am,mk︸ ︷︷ ︸interference (im)

+K∑k=1

bmk zk + wm√K︸ ︷︷ ︸

noise (nm)

where

am,mk ∼ f∗p(k),k fm,k h∗k,p(k) hk,m

p(k) = m iff relay k servesmth S-D pair

12

Page 13: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Lower Bound

• I-O relation of Sm → Dm link

ym = E[gm]sm + (gm − E[gm])︸ ︷︷ ︸gm

sm + im + nm︸ ︷︷ ︸wm

– effective channel gain has non-zero mean, i.e., E[gm] > 0

– zero-mean wm is not Gaussian– wm and gm are not statistically independent

• Slight modification of a technique from [Medard, 2000] yields

I(ym; sm) ≥ log

(1 +

(E[gm])2

Var[gm] + Var[wm]

)

13

Page 14: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Outage Analysis: “Crystallization”• Each destination terminal knows fading coefficients in entire network

• I-O relation of Sm → Dm link given by

ym = gmsm + im + nm

• Conditioned on {hk,m, fm,k}∀m,k interference im and noise nm areGaussian

⇒ Im =1

2log(

1 + SINRm|{hk,m,fm,k})

whereSINRm|{hk,m,fm,k} =

|gm|2

σ2i + σ2

n

Goal: Analyze behavior of the random variable SINR whenM,K →∞

14

Page 15: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Proof Techniques for Concentration Results

SINR of Sm → Dm link given by

SINR =

∣∣∣∑k:p(k)=m am,mk +

∑k:p(k)6=m a

m,mk

∣∣∣2∑m6=m

∣∣∣∑Kk=1 a

m,mk

∣∣∣2 + σ2M∑Kk=1 |bmk |

2+KMσ2

• Consider each term in the numerator and denominator separately

• Use Chernoff bound to estimate large deviations from mean

– gives asymptotically tight results– independence of summands is required, which is not the case fora’s and b’s

15

Page 16: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Main Tool: Truncation Lemma (thanks to O. Zeitouni)Have to deal with sums of the form SN =

∑Ni=1AiXiφi, where

• {Xi}∞i=1 (not necessarily independent) with common cdf FX

• i.i.d. {φi}∞i=1 (−1 ≤ φi ≤ 1)

• positive and uniformly bounded coefficients {Ai}∞i=1 (0 ≤ Ai ≤ A∗)

• for all x ≥ x0 > 0, we have 1− FX(x) + FX(−x) ≤ Ae−αxβ

Then, for allN and t such that δ2 ≥ x0

P{|SN − E{SN}| ≥

√Nδ}≤ 2 exp

{−2δ2β/(β+2)

(A∗)2γ

}+NA exp

{−αδ2β/(β+2)

}

16

Page 17: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

SINR is in Narrow Interval Around Mean with High Prob.Theorem 1. There exist constants C1, C2, C3, C4, C5, C6,M0 andK0 suchthat for anyM ≥ M0 andK ≥ K0 for any x > 1, the probability Pout,P1

of the event SINRP1 /∈ [LP1, UP1], where

LP1 =π2

16

P E2

P E2

(max

[0,K − C1M

√Kx])2

M2(M − 1)K + C2M5/2Kx+ C3M3

UP1 =π2

16

P E2

P E2

(K + C4M

√Kx)2

max[0,M2(M − 1)K − C5M5/2Kx] + C6M3

satisfies the following inequality

Pout,P1 ≤ Poly1(M,K)e−∆1x2/7

17

Page 18: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Outage Interpretation

UC

Pout PDF of I

L R

• FixK = M3

• C = 12 log

(1 + π2

16P E2

P E2

)• ChooseR < C

• Choose Pout (gives x)

• ChooseK such thatL = R

18

Page 19: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Proof of Ergodic Capacity Upper Bound

• Upper bound on per S-D pair capacity

C ≤ 1

2log(1 + E {SINR(H,F)})

• Use thatE{X} =

∫ ∞0

x pX(x)dx ≤∞∑n=0

nP {X > n}

• Using the tail behavior result for SINR, we get

P

{SINR > (K + o(K)x)

2

M3K − o(M3K)x

}≤ Poly(M,K) e−∆xβ

19

Page 20: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Network “Crystallization”

• SINRs of effective channels Sm → Dm (m = 1, 2, . . . ,M ) converge todeterministic limit asM,K →∞

• Per-stream diversity order→∞ asM,K →∞

• Individual SISO fading links in the network converge to independentAWGN links (network “crystallizes”)

• The exponent 2/7, which characterizes the speed of convergence, isunlikely to be fundamental

• Theorems 1 can be reformulated to provide bounds on outageprobability

20

Page 21: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Can we do better thanK = M 3?

21

Page 22: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Protocol 2 (P2) from [Dana and Hassibi, 2003]

Source

terminals

Destination

terminalsRelay terminals

First hop Second hop

...

S1

S2

SM

...

D1

D2

DM

......

• No relay partitioning

• Each relay knowsphases of all Mbackward and all Mforward channels

22

Page 23: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

P2: Each Relay Assists All S-D Pairs

...

S1

S2

SM

.

.

.

D1

D2

DM

Phase matching with respect toall backward and all forward channels,

normalization to ensure power constraint

kth relay terminal

hk,M

hk,1

hk,2

rk

f1,k

f2,k

fM,k

tk

tk = !k

!

M"

m=1

f!

m,kh!

k,m

#

rk

ForM,K →∞, the per S-D pair capacity scales as

CP2 =1

2log

(1 + Θ

(K

M2

))

23

Page 24: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Conclusions

• Network decouples if rate of growth ofK as function ofM issufficiently fast

• P1 and P2 trade amount of CSI at relays for required rate of growth ofrelays

• The individual Sm → Dm fading links converge to independent AWGNlinks asM,K →∞⇒ Network crystallizes

• Back from infinity: Characterizing “crystallization rate” could serve asa general tool to study large wireless networks

• Network capacity scaling for P2 is√T , where T = 2M +K

24

Page 25: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Cooperation

25

Page 26: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Interference Relay Network with Cooperation at Relays

...

S1

S2

SM

.

.

.

Destination

terminals

Source

terminals

D1

D2

DM

...

...

R1

Relay terminals

...

...

RK

R2

...

...

...

...

First hop Second hop

Ek,l Pl,k

fl,khk,l

1

N

N

N

1

1

N

N

N

1

1

1

26

Page 27: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

P1 with Cooperation

...

Phasematching

.

.

.

Phasematching

!k

...

S1

S2

SM

.

.

.

D1

D2

DM

rk tk

tk = !k f!

1,khHk,1rk

kth relay terminal

(assigned to S1 ! D1)

hk,1

hk,2

hk,M

f1,k

f2,k

fM,k

ForM,K →∞, the per S-D pair capacity scales as

CP1 =1

2log

(1 + Θ

(KN

M3

))

27

Page 28: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

P2 with Cooperation

...

S1

S2

SM

.

.

.

D1

D2

DM

hk,1

hk,2

hk,M

f1,k

f2,k

fM,k

rk tk

...

.

.

.

Phase matching with respect to

all backward and all forward channels,

normalization to ensure power constraint

tk = !k

!

M"

l=1

f!

l,khH

k,l

#

rk

kth relay terminal

ForM,K →∞, the per S-D pair capacity scales as

CP2 =1

2log

(1 + Θ

(KN

M2

))

28

Page 29: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Cooperation Increases Per-Stream Array Gain

• Cooperation at the relay level increases the per-stream array gain

• Per-stream array gain can be decomposed asA = AdAc, where

– Distributed array gain

Ad,P1 = KN/M3 Ad,P2 = KN/M2

– Array gain due to cooperation at relay level

Ac,P1 = Ac,P2 = N

29

Page 30: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Cooperation vs. No Cooperation

• Consider a network with a total of T relay antenna elements

• No cooperation at the relay level

C(nc)P1 =

1

2log

(1 + Θ

(T

M3

))

• Cooperation at the relay level in groups ofN antenna elements

C(c)P1 =

1

2log

(1 + Θ

(TN

M3

))Cooperation leads to N -fold reduction in total number of relayantenna elements needed to achieve given per S-D pair capacity

30

Page 31: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Thank You!

31

Page 32: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Backup

32

Page 33: “Crystallization”inLargeFadingNetworks · AnInterferenceNetworkwithRelays K Relay Terminals Source 2 Source 1 Source M Destination M Destination 1 Destination 2 Relayshavenotrafficrequirements

Convergence of SINR CDF to Step-Function

0 2 4 6 8 10 12 14 16 18 20 22 240

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

M = 20

M = 35

M = 5

N = 4

N = 1 limiting CDF

M = 35

M = 5

M = 20

P1 for K = M3

0 2 4 6 8 10 12 14 16 18 20 22 240

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

M = 20

M = 35

M = 5

N = 4

N = 1 limiting CDF

M = 35

M = 5

M = 20

P2 for K = M2

33